

DOCKET

09-ALT-1

DATE 9/29/2009

RECD. 9/30/2009

Company Background and Hydrogen Fueling Capabilities

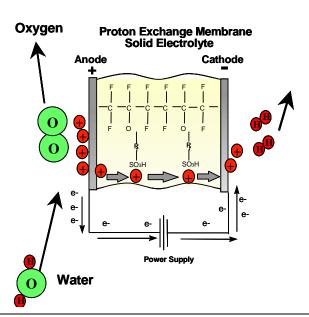
Hydrogen Workshop September 29, 2009

Mark Schiller, VP Business Development 203.678.2185

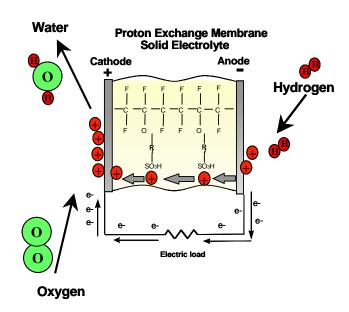
mschiller@protonenergy.com

Proton Energy Systems

- World leader in PEM electrolysis
- Founded in 1996
- All operations located in Wallingford, Connecticut.
- ISO 9001:2000 registered
- Over 1200 systems operating in 58 different countries on all 7 continents.

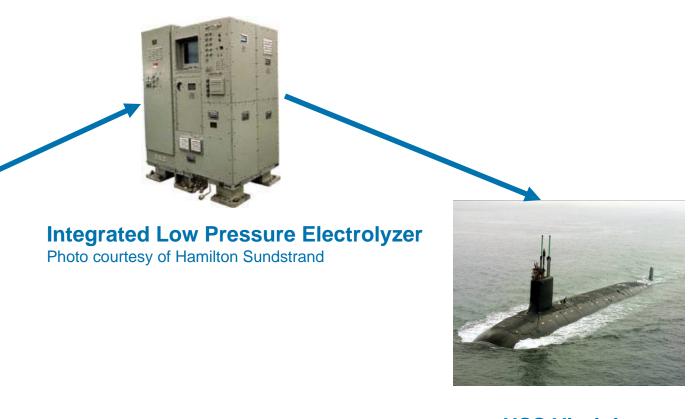


Development of PEM Electrolysis



Initial PEM innovators Grubb & Neidrach, GE Research, 1955

PEM Electrolysis



PEM Fuel Cell

PEM Electrolyzer technology has a long history of reliability in mission critical applications: SSN and SSBN Submarine Life Support

Proton cell stack

USS Virginia

Proton Capabilities

- Electrolysis System & Cell Stack Development
- Product Manufacturing & Testing
- World-Wide Sales & Service
- Integration of electrolyzers into hydrogen fueling and energy storage systems

CELL STACK
MANUFACTURING

SYSTEMS MANUFACTURING

CELL STACK R&D

Commercial Product Details

	HOGEN [®] GC Series	HOGEN [®] S-Series	HOGEN [®] H-Series
Year Introduced	1999	2000	2004
Applications	Laboratories	Industrial Gas Generation Meteorological Industries Fuelling Industries	Power Plants Heat Treating PCB Industries
Generator Rate	300 or 600 cc/min	0.5 to 1.0 Nm ³ /hr H ₂ 1-2 kg/day	2-6 Nm³/hr H ₂ ; 4-12 kg H ₂ /day
Hydrogen Pressure	Pressure to 13 bar	15 bar	15 & 30 bar
Ultra-High Pressure Hydrogen Purity	99.9999+%	99.9995+%	99.9995+%
Dimensions	23 x 37x 52 cm	97 x 79 x 106 cm	200 x 80 x 200 cm
Weight	23 kg	215 kg	700-800 kg

FuelGen® Hydrogen Generation

- Mature
- Proven
- Reliable
- Supported

Emerging Market: Hydrogen Fueling

Compression, Storage, and Dispensing

- Easily integrated
- Proven track record
- Network of equipment support
- 350 bar and 700 bar options

What services do we provide?

- Design and manufacture of FuelGen electrolyzers
- Station layout planning and design
- Integration of third party compression, storage, and dispensing
- Interfacing with local authorities during permitting process
- Station requirements definition and refinement
- Equipment installation and commissioning
- System monitoring and maintenance

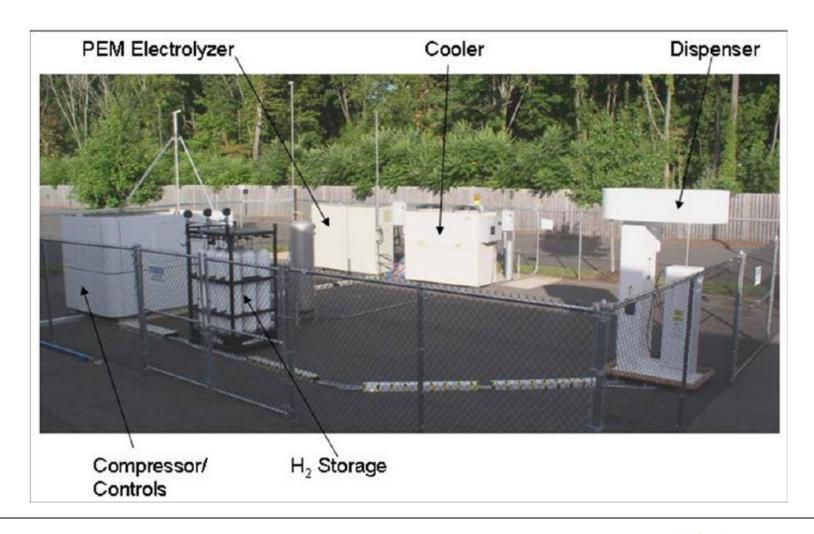
E-Vermont Station Burlington, VT

UNLV Station Las Vegas, NV

Yeager Airport Station Charleston, WV

Shell Station White Plains, NY

BP / Progress Energy Station Jamestown, FL


BP / SMUD Station Sacramento, CA

Typical Equipment Installation

FuelGen™ Architecture

- Turnkey installation and operation in vehicle fueling applications
- PEM Reliability and Purity
- Outdoor Operation (-25 to 50°C)
- Simple installation and integration with CSD
- Onboard DI water system
- Dew point monitoring

FuelGen[™]12

Installation – Simplicity and Small Footprint

(Shell Station – White Plains, NY)

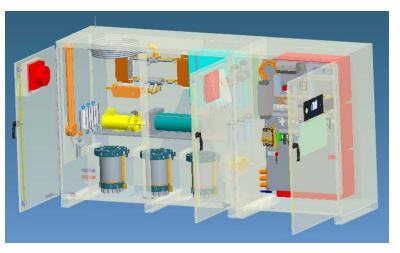
Commercialization

- PEM electrolyzer cost reduction will follow the maturation of the fuel cell supply chain and reduction of components
- The technical challenges are well in hand and commercialization will grow as fast as the markets emerge
- Government support is critical to the pace at which innovative, cost effective hydrogen infrastructure will be deployed

Pathways

- Traditional fueling station concept based on larger hydrogen production
- Home fueling concept based on smaller production but higher pressure
- Renewable-based hydrogen production viability for both

Large Electrolyzer Option


- FuelGen™65 Hydrogen Fuel Generator
 - 21 to 65 kilograms per day (10 to 30 Nm³/h)
 - 30 bar hydrogen pressure
 - Outdoor installation (-10 to 50°C)
 - Onboard DI water system
 - Dew point monitoring
- Designed to new international standard ISO22734-1

FuelGen[™]65 / C Series Architecture

(Tank Topping / Load Following)

Home Refueling Product

- 345 bar (5,000 psi) hydrogen production
- Differential pressure design; ambient pressure O₂
- Up to 1 Nm³/h (2.5 kg/day)
- Leverage commercial platform and demonstrated high pressure capability

Current High Pressure H₂ Generator

- 165 bar (2,400 psi) differential pressure
- 1 Nm³/H₂ for Backup Power market
- Field demonstrations underway
- Over 20,000 hrs of continuous operation
- Stack & system durability demonstrated

How Can CEC and Industry Work Together

- Support funding of hydrogen infrastructure deployment by making the flow of funds simple and expeditious
- Work with industry to find the right sites for deploying fueling infrastructure without bias toward traditional players
- Understand timelines and initiatives for home fueling
- Understand specifications for home fueling from automotive OEMs
- Employ technologies for infrastructure that leverage renewable energy

