

CH2M HILL 2485 Natomas Park Drive Suite 600 Sacramento, CA 95833-2937 Tel 916.920.0300 Fax 916.920.8463

September 29, 2009

Mr. Mark Fugler Regulatory Division U.S. Army Corps of Engineers, Sacramento District 1325 J Street Sacramento, CA 95814

Subject: Mariposa Energy Project (File # SPK-2009-01261), Request for Waters of the U.S. Jurisdictional Determination

Dear Mr. Fugler:

Please find enclosed one (1) copy of the formal Wetland Delineation Report for the Mariposa Energy Project (MEP). On behalf of my client, Mariposa Energy, I request a waters of the U.S. Jurisdictional Determination at your earliest convenience. Either I and/or our wetlands specialist will attend your site visit to help familiarize you to the project area and answer any questions. In the event that the U.S. Army Corps of Engineers takes jurisdiction over any of the onsite wetlands and waters, I anticipate a federal nexus for MEP for formal consultation under Section 7 of the Endangered Species Act.

The MEP is a proposed natural gas fired, peaking facility with a generating capacity of 200megawatts. The proposed project site is in northeastern Alameda County, in an unincorporated area located approximately 7 miles northwest of Tracy, 7 miles east of Livermore, 6 miles south of Byron, and approximately 2.5 miles west of the community of Mountain House in San Joaquin County. The facility would be located southeast of the intersection of Bruns Road and Kelso Road on a 10-acre portion of a 158-acre parcel immediately south of the Pacific Gas and Electric Company (PG&E) Bethany Compressor Station and 230-kilovolt (kV) Kelso Substation. A complete description of MEP is provided in the California Energy Commission Application for Certification available online at: http://www.energy.ca.gov/sitingcases/mariposa/documents/index.html Please feel free to contact either Doug Urry (CH2M HILL Project Manager) at (916) 286-0348 or me at (408) 839-2402 or todd.ellwood@ch2m.com with any questions. We look forward to meeting you at the project site. Sincerely,

CH2M HILL

Fodd Elwood

Todd Ellwood Project Biologist

Enclosure

cc: Doug Urry, CH2MHILL Russell Huddleston, CH2M HILL Bo Buchynsky, Mariposa Energy, LLC

Draft Report

USACE Delineation of Wetlands and Other Waters for the Mariposa Energy Project

Prepared for Mariposa Energy, LLC

July 2009

155 Grand Avenue Suite 1000 Oakland, CA 94612

Contents

Secti	on			Page		
Acro	nyms	and Ab	breviations	v		
1	Intro	ductior	1	. 1-1		
	1.1	Project	Location	. 1-1		
	1.2	Enviro	nmental Setting			
		1.2.1	Terrestrial Habitats and Land Use	. 1-2		
		1.2.2	Climate and Hydrology	. 1-2		
		1.2.3	Soils			
2	Methods					
	2.1	Wetlar	nd Delineation	. 2-1		
	2.2	Other	Features	. 2-3		
3	Results					
3	3.1		ial Jurisdictional Wetlands			
		3.1.1	Drainage Wetlands (D-1 and D1a)			
		3.1.2	Drainage Wetland (D-2)			
		3.1.3	Drainage Wetland (D-3)			
		3.1.4	Drainage Wetland (D-4)			
		3.1.5	Alkali Sink Wetland (ASW-1)	. 3-4		
	3.2					
		3.2.1	Drainage 1b			
		3.2.2	Drainage 2a (Includes Ditch 1)			
	3.3	Non-Ju	urisdictional Features	. 3-5		
		3.3.1	Seasonal Wetland (SWL-1)	. 3-5		
		3.3.2	Seasonal Wetland SWL-2	. 3-6		
		3.3.3	Swales	. 3-6		
		3.3.4	Erosional Channels	. 3-7		
		3.3.5	Canal 45	. 3-7		
4	Refe	rences		. 4-1		

Table

1 Summary of Observed Features

Figures

- 1-1 Project Vicinity Map
- 1-2 Site Location Map
- 1-3 Precipitation Data November 2008 through March 2009
- 2-1 Wetland Delineation Maps

Appendixes

- A Natural Resource Conservation Service WETS Tables for Alameda County, California
- B National Wetland Inventory Map
- C Drainage and Topography Map
- D Mapped Soil Units in the Project Vicinity
- E Wetland Determination Data Forms
- F Selected Site Photographs
- G List of Plant Species Observed at Sample Points

Acronyms and Abbreviations

BBID	Byron Bethany Irrigation District
BIOS	Biogeographic Information and Observation System
CFR	Code of Federal Regulations
cmp	corrugated metal pipe
CWA	Clean Water Act
FAC	facultative plant species
FACW	facultative wetland plant species
GPS	Global Positioning System
HUC	Hydrologic Unit Code
NRCS	Natural Resource Conservation Service
NWI	National Wetland Inventory
OBL	obligate wetland plant species
PEMF	Palustrine Emergent Semi-Permanently Flooded
PEMH	Palustrine Emergent Permanently Flooded
PG&E	Pacific Gas and Electric Company
USACE	United States Army Corps of Engineers
WRCC	Western Region Climate Center

section 1.0

Mariposa Energy, LLC proposes to construct, own, and operate an electrical generating plant in unincorporated Alameda County, California. The Mariposa Energy Project (Project) will be a natural gas-fired, simple-cycle electrical generating facility rated at a nominal generating capacity of 200 megawatts.

Wetlands and other waters are ecological habitats that are protected under the Federal Clean Water Act (CWA). Activities that have the potential to discharge fill materials into "waters of the United States," including wetlands, must be authorized by the U. S. Army Corps of Engineers (USACE). This report presents the results of a wetland delineation conducted for the proposed Mariposa Energy Project. The results presented in this report are preliminary, pending verification by USACE. Information on the Project location as well as a general description of the environmental setting follows. Study methods and results are provided in the following sections.

1.1 Project Location

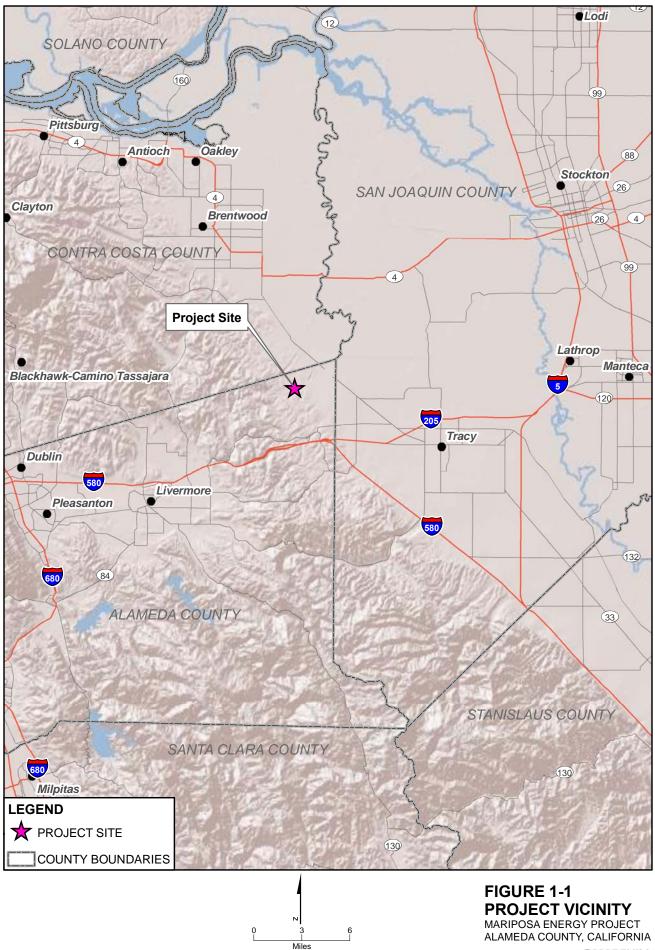
The Project study area is in northeastern Alameda County, approximately 10 miles northwest of the City of Tracy, 12 miles northeast of Livermore, and 12 miles southeast of Brentwood (Figure 1-1). The Project study area is located in the northwest 1/4 of Section 1, Township 2S, Range 3E (Mount Diablo Base and Meridian). The facility will be located southeast of the intersection of Bruns Road and Kelso Road on a 10-acre portion of a 158-acre parcel (known as the Lee Property) immediately south of the Pacific Gas and Electric Company (PG&E) Bethany Compressor Station and 230-kV Kelso Substation (Figure 1-2). The Assessor's parcel number is 099B-7050-001-10. The Project study area is located at 37° 47′ 23.86″ north latitude and 121° 36′ 06.35″ west longitude.

Linear features associated with the Project include a transmission line, natural gas pipeline, and service water line (Figure 1-2). The Project will interconnect to the Kelso Substation via a new 0.7-mile, 230-kV transmission line that will run north on the Lee Property, then across Kelso Road and into the existing substation. The natural gas pipeline will consist of approximately 580 feet of new 4-inch-diameter pipe that will run directly northeast from the Project study area to interconnect with PG&E's high-pressure natural gas pipeline (Line 2), which is located on the Lee Property. A new gas metering station will be constructed on the Project study area. Service water will be provided from a new connection to the Byron Bethany Irrigation District (BBID) via a new pump station and a 6-inch-diameter, 1.8-mile-long pipeline placed in or along the east side of Bruns Road, from Canal 45 south to the Project study area.

1.2 Environmental Setting

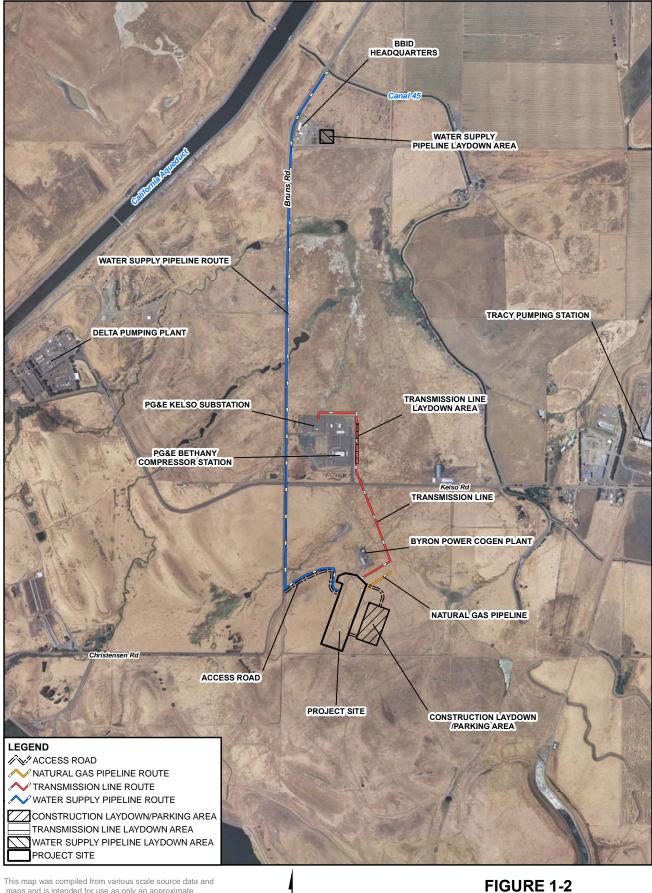
The Project is located at the northeastern edge of the Eastern Hills subsection of the Central Valley Coast Range Ecological subregion (Miles and Goudey, 1998), immediately bordering the alluvial plain of the San Joaquin Valley to the east. Regionally, the landscape is characterized by low foothills along the northeastern edge of the Diablo Range. In the vicinity of the Project study area, this area is characterized by a series of gently rolling hills to the south and west with low terraces to the north and east. Elevation in the Project area ranges from approximately 75 to 175 feet above mean sea level with slopes ranging from approximately 2 to 12.5 percent. Drainage is generally to the east and north. The following sections provide a description of the terrestrial habitats, climate, regional hydrology, and soils.

1.2.1 Terrestrial Habitats and Land Use


California annual grassland is the predominant natural community found throughout the Project area. Characteristic species include non-native grasses such as foxtail barley (*Hordeum murinum* ssp. *leporinum*), soft chess (*Bromus hordeaceus*), and wild oat (*Avena barbata*). Common forbs include bur clover (*Medicago polymorpha*), filaree (*Erodium moschatum*), black mustard (*Brassica nigra*), and gumweed (*Grindelia camporum*). The grassland habitat on the 158-acre Lee property is currently used for cattle grazing. Portions of the Project study area (including the proposed laydown area) were previously developed for wind energy. The windmill towers have been removed, but some remnants of the cement tower bases and miscellaneous debris remain scattered throughout the area.

Developed and agricultural areas in the vicinity of the Project area include the Byron Power Cogen Plant, located in the center of the Lee Property, PG&E's Bethany Compressor Station and Kelso Substation located north of Kelso Road, and the BBID headquarters facilities located along Bruns Road. Agricultural lands are limited to field crops (wheat and alfalfa) immediately north and south of the BBID facilities on the east side of Bruns Road.

1.2.2 Climate and Hydrology


The regional climate is characterized by cool, wet winters and hot, dry summers. Average temperatures range from a low of 36°F in January to a high of 90°F in July (Western Regional Climate Center [WRCC], 2009). According to the Natural Resources Conservation Service (NRCS) Climate Analysis for Wetlands (NRCS, 2002) the growing season (based on data from Livermore, California, and defined as temperatures above 28°F with a probability of 50 percent) extends from January 9 through December 29 for a total of 355 days (Appendix A). The average annual rainfall recorded at the Livermore weather station (044997) is 14.5 inches, with the majority (82 percent) of the annual precipitation occurring between November and March (WRCC, 2009).

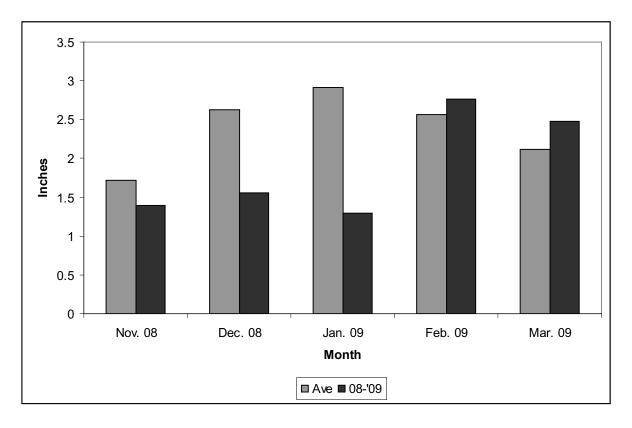
The wetland delineation was conducted during a slightly below-average rainfall year. Based on daily climate data recorded at the Livermore weather station, located approximately 12 miles southeast of the Project study area, rainfall between November 1, 2008, and March 31, 2009 was 7.1 inches, or approximately 80 percent of the average rainfall for this period (University of California Integrated Pest Management, 2009). The lower-than-normal rainfall was due to below-average precipitation from November through January; precipitation was slightly above average in February and March (Figure 1-3).

SAC\\ZION\SACGIS\PROJ\DIAMOND_376670\MAPFILES\AFC_MAPS\WETLAND_VICINITYMAP.MXD_MHASKELL 7/10/2009 11:32:58

- CH2MHILL

1,500

750


maps and is intended for use as only an approximate representation of actual locations.

Feet SAC\\ZION\SACGIS\PROJDIAMOND_376670\MAPFILES\AFC_MAPS\SITELOCATION.MXD MHASKELL 6/8/2009 16:02:00

- CH2MHILL

SITE LOCATION MARIPOSA ENERGY PROJECT

ALAMEDA COUNTY, CALIFORNIA

The Project is located in the San Joaquin Delta Hydrologic Unit (HUC 18040003), which has a drainage area of 433,302 acres (Biogeographic Information and Observation System [BIOS], 2009). The National Wetland Inventory (NWI) shows two palustrine emergent wetlands and two palustrine unconsolidated shore wetlands along the service water pipeline alignment along Bruns Road (Appendix B). USGS topographic information for the Clifton Court Forebay quadrangle indicates four blue line drainages along Bruns Road. Drainage in the vicinity of the Project area is generally to the north, where it is diverted around Clifton Court Forebay and into Italian Slough (Appendix C).

The natural hydrology in the vicinity of the Project area has been historically altered by the construction of reservoirs, aqueducts, canals, and agricultural drainages. Regionally, the most significant modifications are associated with the State Water Project, which was initiated in 1959 and fully operational by 1965. Water is diverted from the Delta into Clifton Court Forebay and is then pumped from the Harvey O. Banks Delta Pumping Plant into the Bethany Reservoir, where the South Bay Pumping Plant lifts water into the South Bay Aqueduct and the California Aqueduct.

1.2.3 Soils

Five soil series and nine different soil map units occur within the limits of the Project study area (Appendix D). General information on the soils based on local soil surveys (NRCS, 1977; 1966) and official soil series descriptions (NRCS, 2009) are provided below. All soil colors are for moist soils, unless otherwise noted.

Altamont Clays (AaC)

The Altamont series consists of well-drained soils with slow permeability derived from weathered shale and fine-grained sandstone. These soils are found on rolling hills and steep slopes east of Livermore. In a representative profile, the surface layer to a depth of 28 inches is dark brown (10YR 3/3) clay. A very thin, grayish-brown (10 YR 5/2) [dry] surface crust may be present in some areas and very dark brown to black films are often present on the upper ped surfaces. Light-colored calcium carbonate films and segregations are often common below 7 inches and soils become slightly alkaline with depth. The clay content in this soil ranges from 35 to 60 percent and wide, deep cracks are common throughout, once the soil is dry.

Linne Clay Loam (LaD, LbD, LaC)

The Linne series consists of well-drained calcareous soils derived from weathered shale and sandstone. These soils are found on rolling hills and slopes. In a typical profile, the upper 14 inches is a moderately alkaline, black (10 YR 2/1) clay loam. Between 14 and 29 inches, the soil is a moderately alkaline, very dark gray (10 YR 3/1) clay loam. Light-colored lime filaments and deposits are present in the lower part of the horizon, increasing with depth. Permeability is moderately slow and these soils have medium to very rapid runoff.

Rincon Clay Loam (RdB)

Rincon soils are found on alluvial fans and nearly level valley floors east of Livermore and north of Mountain House, where they formed in alluvium derived from sedimentary materials. In a typical profile, the surface horizon is a slightly acidic, very dark gray (l0YR 3/1) silty clay loam to a depth of 16 inches. From 16 to 25 inches, the soil is very dark grayish-brown (l0YR 3/2) sandy clay, often with clay films along the ped surfaces. These soils are well drained with slow permeability and slow to rapid runoff.

San Ysidro Loam (Sa, Sc)

The San Ysidro series consists of moderately well-drained soils formed in alluvium derived from sedimentary rocks. These soils occur on old valley fill and low terraces east of Livermore. In a representative profile, the surface layer (0 to 14 inches) is a slightly acidic, dark brown (10YR 4/3 to 3/3) fine sandy loam with few fine, distinct, brownish-yellow (10YR 6/6) concentrations. Below 14 inches, the soil is a dark brown (7.5YR 4/4) clay with a thin light gray (10 YR 6/2) bleach layer. Many moderately thick clay films are present along the ped surfaces and pore linings and common, fine iron and manganese concentrations are present. These soils have slow to medium runoff and very slow permeability.

Solano Fine Sandy Loam (Sf, Sfaa)

Solano soils are formed in alluvium derived from mixed sedimentary materials and are found on nearly level low terraces and in valley plains with slightly irregular or hummocky surface micro-topography. In a typical profile, the surface horizon is a strongly acidic, dark grayish-brown (10 YR 4/2) loam with few, fine, distinct dark reddish-brown (5 YR 3/4) concentrations. Below 9 inches, the soil is neutral to slightly alkaline, brown (10 YR 4/3) clay loam with dark, thin clay films on ped surfaces and pore linings. These soils are somewhat poorly drained with very slow to slow runoff and very slow permeability.

SECTION 2.0

An initial site survey was conducted on December 29, 2008, by CH2M HILL biologists Russell Huddleston and Todd Elwood, to identify potential wetlands and other waters and to collect data on seasonal hydrologic conditions in the Project study area. Additional surveys were conducted by Mr. Huddleston and/or Mr. Elwood on February 19, April 8, April 15, and June 4, 2009.

The approximately 69-acre Project study area included 41-acre area in which the power plant facility, laydown area, and natural gas pipeline would be located, as well as 100-foot-wide survey corridors along the transmission line and service water pipeline alignments (Figure 2-1). The following sections provide information on the methodology used for the delineation.

2.1 Wetland Delineation

The USACE defines wetlands as areas that are "inundated by surface water or groundwater with a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas." (Title 40 Code of Federal Regulations [CFR] Section 230.3 and Title 33 CFR Section 238). The wetland field surveys were conducted following the survey methodology described in 1987 *Wetland Delineation Manual* (Environmental Laboratory, 1987) and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region* (USACE, 2008).

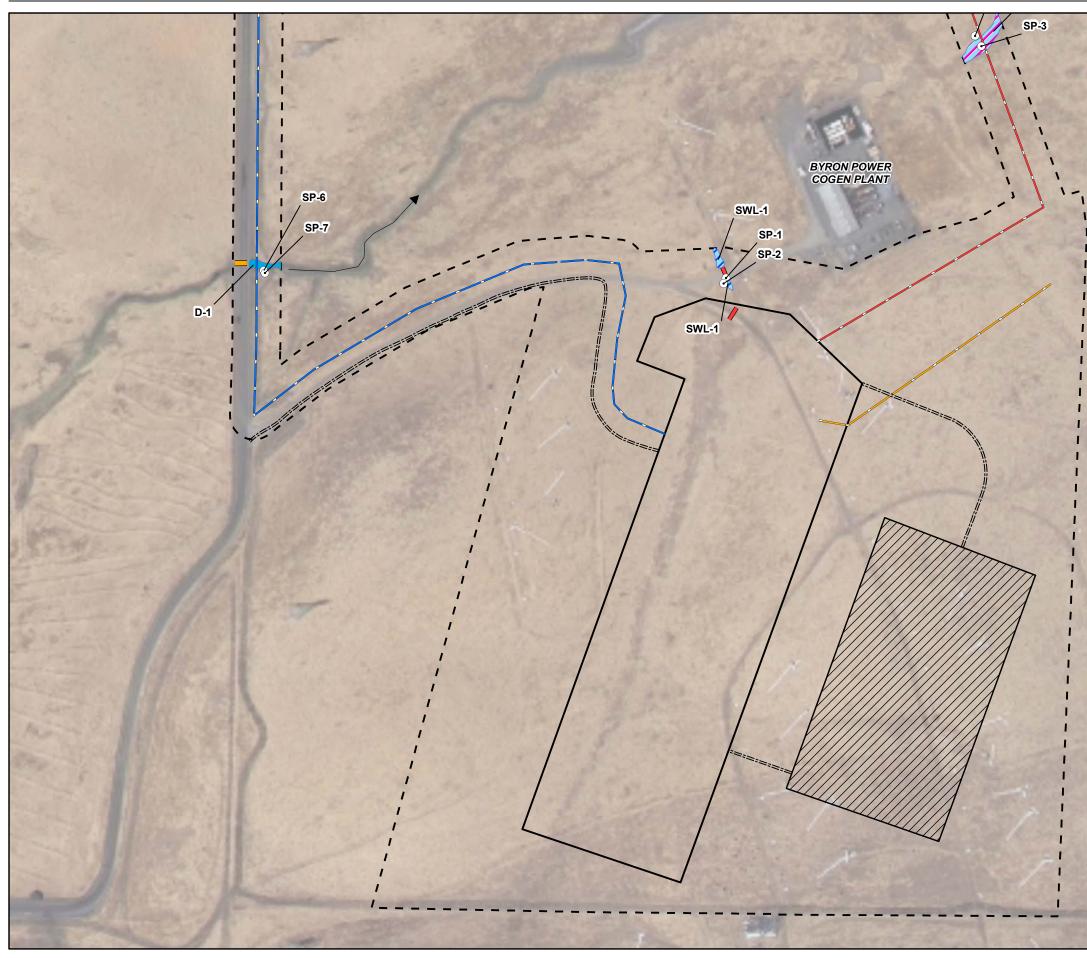
The USACE uses the three-criterion approach (vegetation, soils, and hydrology) to determine the presence of wetlands. As a general rule, under this method, evidence of a minimum of one positive indicator for each criterion must be found in order to make a positive wetland determination. In general, wetlands will normally meet the following criteria:

- **Hydrophytic Vegetation:** More than 50 percent of the dominant vegetation is composed of plant species that are adapted to survive and grow in hydrophytic (wet) conditions. These species have been assigned a wetland indicator value of facultative (FAC), facultative wetland (FACW), or obligate (OBL) on the *National List of Plant Species That Occur in Wetlands* (Reed, 1988).
- **Hydric Soils**: The NRCS defines hydric soil as "soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part..." (Federal Register, July 13, 1994). The criteria for establishing the presence of hydric soils vary among soil types, drainage classes, and land resource regions. The NRCS (2006) has developed field indicators for identification of hydric soils. These indicators are currently used by the USACE in the *Arid West Regional Supplement to the 1987 Wetland Delineation Manual* (USACE, 2008). They rely on soil characteristics such as texture, color, and the amount of redoximorphic features to determine if soils are hydric.

• Wetland Hydrology: Areas with wetland hydrology are defined as "...inundated either permanently or periodically at mean water depths less than 2 meters (6.6 feet), or the soil is saturated to the surface at some time during the growing season" (Environmental Laboratory, 1987). Areas where saturation or inundation is present for at least 5 percent of the growing season may be considered wetlands. In the Project study area, wetlands would therefore need to be inundated or saturated for a minimum of 18 consecutive days to meet the wetland hydrology criterion.

A total of 15 sample points were established in potential wetlands and adjacent non-wetland areas (Figure 2-1). At each sample location vegetation, soil, and hydrology indicators were recorded on wetland determination data sheets, which are included in Appendix E. Representative Project study area photographs are provided in Appendix F.

Dominant plant species at each sample location were identified, and the percent cover was visually estimated within an approximately 5-foot radius area. All taxonomic designations follow *The Jepson Manual of Higher Plants of California* (Hickman, 1993) or the current revised taxonomy per the *Jepson Interchange for California Floristics* (University of California, 2009). The wetland indicator status was determined using the *National List of Plant Species that Occur in Wetlands: Region 0* (Reed, 1988). Dominant species within each vegetation strata included the most abundant species whose cumulative cover accounted for at least 50 percent of the total cover, as well as any single species that accounted for at least 20 percent of the vegetative cover. Strata that contained less than 5 percent total cover were not considered in the dominance test. A list of Plant species identified at each sample location is included in Appendix G.


Descriptions of soils were made at each sample location by examining soil pits dug with a tile spade to depths of at least 12 inches where possible. Soil morphological features such as texture, color, and redoximorphic features were noted. Soils texture was estimated in the field using the "ribbon test" to approximate the clay, silt, and sand content. Moist soil colors were determined using Munsell[®] color charts.

Wetland hydrology was determined based on observations of saturation or inundation during the field surveys and other primary and secondary indicators of wetland hydrology such as presence of aquatic invertebrates, algal matting, water marks, and sediment deposits. Additional factors considered in the wetland hydrology determinations at each sample point included site drainage, landscape position, and micro-topography.

Wetland boundaries were determined in the field based on the vegetation, soils, and hydrology observed at selected sample points as well as distinct changes in vegetation and micro-topography and best professional judgment. A Trimble® Geo-XT global positioning system (GPS) unit was used to map all sample point locations, wetland boundaries, and other relevant features such as culverts and swales. The GPS data were then differentially corrected to generally sub-meter accuracy and plotted on aerial photograph base maps (Figure 2-1).

2.2 Other Features

Other features, including unvegetated ephemeral drainages and erosional channels, were identified and mapped with a GPS during the wetland delineation field surveys. The limits of these features were determined based on evidence of an ordinary high-water mark (e.g., scouring, drift lines, and/or sediment deposits) and/or defined bed and bank characteristics.

SAC\\ZION\SACGIS\PROJ\DIAMOND_376670\MAPFILES\AFC_MAPS\WETLANDS.MXD MHASKELL 7/13/2009 15:25:47

LEGEND

• DATA POINTS

==ACCESS ROAD

-TRANSMISSION LINE ROUTE

WATER SUPPLY PIPELINE ROUTE

→ FLOW DIRECTION

BOX CULVERT

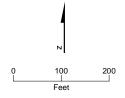
CULVERT

POTENTIAL JURISDICTIONAL WATERS/WETLANDS
DITCH
ALKALI SINK WETLAND
DRAINAGE WETLAND

WATERS OF THE U.S.

POTENTIAL NON-JURISDICTIONAL WATERS/WETLANDS

ZEROSIONAL CHANNEL


SEASONAL WETLAND

SWALE

SITES

CONSTRUCTION LAYDOWN/PARKING AREA TRANSMISSION LINE LAYDOWN AREA WATER SUPPLY PIPELINE LAYDOWN AREA PROJECT SITE

This map was compiled from various scale source data and maps and is intended for use as only an approximate representation of actual locations.

1 OF 5

FIGURE 2-1 WETLAND DELINEATION MARIPOSA ENERGY PROJECT ALAMEDA COUNTY, CALIFORNIA

SAC\\ZION\SACGIS\PROJ\DIAMOND_376670\MAPFILES\AFC_MAPS\WETLANDS.MXD MHASKELL 7/13/2009 15:25:47

LEGEND

• DATA POINTS

==ACCESS ROAD

-TRANSMISSION LINE ROUTE

WATER SUPPLY PIPELINE ROUTE

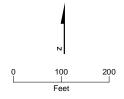
→ FLOW DIRECTION

BOX CULVERT

CULVERT

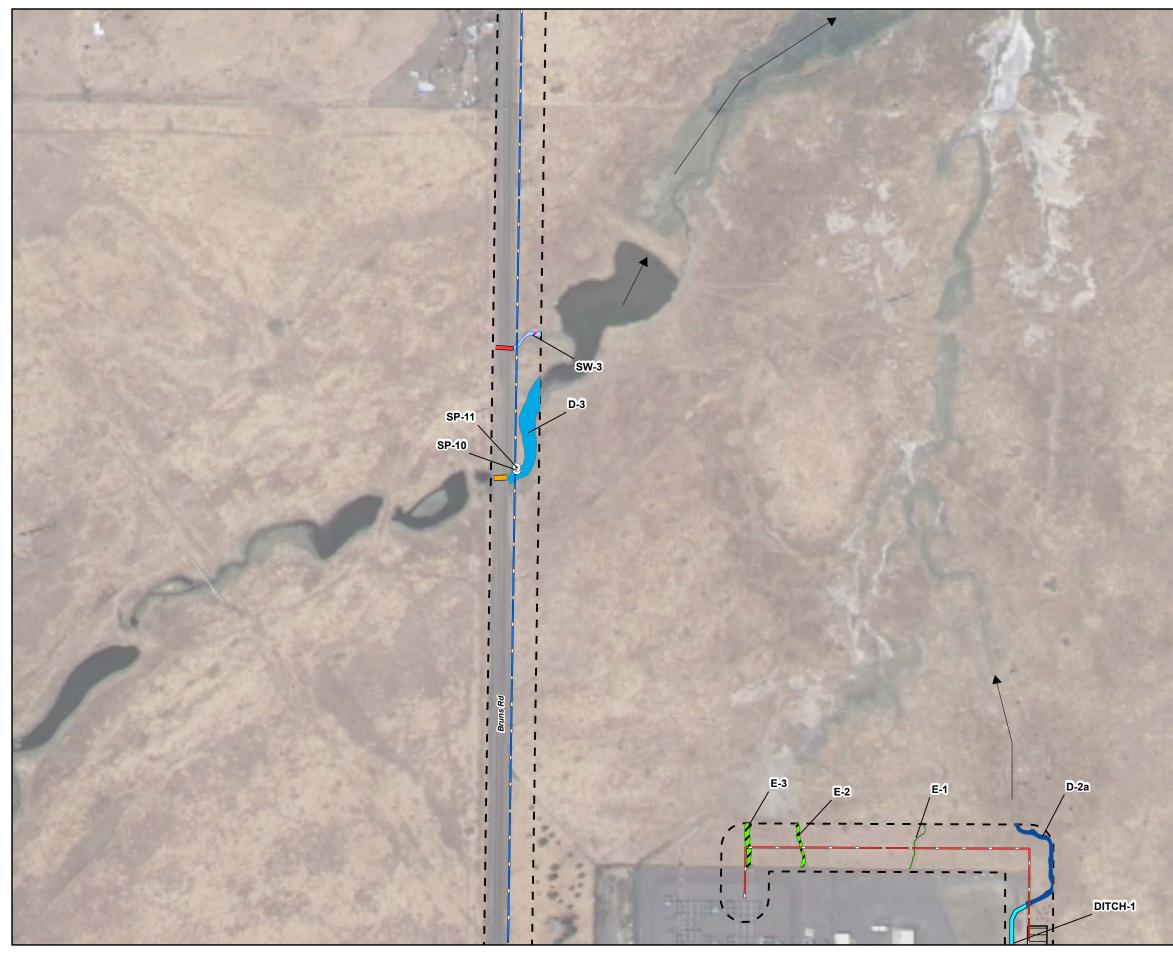
POTENTIAL JURISDICTIONAL WATERS/WETLANDS
DITCH
ALKALI SINK WETLAND
DRAINAGE WETLAND

WATERS OF THE U.S.


POTENTIAL NON-JURISDICTIONAL WATERS/WETLANDS

SEASONAL WETLAND

SITES


CONSTRUCTION LAYDOWN/PARKING AREA TRANSMISSION LINE LAYDOWN AREA WATER SUPPLY PIPELINE LAYDOWN AREA PROJECT SITE

This map was compiled from various scale source data and maps and is intended for use as only an approximate representation of actual locations.

2 OF 5

FIGURE 2-1 WETLAND DELINEATION MARIPOSA ENERGY PROJECT ALAMEDA COUNTY, CALIFORNIA

SAC\\ZION\SACGIS\PROJ\DIAMOND_376670\MAPFILES\AFC_MAPS\WETLANDS.MXD_MHASKELL7/13/2009 15:25:47

LEGEND

• DATA POINTS

==ACCESS ROAD

-TRANSMISSION LINE ROUTE

WATER SUPPLY PIPELINE ROUTE

→ FLOW DIRECTION

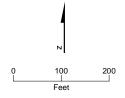
BOX CULVERT

CULVERT

POTENTIAL JURISDICTIONAL WATERS/WETLANDS

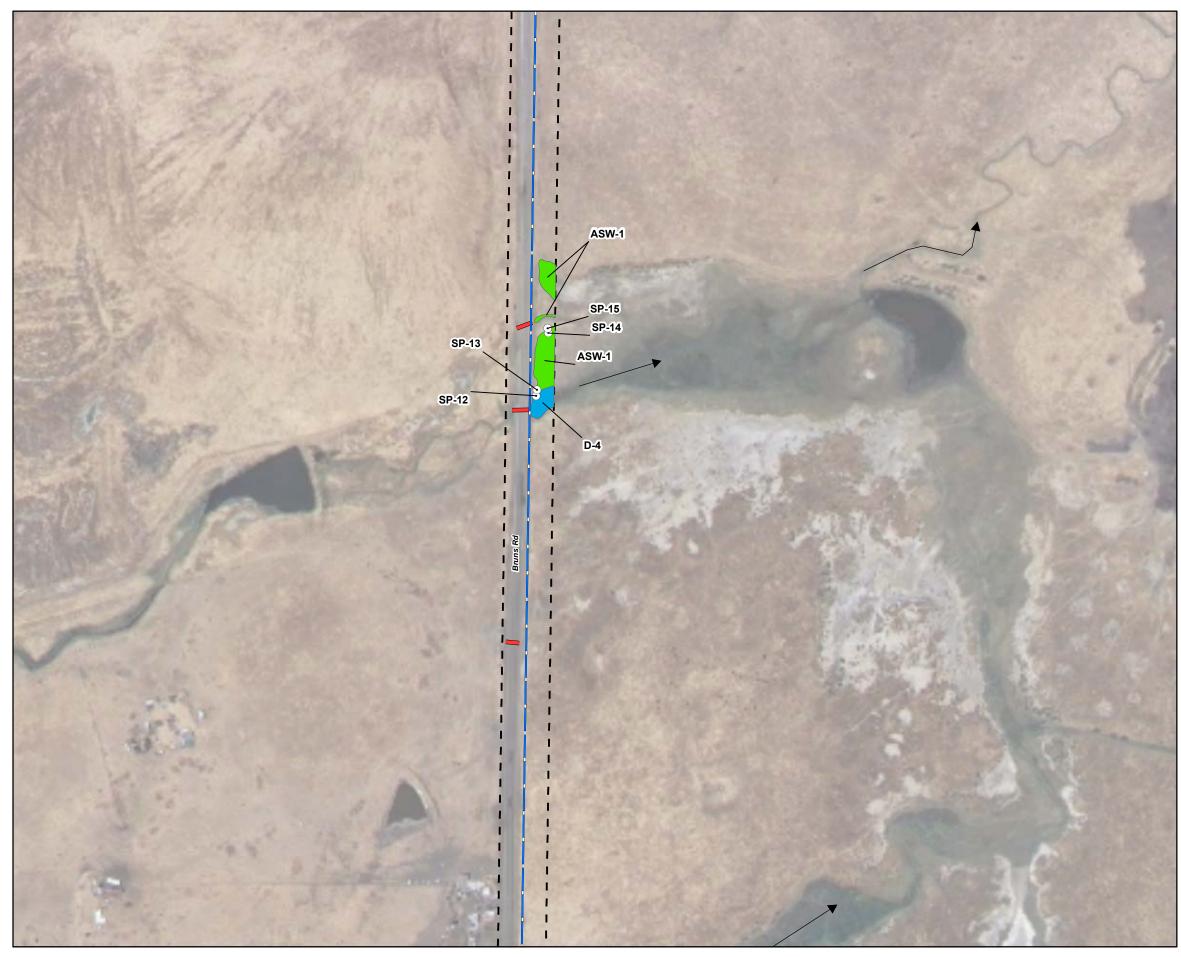
DRAINAGE WETLAND WATERS OF THE U.S.

POTENTIAL NON-JURISDICTIONAL WATERS/WETLANDS


ZSEASONAL WETLAND

SWALE

SITES


CONSTRUCTION LAYDOWN/PARKING AREA TRANSMISSION LINE LAYDOWN AREA WATER SUPPLY PIPELINE LAYDOWN AREA PROJECT SITE

This map was compiled from various scale source data and maps and is intended for use as only an approximate representation of actual locations.

3 OF 5

FIGURE 2-1 WETLAND DELINEATION MARIPOSA ENERGY PROJECT ALAMEDA COUNTY, CALIFORNIA

SAC\\ZION\SACGIS\PROJ\DIAMOND_376670\MAPFILES\AFC_MAPS\WETLANDS.MXD_MHASKELL7/13/2009 15:25:47

LEGEND

⊙ DATA POINTS

===ACCESS ROAD

-TRANSMISSION LINE ROUTE

WATER SUPPLY PIPELINE ROUTE

→ FLOW DIRECTION

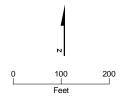
BOX CULVERT

CULVERT

POTENTIAL JURISDICTIONAL WATERS/WETLANDS
DITCH
ALKALI SINK WETLAND
DRAINAGE WETLAND

WATERS OF THE U.S.

POTENTIAL NON-JURISDICTIONAL WATERS/WETLANDS CROSIONAL CHANNEL CANAL


SEASONAL WETLAND

SWALE

SITES

CONSTRUCTION LAYDOWN/PARKING AREA TRANSMISSION LINE LAYDOWN AREA WATER SUPPLY PIPELINE LAYDOWN AREA PROJECT SITE I PROJECT STUDY AREA

This map was compiled from various scale source data and maps and is intended for use as only an approximate representation of actual locations.

4 OF 5

FIGURE 2-1 WETLAND DELINEATION MARIPOSA ENERGY PROJECT ALAMEDA COUNTY, CALIFORNIA

SAC\\ZION\SACGIS\PROJ\DIAMOND_376670\MAPFILES\AFC_MAPS\WETLANDS.MXD_MHASKELL7/13/2009 15:25:47

LEGEND

⊙ DATA POINTS

=--ACCESS ROAD

-TRANSMISSION LINE ROUTE

WATER SUPPLY PIPELINE ROUTE

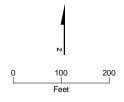
→ FLOW DIRECTION

BOX CULVERT

CULVERT

POTENTIAL JURISDICTIONAL WATERS/WETLANDS

DRAINAGE WETLAND


POTENTIAL NON-JURISDICTIONAL WATERS/WETLANDS

SEASONAL WETLAND

SITES

CONSTRUCTION LAYDOWN/PARKING AREA TRANSMISSION LINE LAYDOWN AREA WATER SUPPLY PIPELINE LAYDOWN AREA PROJECT SITE I PROJECT STUDY AREA

This map was compiled from various scale source data and maps and is intended for use as only an approximate representation of actual locations.

5 OF 5

FIGURE 2-1 WETLAND DELINEATION MARIPOSA ENERGY PROJECT ALAMEDA COUNTY, CALIFORNIA

SECTION 3.0

Based on the observations made during the field surveys, a total of 0.251 acre of potential jurisdictional drainage wetlands, 0.166 acre of alkali sink wetland, and 0.075 acre of potential jurisdictional waters of the U.S. occur within the approximately 69-acre Project study area (Table 1). An additional 0.228 acre of potentially non-jurisdictional areas including isolated seasonal wetlands and swales, three erosional channels, and a small section of Canal 45 were also identified in the Project study area (Table 1). The following sections provide descriptions of the wetlands, waters, and other features that were identified and mapped in the Project study area.

TABLE 1

Feature	Acreage	Description				
Potential Jurisdictional Waters of the U.S.						
Drainage Wetland (D-1)	0.021	Defined drainage channel characterized by saltgrass within the channel; blue line creek on USGS topographic map with apparent hydrologic connection with Italian Slough				
Drainage Wetland (D1a)	0.006	Weakly expressed drainage swale characterized by saltgrass, Mediterranean barley, soft chess, and foxtail barley, blue line creek on USGS topographic map with apparent hydrologic connection with Italian Slough				
Drainage Wetland (D-2)	0.032	Small swale-like feature characterized by saltgrass, Italian ryegrass, and meadow barley with some scouring evident along the channel; blue line creek on USGS topographic map with apparent hydrologic connection with Italian Slough				
Drainage Wetland (D-3)	0.138	Shallow, well-defined drainage channel characterized by cosmopolitan bulrush with scattered rabbitsfoot grass, curly dock, and cattail. Palustrine Emergent Permanently Flooded wetland on the National Wetland Inventory Map and is a blue line creek on USGS topographic map with apparent hydrologic connection with Italian Slough				
Drainage Wetland (D-4)	0.053	Shallow, well-defined channel characterized by dense cattails growing in the center of the channel with dense saltgrass growing around the outer edges; Palustrine Emergent Semi-Permanently Flooded wetland on the National Wetland Inventory Map and is a blue line creek on USGS topographic map with apparent hydrologic connection with Italian Slough				
Waters of the U.S (D-1b)	0.023	Defined channel with steep cut banks, largely devoid of vegetation, continuation of Drainage 1 on the north side of Kelso Road, blue line creek on USGS topographic map with apparent hydrologic connection with Italian Slough				

Potential Jurisdictional and Non-Jurisdictional Wetland and Waters Identified in the Project Study Area

TABLE 1

Potential Jurisdictional and Non-Jurisdictional Wetland and Waters Identified in the Project Study Area

Feature	Acreage	Description
Waters of the U.S. (D-2a and Ditch 1)	0.052	Small, well-defined channel with defined bed and bank, channel is a continuation of Drainage 2, portion of the original channel has been realigned through the PG&E facility to the west; blue line creek on USGS topographic map with apparent hydrologic connection with Italian Slough
Alkali Sink Wetland (ASW-1)	0.166	Wetland area is characterized by saltgrass and common rusty molly with scattered sand spurry, alkali heath, and common spikeweed; strongly alkaline soils; shown as a Palustrine Unconsolidated Shore Seasonally Flooded wetland on the National Wetland Inventory Map
Total	0.491	
	Potential N	Ion-Jurisdictional Waters of the U.S.
Seasonal Wetland (SWL-1)	0.018	Two shallow, well-defined basins along access road to the Byron Power Cogen Plant connected by a corrugated metal pipe (cmp); slender popcorn flower and other vernal pool plants scattered within the basin; no hydrologic connection or significant nexus with any other drainage or water features
Seasonal Wetland (SWL-2)	0.007	Shallow, weakly expressed topographic low area with scattered coyote thistle and Italian ryegrass, adjacent to transmission line laydown area; no hydrologic connection or significant nexus with any other drainage or water features
Swale (SW-1)	0.063	Low topographic swale characterized by Mediterranean barley; appears to convey low-volume, short-duration flows in response to storm events but lacks evidence of prolonged inundation; water flows west and ponds in low areas around the Byron Power Cogen Plant; no hydrologic connection or significant nexus with any other drainage or water features
Swale (SW-2)	0.045	Low topographic swale characterized by Mediterranean barley; appears to convey low-volume, short-duration flows in response to storm events but lacks evidence of prolonged inundation; water flows west and ponds in low areas around the Byron Power Cogen Plant; no hydrologic connection or significant nexus with any other drainage or water features
Swale (SW-3)	0.012	Small, weakly expressed swale from 12-inch-diameter culvert under Kelso Road; characterized by soft chess, Italian ryegrass, and saltgrass; appears to convey low, very-low volume flow for very short durations only in response to heavy rainfall
Erosional Channel (E-1)	0.002	Small, weakly expressed erosional rill resulting from direct runoff from the Kelso Substation
Erosional Channel (E-2)	0.013	Erosional channel resulting from direct runoff from the Kelso Substation
Erosional Channel (E-3)	0.022	Large, deeply scoured erosional channel resulting from direct runoff from the Kelso Substation
Canal 45	0.046	Constructed and routinely maintained irrigation canal
Total	0.228	

3.1 Potential Jurisdictional Wetlands

Four drainage features all of which are shown as blue line drainages on the USGS Clifton Court Forebay 7.5-minute quadrangle were identified in the Project study area. These drainages all flow into a broad seasonal wetland area on the west side of Bruns Road at the Alameda-Contra Costa County Line. From this wetland, water flows approximately 0.5 mile to the north through a natural drainage channel and then continues north through a series of constructed drainage ditches for approximately 2.5 miles, where water is eventually discharged into Italian Slough (Appendix C). An alkali sink wetland is located adjacent to one of the drainages within the Project study area. All of these features are found along the proposed water supply pipeline route and the transmission line route (Figure 2-1).

3.1.1 Drainage Wetlands (D-1 and D1a)

The service water pipeline would cross a seasonal drainage (D-1) on the east side of Bruns Road, approximately 0.3 mile south of the intersection with Kelso Road (Figure 2-1; Map 1). A 6-foot by 6-foot box culvert is located under the road in this area. Within the Project study area, the drainage channel is well-defined with gently sloping banks. The area immediately around the culvert is characterized by dense perennial pepperweed (*Lepidium latifolium*). To the east, the channel is characterized by saltgrass (Distichlis spicata), with scattered rabbitsfoot grass (Polypogon monspeliensis), Italian ryegrass (Lolium multiflorum), sand spurry (Spergularia marina), and brass buttons (Cotula coronopifolia). The surface soil, to a depth of 5 inches, is a dark gray (10 YR 4/1) clay loam. Between 5 and 12 inches, the soil is a dark gray (2.5 Y 4/1) silty clay loam with approximately 10 percent dark yellowish-brown (10 YR 4/6) and dark brown (7.5 YR 4/3) concentrations, and a few grayish-green (Gley 1.6/10Y) depletions. Below 12 inches, the soil is a light olive brown (2.5 Y 5/3) mixed with some dark gray (2.5 Y 4/1) inclusions and dark yellowish-brown (10 YR 4/6) concentrations. No flow was observed during the April 8, 2009, field survey; but saturated soils were present at a depth of 12 inches and shallow standing water was present in the deeper parts of the channel. From the Project study area, this channel continues to the northeast for approximately 900 feet, where it enters an impoundment area.

Drainage 1a is a continuation of Drainage D-1 on the north side of the impoundment. Only a small portion of the drainage is present within the Project study area along the transmission line alignment at Kelso Road (Figure 2-1: Map 2). In this area, the drainage is a low, swale-like feature that lacks defined bed and bank characteristics. The vegetation is characterized by saltgrass, Mediterranean barley (*Hordeum marinum* ssp. *gussonianum*), soft chess, and foxtail barley. The channel was dry during all surveys and lacks evidence of an ordinary high water mark. A 30-inch-diameter corrugated metal pipe (cmp) is present under Kelso Road in this area. The natural hydrology of this channel has been significantly altered by the impoundment approximately 700 feet south of the Project study area.

3.1.2 Drainage Wetland (D-2)

Drainage 2 is a small swale-like feature located along Bruns Road immediately west of PG&E's Bethany Compressor Station, approximately 600 feet north of the intersection of Kelso Road (Figure 2-1; Map 2). A 12-inch-diameter cmp is located under the road in this area. Vegetation within the channel is characterized by dense saltgrass, Italian ryegrass, and meadow barley (*Hordeum brachyantherum*). Soil in the upper 5 inches is a moderately

alkaline, dark grayish-brown (10 YR 4/2) sandy clay loam with approximately 2 percent dark brown (7.5 YR 3/4) concentrations. From 5 to 16 inches the soil is a light yellowishbrown (2.5 Y 6/4) clay loam with approximately 5 percent black (10 YR 2/1) manganese concentrations. The channel was dry at the time of the survey, but some scouring was evident along the shallow banks of the channel. This drainage flows to the east where it enters a rock-lined, linear drainage channel that flows east through the PG&E facility and eventually discharges into Drainage 2a.

3.1.3 Drainage Wetland (D-3)

Drainage Wetland 3 is a shallow, well-defined channel on the east side of Bruns Road approximately 0.3 mile north of the intersection with Kelso Road (Figure 2-1; Map 3). A 6-foot by 6-foot cement box culvert is located under the road at this location. The drainage channel is characterized by dense growth of cosmopolitan bulrush (*Bolboschoenus maritimus*) with scattered rabbitsfoot grass, curly dock (*Rumex crispus*), and cattail (*Typha dominigensis*). Surface soils were inundated at the time of the survey and had a strong positive reaction to alpha alpha-dipyridyl. The upper 6 inches is a mixed greenish-black (Gley 1 2.5/5GY) and black (5 Y 2.5/2) clay loam with approximately 5 percent strong brown (7.5 YR 4/6) concentrations. The channel was inundated with 3 to 6 inches of gently flowing water at the time of the survey. The vegetated channel flows to the north into a larger open water area and then continues to flow to the north northeast into the larger seasonal wetland area. This feature is included as a Palustrine Emergent Permanently Flooded (PEMH) wetland on the National Wetland Inventory Map (Appendix B).

3.1.4 Drainage Wetland (D-4)

This drainage is located immediately north of the Alameda County line along the east side of Bruns Road (Figure 2-1; Map 4). The shallow, well-defined channel is characterized by dense cattails (*Typha latifolia* and *T. dominingensis*) growing in the center of the channel with dense saltgrass growing around the outer edges. Mexican rush (*Juncus mexicanus*) and curly dock are also present in scattered locations. The soil at the outer edge of the channel is a strongly alkaline, dark grayish-brown (10 YR 4/2) fine sandy clay loam to clay loam. No redoximorphic features were noted in this area, possibly due to the high soil pH; however, hydric conditions were presumed to be present based on the level of inundation and abundant, lush OBL and FACW vegetation in this area. Shallow water was observed flowing from a 36-inch-diameter cmp under the road into this area during the surveys. The channel continues to flow to the east into a larger wetland area. This feature is included as a Palustrine Emergent Semi-Permanently Flooded (PEMF) wetland on the National Wetland Inventory Map (Appendix B).

3.1.5 Alkali Sink Wetland (ASW-1)

A large alkali sink wetland is present immediately north and directly abutting Drainage D-4 (Figure 2-1; Map 4). Within the Project study area, this feature is characterized by saltgrass and common rusty molly (*Kochia californica*) with scattered sand spurry, alkali heath (*Frankenia salina*), and common spikeweed (*Centromadia pungens*). The surface soil is a strongly alkaline, dark grayish-brown (10YR 4/2) fine sandy clay loam to a depth of 8 inches. From 8 to 24 inches, the soil is a very dark grayish-brown (10 YR 3/2) clay loam that is also strongly alkaline. No redoximorphic features were observed in the upper part of

the soil, but this area was considered problematic due to the high soil pH. This area was dry at the time of the survey, but appears to be subject to at least seasonal inundation and most likely a prolonged seasonally shallow water table. This feature is identified as a Palustrine Unconsolidated Shore Seasonally Flooded wetland by the National Wetland Inventory Map (Appendix B).

3.2 Potential Waters of the U.S. (Non-Wetlands)

Portions of two drainage channels within the Project study area were considered to be non-wetland waters of the U.S. due to the lack of vegetation cover and presence of welldefined bed and bank characteristics.

3.2.1 Drainage 1b

Drainage 1b is a continuation of Drainage 1 north of Kelso Road, approximately 0.2 mile east of the intersection with Bruns Road (Figure 2-1; Map 2,). A 30-inch-diameter cmp is located under the road in this area. The area along the channel immediately north of the road is highly eroded and disturbed and the bed and bank are poorly defined. As the channel continues north, it quickly becomes well-defined with steep 3-foot-tall to 3.5-foottall banks and an open channel that ranges from approximately 5 to 8 feet wide. With the exception of sparse saltgrass, the channel is devoid of vegetation. From the Project study area, this channel continues to the north where it eventually discharges into the large wetland area near the county line.

3.2.2 Drainage 2a (Includes Ditch 1)

Drainage 2a is a continuation of Drainage 2 on the northeast side of the Kelso Substation. Within the PG&E facility this drainage has been realigned, flows through a series of small, rock-lined, linear drainage channels. Where it exits the facility, it becomes a well defined earthen channel with steep cut banks 2 to 2.5 feet tall with a 2-foot-wide to 5-foot-wide bed. With the exception of sparse Italian ryegrass, the channel is devoid of vegetation. This channel flows to the north into a seasonal wetland area that continues north and eventually connects into a larger wetland area near the county line.

3.3 Non-Jurisdictional Features

Potentially non-jurisdictional features identified in the Project study area include two isolated seasonal wetlands, three swales, three erosional channels, and a small section of BBID's Canal 45.

3.3.1 Seasonal Wetland (SWL-1)

This seasonal wetland occurs along the existing access road to the Byron Power Cogen Plant along the northern edge of the Project study area (Figure 2-1; Map 1). The two distinct basins are hydrologically connected by a partially collapsed 18-inch-diameter cmp. Vegetation within the basins is generally sparse and includes species such as popcorn flower (*Plagiobothrys stipitatus*), coyote thistle (*Eryngium vaseyi*), Italian ryegrass, gumweed dense-flower willowherb (*Epilobium densiflorum*), wooly marbles (*Psilocarphus oregonus*), brass buttons, and water pygmyweed (*Crassula aquatica*). Surface soil in this area is a dark grayish-brown (10 YR 4/2) clay loam with few (less than 1 percent), fine, dark yellowishbrown (10YR 4/4) concentrations present in the upper 3 inches. A dark brown (10 YR 4/3) clay layer is present at a depth of 10 inches below the surface. Surface soil had a neutral pH but no strong redoximorphic indicators were evident in the upper part of the soil at this sample location. The basins were both dry during the April field survey, but inundation and aquatic invertebrates were noted in this area during earlier site visits. Based on the presence of characteristic seasonal wetland vegetation, the distinct wetland-upland boundary, and observations of inundation and aquatic invertebrates, this area was presumed to also support hydric soils, despite the lack of redoximorphic features.

This wetland area is located nearly 500 feet south of Drainage D-1 and there is no apparent hydrological connection between this basin and the drainage. Because this feature lacks any evidence of a direct connection, was not considered to be an adjacent wetland, and does not appear to have a significant nexus to a traditional navigable water body, it was considered an isolated wetland.

3.3.2 Seasonal Wetland SWL-2

Seasonal wetland 2 is a very shallow, poorly defined depression along the east side of the transmission line laydown area (Figure 2-1; Map 2). Scattered Italian ryegrass is present along the outer edges of the basin and the central part is largely open soil with sparse, scattered coyote thistle. Surrounding grassland vegetation in this area is also sparse. Deep cattle hoof marks occur throughout the basin, which suggest this area is subject to at least some seasonal saturation and possible inundation. This small basin is located more than 100 feet from Drainage 1b with no apparent hydrologic connection or significant nexus to this channel.

3.3.3 Swales

Three weakly expressed, low topographic swales were observed in the Project area. Two swales were observed along the transmission line route south of Kelso Road (Figure 2-1; Map 2) and one swale was observed along the service water pipeline route north of Drainage Wetland D-3 (Figure 2-1; Map 3).

Swales SW-1 and SW-2 are very similar and are both located in the California grassland northeast of the Byron Power Cogen Plant. The vegetation in these areas is generally similar to the adjacent grassland, except Mediterranean barley becomes the dominant annual grass species within the swale areas, where soft chess and foxtail barley are dominant in the adjacent grassland. Other associated species include sparse saltgrass, alkali heath, and Italian ryegrass, all of which also occur in the adjacent grassland habitat. The upper 2 inches of the soil are a dark grayish-brown (10 TR 4/2) fine sandy clay loam with dark yellowishbrown (10 YR 4/4/ and 4/6) concentrations. Below 2 inches, the soil is a brown (10 YR 4/3) fine sandy loam with no evident redoximorphic features. Similar soils were noted in the adjacent grassland, but with fewer and faint (10 YR 4/4) redox features only in the upper 2 inches. These swales appear to convey short-duration flows in response to storm events and appear to be subject to short-duration inundation, but only shallow, intermittent inundation was noted in these areas during other wet season surveys of the site. It is uncertain, even in a more normal rainfall year, if these areas would support inundation or surface saturation for 18 consecutive days. Both swales drain to the southwest where water ponds in low depressions near the Byron Power Cogen Plant. There is no apparent surface hydrologic connection to any drainage or apparent significant nexus to any traditional navigable water body.

The third swale (SW-3), is found along the water supply line, just north of Drainage D-3 on the east side of Bruns Road. A 12-inch-diameter cmp is located under the road just west of the swale feature. Within the Project study area, the swale is generally weakly expressed and exhibits no ordinary high-water mark or evidence of recent flow. Vegetation in this area is similar to the adjacent California annual grassland and includes species such as soft chess, Italian ryegrass, and saltgrass with scattered gumweed, alkali heath, and coyote thistle. To the east of the Project study area, closer to the open water, the swale is characterized by a dense cover of lush saltgrass. Because this swale appears to convey very infrequent and low-volume flows and short-duration flow, it was not considered to be subject to jurisdiction under the Federal CWA.

3.3.4 Erosional Channels

Three erosional channels are present within the Project study area along the transmission line alignment, on the north side of the Kelso Substation (Figure 2-1; Map 3). These channels have formed as a result of directed stormwater runoff from the substation and range in size from a relatively small erosional rill to a large, deeply eroded channel with defined bed and bank characteristics. These erosional channels are largely devoid of vegetation within the active flow channel, but upland grassland species common along the sides and upper edges. These features appear to convey infrequent, short-duration flows in response to heavy rainfall events that drain only uplands and were therefore not considered to be jurisdictional waters of the U.S.

3.3.5 Canal 45

Service water for the Project will be supplied from the BBID Canal 45 (Figure 2-1; Map 5). In the Project study area, this portion of the canal is a constructed and routinely maintained earthen channel devoid of vegetation. Cement rip rap is present along the lower banks of the canal.

References

Biogeographic Information and Observation System (BIOS). 2009. California Department of Fish-and Game. Available online at: http://bios.dfg.ca.gov/.

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*. Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss. Online Version Available online at: http://www.wetlands.com/regs/tlpge02e.htm.

Hickman, James C., Editor. 1993. *The Jepson Manual: Higher Plants of California*. University of California Press. Berkeley, California.

Miles, Scott and Charles Goudey (editors). 1998. *Ecological Subregions of California*. United States Department of Agriculture, Forest Service. Pacific Southwest Division. R5-EM-TP-005-Net. San Francisco.

Natural Resources Conservation Service (NRCS). 2009. Official Soil Series Descriptions. United States Department of Agriculture. Available online at: http://soils.usda.gov/technical/classification/osd/index.html.

Natural Resources Conservation Service (NRCS). 2006. Field Indicators of Hydric Soils in the United States Version 6.0. G.W. Hurt and L.M. Vasilas (eds). United States Department of Agriculture, in cooperation with the National Technical Committee for Hydric Soils.

Natural Resources Conservation Service (NRCS). 2002. Climate Analysis for Wetlands for Alameda, California (WETS Tables). United States Department of Agriculture. Available online at: http://www.wcc.nrcs.usda.gov/climate/wetlands.html.

Natural Resources Conservation Service (NRCS). 1977. Soil Survey for Contra Costa County, California. United States Department of Agriculture in cooperation with the California Agricultural Experiment Station.

Natural Resources Conservation Service (NRCS). 1966. Soil Survey for the Alameda Area, California. United States Department of Agriculture in cooperation with the California Agricultural Experiment Station.

Reed, P.B. 1988. *National List of Plants Species that Occur in Wetlands, Region 0*. U.S. Fish-and Wildlife Service, National Wetlands Inventory, St. Petersburg, FL. Biological Report 88(24).

United States Army Corps of Engineers (USACE). 2008. *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region*. U.S. Army Corps of Engineers Research and Development Center/Environmental Laboratory. ERDC/EL TR-08-28.

University of California. 2009. *Jepson Online Interchange for California Floristics*. University of California, Berkley, Jepson Herbarium. Available online at: http://ucjeps.berkeley.edu/interchange.html.

University of California Statewide Integrated Pest Management Program. 2009. Daily Climate Data for the Livermore weather station (044997). Available online at: http://www.ipm.ucdavis.edu/WEATHER/wxretrieve.html.

Western Regional Climate Center (WRCC). 2009. Climate Summary for Livermore, California (044997). Available online at: http://www.wrcc.dri.edu/index.htm.

Appendix A Natural Resource Conservation Service WETS Tables for Alameda County, California

WETS Station : LIVERMORE, CA4997 Latitude: 3740 State FIPS/County(FIPS): 06001 Start yr. - 1971 End yr. - 2000 Creation Date: 08/29/2002 Elevation: 00480 Start yr. - 1971 End yr. - 2000

		Temperatı (Degrees		Precipitation (Inches)						
	 	 		 	 30% cł will	nance have	avg # of	avq		
							days	-		
Month	avq	avq	avq	avq	less	more	w/.1			
	daily	daily			than	than	or			
	max	min					more			
January	 57.0	 37.4	47.2	2.99	1.39	 3.66	6	0.0		
February	61.9	40.3	51.1	2.73	1.28	3.34	6	0.0		
March	65.6	42.3	53.9	2.44	1.00	2.97	6	0.0		
April	71.3	44.2	57.8	0.95	0.50	1.17	3	0.0		
May	77.1	48.5	62.8	0.43	0.05	0.51	1	0.0		
June	84.1	52.5	68.3	0.09	0.00	0.12	0	0.0		
July	89.1	54.9	72.0	0.03	0.00	0.00	0	0.0		
August	88.8	54.9	71.9	0.08	0.00	0.00	0	0.0		
September	86.0	53.2	69.6	0.24	0.00	0.24	0	0.0		
October	78.2	48.3	63.3	0.82	0.25	1.00	1	0.0		
November	65.1	41.8	53.5	1.75	0.54	2.08	4	0.0		
December	57.1 	36.9 	47.0	2.04	1.02	2.49 	4	0.0		
Annual		 			 10.76	 16.37				
 Averaqe	 73.5	46.3	59.9			 				
				1						
Total				14.61			31	0.0		

GROWING SEASON DATES

	Temperature							
Probability	24 F or higher 28 F or higher 32 F or higher							
	Beginning and Ending Dates Growing Season Length							
50 percent *	> 365 days 1/9 to 12/29 2/26 to 11/27 > 365 days 355 days 276 days 							
70 percent *	> 365 days > 365 days 2/14 to 12/ 9 > 365 days > 365 days 299 days 							

* Percent chance of the growing season occurring between the Beginning and Ending dates.

total 1930-2002 prcp

Station : CA4997, LIVERMORE

----- Unit = inches

yr jar	n feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec	annl
30			0.63									0.63
31 3.45		M0.57	0.36	0.93	0.11	0.00	0.00	M0.00	0.27	1.89	5.63	14.88
32 1.29		0.19	0.41	0.37	0.00	0.00	0.00	0.00	0.00	0.51	2.03	7.95
33 4.51		2.09	0.13	0.70	0.03	0.00	0.00	0.01	0.75	0.00		12.35
34 1.29 35 3.53		0.00	0.13	0.60	0.53	0.00	0.00	0.27	0.62	2.71		11.33
35 3.53		3.16 0.71	3.28	0.00 0.46	0.00 0.10	0.00	0.04	0.00	0.79 0.40	0.21 0.02		13.06 14.99
37 3.38		5.07	0.68	0.17	0.20	0.00	0.00	0.00	0.55	2.46		21.21
38 2.40		4.09	0.90	0.02	0.00	0.00	0.00	0.00	1.00	1.08		16.15
39 2.40		2.18	0.53	0.18	0.00	M0.00	0.00	0.16	1.23	0.15	0.78	9.18
40 8.13		2.60	0.35	0.14	0.00	0.00	0.00	0.25	0.50	0.43	4.63	21.57
41 3.24		2.07	2.76	0.23	0.00	0.00	0.03	0.00	0.72	0.89		19.47
42 3.89		1.42	3.10	1.00	0.00	0.00	0.00	0.09	1.08	3.05		17.04
43 4.48		2.39 1.01	1.14 M0.94	0.00 0.73	0.06	0.00	0.00	0.00	0.30 0.77	0.53 3.41		11.81 16.14
45 0.8		3.19	0.20	0.17	0.00	0.00	0.02	0.00	1.07			14.25
46 0.76		1.69	0.02	0.61	0.00	0.24	0.00	0.02	0.02	2.93	2.07	9.59
47 0.69	1.45	2.34	0.53	0.17	0.36	0.00	0.00	0.00	1.84	0.85	0.51	8.74
48 0.20		2.79	2.50		M0.16			M0.00			M2.71	
49M1.39		3.38		M0.34		0.03	0.16	0.05	0.08		M1.21	
50 4.65			M0.85	M0.59 M0.35		M0.00	0.00		M1.84			21.90
52 7.60	8 M1.81	M1.02 M2.36		M0.35 M0.16		M0.00 M0.00		0.00 M0.10	0.01	M3.01 2.11		16.94 22.31
53 2.0		M1.12		0.61		M0.00				M1.33		8.19
54 2.19		M3.00	0.73		M0.27	0.00		M0.04	M0.00		M3.33	
55M2.45	5 1.69	M0.38	M1.28	0.65	0.00	0.00	M0.01	0.01	M0.01	M1.31	10.15	17.94
	0 M1.15	0.14		M0.63	0.00	0.00		M0.63	0.79	0.03		11.26
57 2.65		1.30		M2.65		0.00		M0.05	1.06		M1.62	
58 3.10 59 2.45		4.44	3.74 0.35	0.66 0.00	0.41	0.00	0.00 0.07	0.02 1.89	0.09 0.00	0.14	0.86	18.89 9.39
60 2.98		0.29 0.60	0.33	0.00	0.00	0.00	0.00	0.01	0.00	2.92		12.85
61 2.08		1.92	1.03	0.69	0.19	0.00	0.13	0.16	0.15	2.24		10.45
62 0.73		1.82	0.22	0.00	0.00	0.00	0.00	0.00	3.64	0.28	1.55	13.85
63 1.40		2.60	3.47	M0.70	0.00	0.00	0.00	0.33	0.93	3.18		17.30
64 2.3		1.57	0.21	0.48	0.32	0.00	0.12	0.04	0.85	2.44	4.91	13.39
65 2.11		1.73	1.53	0.00	0.00	0.00	0.21	0.00	0.03	4.22		13.65
66 1.05 67 6.14		0.17 4.15	0.33 4.65	0.10 0.19	0.12	0.17 0.00	0.00	0.11 0.02	0.00 0.24	3.43 0.88	2.35	9.00 18.66
68 3.93		2.40	0.43	0.15	0.00	0.00	0.00	0.02	0.43	2.48		13.76
69 6.28		0.55	1.24	0.08	0.00	0.00	0.00	0.00	1.10	0.49		16.84
70 5.38	3 1.18	1.42	0.40	0.07	0.32	0.00	0.00	0.00	0.41	5.24	5.27	19.69
71 1.19		1.75	1.37	0.54	0.00	0.00	0.00	0.13	0.04	0.46	3.27	9.08
72 0.90		0.14	0.64	0.00	0.04		0.00	0.58	2.98		2.22	8.29
73 5.50 74 1.50		2 60	0.29	0.03	0.00	0.00	0.00	0.08	2.08	3.71	3.80	15.49
75 0.84		2.69 5.24	1.62 1.42	0.00	0.00 0.06	0.00 0.10	0.00 0.35	0.00	0.50 1.27	0.66 0.08	0 21	7.68 13.22
76 0.30		0.48	0.39	0.00	0.18	0.00	0.91	0.95	0.50	0.50	0.73	6.40
77 1.15		0.82	0.16	1.01	0.00	0.10	0.00	0.22	0.13		3.07	7.49
78 5.44			2.49	0.01	0.00	0.00	0.00	0.04	0.00	2.16		13.67
79 4.52		1.86	0.88	0.34	0.00	0.06	0.00	0.00	1.51	1.13		16.15
80 4.16		1.36	1.32	0.48	0.00	0.70	0.00	0.00	0.04	0.28		13.76
81 3.9		2.94	0.61	0.11	0.00	0.00	0.00	0.06	2.07	3.44		16.88
82 5.29 83 6.28		5.58 6.14	1.50 3.51	0.00 0.21	0.28	0.00	0.01 0.50	1.48 1.02	2.24 0.27	3.72 5.44		25.06 32.37
84 0.33			0.53	0.01	0.03	0.00	0.00	0.04	1.25	4.71		11.28
85 0.48		2.62	0.32	0.07	0.22	0.00	0.03	0.13	0.89	2.69		10.67

86 2.04 87 1.83 88 1.78 89 0.81 90 1.54 91 0.31 92 1.39 93 6.41 94 0.94 95 6.64 96 5.17 97 5.81 98 5.47 99 3.23 0 4 61	7.11 3.47 0.38 0.95 2.46 2.20 4.61 4.53 3.33 0.33 4.10 0.15 7.30 3.33 4.87	4.09 2.30 0.26 2.94 0.87 5.87 1.97 2.91 0.15 6.66 2.34 0.06 2.37 1.67 1.25	0.40 0.16 1.15 0.88 0.37 0.34 0.43 0.63 1.20 1.02 1.91 0.15 1.37 0.99 0.59	0.14 0.09 0.45 0.08 1.78 0.35 0.00 0.51 1.78 0.92 1.05 0.29 2.00 0.08 0.69	0.00 0.10 0.00 0.08 0.09 0.30 0.04 0.70 0.00 0.17 0.13 0.01 0.18	0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00	0.45 0.00 1.33 0.06 0.04 0.00 0.00 0.00 0.00 0.00 0.00	0.04 0.87 0.11 1.13 0.08 1.65 0.90 0.57 0.58 0.00 1.08 0.28 0.54 0.15	0.08 1.40 1.92 1.02 0.39 0.31 0.15 2.00 0.01 2.55 4.23 2.48 1.26 0.49	0.92 15.28 2.30 12.42 2.03 8.18 0.10 9.34 1.45 9.02 1.19 12.55 4.79 14.33 1.81 19.67 1.36 9.38 5.37 21.65 4.43 22.63 1.95 13.51 0.73 22.57 0.25 11.04 0.45 13 38
0 4.61	3.33 4.87	1.25	0.59	0.08	0.01	0.00	0.03	0.04	0.13	0.49	0.45 13.38
1 1.92	2.89	1.23	1.80	0.00	0.12	0.00	0.00	0.09	0.37	1.92	5.09 15.42

WETS Station : NEWARK, CA6144

Latitude: 3731 Longitude: 12202 Elevation: 00010 State FIPS/County(FIPS): 06001 County Name: Alameda Start yr. - 1971 End yr. - 2000

		Temperatu (Degrees		Precipitation (Inches)						
	 	 		 	30% cł will		avg # of days	2		
Month	avg daily max	avg daily min	avg	avg 	less than	more than	w/.1 or more			
January	57.6	42.0	49.8	2.96	1.35	3.62	6	0.0		
February	61.1	45.2	53.1	2.81	1.27	3.43	6	0.0		
March	63.7	47.3	55.5	2.39	1.03	2.92	6	0.0		
April	67.2	49.8	58.5	2.62	0.40	2.83	2	0.0		
Мау	70.4	52.9	61.7	0.42	0.03	0.47	1	0.0		
June	74.5	56.0	65.3	0.12	0.00	0.12	0	0.0		
July	76.7	57.7	67.2	0.03	0.00	0.00	0	0.0		
August	77.1	58.4	67.7	0.07	0.00	0.01	0	0.0		
September	76.8	57.5	67.2	0.20	0.00	0.24	0	0.0		
October	72.8	53.8	63.3	0.90	0.29	1.10	2	0.0		
November	64.1	47.1	55.6	1.84	0.61	2.20	4	0.0		
December	57.7 	41.7 	49.7	2.08 	1.16	2.57	5	0.0		
Annual					11.48	19.40				
Average	68.3	 50.8	59.6							
Total				 16.44 		 	 32	0.0		

GROWING SEASON DATES

|

Temperature

Probability	24 F or higher 28 F or higher 32 F or higher
	Beginning and Ending Dates
	Growing Season Length
50 percent *	12/30 to 12/30 > 365 days
	> 365 days > 365 days > 365 days
70 percent *	12/30 to 12/30 > 365 days
	> 365 days > 365 days > 365 days

* Percent chance of the growing season occurring between the Beginning and Ending dates.

total 1948-2002 prcp

Station : CA6144, NEWARK ----- Unit = inches

yr ja 	n feb 	mar	apr	may	jun	jul	aug	sep	oct	nov	dec	annl
48						0.00	0.00	0.00	0.59	0.17	3.10	3.86
49 0.9	7 2.45	4.33	0.00	0.19	0.01	0.03	0.08	0.00	0.26	1.22		11.21
50 5.1	8 M1.49	1.76	0.96	0.15	0.00	0.03	0.00	0.05		M3.15	M3.94	17.51
51 2.4		1.83	0.75	0.41	0.04	0.00	0.01	0.00	M0.86		M6.44	
52 6.6	3 1.15	M4.00	1.38	0.04	M0.17	0.00	0.00	0.00	0.05	2.29	M6.05	21.76
53 2.0	2 0.00	0.93	1.23	M0.63	0.16	0.00	0.12	0.02	M0.25	1.77	1.04	8.17
54M2.4	2 M1.37	2.84	0.74	M0.16	M0.29	0.00	0.00	0.00	0.06	M1.20	M2.97	12.05
55M4.4	4 M1.75	0.17	M0.87	M0.80	0.00	0.00	0.00	0.01	0.00	1.29	M7.93	17.26
56M6.2	7 0.97	M0.04	1.35	0.83	0.00	0.00	0.00	0.25	0.69	0.02	0.32	10.74
57M2.3	1 M1.96	1.63	1.26	M2.38	0.00	0.00	0.00	M0.25	M1.61	M0.51	3.34	15.25
58 4.2	7 M5.45	M4.36	M3.23	0.63	M0.02	0.02	0.00	0.05	M0.04	M0.16	M0.85	19.08
59M2.7	8 M2.50	0.30	0.06	0.00	0.00	0.00	0.00	M0.75	0.05		M0.45	6.89
60 5.3	3 M3.41	M0.98	M0.35	0.45	0.00	0.00	0.00	0.02			M1.06	
61M3.2	7 M1.04	M1.19	0.82	M0.56	0.18	0.00	0.09	0.30	0.05	M2.95	M0.91	11.36
	0 M6.62				0.00	0.00	0.00	0.00	M4.53	0.34	2.20	14.89
63 1.5	1 M2.88	M3.09	4.19	0.57	0.08	0.00	0.01	0.09	1.21	M2.93	0.24	16.80
64 3.5		1.31	0.07	0.45	0.41	0.00	0.09	0.00	0.67	M1.99	M4.23	12.76
65M1.4		1.55	1.77	0.00	0.00	0.00	0.18	0.00	0.11	M4.21		12.61
66 1.5		0.32	0.36	0.05	0.11	0.24	0.00	0.13	0.00	2.71	2.28	9.01
67M5.6		M2.84		0.11	0.51	0.00	0.00	0.00	0.22	1.02		16.33
	7 M0.56		0.76	0.18	0.00	0.00	0.72	0.00			M2.26	
	4 M3.96		M1.15	0.02	0.00	0.00	0.00	0.05	0.47	0.36		14.86
70 5.3		1.51	0.20	0.01	0.20	0.00	0.00	0.00	0.56	5.90		19.54
	3 M0.79	1.43	1.25	0.12	0.00	0.00	0.09	0.12	0.01	0.81	2.90	8.25
72 0.7		0.04	0.38	0.00	0.20	0.00	0.00	0.58				13.09
	9 M5.33	2.05	0.39	0.03	0.00	0.00	0.00	0.04		M2.99		
74M2.4		M2.23		0.00	0.63	0.15	0.00	0.00		0.61		10.84
	4 M2.21			0.02	0.00	0.13	0.43	0.01	1.12	0.27		10.16
76 0.2		1.41	0.57	0.01	0.08	0.09	0.65	0.68		M0.82	0.89	6.89
77 0.8		1.64	0.18	1.09	0.00	0.14	0.00	0.44		M0.92	3.04	9.11
78M6.2		M3.60	2.96	0.00	0.00	0.00	0.00	0.05	0.00	2.12		18.54
79 4.0		1.79	0.54	0.19	0.00	0.07	0.01	0.00	1.71	1.14		15.46
80 2.8		1.54	0.84	0.06	0.00	0.38	0.00	0.00	0.02	0.17		12.97
81 3.4		2.66	0.37	0.08	0.01	0.00	0.00	0.02	2.01	3.04		14.88
82 4.2		4.39	2.12	0.00	0.10	0.00	0.09	0.86	1.95	2.85		21.94
83 5.9		7.17	3.50	0.42	0.00	0.00	0.04	0.60	0.51	6.04		31.52
84 0.1	4 2.04	1.15	51.00	0.00	0.10	0.00	0.04	0.24	1.74	4.33	1.68	62.46

86 87 88 90 91 92 93 94 95 96 97 98 99	0.86 1.82 2.13 2.46 0.93 1.78 0.28 1.41 6.90 1.85 8.36 4.32 5.37 5.90 3.22	1.04 5.30 2.72 0.31 1.07 1.90 2.31 5.33 4.72 3.24 0.16 3.95 0.28 10.79 3.82	2.43 3.48 1.54 0.06 2.66 0.93 5.37 3.56 2.50 0.18 6.25 1.89 0.14 2.57 1.85	0.05 0.59 0.15 1.00 0.56 0.26 0.35 0.48 0.79 1.05 1.09 1.00 0.17 1.74 1.21	0.25 0.27 0.02 0.47 0.09 1.88 0.19 0.00 0.50 1.69 0.99 1.11 0.29 2.06 0.03	0.03 0.00 0.05 0.00 0.12 0.16 0.38 0.05 1.10 0.00 0.37 0.01 0.03	0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00	0.40 0.62 0.00 0.01 0.63 0.09 0.07 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00	1.02 0.07 0.87 0.16 2.05 0.12 1.62 0.79 0.54 0.31 0.00 0.60 0.59 0.62 0.35	2.41 0.06 0.97 1.81 0.87 0.51 0.33 0.13 2.92 2.98 0.01 1.40 5.29 1.95 1.01	$\begin{array}{c} 1.95 & 10.47 \\ 0.98 & 13.19 \\ 2.16 & 10.56 \\ 2.92 & 9.25 \\ 0.00 & 8.86 \\ 1.75 & 9.22 \\ 1.88 & 12.63 \\ 4.79 & 16.65 \\ 2.15 & 21.40 \\ 1.46 & 12.95 \\ 4.60 & 22.56 \\ 5.67 & 19.94 \\ 1.98 & 14.96 \\ 1.27 & 27.00 \\ 0.33 & 12.12 \end{array}$
	4.72	6.26	2.03	0.65	0.69	0.29	0.00	0.03	0.17	1.94	0.44	0.54 17.76
1	2.08	3.32	1.25	1.32	0.00	0.15	0.00	0.01	0.04	0.27	1.97	4.68 15.09
2												

WETS Station : OAKLAND MUSEUM, CA6336 Latitude: 3748 State FIPS/County(FIPS): 06001 Start yr. - 1971 End yr. - 2000 Creation Date: 08/29/2002 Elevation: 00030 County Name: Alameda

		Temperatı (Degrees		Precipitation (Inches)						
		 		 	30% cł will	have	avg # of days	avg total		
Month	avg daily max	avg daily min	avg	avg 	less than	more than 	w/.1 or more	snow fall		
January		44.6	51.0	4.85	2.24	 5.93	7	0.0		
February	61.6	47.9	54.7	4.40	1.83	5.35	7	0.0		
March	63.3	49.1	56.2	3.56	1.54	4.34	6	0.0		
April	66.5	50.6	58.5	1.35	0.53	1.66	3	0.0		
Мау	69.0	53.4	61.2	0.59	0.05	0.65	1	0.0		
June	71.7	55.7	63.7	0.12	0.00	0.12	0	0.0		
July	72.5	56.9	64.7	0.07	0.00	0.00	0	0.0		
August	73.5	58.3	65.9	0.10	0.00	0.01	0	0.0		
September	74.7	58.3	66.5	0.31	0.00	0.36	0	0.0		
October	72.1	55.4	63.8	1.38	0.53	1.69	2	0.0		
November	63.9	49.5	56.7	3.24	1.30	3.93	5	0.0		
December 	57.7 	44.6 	51.1	3.13 	1.71	I	5 	0.0		
Annual	 	 			16.81	25.64	 			
Average	67.0	52.0	59.5	 		 	 			
Total				23.10		' 	36	0.0		

GROWING SEASON DATES

ftp://ftp.wcc.nrcs.usda.gov/support/climate/wetlands/ca/06001.txt

Page 6 of 10

Temperature 1 _____ Probability | 24 F or higher | 28 F or higher | 32 F or higher | Beginning and Ending Dates Growing Season Length 50 percent * | ------ | ------ | > 365 days | > 365 days | > 365 days | > 365 days _____ 70 percent * | ------ | ------ | > 365 days | > 365 days | > 365 days | > 365 days _____

* Percent chance of the growing season occurring between the Beginning and Ending dates.

total 1971-2002 prcp

Station : CA6336, OAKLAND MUSEUM ----- Unit = inches

yr jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec	annl
71 1.73	0.43	2.80	0.93	0.13	0.00	0.00	0.00	0.26	0.10	2.04	4.19	12.61
72 1.32	1.58	0.18	1.02		0.34	0.00	0.01	0.90	4.25	6.39		19.19
7310.43	6.31	2.95	0.02	0.04	0.00	0.00	0.00	0.64	1.77	9.67		37.22
74 3.39	1.76	5.15	3.33	0.00	0.15	1.19	0.00		M1.16	0.78		19.43
75 2.29	3.88	5.68	2.25	0.01	0.08	0.21	0.05	0.03	3.85	0.56		19.41
76 0.31	2.01	1.08	0.89	0.00	0.04	0.00	1.09	0.61	0.57	1.09	2.30	9.99
77 1.55	0.77	2.10	0.00	0.54	0.00	0.01	0.00	0.68	0.21	2.83		8.69
78 7.87	4.80	6.89	3.76	0.00	0.00	0.00	0.00	0.59	0.00	1.64	0.70	26.25
79 7.18	5.52	2.82	1.04	0.10	0.00	0.43	0.00	0.00	2.37	3.96	5.77	29.19
80 4.81	7.63	M1.82	1.66	0.44	0.00		0.00	0.00	0.13	0.20	2.42	19.11
81 6.15	1.33	4.41	0.30	0.10	0.00	0.00	0.00	0.08	2.80	5.93	4.65	25.75
8210.75	3.80	8.55	4.13	0.00	0.19	0.03	0.00	M0.00	2.89	5.31		38.76
83 7.22	8.08	9.83	3.87	0.42		0.00	0.05	0.61	0.23	7.12	6.84	44.27
84 0.33	2.28	1.60	0.98		M0.00	0.00	0.17	0.31		M6.89		15.64
85 0.77	2.08	3.65	0.15	0.04			0.00	0.53		M3.26		13.33
86 5.24	8.92	5.89	0.70	0.13	0.00	0.03	0.00	1.54	0.14	0.32	1.47	24.38
87 3.60	4.93	2.32	0.20	0.04	0.00	0.00	0.00	0.00	1.57	2.34	4.29	19.29
88 3.83	0.49	0.03	2.77	0.98	0.44	0.00	0.01	0.00	0.37	2.49		15.22
89 1.27		5.16	0.63	0.04	0.04	0.00	0.00	1.45	1.73	1.25		11.57
90 4.41		1.21	0.24	2.92	0.01	0.00	0.00	0.06	0.35	0.49		11.27
91 0.42	3.49	7.04	0.72	0.20	0.24	0.00	0.19	0.00	M1.20	0.36		16.08
92 1.71	7.53	4.54	0.26	0.00	0.30	0.00	0.03	0.00	2.49	0.30		23.98
93 8.90	3.94	2.61	0.60	0.94	0.11	0.00	0.00	0.00	0.62	2.08		22.81
94 2.56	4.52	0.28	1.69	1.54	0.00	0.00	0.00	0.04	0.40	9.37	3.23	23.63
95M9.77	0.21	7.60	1.86	1.07	0.92	0.00	0.00	0.00				21.43
96 6.40		2.01		2.67	0.00					3.44		29.29
97 7.80	0.22	0.56	0.57	0.27	0.28	0.00	1.25	0.01		M6.79		22.29
9812.45		2.76	1.83	2.98	0.01	0.00	0.00	0.04	0.81	3.82		41.07
99 4.04	7.17	2.89	1.80	0.09	0.03	0.00	0.06	0.13	0.50	2.55		19.74
0 7.13	9.94	2.45	1.01	1.21		0.00	0.00	0.26		M0.70		26.22
1 3.27	7.39	1.27	1.69	0.00	0.07	0.00	0.00	0.26	0.54	4.41	9.40	28.30
2												
WETS Sta	ation	: TRACY	PUMPI	NG PLA	ANT, CA	9001		Creat	ion Dat	te: 08/	29/200	02
Latitude			Longi					vation				

ftp://ftp.wcc.nrcs.usda.gov/support/climate/wetlands/ca/06001.txt

State FIPS/County(FIPS): 06001 County Name: Alameda Start yr. - 1971 End yr. - 2000

	Temperature (Degrees F.)			Precipitation (Inches)						
	 	 	 		30% c! will	hance have	avg # of days	avg total		
Month	avg daily max	avg daily min	avg 	avg 	less than	more than 	w/.1 or more	snow fall		
January	54.8	38.5	46.7	2.68	1.16	3.26	6	0.0		
February	61.6	41.9	51.8	2.29	1.01	2.79	5	0.0		
March	66.4	45.0	55.7	1.98	0.80	2.40	5	0.0		
April	72.8	48.0	60.4	0.73	0.39	0.90	2	0.0		
Мау	80.0	53.4	66.7	0.45	0.00	0.46	1	0.0		
June	87.4	57.5	72.4	0.09	0.00	0.07	0	0.0		
July	92.1	60.4	76.3	0.04	0.00	0.00	0	0.0		
August	91.6	60.3	76.0	0.06	0.00	0.00	0	0.0		
September	87.4	58.5	72.9	0.25	0.00	0.19	0	0.0		
October	78.5	52.2	65.4	0.72	0.22	0.91	1	0.0		
November	64.6	44.1	54.3	1.63	0.58	2.03	4	0.0		
December	55.3 	38.0 	46.7	1.55	0.75	1.89 	4 	0.0		
Annual					8.76	 13.96				
Average		49.8	62.1	 		 				
Total				12.48				0.0		

GROWING SEASON DATES

		Temperature	
Probability	24 F or higher	28 F or higher	32 F or higher
	. 2	inning and Ending E cowing Season Lengt	
50 percent *	 > 365 days	12/30 to 12/30 > 365 days	1/17 to 12/20 338 days
70 percent *	 > 365 days 	12/30 to 12/30 > 365 days 	-
* Percent chance of and Ending dates.	the growing season	occurring between	the Beginning
total 1955-2002 prc	p		

Station : CA9001, TRACY PUMPING PLANT

----- Unit = inches

yr	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec	annl
 55		0.87	0.59	1.24	0.36	0.00	0.00	0.00	0.00	0.12	1.07	6.33	10.58
	4.13	0.48	0.00	1.35	0.46	0.00	0.00	0.00	0.68	0.32	0.04	0.21	7.67
	1.78	2.38		M0.92		0.02	0.00	0.00		M0.70	0.21		10.24
	3.19	4.68	3.78	3.03	0.67	0.15	0.00	0.09	0.06	0.00	0.00		16.24
	2.53	3.05	0.11	0.10	0.05	0.00	0.00	0.00	2.60	0.00	0.00	0.79	9.23
	2.27	2.39	0.27	0.24	0.25	0.00	0.01	0.00	0.01	0.07	2.91	0.40	8.82
61	2.21	0.58	1.13	0.69	0.89	0.00	0.00	0.06	0.19	0.03	2.50	0.55	8.83
62	0.60	5.93	1.02	0.01	0.00	0.00	0.00	0.00	0.05	2.87	0.18	1.35	12.01
63	1.90	2.45	1.84	2.27	0.30	0.00	0.00	0.00	0.17	0.68	3.21	0.11	12.93
64	1.48	0.01	0.80	0.17	0.15	1.80	0.02	0.30	0.00	1.03	1.95	3.74	11.45
65	1.90	0.50	1.19	1.16	0.00	0.00	0.05	0.36	0.00	0.02	3.14	2.23	10.55
66	0.82	1.19	0.11	0.42	0.15	0.00	0.25	0.00	0.06	0.00	3.21	2.93	9.14
67	5.27	0.24	3.11	2.53	0.02	0.55	0.00	0.00	0.00	0.09	0.66	0.92	13.39
68	3.32	1.33	1.64	0.44	0.00	0.00	0.00	0.60	0.00	0.19	2.22		12.18
69	5.02	3.88	0.29	0.65	0.00	0.00	0.00	0.00	0.04	0.95	0.36	1.97	13.16
	5.40	1.70	1.17	0.21	0.00	0.19	0.00	0.00	0.00	0.64	4.42		17.35
	0.81	0.28	1.11	1.00	1.32	0.00	0.00	0.00	0.03	0.00	0.36	2.06	6.97
	0.51	0.62	0.05	0.30	0.03	0.02	0.00	0.00	0.69	1.77	4.15	1.17	9.31
	4.38	3.97	2.35	0.41	0.00	0.00	0.00	0.00	0.00	1.35	3.36		18.62
	2.03	0.26	1.82	1.23	0.00	0.05	0.10	0.00	0.00	0.63	0.31	1.96	8.39
	0.33	3.04	3.40	0.92	0.00	0.00	0.18	0.32	0.00	0.98	0.28	0.30	9.75
	0.25	1.17	0.25	0.55	0.00	0.03	0.00	0.73	0.89	0.43	0.45	0.69	5.44
	0.52	0.66	0.74	0.63	0.83	0.00	0.01	0.00	0.24	0.13	1.71	2.45	7.92
	5.61	2.87	3.11	1.14	0.00	0.00	0.00	0.00	0.07	0.00	1.93		14.98
	3.68	2.53	2.05	0.62	0.00	0.00	0.20	0.00	0.00	1.30	0.92		13.54
	3.46	3.28	1.02	0.98	0.13	0.00	0.62	0.00	0.00	0.03	0.17		10.54
	3.16	0.75	2.11	0.27	0.02	0.00	0.00	0.00	0.08	1.29	3.12		12.89
	5.46	1.47	4.10	1.45	0.00	0.29	0.00	0.00	2.20	1.64	3.87		22.47
	5.12	3.89	5.89	2.91	0.16	0.00	0.00	0.51	0.76	0.43	4.93		27.48
	0.45	1.48	0.45	0.30	0.01	0.01	0.00	0.00	0.00	1.41	3.80	1.25	9.16
	0.42	0.81	1.20	0.21	0.00	0.40	0.00	0.00	0.00	0.48		2.89	6.41
	1.66	5.10	4.74	0.31	0.07	0.00	0.03	0.00	0.71	0.00	0.00		13.49
	1.48	4.15	1.65	0.13	0.00	0.00	0.00	0.00				M2.11	
		M0.45		M1.35		0.76	0.00	0.00	0.00		M1.02		8.87
			M1.67			M0.02			M1.56				6.95
				M0.47		0.00	0.00		M0.07	0.15	0.20	1.08	7.69
						M0.00						M0.70	
		M3.73		0.60	0.00	0.14	0.00	0.00				M4.42	
					M0.93		0.00	0.00	0.00	0.30			
	1.02	2.71 0.16			1.39	0.00	0.00	0.00	0.05 0.00	0.33 0.00			
	5.13	0.16 3.79		0.71	0.48 1.19	0.71 0.00	0.00 0.00	0.00 0.00	0.00	1.11			17.05
		3.79 M0.17		0.03	0.55	0.00	0.00	0.00	0.00	0.22			
	5.22 4.57	MU.17 7.27		1.08	0.55 3.15	0.15	0.00	0.05	0.00	0.22			
		2.38				0.10							
	3.08 4.32	2.38 4.42		0.71 0.42	0.06 0.51	0.00	0.00 0.00	0.00	0.07 0.02	0.06 3.87			
		4.42		1.08	0.01	0.02	0.00	0.00	0.02			0.47 4.55	
1 2	1.04	2.00	τ.ΤΟ	T • 00	0.00	0.00	0.00	0.00	0.23	0.1/	1.19	4.00	17.21
VET	S St.a	ation	UPPEI	R SAN I	LEANDRO) FLTR,	CA918	35	Creat	ion Dat	te: 08.	/29/200)2
						12210						, _ 0	. –
						Co					-		
Sta	rt vi	-19	971 I	End vr	200	00							
)0 							
		1	Τe	emperat	ure	1		Pred	cipitat	ion			
		1		T					- T	5±011			
			(1	Degree	s F.)	 		1100	(Inches	5)			

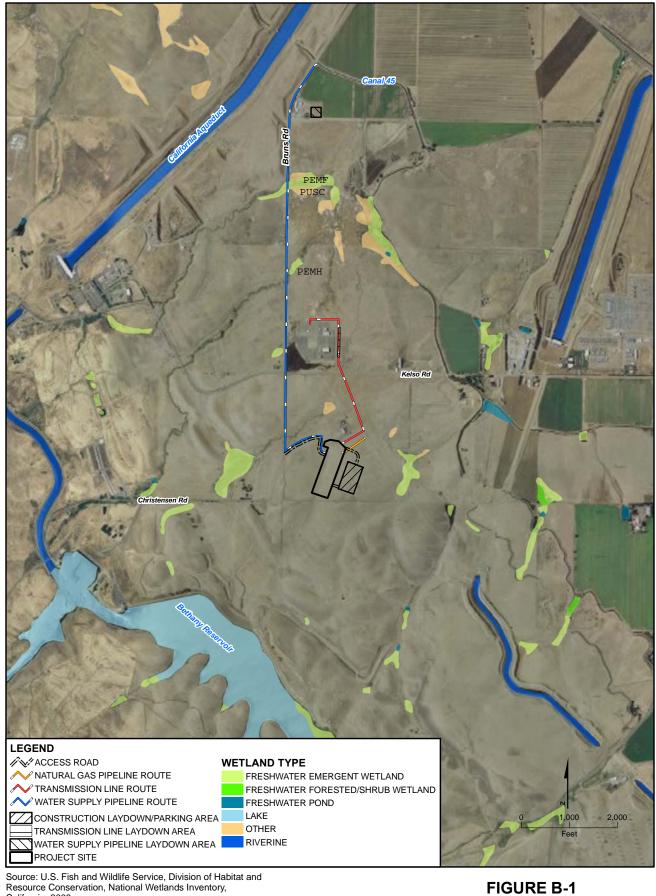
Month	 avg daily max	 avg daily min	 avg	 avg 	30% c] will less than 	hance have more than 	avg # of - days w/.1 or more	avg total snow fall
January	57.6	40.7	49.1	5.20	2.32	6.34	8	0.0
February	61.3	42.6	51.9	4.64	2.07	5.66	7	0.0
March	62.7	43.9	53.3	4.49	2.34	5.48	8	0.0
April	66.6	44.9	55.7	1.70	0.71	2.07	3	0.0
Мау	69.5	48.0	58.8	0.75	0.06	0.83	1	0.0
June	73.0	51.6	62.3	0.15	0.00	0.18	0	0.0
July	75.4	53.3	64.3	0.06	0.00	0.00	0	0.0
August	75.3	54.2	64.8	0.11	0.00	0.02	0	0.0
September	76.1	53.9	65.0	0.36	0.00	0.38	1	0.0
October	72.8	51.0	61.9	1.52	0.55	1.88	2	0.0
November	64.4	45.2	54.8	3.88	1.54	4.70	6	0.0
December	58.6	41.4	50.0	3.84	1.81	4.69	6	0.0
							-	
							-	
Annual					20.36	29.92		
							-	
Average	67.8	47.6	57.7					

Total | ----- | ----- | 26.69 | ----- | 42 | 0.0 |

_____|

GROWING SEASON DATES

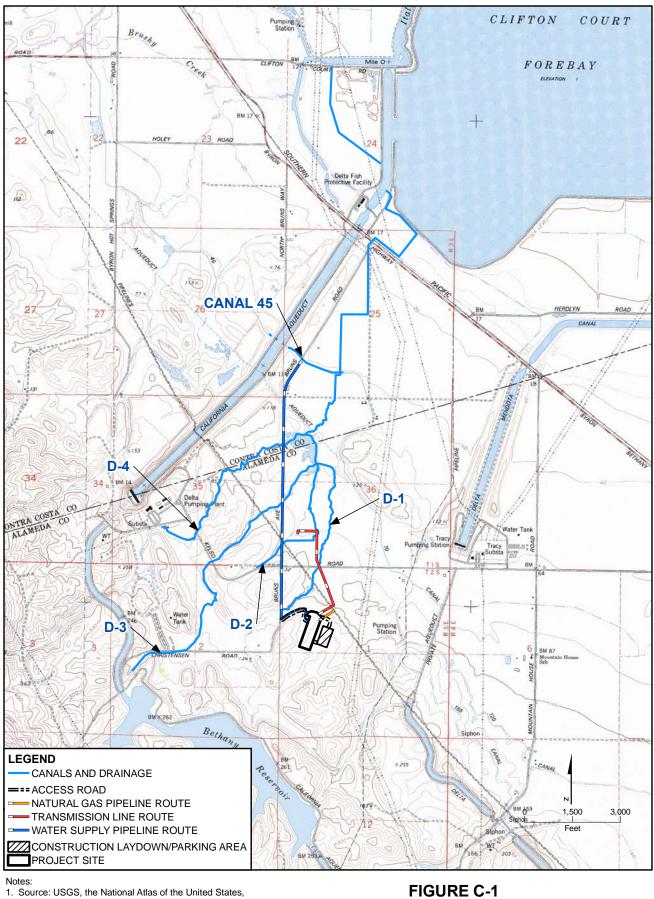
			Т	empera	ature				
Probability	24 F or h	-			-			-	
	 	Bec	yinnin	g and	Ending son Leng	Date			
50 percent *	 > 365	days		 > 365	days		> 365 > 365	-	
70 percent *	 > 365 	days	 	 > 365	days	 	> 365 > 365	-	
* Percent chance of and Ending dates.	the growing	seasor	n occu	rring	betweer	the	Begin	ning	
total 1948-2002 prc	ρ								
Station : CA9185, UPP Unit = inch		IDRO FLI	ĨR						
yr jan feb mar	apr may	jun	jul	aug	sep	oct	nov	dec	ar
 48 49 1.58 3.12 4.59	0.02 0.78	0.00			0.00			4.10 M2.24	


yr	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec	annl
48							0.00	0.02	0.00	0.64	0.86	4.10	5.62
49	1.58	3.12	4.59	0.02	0.78	0.00	0.05	M0.12	0.00	0.32	M1.73	M2.24	14.55
50	9.80	2.31	3.32	1.57	0.91	0.02	0.00	0.00	0.00	2.36	6.08	6.19	32.56
51	6.25	M2.47	M2.24	1.09	0.70	0.01	0.00	0.34	0.03				13.13

ftp://ftp.wcc.nrcs.usda.gov/support/climate/wetlands/ca/06001.txt

58 59 4.73 4.70 0.83				1 0.03	0.12	1.93 2.33 1.61 15.28
60M3.01 5.63 3.05		M0.00 M0.00			M5.81	0.91 20.66
	M1.29 0.79			4 M0.34	4.07	2.90 18.05
62 1.74 8.93 2.61 63 2.62 4.47 4.09				3 13.13	0.95	2.97 31.43
					4.10	0.57 24.24
64 4.91 0.19 2.13 65 4.86 0.98 2.04					4.21 5.48	7.52 22.06 4.22 21.97
66 2.98 2.97 0.84					5.03	4.18 17.51
6710.20 0.37 5.23					1.20	3.79 28.51
68 6.61 2.81 3.61					3.26	4.74 22.60
69 9.00 9.14 1.63					0.73	5.70 30.90
70 9.71 1.59 1.99					8.03	8.77 31.74
71 1.61 0.76 3.81					2.13	4.43 14.29
72 1.73 1.97 0.19					7.02	3.85 22.22
7311.00 6.89 3.77		0.00 0.00			9.20	6.94 40.20
74 4.01 2.21 6.80						2.37 22.23
75 2.21 6.17 6.05					1.05	0.38 25.50
76 0.33 1.10 2.51						1.98 11.20
77 1.29 1.22 2.52		0.00 0.00		6 0.48	3.95	5.73 17.60
78 9.51 4.82 7.30	6.17 0.03	0.00 0.00	0.00 0.4	8 0.00	2.43	0.91 31.65
79 8.83 5.82 4.06	0.96 0.19	0.00 0.02	2 0.00 0.0	0 3.11	3.45	5.79 32.23
80 5.79 7.40 2.55	2.19 0.36	0.05 0.19	0.00 0.0	0 0.15	0.35	2.33 21.36
81 6.05 1.45 5.60			0.00 0.0	8 3.66	6.77	6.93 31.40
82 9.38 5.03 7.68					7.94	4.33 43.51
83 8.11 8.20 13.10		0.00 0.00			9.18	7.77 51.89
84 0.22 2.83 2.21					8.90	2.08 22.27
85 0.56 2.35 4.24					3.85	1.90 15.39
86 5.23 10.80 6.52					0.58	1.90 28.21
87 4.25 5.77 3.26					2.30	5.13 22.58
88 4.40 0.50	0.70				5.01	4.17 15.81
89 1.41 1.80 6.85					2.10	0.03 17.12
90 4.66 2.44 1.31					0.73	2.21 16.36
91 0.53 3.06 8.35		0.13 0.00			0.57	2.57 18.56
92 1.84 7.74 4.68			0.01 0.0		0.27	8.14 25.16
93 9.17 4.55 2.73					1.75	2.89 24.53
94 2.29 5.51 0.33					9.46	3.03 24.47
9511.17 0.12 8.41 96 6.68 6.29 3.35					0.10	8.38 33.80 10.98 38.49
					4.30	3.61 25.00
97M8.77 0.40 0.55 9812.19 15.43 3.13			0.00 0.1		3.93	2.45 44.15
99 4.54 8.07 3.82					2.08	0.64 21.73
0 8.13 8.48	0.94	0.21	0.00 0.4		2.00	1.28 19.51
1 3.46 1.73					4 33	10.42 22.81
2	1.55 0.00	0.22 0.00	,	0.00	1.00	TA . 17 77 .01
-						

Appendix B National Wetland Inventory Map

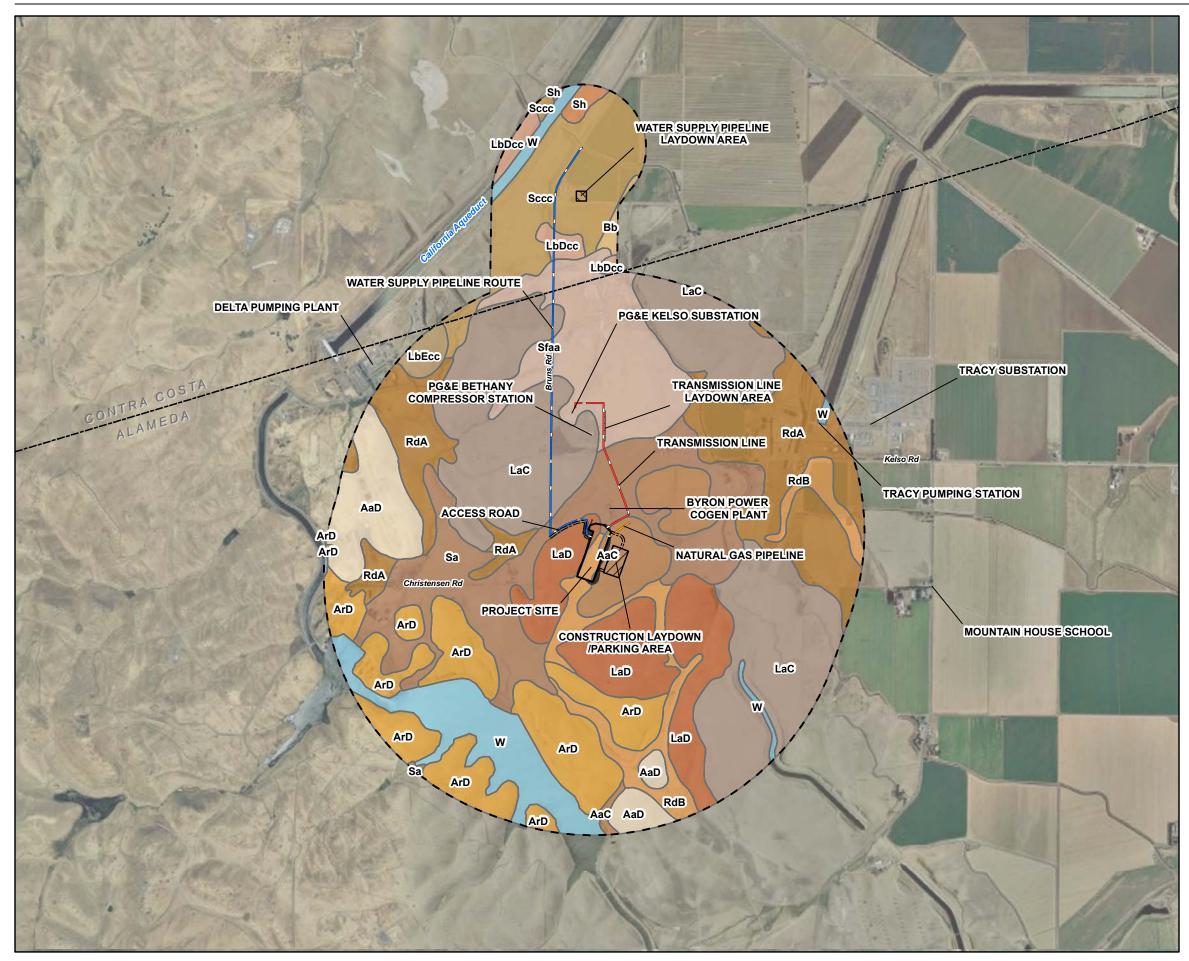

Resource Conservation, National Wetlands Inventory, California, 2008.

This map was compiled from various scale source data and maps and is intended for use as only an approximate representation of actual locations.

NWI MAP MARIPOSA ENERGY PROJECT ALAMEDA COUNTY, CALIFORNIA

SAC\\ZION\SACGIS\PROJ\DIAMOND_376670\MAPFILES\AFC_MAPS\WETLAND_NWI.MXD_MHASKELL 7/13/2009 09:57:52

Appendix C Drainage and Topography Map


Environmental Systems Research Institue (ESRI). Water Bodies - 2004, River and Streams - 2006.

This map was compiled from various scale source data and maps and is intended for use as only an approximate representation of actual locations.

DRAINAGE AND TOPOGRAPHY MARIPOSA ENERGY PROJECT

ALAMEDA COUNTY, CALIFORNIA

Appendix D Mapped Soil Units in the Project Vicinity

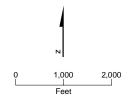
SAC\/ZION\SACGIS\PROJ\DIAMOND_376670\MAPFILES\AFC_MAPS\WETLAND_SOILS.MXD_MHASKELL 7/10/2009 11:22:14

LEGEND

ACCESS ROAD
 NATURAL GAS PIPELINE ROUTE
 TRANSMISSION LINE ROUTE
 WATER SUPPLY PIPELINE ROUTE
 CONSTRUCTION LAYDOWN/PARKING AREA
 TRANSMISSION LINE LAYDOWN AREA
 WATER SUPPLY PIPELINE LAYDOWN AREA
 PROJECT SITE

DISTURBED AREA

JBUFFER


SOIL TYPE

AaC, ALTAMONT CLAY, 3 TO 15 PERCENT SLOPES AaD, ALTAMONT CLAY, 15 TO 30 PERCENT SLOPES ArD, ALTAMONT ROCKY CLAY, 7 TO 30 PERCENT SLOPES Bb, BRENTWOOD CLAY LOAM LaC, LINNE CLAY LOAM, 3 TO 15 PERCENT SLOPES LaD, LINNE CLAY LOAM, 15 TO 30 PERCENT SLOPES LbDcc, LINNE CLAY LOAM, 5 TO 15 PERCENT SLOPES LbEcc, LINNE CLAY LOAM, 15 TO 30 PERCENT SLOPES RdA, RINCON CLAY LOAM, 0 TO 3 PERCENT SLOPES RdB, RINCON CLAY LOAM, 3 TO 7 PERCENT SLOPES Sa, SAN YSIDRO LOAM Sccc, SAN YSIDRO LOAM Sf, SOLANO FINE SANDY LOAM Sfaa, SOLANO FINE SANDY LOAM Sh, SOLANO LOAM W, WATER

Notes:

 1 Mile Buffer around Project Site, 1/4 Mile Buffer around all Linears.
 2 Source: U.S. Department of Agriculture, Natural resources Conservation Service, Soil Survey Geographic (SSURGO) Database for Contra Costa and Alamenda County, California, 2005.

This map was compiled from various scale source data and maps and is intended for use as only an approximate representation of actual locations.

FIGURE D-1

SOIL TYPES MARIPOSA ENERGY PROJECT ALAMEDA COUNTY, CALIFORNIA

Appendix E Wetland Determination Data Forms

Project/Site: Mariposa Energy Center	City/County: Alamed	а		Date: 4/8/2009
Applicant/Owner: Diamond Energy Corp.		State: CA	Sampling	Point: SP-01
Investigator(s): Russell Huddleston, Todd Ellwood	Section, Township, R	ange: NW ¼ Sec 1;	; T 2 S; R 3	E (MDM)
Landform (hillslope, terrace, etc.): Terrace	Local relief (concave,	convex, none): Con	cave	Slope (%): 0-1 %
Subregion (LRR): C Lat: 37° 47'	28.127"	Long: -121° 36' 05.1	72"	Datum: WGS1984
Soil Map Unit Name: Linne Clay Loam; 15 to 30 percent slopes		NWI clas	sification: 1	None
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes <u>X</u> No	(If no, explain in I	Remarks.)	
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly dist	urbed? Are "Normal	Circumstances" pres	ent? Yes	X No
Are Vegetation <u>No</u> , Soil <u>Yes</u> , or Hydrology <u>Yes</u> naturally prob	lematic? (If needed	, explain any answers	s in Remarks	s.)
SUMMARY OF FINDINGS – Attach site map showing sa	mpling point loca	tions, transects	. importa	ant features, etc.

Hydrophytic Vegetation Present?	Yes	Х	No	Is the Sampled Area within a Wetland?	Yes	Х	No
Hydric Soil Present?	Yes	Х	No				
Wetland Hydrology Present?	Yes _	Х	No				

Remarks: Small concave depressional areas along gravel access road to the Byron CoGen Plant connected by a partially crushed 18-inch diameter culvert. Problematic area: seasonal wetland hydrology; no hydric soil indicators were noted but were presumed to meet the definition of a hydric soil as noted in the remarks.

VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet	::
1. None				Number of Dominant Species	
2				that are OBL, FACW, or FAC:	<u> </u>
3				Total Number of Dominant	
4				Species Across All Strata:	<u> </u>
Total Cover:	N/A			Percent of Dominant Species	
Sapling/Shrub Stratum				that are OBL, FACW, or FAC:	100% (A/B)
1. None					
2				Prevalence Index Workshe	et:
3				Total % Cover Of:	Multiply By:
4.				OBL species	×1 =
5.				FACW species	×2 =
Total Cover:	N/A			FAC species	×3 =
Herb Stratum Plot Area: ~1m ²				FACU species	×4 =
1. Plagiobothrys stipitatus	20%	Х	OBL	UPL species	×5 =
2. Lolium multiflorum	3%		(FAC)	Column Totals:	(A) (B)
3. Grindelia camporum	3%		FACU	Prevalence Index = B/A =	
4. Epilobium densiflorum	2%		OBL		
5. Psilocarphus oregonus	1%		OBL	Hydrophytic Vegetation Inc	licators:
6. Crassula aquatica	1%		OBL	X Dominance Test is >5	0%
7. Veronica peregrina	T		OBL	Prevalence Index is ≤	3.0*
8. Juncus bufonius	Т		FACW	Morphological Adaptat	ions* (Provide supporting
Total Cover:	30%			data in Remarks or on	
Woody Vine Stratum				Problematic Hydrophy	tic Vegetation* (Explain)
1. None				* Indicators of hydric soil and	wetland hydrology must
2.				be present.	
Total Cover:	N/A			Hydrophytic	
% Bare Ground in Herb Stratum 70 % 0	Cover of Bio	tic Crust	N/A	Vegetation Present? Yes	X No
Remarks: Basin is characterized by Plagiobothrys with	other scatt	ered vernal po	ool plants; spe	cies around the margins of the t	basin included Bromus

Remarks: Basin is characterized by *Plagiobothrys* with other scattered vernal pool plants; species around the margins of the basin included *Bromus hordeaceus, Hordeum murinum, Erodium botrys, Grindelia,* and *Medicago polymorpha.* The small basin on the north side of the road is largely open soils (80% bare ground) with approximately 15% cover of *Cotula coronopifolia*; with 5% cover composed of *Plagiobothrys stipitatus, Eryngium vaseyi, Lolium multiflorum* and *Epilobium densiflorum.* **Note:** *Lolium multiflorum* is not included on the Reed (1988) plant list but is generally considered to be a facultative species and was therefore assigned a FAC indicator status.

SOIL

Depth	Matrix			Re	dox Feati	ures			
(inches)	Color (moist)	%	Color	(moist)	%	Type ^a	Loc ^b	Texture	Remarks
0-3	10 YR 4/2	100	10 YR 4	/4	<1	С	М	CL	pH 7.0 - 7.2
3-10	10 YR 4/2	100	-					CL	
10-16	10 YR 4/3	100						С	
^a Type: C=C	oncentration, D=De	pletion, R	M=Reduce	ed Matrix.		b	Location: P	L=Pore Lini	ng, RC=Root Channel, M=Matrix.
Hydric Soil	Indicators: (Appli	cable to a	II LRRs, u	inless othe	rwise no	oted.)		Indicat	ors for Problematic Hydric Soils ^c :
Histos	ol (A1)			Sandy Re	edox (S5))		1 c	m Muck (A9) (LRR C)
Histic I	Epipedon (A2)			Stripped	Matrix (S	6)		2 c	m Muck (A10) (LRR B)
Black I	Histic (A3)			Loamy M	lucky Min	eral (F1)		Re	duced Vertic (F18)
Hydrog	gen Sulfide (A4)			_ Loamy G	leyed Ma	atrix (F2)		Re	d Parent Material (TF2)
Stratifi	ed Layers (A5) (LRI	RC)		_ Depleted	Matrix (F	=3)		X Oth	ner (Explain in Remarks)
1 cm M	/luck (A9) (LRR D)			- Redox Da	ark Surfa	ce (F6)			
	ed Below Dark Surf	ace (A11)		_		rface (F7)			
	Dark Surface (A12)			Redox D					
	Mucky Mineral (S1)		Vernal Po	•			C () · · ·	
	Gleyed Matrix (S4)	/		_	0010 (1 0)				tors of hydrophytic vegetation and wetlan ogy must be present.
Restrictive	Layer (if present):								
Type: _1 Depth (in Remarks: A Series, but a	0" ches): Clay Laye t the time of the sur appear to be somew	r vey, soils ^v hat transi	tional betw	een the Ly	nne and S	San Ysidro	Series. The	Soils in this soil pH was	
Type: 1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa	0" ches): Clay Laye t the time of the sur appear to be somev pite the presence o s, no hydric soil ind art during the growing	vey, soils vhat transi f OBL and icators we	tional betw FACW pla re evident;	veen the Ly ants through ; however, t	nne and \$ nout the b he assun	San Ysidro basin as we nption is tha	Series. The ell as observ at soils in thi	Soils in this soil pH was vations of se is area are p	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper asonal inundation and presence of aquat bonded long enough to become anaerobi
Type: <u>1</u> Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa	0" ches): Clay Laye t the time of the sur appear to be somev pite the presence o s, no hydric soil ind art during the growin DGY	vey, soils vhat transi f OBL and icators we ng season	tional betw FACW pla re evident;	veen the Ly ants through ; however, t	nne and \$ nout the b he assun	San Ysidro basin as we nption is tha	Series. The ell as observ at soils in thi	Soils in this soil pH was vations of se is area are p f a hydric so	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper asonal inundation and presence of aquat bonded long enough to become anaerobio il.
Type: <u>1</u> Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa IYDROLO Wetland Hy	0" ches): Clay Laye t the time of the sur appear to be somew pite the presence o s, no hydric soil ind art during the growin OGY vdrology Indicators	vey, soils what transi f OBL and icators we ng season	tional betw FACW pla re evident; and are th	veen the Ly ants through ; however, t	nne and \$ nout the b he assun	San Ysidro basin as we nption is tha	Series. The ell as observ at soils in thi	Soils in this soil pH was vations of se is area are p f a hydric so Sec	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper easonal inundation and presence of aquat bonded long enough to become anaerobic il.
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa YDROLC Wetland Hy Primary Inc	0" ches): Clay Laye t the time of the sur appear to be somew pite the presence o is, no hydric soil ind art during the growin OGY vdrology Indicators licators (any one integration)	vey, soils what transi f OBL and icators we ng season	tional betw FACW pla re evident; and are th	veen the Lyn ants through ; however, t nerefore cor	nne and s nout the b the assum nsidered t	San Ysidro basin as we nption is tha	Series. The ell as observ at soils in thi	Soils in this soil pH was vations of se s area are p f a hydric so <u>Sec</u>	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper easonal inundation and presence of aquat bonded long enough to become anaerobic il. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine)
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper part YDROLC Wetland Hy Primary Inc * Surface	0" ches): Clay Laye t the time of the sur appear to be somew pite the presence o s, no hydric soil ind art during the growin OGY vdrology Indicators ticators (any one integer e Water (A1)	vey, soils what transi f OBL and icators we ng season	tional betw FACW pla re evident; and are th	veen the Lyn ants through ; however, t herefore cor Salt Crust	nne and s nout the b the assum nsidered t	San Ysidro basin as we nption is tha	Series. The ell as observ at soils in thi	Soils in this soil pH was vations of se is area are p f a hydric so <u>Sec</u>	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper easonal inundation and presence of aquat bonded long enough to become anaerobic iil. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine)
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa YDROLC Wetland Hy Primary Inc * Surface High W	0" ches): Clay Laye t the time of the sur appear to be somew pite the presence o s, no hydric soil ind art during the growin OGY rdrology Indicators licators (any one indi- e Water (A1) Pater Table (A2)	vey, soils what transi f OBL and icators we ng season	tional betw FACW pla re evident; and are th	veen the Lyn ants through ; however, t herefore cor Salt Crust Biotic Crust	(B11) (B12) (B12)	San Ysidro pasin as we nption is tha to meet the	Series. The ell as observ at soils in thi	Soils in this soil pH was vations of se s area are p f a hydric so <u>Sec</u>	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper easonal inundation and presence of aquat oonded long enough to become anaerobic iil. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine)
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa YDROLC Wetland Hy Primary Inc * Surface High W	0" ches): Clay Laye t the time of the sur appear to be somew pite the presence o s, no hydric soil ind art during the growin OGY vdrology Indicators ticators (any one integer e Water (A1)	vey, soils what transi f OBL and icators we ng season	tional betw FACW pla re evident; and are th	veen the Lyn ants through ; however, t herefore cor Salt Crust	(B11) (B12) (B12)	San Ysidro pasin as we nption is tha to meet the	Series. The ell as observ at soils in thi	Soils in this soil pH was vations of se s area are p f a hydric so <u>Sec</u>	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper easonal inundation and presence of aquat bonded long enough to become anaerobic iil. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine)
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa YDROLC Wetland Hy Primary Inc * Surface High W Saturat	0" ches): Clay Laye t the time of the sur appear to be somew pite the presence o s, no hydric soil ind art during the growin OGY rdrology Indicators licators (any one indi- e Water (A1) Pater Table (A2)	vey, soils what transi f OBL and icators we ng season	tional betw FACW pla re evident; and are th	veen the Lyn ants through ; however, t herefore cor Salt Crust Biotic Crust	(B11) (B12) vertebrate	San Ysidro pasin as we nption is tha to meet the es (B13)	Series. The ell as observ at soils in thi	Soils in this soil pH was vations of se is area are p f a hydric so <u>Sec</u>	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper easonal inundation and presence of aquat oonded long enough to become anaerobic iil. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine)
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa YDROLC Wetland Hy Primary Inc * Surface High W Saturat Water I	0" ches): Clay Laye t the time of the sur appear to be somew pite the presence o is, no hydric soil ind art during the growin OGY vdrology Indicators ticators (any one indi- ticator (A1) Cater Table (A2) ion (A3)	vey, soils what transi f OBL and icators we ng season s: dicator is s dicator is s	tional befw FACW pla re evident; and are th sufficient) *	veen the Lyn ants through ; however, therefore cor Salt Crust Biotic Crust Aquatic In Hydrogen	(B11) (B12) vertebrate Sulfide C	San Ysidro pasin as we nption is that to meet the es (B13) Odor (C1)	Series. The ell as observ at soils in thi	Soils in this soil pH was vations of se is area are p f a hydric so <u>Sec</u>	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper easonal inundation and presence of aquat bonded long enough to become anaerobic iii. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10)
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa YDROLC Wetland Hy Primary Inc * High W Saturat Water I Sedime	0" ches): Clay Laye t the time of the sur appear to be somew pite the presence o s, no hydric soil ind art during the growin OGY vdrology Indicators dicators (any one indi- e Water (A1) Pater Table (A2) ion (A3) Marks (B1) (Nonrive	vey, soils hat transi f OBL and icators we ng season s: dicator is s brine) onriverin	tional befw FACW pla re evident; and are th sufficient) *	Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F	(B11) (B11) (B12) vertebrate Sulfide C Rhizosphe	San Ysidro pasin as we nption is that to meet the es (B13) Odor (C1)	Series. The ell as observ at soils in thi definition of	Soils in this soil pH was vations of se is area are p f a hydric so <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>S</u>	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper easonal inundation and presence of aquat bonded long enough to become anaerobic iii. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2)
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa YDROLC Wetland Hy Primary Inc * Surface High W Saturat Water I Sedime Drift De	0" ches): Clay Laye t the time of the sur appear to be somew pite the presence o is, no hydric soil ind art during the growin OGY vdrology Indicators dicators (any one indi- e Water (A1) dater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (Norrive	vey, soils hat transi f OBL and icators we ng season s: dicator is s brine) onriverin	tional befw FACW pla re evident; and are th sufficient) *	Salt Crust Biotic Crust Aquatic In Oxidized F Presence	(B11) (B11) (B12) vertebrate Sulfide C Rhizosphe of Reduc	San Ysidro pasin as we nption is that to meet the es (B13) es (B13) Odor (C1) eres along I ed Iron (C4	Series. The ell as observ at soils in thi definition of	Soils in this soil pH was vations of se s area are p f a hydric so <u>Sec</u> <u>Sec</u> (C3)	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper easonal inundation and presence of aquat jonded long enough to become anaerobia il. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8)
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa YDROLC Wetland Hy Primary Inc * Surface High W Saturat Water I Sedime Drift De Surface	0" ches): Clay Laye t the time of the sur appear to be somew pite the presence o s, no hydric soil ind art during the growin OGY rdrology Indicators dicators (any one indi- e Water (A1) later Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (Norrive e Soil Cracks (B6)	vey, soils vhat transi f OBL and icators we ng season s: dicator is s dicator is s erine) onriverin verine)	tional betw FACW pla re evident; and are th sufficient) 	Salt Crust Biotic Crust Aquatic In Oxidized F Presence Recent Iro	(B11) (B11) (B12) vertebrate Sulfide C Rhizosphe of Reduct	San Ysidro basin as we nption is that to meet the es (B13) Ddor (C1) eres along I ed Iron (C4 tion in Plow	Series. The ell as observ at soils in thi definition of 	Soils in this soil pH was vations of se is area are p f a hydric so <u>Sec</u>	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper easonal inundation and presence of aquat bonded long enough to become anaerobic il. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Type: 1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper part YDROLC Wetland Hy Primary Inc * Surface High W Saturat Water I Sedime Drift De Surface	o" ches): Clay Laye t the time of the sur appear to be somew pite the presence o s, no hydric soil ind art during the growin OGY vdrology Indicators dicators (any one ind e Water (A1) Vater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (Norrive e Soil Cracks (B6) tion Visible on Aeria	vey, soils vhat transi f OBL and icators we ng season s: dicator is s dicator is s erine) onriverin rerine) I Imagery	tional betw FACW pla re evident; and are th sufficient) 	Salt Crust Biotic Crust Aquatic In Oxidized F Presence	(B11) (B11) (B12) vertebrate Sulfide C Rhizosphe of Reduct	San Ysidro basin as we nption is that to meet the es (B13) Ddor (C1) eres along I ed Iron (C4 tion in Plow	Series. The ell as observ at soils in thi definition of 	Soils in this soil pH was vations of se is area are p f a hydric so <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>S</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>S</u> <u>S</u> <u>Sec</u> <u>S</u> <u>Sec</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u>	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper basonal inundation and presence of aquat bonded long enough to become anaerobi iil. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa YDROLC Wetland Hy Primary Inc * Surface High W Saturat Water I Sedime Drift De Surface Inundai Water-3	o" ches): Clay Laye t the time of the sur appear to be somey pite the presence o is, no hydric soil ind art during the growin OGY vdrology Indicators dicators (any one ind e Water (A1) dater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (Norrive ent Deposits (B3) (Norrive e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9)	vey, soils vhat transi f OBL and icators we ng season s: dicator is s dicator is s erine) onriverin rerine) I Imagery	tional betw FACW pla re evident; and are th sufficient) 	Salt Crust Biotic Crust Aquatic In Oxidized F Presence Recent Iro	(B11) (B11) (B12) vertebrate Sulfide C Rhizosphe of Reduct	San Ysidro basin as we nption is that to meet the es (B13) Ddor (C1) eres along I ed Iron (C4 tion in Plow	Series. The ell as observ at soils in thi definition of 	Soils in this soil pH was vations of se is area are p f a hydric so <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>S</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>S</u> <u>S</u> <u>Sec</u> <u>S</u> <u>Sec</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u>	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper easonal inundation and presence of aquat bonded long enough to become anaerobi- iil. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa YDROLC Wetland Hy Primary Inc * Surface High W Saturat Water I Sedime Drift De Surface Inundat Field Obse	O" ches): Clay Laye t the time of the sur appear to be some pite the presence o is, no hydric soil ind art during the growin OGY vdrology Indicators dicators (any one ind e Water (A1) Pater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (Norrive e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9 rvations:	vey, soils vhat transi f OBL and icators we ng season s: dicator is s dicator is s erine) onriverin rerine) I Imagery)	tional betw FACW pla re evident; and are th sufficient) 	Salt Crust Biotic Crust Aquatic In Oxidized F Presence Recent Iro Other (Exp	(B11) (B11) (B12) vertebrate Sulfide C Rhizosphe of Reduct plain in Re	San Ysidro basin as we nption is that to meet the es (B13) Ddor (C1) eres along I ed Iron (C4 tion in Plow	Series. The ell as observ at soils in thi definition of 	Soils in this soil pH was vations of se is area are p f a hydric so <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>S</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>S</u> <u>S</u> <u>Sec</u> <u>S</u> <u>Sec</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u>	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper basonal inundation and presence of aquat bonded long enough to become anaerobi iil. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pr YDROLC Wetland Hy Primary Inc * Surface High W Saturat Water I Sedime Drift De Surface Hundal Field Obse Surface Wa	o" ches): Clay Laye t the time of the sur appear to be somew pite the presence o s, no hydric soil ind art during the growin OGY vdrology Indicators dicators (any one ind e Water (A1) later Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (Norrive e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9 rvations: ter Present? Ye	vey, soils vhat transi f OBL and icators we ng season dicator is s dicator is s erine) onriverin rerine) I Imagery	tional betw FACW pla re evident; and are th sufficient) (B7) X (B7) X No X	veen the Lyn ants through ; however, therefore correction Salt Crust Biotic Crust Aquatic Int Hydrogen Oxidized F Presence Recent Iro Other (Exp	(B11) (B11) (B12) vertebrate Sulfide C Rhizosphe of Reduct n Reduct blain in Re	San Ysidro basin as we nption is that to meet the es (B13) Ddor (C1) eres along I ed Iron (C4 tion in Plow emarks)	Series. The ell as observ at soils in thi definition of 	Soils in this soil pH was vations of se is area are p f a hydric so <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>S</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>Sec</u> <u>S</u> <u>S</u> <u>Sec</u> <u>S</u> <u>Sec</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u>	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper pasonal inundation and presence of aquat bonded long enough to become anaerobic iii. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)
Type: _1 Depth (in Remarks: A Series, but a inches. Des invertebrate the upper pa YDROLC Wetland Hy Primary Inc * Surface High W Saturat Water I Sedime Drift De Surface Inundat Field Obse	o" ches): Clay Laye t the time of the sur appear to be somew pite the presence o is, no hydric soil ind art during the growin OGY vdrology Indicators dicators (any one ind e Water (A1) dater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (Norrive ent Deposits (B2) (Norrive ent Deposits (B3) (Norrive e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9 rvations: ter Present? Ye	vey, soils ' vhat transi f OBL and icators we ng season s: dicator is s dicator is s erine) onriverin rerine) I Imagery s s	tional betw FACW pla re evident; and are th sufficient) 	Salt Crust Biotic Crust Aquatic In Oxidized F Presence Recent Iro Other (Exp	(B11) (B11) (B11) st (B12) vertebrate Sulfide C Rhizosphe of Reduct of Reduct blain in Re nches):	San Ysidro basin as we nption is that to meet the es (B13) Ddor (C1) eres along I ed Iron (C4 tion in Plow	Series. The ell as observ at soils in thi definition of 	Soils in this soil pH was vations of se s area are p f a hydric so <u>Soils</u> (C3) (C3)	area are mapped as part of the Linne s neutral (7.0 to 7.2) throughout the upper basonal inundation and presence of aquat bonded long enough to become anaerobi iil. <u>ondary Indicators (two or more required)</u> Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: Basin was dry at the time of the survey, but seasonal inundation and aquatic invertebrates were observed in this location during field surveys in February 2009. In addition, the defined topographic basin with an abrupt boundary with the adjacent grassland, abundance of OBL and FACW vegetation, and deep cattle prints all suggest prolonged seasonal saturation and/or inundation occurs at this sample location.

Project/Site: Mariposa Energy Center	City/County: Alamed	la		Date: 4/8/2	2009
Applicant/Owner: Diamond Energy Corp.		State: CA	Sampling I	Point: SP-	02
Investigator(s): Russell Huddleston, Todd Ellwood	Section, Township, R	ange: NW ¼ Sec 1;	T 2 S; R 3	E (MDM)	
Landform (hillslope, terrace, etc.): Terrace	Local relief (concave,	convex, none): None	e	Slope (%):	0-1 %
Subregion (LRR): C Lat: 37° 47'	28.013"	Long: -121° 36' 05.2	33"	Datum:	WGS1984
Soil Map Unit Name: Linne Clay Loam 15 to 30 percent slopes		NWI clas	sification: N	None	
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes <u>X</u> No	(If no, explain in F	Remarks.)		
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly dist	urbed? Are "Normal	Circumstances" pres	ent? Yes	х	No
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> naturally prob	elematic? (If needed	, explain any answers	in Remarks	s.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No	Х	Is the Sampled Area within a Wetland?	Yes	No	Х
Hydric Soil Present?	Yes	No	*				
Wetland Hydrology Present?	Yes	No	<u>X</u>				
Remarks: Sample point located adjace	nt to well-defined	hasin '	with distinct	change in vegetation along gra	vel access road t	n the B	vron Power Cogen

Remarks: Sample point located adjacent to well-defined basin with distinct change in vegetation along gravel access road to the Byron Power Cogen Plant. Soils very gravelly and hard at this location and were not excavated at the time of the survey; this area is characterized by upland plants and has no evidence of seasonal saturation or inundation.

VEGETATION

Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u></u>		
			Number of Dominant Species that are OBL, FACW, or FAC: 0 (A)
			Total Number of Dominant
			Species Across All Strata: 2 (B)
N/A			Percent of Dominant Species
			that are OBL, FACW, or FAC: 0% (A/B)
			Prevalence Index Worksheet:
			Total % Cover Of: Multiply By:
			OBL species ×1 =
			FACW species ×2 =
N/A			FAC species ×3 =
			FACU species ×4 =
45%	Х	FACU-	UPL species ×5 =
15%	Х	NL	Column Totals: (A) (B)
10%		FACU	Prevalence Index = B/A =
2%		NL	
1%		NL	Hydrophytic Vegetation Indicators:
1%		NL	Dominance Test is >50%
1%		(FAC)	Prevalence Index is ≤3.0*
			Morphological Adaptations* (Provide supporting
75%			data in Remarks or on a separate sheet)
			Problematic Hydrophytic Vegetation* (Explain)
			* Indicators of hydric soil and wetland hydrology must
			be present.
N/A			Hydrophytic
Cover of Bio	tic Crust	N/A	Vegetation Present? Yes No X
	% Cover	% Cover Species?	% Cover Species? Status

Remarks: Annual grassland habitat located adjacent to well-defined topographic basin; distinct upland/wetland boundary at this location. **Note:** *Lolium multiflorum* is not included on the Reed (1988) plant list but is generally considered to be a facultative species and was therefore assigned a FAC indicator status.

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)												
Depth	Matrix		Re	dox Featu	ures							
(inches)	Color (moist)	%	Color (moist)	%	Type ^a	Loc ^b	Texture	Remarks				
0-2	10 YR 4/2	100		-			CL	рН 7.0-7.2				
		· ·		·								
				-								
		· ·		·								
^a Type: C=C	oncentration, D=Dep	oletion, RM=R	educed Matrix.		I	Location: I	PL=Pore Linin	g, RC=Root Channel, M=Matrix.				
Hydric Soil	Indicators: (Applic	able to all LR	Rs, unless othe	erwise no	ted.)		Indicato	rs for Problematic Hydric Soils ^c :				
Histos	ol (A1)		Sandy R	edox (S5))		1 cm	n Muck (A9) (LRR C)				
Histic	Epipedon (A2)		Stripped	Matrix (S	6)		2 cm	n Muck (A10) (LRR B)				
Black	Histic (A3)		Loamy N	lucky Min	eral (F1)		Red	uced Vertic (F18)				
Hydro	gen Sulfide (A4)		Loamy G	ileyed Ma	ıtrix (F2)		Red	Parent Material (TF2)				
Stratifi	ed Layers (A5) (LRR	C)	Depleted	Matrix (F	-3)		Othe	er (Explain in Remarks)				
1 cm N	/luck (A9) (LRR D)		Redox D	ark Surfa	ce (F6)							
Deplet	ed Below Dark Surfa	ce (A11)	Depleted	Dark Su	rface (F7)							
Thick I	Dark Surface (A12)		Redox D	epressior	ns (F8)							
Sandy	Mucky Mineral (S1)		Vernal P	ools (F9)			^c Indicato	ors of hydrophytic vegetation and wetland				
Sandy	Gleyed Matrix (S4)							gy must be present.				
Restrictive	Layer (if present):											
Туре:												
Depth (in	ches):						Hydric S	oil Present? Yes No*				
subject to s		inundation, th	nerefore, soils ar					location; no indication that this area is tors were noted in the adjacent depression				
HYDROLO		TACW Vegeta										
Wetland Hy	drology Indicators	:					Seco	ndary Indicators (two or more required)				
Primary Inc	licators (any one indi	cator is suffici	ent)				W	/ater Marks (B1) (Riverine)				
Surface	e Water (A1)		Salt Crust	(B11)			s	Sediment Deposits (B2) (Riverine)				
High W	ater Table (A2)		Biotic Crus	st (B12)			D	Drift Deposits (B3) (Riverine)				
Saturat	ion (A3)		Aquatic In	vertebrate	es (B13)		D	Drainage Patterns (B10)				
Water I	Marks (B1) (Nonrive	rine)	Hydrogen	Sulfide C	dor (C1)		D	Dry-Season Water Table (C2)				
Sedime	ent Deposits (B2) (No	onriverine)	Oxidized F	Rhizosphe	eres along	Living Root	rs (C3) T	C3) Thin Muck Surface (C7)				
Drift De	eposits (B3) (Nonrive	erine)	Presence	of Reduc	ed Iron (C4	·)	c	rayfish Burrows (C8)				
Surface	e Soil Cracks (B6)		Recent Irc	n Reduct	ion in Plow	ed Soils (C	56) S	aturation Visible on Aerial Imagery (C9)				
Inunda	tion Visible on Aerial	Imagery (B7)	Other (Exp	olain in R	emarks)		s	hallow Aquitard (D3)				
Water-	Stained Leaves (B9)						F.	AC-Neutral Test (D5)				
Field Obse												
Surface Wa	ter Present? Yes	s <u>No</u>	X Depth (ii	· -		_						
Water Table			X Depth (ii	-		_						
Saturation F		s No	X Depth (ii	nches):		Wet	land Hydrolog	gy Present? Yes <u>No X</u>				
	pillary fringe)		toring well paris	Inhotoo	nrovious in	enectional	if available:					
	ecorded Data (strean	i yauye, moni	toring well, aeria	i priotos,	previous In	spections),	n avaliable.					
Remarks: S evident at th		upland area a	djacent to well-d	efined to	pographic o	lepression.	No evidence	of seasonal saturation or inundation				

Project/Site: Mariposa Energy Center	City/County: Alamed	Date: 6/4/2009			
Applicant/Owner: Diamond Energy Corp.		State: CA S	ampling Point: SP-03		
Investigator(s): Russell Huddleston	Section, Township, Range: NW ¼ Sec 1; T 2 S; R 3 E (MDM)				
Landform (hillslope, terrace, etc.): Terrace	Local relief (concave,	convex, none): None	Slope (%): 0-1 %		
Subregion (LRR): C Lat: 37° 47	' 32.965"	Long: -121° 35' 58.615	Datum: WGS1984		
Soil Map Unit Name: San Ysidro Loam		NWI classif	ication: None		
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes <u>X</u> No	(If no, explain in Rei	marks.)		
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly dis	turbed? Are "Normal	Circumstances" presen	t? Yes X No		
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> naturally prot	olematic? (If needed	, explain any answers in	Remarks.)		
SUMMARY OF EINDINGS Attach site man showing as	maling point loog	tiono tronocoto i	mnartant factures ato		

SUMMARY OF FINDINGS – Attach site map showing sar	npling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	Х	No_		Is the Sampled Area within a Wetland?	Yes	No	x	
Hydric Soil Present?	Yes	Х	No						
Wetland Hydrology Present?	Yes		No_	X					
Remarks: Swale feature within annual grassland that flows to the southwest where water collects in low areas around the Byron Power Cogen Plant.									

Wetland hydrology uncertain at this location, appears to support short-duration inundation and low-volume flow in response to rain events, but does not appear to support prolonged, continuous saturation or inundation.

VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet	:
1. None	<u>,,,,,,,</u>		<u></u>		-
2				Number of Dominant Species that are OBL, FACW, or FAC:	<u> </u>
3	. <u></u>			Total Number of Dominant	
4				Species Across All Strata:	1 (B)
Total Cover:	N/A			Percent of Dominant Species	
Sapling/Shrub Stratum				that are OBL, FACW, or FAC:	100 (A/B)
1. None					
2				Prevalence Index Workshee	ət:
3.				Total % Cover Of:	Multiply By:
4.				OBL species	×1 =
5.				FACW species	×2 =
Total Cover:	N/A			FAC species	×3 =
Herb Stratum Plot Area: ~1m ²				FACU species	×4 =
1. Hordeum marinum	85	Х	FAC	UPL species	×5 =
2. Distichlis spicata	5		FACW	Column Totals:	(A) (B)
3. Frankenia salina	5		FACW+	Prevalence Index = B/A =	· · · · · ·
4. Lolium multiflorum	Т		(FAC)		
5				Hydrophytic Vegetation Ind	icators:
6				X Dominance Test is >50)%
7.				Prevalence Index is ≤3	3.0*
8.				Morphological Adaptati	ons* (Provide supporting
Total Cover:	95			data in Remarks or on	
Woody Vine Stratum				Problematic Hydrophy	tic Vegetation* (Explain)
1. None				* Indicators of hydric soil and w	vetland hydrology must
2.				be present.	
Total Cover:	N/A			Hydrophytic	
% Bare Ground in Herb Stratum 5 % 0	Cover of Bio	tic Crust	N/A	Vegetation Present? Yes	× No

Remarks: Vegetation notably different within the swale than the adjacent annual grassland – swales are characterized by Mediterranean barley where the adjacent areas are characterized by foxtail barley and soft chess. Saltgrass, alkali heath and Italian ryegrass are widely scattered throughout and not restricted to the swale areas. Note: *Lolium multiflorum* is not included on Reed (1988), but is generally considered to be a facultative species.

SOIL

Depth	Matrix		F	Redox Feat	ures							
(inches)	Color (moist)	%	Color (moist)	%	Type ^a	Loc⁵	Texture	Remarks				
0-2	10 YR 4/2	95	7.5 YR 4/4	2	С	М	FSCL					
2-12			7.5 YR 4/6 3 C				FSCL	CL				
Type: C=C	oncentration, D=De	oletion, RM	I=Reduced Matrix			^b Location: I	PL=Pore Lining, RC	=Root Chann	el, M=Matrix.			
lydric Soil	Indicators: (Applic	able to al	LRRs, unless ot	herwise no	oted.)		Indicators for	Problematic	Hydric Soils ^c :			
Histosol (A1) Sandy Redox (S5)							1 cm Muck (A9) (LRR C)					
Histic E	Histic Epipedon (A2) Stripped Matrix (S6)						2 cm Muc	(A10) (LRR	В)			
Black H	Histic (A3)		Loamy	Mucky Mir	neral (F1)		Reduced	/ertic (F18)				
Hydrog	gen Sulfide (A4)		Loamy	Gleyed Ma	atrix (F2)		Red Parent Material (TF2)					
Stratifie	ed Layers (A5) (LRR	(C)	X Deplet	ed Matrix (I	=3)		Other (Explain in Remarks)					
1 cm N	luck (A9) (LRR D)		Redox	Dark Surfa	ice (F6)							
Deplete	ed Below Dark Surfa	ace (A11)	Deplet	ed Dark Su	rface (F7)							
Thick E	Dark Surface (A12)		Redox	Depressio	ns (F8)							
Sandy	Mucky Mineral (S1)		Vernal	Pools (F9)		^c Indicators of hydrophytic vegetation and u						
Sandy	Gleyed Matrix (S4)					^c Indicators of hydrophytic vegetation and wetla hydrology must be present.						
Restrictive	Layer (if present):											
Type: N	IE											
Depth (in	ches): >12						Hydric Soil Pr	esent? Ye	s X No			

HYDROLOGY

Wetland Hydrology Indicators:	Secondary Indicators (two or more required)							
Primary Indicators (any one indicator is suffici	Water Marks (B1) (Riverine)							
Surface Water (A1)	Salt Crust (B11)	Sediment Deposits (B2) (Riverine)						
High Water Table (A2)	Biotic Crust (B12)	Drift Deposits (B3) (Riverine)						
Saturation (A3)	Aquatic Invertebrates (B13)	X Drainage Patterns (B10)						
Water Marks (B1) (Nonriverine)	Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)						
Sediment Deposits (B2) (Nonriverine)	Oxidized Rhizospheres along Living Roots (C3)	Thin Muck Surface (C7)						
Drift Deposits (B3) (Nonriverine)	Presence of Reduced Iron (C4)	Crayfish Burrows (C8)						
Surface Soil Cracks (B6)	Recent Iron Reduction in Plowed Soils (C6)	Saturation Visible on Aerial Imagery (C9)						
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Shallow Aquitard (D3)						
Water-Stained Leaves (B9)		FAC-Neutral Test (D5)						
Field Observations:								
Surface Water Present? Yes No	X Depth (inches):							
Water Table Present? Yes No	X Depth (inches): >12							
Saturation Present? Yes No	X Depth (inches): >12 Wetland Hy	drology Present? Yes No X						
(includes capillary fringe)								
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:								
events and may be subject to temporary inund	ey and characterized by FAC vegetation; appears to co ation, but does not appear to support prolonged inunda y to meet the wetland hydrology criterion. Only sporadic	tion or saturation for a minimum of						

Project/Site: Mariposa Energy Center	City/County: Alameda	C	Date: 6/4/2009			
Applicant/Owner: Diamond Energy Corp.		State: CA	Sampling P	oint: SP-04	4	
Investigator(s): Russell Huddleston	Section, Township, Range: NW ¼ Sec 1; T 2 S; R 3 E (MDM)					
Landform (hillslope, terrace, etc.):	Local relief (concave, convex, none): None			Slope (%): 0-1 %		
Subregion (LRR): C Lat: 37° 47'	33.174" Lo	ong: -121° 35' 58.78	31"	Datum:	WGS1984	
Soil Map Unit Name: San Ysidro Loam		NWI class	sification: N	one		
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes <u>X</u> No	_(If no, explain in R	emarks.)			
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly distu	rbed? Are "Normal C	ircumstances" prese	ent? Yes	X N	o	
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> naturally probl	ematic? (If needed, e	explain any answers	in Remarks.	.)		

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No <u>X</u>	Is the Sampled Area within a Wetland?	Yes	No <u>X</u>					
Hydric Soil Present?	Yes X	No								
Wetland Hydrology Present?	Yes	No <u>X</u>								
Remarks: California annual grassland adjacent to low topographic swale, dark brown concentrations in the upper part of the soil are characteristic for this soil type.										

VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:	
1. None				Number of Dominant Species	
2				that are OBL, FACW, or FAC:	0 (A)
3				Total Number of Dominant	
4Total Cover:	N/A			Species Across All Strata:	<u>1</u> (B)
Sapling/Shrub Stratum	N/A			Percent of Dominant Species that are OBL, FACW, or FAC:	0% (A/B)
1. None				Inat are OBL, FACW, of FAC.	<u> 0% (</u> A/B)
2.	·			Prevalence Index Worksheet:	
3.					Multiply Dur
	<u> </u>			Total % Cover Of:	Multiply By:
4				OBL species ×1 =	
5				FACW species	
Total Cover:	N/A			FAC species	
Herb Stratum Plot Area: ~1m ²				FACU species	<u> </u>
1. Bromus hordeaceus	80%	Χ	FACU-	UPL species	
2. Grindelia camporum	10%		FACU	Column Totals:	(B)
3. Erodium botrys	5%		NL	Prevalence Index = B/A =	
4. Eryngium vaseyi	3%		FACW		
5				Hydrophytic Vegetation Indicato	rs:
6				Dominance Test is >50%	
7				Prevalence Index is ≤3.0*	
8.				Morphological Adaptations* (Provide supporting
Total Cover:	98%			data in Remarks or on a sep	barate sheet)
Woody Vine Stratum				Problematic Hydrophytic Ve	getation* (Explain)
1. None				* Indicators of hydric soil and wetlan be present.	d hydrology must
2				•	
Total Cover:				Hydrophytic Vegetation	
% Bare Ground in Herb Stratum 2% % C	Cover of Bio	otic Crust	N/A	Present? Yes	No <u>X</u>
Remarks: Annual grassland habitat adjacent to season	al wetland	swale.			

SOIL

Depth	Matrix			Re	dox Featu	ures			Remarks			
(inches)	Color (moist)	%	Color (moist)	%	Type ^a	Loc ^b	Texture				
0-2	10 YR 4/2	98	7.5 YR 4/	/4	2	С	М	FSL				
2-14	10 YR 4/3	100						FSCL				
Type: C=	Concentration, D=De	pletion, R	M=Reduced	d Matrix.			² Location: I	PL=Pore Lining, R	C=Root Ch	annel, M=	Matrix	х.
lydric So	il Indicators: (Applic	able to a	ll LRRs, ur	less othe	erwise no	ted.)		Indicators fo	r Problem	atic Hydr	ic So	ils ^c :
Histo	sol (A1)		Sandy Redox (S5) 1 cm Muck (A9) (LRR C)									
Histic	Epipedon (A2)		Stripped Matrix (S6)					2 cm Muck (A10) (LRR B)				
Black	Histic (A3)			Loamy Mucky Mineral (F1)					Vertic (F1	8)		
Hydro	ogen Sulfide (A4)			Loamy Gleyed Matrix (F2)				Red Pare	ent Materia	l (TF2)		
Strati	fied Layers (A5) (LRF	R C)	X	X Depleted Matrix (F3)				Other (Explain in Remarks)				
 1 cm	Muck (A9) (LRR D)			Redox D	ark Surfa	ce (F6)						
Deple	eted Below Dark Surfa	ace (A11)		Depleted	I Dark Su	face (F7)						
Thick	Dark Surface (A12)			Redox D	epressior	ns (F8)						
 Sand	y Mucky Mineral (S1)			Vernal P	ools (F9)			^c Indicators of	hydrophy	tic vegetat	ion ar	nd wetland
Sand	y Gleyed Matrix (S4)							^c Indicators of hydrophytic vegetation and wetland hydrology must be present.				
Restrictiv	e Layer (if present):											
Type:	NE											
Depth (i	nches):							Hydric Soil P	resent?	Yes 2	x	No
	Soils have 2 percent of	distinct or	noontration	o in the ur				uite de feix e de alete		<u> </u>		

HYDROLOGY

Wetland Hydrology Indica	tors:	Secondary Indicators (two or more required)					
Primary Indicators (any one	indicator i	Water Marks (B1) (Riverine)					
Surface Water (A1)				Salt Crust (B11)	Sediment Deposits (B2) (Riverine)		
High Water Table (A2)		-		Biotic Crust (B12)	Drift Deposits (B3) (Riverine)		
Saturation (A3)				Aquatic Invertebrates (B13)	Drainage Patterns (B10)		
Water Marks (B1) (Non	riverine)	-		Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)		
Sediment Deposits (B2)) (Nonrive	rine)		Oxidized Rhizospheres along Living Roots (C3)	Thin Muck Surface (C7)		
Drift Deposits (B3) (Nonriverine)				Presence of Reduced Iron (C4)	Crayfish Burrows (C8)		
Surface Soil Cracks (B6)				Recent Iron Reduction in Plowed Soils (C6)	Saturation Visible on Aerial Imagery (C9)		
Inundation Visible on Aerial Imagery (B7)				Other (Explain in Remarks)	Shallow Aquitard (D3)		
Water-Stained Leaves	(B9)	-			FAC-Neutral Test (D5)		
Field Observations:							
Surface Water Present?	Yes	No	Х	Depth (inches):			
Water Table Present?	Yes	No	Х	Depth (inches):			
Saturation Present?	Yes	No	Х	Depth (inches): Wetland Hy	/drology Present? Yes No X		
(includes capillary fringe)							
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:							
Remarks: No evidence of se	asonal sat	uration o	r inu	ndation at this location.			

Project/Site: Mariposa Energy Center	City/County: Alamed	City/County: Alameda			Date: 6/4/2009	
Applicant/Owner: Diamond Energy Corp.		State: CA	Sampling P	oint: SP-08	5	
Investigator(s): Russell Huddleston	Section, Township, R	ange: NW ¼ Sec 1	I; T 2 S; R 3 E	(MDM)		
Landform (hillslope, terrace, etc.): Drainage	Local relief (concave,	convex, none): No	ne S	Slope (%): (D-1 %	
Subregion (LRR): C Lat: 37° 4	7' 36.220"	Long: -121° 35' 59.	921"	Datum:	WGS1984	
Soil Map Unit Name: San Ysidro Loam		NWI cla	ssification: N	one		
Are climatic / hydrologic conditions on the site typical for this time of year	? Yes No	X (If no, explain in	Remarks.)			
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly di	sturbed? Are "Normal	Circumstances" pre	sent? Yes	X N	0	
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> naturally pro	oblematic? (If needed,	explain any answer	rs in Remarks	.)		
		_	_			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No <u>X</u>	Is the Sampled Area within a Wetland?	Yes	No <u>X</u>		
Hydric Soil Present?	Yes	No <u>X</u>					
Wetland Hydrology Present?	Yes	No <u>X</u>					
Remarks: Soil point taken in very weakly expressed low area within slightly hummocky annual grassland habitat along transmission line alignment: no							

evidence of wetland hydrology was observed in this area during any of the surveys.

VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:	
1. None	<u>78 COver</u>	<u>opecies:</u>	<u>018105</u>		
2				Number of Dominant Species that are OBL, FACW, or FAC:	0 (A)
2					(//)
4	·			Total Number of Dominant Species Across All Strata:	1 (B)
Total Cover:	N/A			Percent of Dominant Species	
Sapling/Shrub Stratum				that are OBL, FACW, or FAC:	0% (A/B)
1. None					
2.				Prevalence Index Workshee	t:
3.				Total % Cover Of:	Multiply By:
4				OBL species	×1 =
5.					x2 =
Total Cover:	N/A			FAC species	×3 =
Herb Stratum Plot Area: ~1m ²				FACU species	×4 =
1. Bromus hordeaceus	70	Х	FACU-	UPL species	×5 =
2. Erodium moschatum	10		NL	Column Totals:	(A) (B)
3. Eryngium vaseyi	5		FACW	Prevalence Index = B/A =	
4				-	
5				Hydrophytic Vegetation Ind	icators:
6.				Dominance Test is >50	1%
7				Prevalence Index is ≤3	.0*
8.				Morphological Adaptatio	ons* (Provide supporting
Total Cover:	85%			data in Remarks or on	
Woody Vine Stratum				Problematic Hydrophyt	ic Vegetation* (Explain)
1. None				* Indicators of hydric soil and w	etland hydrology must
2.				be present.	
Total Cover:	N/A			Hydrophytic	
% Bare Ground in Herb Stratum 15% % 0	Cover of Bio	otic Crust	N/A	Vegetation Present? Yes	NoX
Remarks: Vegetation in this area similar to surrounding	grassland	habitat.			
-	-				

	Matrix		Re	dox Feat	ures					
Depth		Color (moist)					Remarks			
0-2	10 YR 4/3	98	7.5 YR 4/4 2 C		 M	FSL	Kemano			
2-12	10 YR 4/3	100	<u>7.5 TK 4/4</u> <u>2</u> <u>C</u> IM				FSL-FSCL			
2-12	10 11(4/3	100								
							·			
		<u> </u>								
^a Type: C=C	oncentration, D=De	pletion, R	M=Reduced Matrix.		t	Location:		RC=Root Channel, M		
Hydric Soil	Indicators: (Applic	cable to a	ll LRRs, unless othe	rwise no	oted.)		Indicators f	or Problematic Hyd	lric Soils ^c :	
Histos	ol (A1)	Sandy R	Sandy Redox (S5)			1 cm Muck (A9) (LRR C)				
Histic I	Epipedon (A2)		Stripped Matrix (S6)				2 cm Muck (A10) (LRR B)			
Black I	Histic (A3)		Loamy Mucky Mineral (F1)				Reduced Vertic (F18)			
Hydrog	gen Sulfide (A4)		Loamy Gleyed Matrix (F2)				Red Parent Material (TF2)			
Stratifi	ed Layers (A5) (LRR	R C)	Depleted Matrix (F3)				Other (Explain in Remarks)			
1 cm N	Redox D	Redox Dark Surface (F6)								
Deplet	ed Below Dark Surfa	d Below Dark Surface (A11) Depleted Dark Surface (F7)								
Thick [Thick Dark Surface (A12) Redox Depressions (F8)									
Sandy Mucky Mineral (S1) Vernal Pools (F9)						^c Indicators of hydrophytic vegetation and wetland				
Sandy	Gleyed Matrix (S4)						nust be present.			
Restrictive	Layer (if present):									
Type: N	NE									
Depth (in	ches): >12						Hydric Soil	Present? Yes	No X	
Remarks: B	rown concentrations	s in the up	per part are typical fo	r this soil	unit, but ch	roma of 3	does not meet the	e depleted matrix hyc	fric soil indicator.	
IYDROLC	OGY									
Wetland Hy	drology Indicators	:					Seconda	ry Indicators (two or	more required)	
Primary Inc	licators (any one ind	licator is s	ufficient)				M/ata	r Marks (B1) (Riveri	ine)	

Wetland Hydrology Indic	ators:						Secondary Indicators (two or more required)		
Primary Indicators (any or	ne indicator	is sufficie	nt)				Water Marks (B1) (Riverine)		
Surface Water (A1) Salt Crust (B1			Salt Crust (B11)	Sediment Deposits (B2) (Riverin					
High Water Table (A2)			Biotic Crust (B12)			Drift Deposits (B3) (Riverine)			
Saturation (A3)				Aquatic Invertebrates (B13)			Drainage Patterns (B10)		
Water Marks (B1) (No	Water Marks (B1) (Nonriverine)			Hydrogen Sulfide Odor (C1)			Dry-Season Water Table (C2)		
Sediment Deposits (B	2) (Nonrive	erine)	Oxidized Rhizospheres along Living Roots (C3)			Thin Muck Surface (C7)			
Drift Deposits (B3) (No	onriverine)	-	Presence of Reduced Iron (C4)			Crayfish Burrows (C8)			
Surface Soil Cracks (B6)				Recent Iron Reduction in Plowed Soils (C6)			Saturation Visible on Aerial Imagery (C9)		
Inundation Visible on Aerial Imagery (B7)			Other (Explain in Remarks)			Shallow Aquitard (D3)			
Water-Stained Leaves	s (B9)						FAC-Neutral Test (D5)		
Field Observations:									
Surface Water Present?	Yes	No	Х	Depth (inches):					
Water Table Present?	Yes	No	Х	Depth (inches):	>12				
Saturation Present?	Yes	No	Х	C Depth (inches): >12 Wetland Hy			drology Present? Yes No X		
(includes capillary fringe)									
Describe Recorded Data (s	stream gau	ge, monito	oring	well, aerial photos,	previous insp	pections), if availa	able:		
Remarks: No evidence of s	seasonal in	undation c	or sat	uration at this locati	on.				

Project/Site: Mariposa Energy Center	City/County: Alameda		Date: 4/8/2009		
Applicant/Owner: Diamond Energy Corp.		State: CA	Sampling	Point: SP-	06
Investigator(s): Russell Huddleston, Todd Ellwood	Section, Township, Ra	inge: NW ¼ Sec 1;	T 2 S; R 3	E (MDM)	
Landform (hillslope, terrace, etc.): Drainage	Local relief (concave, o	convex, none): Con	cave	Slope (%):	0-1 %
Subregion (LRR): <u>C</u> Lat: <u>37° 47'</u>	28.170" L	.ong: -121° 36' 17.1	67"	Datum:	WGS1984
Soil Map Unit Name: San Ysidro Loam		NWI clas	sification: 1	None	
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No	(If no, explain in F	Remarks.)		
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly distu	urbed? Are "Normal (Circumstances" pres	ent? Yes	Х	No
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> naturally probl	ematic? (If needed,	explain any answers	in Remarks	s.)	
SUMMARY OF FINDINGS – Attach site map showing sar	npling point locat	ions, transects	, importa	ant featu	res, etc.

Hydrophytic Vegetation Present?	Yes	Х	No	Is the Sampled Area within a Wetland?	Yes	Х	No
Hydric Soil Present?	Yes	Х	No	Within a Wotland.			
Wetland Hydrology Present?	Yes	Х	No				

Remarks: Well-defined drainage channel with gently sloping banks shown as a blue line creek on USGS topographic map; sample point located within the ordinary high water line of seasonal drainage channel along Bruns Road within the work area for the proposed service water pipeline; 6-foot by 6-foot box culvert under the road at this location.

VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. None	<u>/// 00/01</u>	<u>opence.</u>	<u>olalao</u>	
2				Number of Dominant Species that are OBL, FACW, or FAC: 1 (A)
3				Total Number of Dominant
4				Species Across All Strata: 1 (B)
Total Cover:	N/A			Percent of Dominant Species
Sapling/Shrub Stratum				that are OBL, FACW, or FAC: 100% (A/B)
1. None				
2				Prevalence Index Worksheet:
3				Total % Cover Of: Multiply By:
4.				OBL species x1 =
5.				FACW species x2 =
Total Cover:	N/A			FAC species x3 =
Herb Stratum Plot Area: ~1m ²				FACU species x4 =
1. Distichlis spicata	40%	Х	FACW	UPL species x5 =
2. Polypogon monspeliensis	5%		FACW	Column Totals: (A) (B)
3. Lolium multiflorum	5%		(FAC)	Prevalence Index = B/A =
4. Cotula coronopifolia	<1%		FACW+	
5. Spergularia marina	<1%		FACW*	Hydrophytic Vegetation Indicators:
6. Hordeum marinum subsp. leporinum	<1%		NL	X Dominance Test is >50%
7.				Prevalence Index is ≤3.0*
8.				Morphological Adaptations* (Provide supporting
Total Cover:	55%			data in Remarks or on a separate sheet)
Woody Vine Stratum				Problematic Hydrophytic Vegetation* (Explain)
1. None				* Indicators of hydric soil and wetland hydrology must
2.				be present.
Total Cover:	N/A			Hydrophytic
% Bare Ground in Herb Stratum 45% % C	Cover of Bio		N/A	Vegetation Present? Yes X No

Remarks: Dense *Lepidium latifolium* between the fence and the culvert west of the sample point. Lower part of channel characterized by saltgrass and rabbitsfoot grass. Note: *Lolium multiflorum* is not listed on Reed (1988) but is generally considered to be a facultative species.

	Color (moist)	%	Color (m	oist)	%	Type ^a	Loc ^b	Texture		Remarks
0-5	10 YR 4/1	100						CL		
5-12	2.5 Y 4/1	90%	10 YR	4/6	5	С	М	FS-SiCL		
			Gley 1 6	/10Y	<1	D	RC			
			7.5 YR	3/4	5	С	RC	·		
12+	2.5 Y 5/3	80	10 YR	4/6	10	С	М	SiCL		
	2.5 Y 4/1	10		·		·				
Type: C=C	Concentration, D=De	nletion RM	I=Reduced	Matrix		b	l ocation.	PI =Pore Li	ning RC=Ro	ot Channel, M=Matrix.
	Indicators: (Applie	•			wise no		Location			blematic Hydric Soils ^c :
Histos	ol (A1)		:	Sandy Re	dox (S5)			1	cm Muck (A9) (LRR C)
Histic	Epipedon (A2)			Stripped N	Matrix (S	6)		2	cm Muck (A1	0) (LRR B)
Black	Histic (A3)			_oamy Mu	ucky Min	eral (F1)		R	educed Vertio	c (F18)
Hydrog	gen Sulfide (A4)			_oamy Gl	eyed Ma	trix (F2)		R	ed Parent Ma	terial (TF2)
Stratifi	ed Layers (A5) (LRF	R C)	Х	Depleted I	Matrix (F	-3)		0	ther (Explain	in Remarks)
1 cm N	Muck (A9) (LRR D)			Redox Da	irk Surfa	ce (F6)				
Deplet	ted Below Dark Surf	ace (A11)		Depleted I	Dark Su	rface (F7)				
Thick I	Dark Surface (A12)			Redox De	pressior	ns (F8)				
Sandy	Mucky Mineral (S1)		·	Vernal Po	ols (F9)			° Indic	ators of hydro	phytic vegetation and wetlar
Sandy	Gleyed Matrix (S4)								ology must be	
	Layer (if present):									
Type: 1										
Depth (in	iches): >12							Hydri	Soil Preser	nt? Yes X No
YDROLO	DGY		observed th	nroughout	the soil	profile belo	w a depth	of 5 inches.		otoro (two or more required)
YDROLC Wetland Hy Primary Inc	DGY ydrology Indicators dicators (any one inc		fficient)			profile belo	w a depth		Water Marks	ators (two or more required) s (B1) (Riverine)
Wetland Hy Primary Inc Surface	DGY ydrology Indicators dicators (any one inc e Water (A1)		fficient) S	alt Crust ((B11)	profile belo	w a depth	<u>Se</u>	Water Marks Sediment De	s (B1) (Riverine) eposits (B2) (Riverine)
YDROLC Wetland Hy Primary Inc Surface High W	DGY ydrology Indicators dicators (any one ind e Water (A1) /ater Table (A2)		fficient) S B	alt Crust ((B11) t (B12)		w a depth	<u>Se</u> 	Water Marks Sediment De Drift Deposit	s (B1) (Riverine) eposits (B2) (Riverine) is (B3) (Riverine)
Wetland Hy Primary Inc Surface	DGY ydrology Indicators dicators (any one ind e Water (A1) /ater Table (A2)		fficient) S B	alt Crust ((B11) t (B12)		w a depth	<u>Se</u>	Water Marks Sediment De Drift Deposit Drainage Pa	s (B1) (Riverine) eposits (B2) (Riverine) es (B3) (Riverine) atterns (B10)
Wetland Hy Primary Inc Surface High W X Saturat	DGY ydrology Indicators dicators (any one ind e Water (A1) /ater Table (A2)	: licator is su	fficient) S B A	alt Crust ((B11) t (B12) rertebrate	es (B13)	w a depth	<u>Se</u>	Water Marks Sediment De Drift Deposit Drainage Pa	s (B1) (Riverine) eposits (B2) (Riverine) is (B3) (Riverine)
IYDROLC Wetland Hy Primary Inc Surface High W X Saturat Water I	DGY ydrology Indicators dicators (any one ind e Water (A1) /ater Table (A2) tion (A3)	s: licator is su erine)	fficient) S B A H	alt Crust (iotic Crust quatic Inv ydrogen S	(B11) t (B12) rertebrate Sulfide C	es (B13)		X X X X	Water Marks Sediment De Drift Deposit Drainage Pa	s (B1) (Riverine) eposits (B2) (Riverine) es (B3) (Riverine) atterns (B10) Water Table (C2)
YDROLC Wetland Hy Primary Inc Surface High W X Saturat Water I Sedime	DGY ydrology Indicators dicators (any one inc e Water (A1) /ater Table (A2) tion (A3) Marks (B1) (Nonrive	erine)	fficient) S B A A H) O	alt Crust (iotic Crust quatic Inv ydrogen S xidized R	(B11) t (B12) rertebrate Sulfide C hizosphe	es (B13) dor (C1)	Living Roo	X X X X	Water Marks Sediment Do Drift Deposit Drainage Pa Dry-Season	s (B1) (Riverine) eposits (B2) (Riverine) es (B3) (Riverine) atterns (B10) Water Table (C2) curface (C7)
YDROLC Wetland Hy Primary Inc Surface High W X Saturat Water I Sedime Drift De	DGY ydrology Indicators dicators (any one inc e Water (A1) /ater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N	erine)	fficient) S B A A H O O P	alt Crust (iotic Crust quatic Inv ydrogen S xidized R resence o	(B11) t (B12) rertebrate Sulfide C hizosphe	es (B13) Idor (C1) eres along L	Living Roo	X X 	Water Marks Sediment De Drift Deposit Drainage Pa Dry-Season Thin Muck S Crayfish Bur	s (B1) (Riverine) eposits (B2) (Riverine) es (B3) (Riverine) atterns (B10) Water Table (C2) curface (C7)
YDROLC Wetland Hy Primary Inc Surface High W X Saturat Water I Sedime Drift De Surface	DGY ydrology Indicators dicators (any one inc e Water (A1) /ater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonrive	erine) erine) erine)	fficient) S B A A H) O R C R	alt Crust (iotic Crust quatic Inv ydrogen S xidized R resence o	(B11) t (B12) rertebrate Sulfide C hizosphe of Reduct	es (B13) Idor (C1) eres along L ed Iron (C4 ion in Plowe	Living Roo	X X 	Water Marks Sediment De Drift Deposit Drainage Pa Dry-Season Thin Muck S Crayfish Bur	s (B1) (Riverine) eposits (B2) (Riverine) es (B3) (Riverine) ttterns (B10) Water Table (C2) Burface (C7) trows (C8) Tisible on Aerial Imagery (C9)
YDROLC Wetland Hy Primary Inc Surface High W X Saturat Water I Sedime Drift De Surface Inunda	DGY ydrology Indicators dicators (any one inc e Water (A1) /ater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonriv e Soil Cracks (B6)	s: licator is su erine) onriverine erine) I Imagery (l	fficient) S B A A H) O R C R	alt Crust (iotic Crust quatic Inv ydrogen S xidized R resence o ecent Iror	(B11) t (B12) rertebrate Sulfide C hizosphe of Reduct	es (B13) Idor (C1) eres along L ed Iron (C4 ion in Plowe	Living Roo	X X 	Water Marks Sediment Du Drift Deposit Drainage Pa Dry-Season Thin Muck S Crayfish Bu Saturation V	s (B1) (Riverine) eposits (B2) (Riverine) es (B3) (Riverine) atterns (B10) Water Table (C2) Surface (C7) rrows (C8) isible on Aerial Imagery (C9) attard (D3)
YDROLC Wetland Hy Primary Inc Surface High W X Saturat Water I Sedime Drift De Surface Inunda	DGY ydrology Indicators dicators (any one inc e Water (A1) /ater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonrive e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9)	s: licator is su erine) onriverine erine) I Imagery (l	fficient) S B A A H) O R C R	alt Crust (iotic Crust quatic Inv ydrogen S xidized R resence o ecent Iror	(B11) t (B12) rertebrate Sulfide C hizosphe of Reduct	es (B13) Idor (C1) eres along L ed Iron (C4 ion in Plowe	Living Roo	X X 	Water Marks Sediment Du Drift Deposit Drainage Pa Dry-Season Thin Muck S Crayfish Bu Saturation V Shallow Aqu	s (B1) (Riverine) eposits (B2) (Riverine) es (B3) (Riverine) atterns (B10) Water Table (C2) Surface (C7) rrows (C8) isible on Aerial Imagery (C9) attard (D3)
YDROLC Wetland Hy Primary Inc Surface High W X Saturat Water I Sedime Drift De Surface Inunda Water Field Obse	DGY ydrology Indicators dicators (any one inc e Water (A1) /ater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonrive e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9)	s: licator is su erine) onriverine) I Imagery (I	fficient) S B A A H O P R 37) O	alt Crust (iotic Crust quatic Inv ydrogen S xidized R resence o ecent Iror	(B11) t (B12) rertebrate Sulfide C hizosphe of Reduct n Reduct lain in Re	es (B13) Idor (C1) eres along L ed Iron (C4 ion in Plowe	Living Roo	X X 	Water Marks Sediment Du Drift Deposit Drainage Pa Dry-Season Thin Muck S Crayfish Bu Saturation V Shallow Aqu	s (B1) (Riverine) eposits (B2) (Riverine) es (B3) (Riverine) atterns (B10) Water Table (C2) Surface (C7) rrows (C8) isible on Aerial Imagery (C9) attard (D3)
YDROLC Wetland Hy Primary Inc Surface High W X Saturat Water I Sedime Drift De Surface Inunda Water Field Obse	DGY ydrology Indicators dicators (any one inc e Water (A1) /ater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonriv e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9) rvations: tter Present? Ye	s	fficient) S B A A H O P R 37) O	alt Crust (iotic Crust quatic Inv ydrogen S xidized Ri resence o ecent Iror ther (Expl	(B11) t (B12) rertebrate Sulfide C hizosphe of Reduct n Reduct lain in Re lain in Re	es (B13) Idor (C1) eres along L ed Iron (C4 ion in Plowe	Living Roo	X X 	Water Marks Sediment Du Drift Deposit Drainage Pa Dry-Season Thin Muck S Crayfish Bu Saturation V Shallow Aqu	s (B1) (Riverine) eposits (B2) (Riverine) es (B3) (Riverine) atterns (B10) Water Table (C2) Surface (C7) rrows (C8) isible on Aerial Imagery (C9) attard (D3)
YDROLO Wetland Hy Primary Inc Surface High W X Saturat Water I Sedime Drift De Surface Inunda Water-3 Field Obse Surface Wa Water Table Saturation F	DGY ydrology Indicators dicators (any one ind e Water (A1) /ater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonrive e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9) rvations: ther Present? Ye e Present? Ye	s: licator is su erine) onriverine erine) I Imagery (I ss	fficient) S B A A H A A A A A A A A A A A A A	alt Crust (iotic Crust quatic Inv ydrogen S xidized R resence o ecent Iror ther (Expl Depth (in	(B11) t (B12) rertebrate Sulfide C hizosphe of Reduct lain in Re lain in Re ches):	es (B13) Idor (C1) eres along L ed Iron (C4 ion in Plowe	Living Roo) ed Soils (C	X X X 	Water Marks Sediment Du Drift Deposit Drainage Pa Dry-Season Thin Muck S Crayfish Bu Saturation V Shallow Aqu	s (B1) (Riverine) eposits (B2) (Riverine) ts (B3) (Riverine) ttterns (B10) Water Table (C2) Surface (C7) trows (C8) 'isible on Aerial Imagery (C9) titard (D3) I Test (D5)
YDROLC Wetland Hy Primary Inc Surface High W X Saturat Water I Sedime Drift De Surface Inunda Water-3 Field Obse Surface Wa Water Table Saturation F	DGY ydrology Indicators dicators (any one inc e Water (A1) /ater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonrive e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9) rvations: tter Present? Ye e Present? Ye	s: licator is su erine) onriverine erine) I Imagery (I s	fficient) S B A A H A A A A A A A A A A A A A	alt Crust (iotic Crust quatic Inv ydrogen S xidized R resence o ecent Iror ther (Expl Depth (in Depth (in Depth (in	(B11) t (B12) ertebrate Sulfide C hizosphe of Reduct lain in Re lain in Re ches): ches):	es (B13) Idor (C1) eres along L ed Iron (C4 ion in Plow emarks) 12	Living Roo) ed Soils (C	X X 	Water Marks Sediment Du Drift Deposit Drainage Pa Dry-Season Thin Muck S Crayfish Bu Saturation V Shallow Aqu FAC-Neutra	s (B1) (Riverine) eposits (B2) (Riverine) ts (B3) (Riverine) ttterns (B10) Water Table (C2) Surface (C7) trows (C8) 'isible on Aerial Imagery (C9) titard (D3) I Test (D5)

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Sampling Point SP-06

SOIL

Project/Site: Mariposa Energy Center	City/County: Alameda	Dat	Date: 4/8/2009	
Applicant/Owner: Diamond Energy Corp.		State: CA	Sampling Poir	nt: SP-07
Investigator(s): Russell Huddleston, Todd Ellwood	Section, Township, Ra	nge: NW ¼ Sec 1;	T 2 S; R 3 E (N	/IDM)
Landform (hillslope, terrace, etc.): Terrace	Local relief (concave, o	convex, none): None	Slo	pe (%): 0-1 %
Subregion (LRR): C Lat: 37° 47'	28.119" L	.ong: -121° 36' 17.13	87"	Datum: WGS1984
Soil Map Unit Name: San Ysidro Loam		NWI class	ification: Non	e
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No	(If no, explain in R	emarks.)	
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly distu	urbed? Are "Normal (Circumstances" prese	ent? Yes	X No
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> naturally probl	ematic? (If needed,	explain any answers	in Remarks.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No <u>X</u>	Is the Sampled Area within a Wetland?	Yes	NoX					
Hydric Soil Present?	Yes	No <u>X</u>								
Wetland Hydrology Present?	Yes	No <u>X</u>								
Remarks: Sample point located in grassland adjacent to seasonal drainage D-1 on the east side of Bruns Road south of Kelso Road – along service water pipeline route.										

VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:	
1 None				Number of Dominant Species	
2				that are OBL, FACW, or FAC:	(A)
3				Total Number of Dominant	
4				Species Across All Strata:	(B)
Total Cover:	N/A			Percent of Dominant Species	
Sapling/Shrub Stratum				that are OBL, FACW, or FAC:	0% (A/B)
1. None					
2				Prevalence Index Worksheet:	
3				Total % Cover Of:	Multiply By:
4				OBL species ×1 =	
5.					
Total Cover:	N/A			FAC species ×3 =	
Herb Stratum Plot Area: ~1m ²				FACU species ×4 =	
1. Hordeum marinum subsp. leporinum	60%	Х	NL		
2. Bromus hordeaceus	30%	Х	FACU-	Column Totals: (A)	(B)
3. Medicago polymorpha	2%		NL	Prevalence Index = $B/A =$,
4. Erodium moschatum	1%		NL		
5. Lolium multiflorum	<1%		(FAC)	Hydrophytic Vegetation Indicate	ors:
6.				Dominance Test is >50%	
7.				Prevalence Index is ≤3.0*	
8.				Morphological Adaptations*	(Provide supporting
Total Cover:	95%			data in Remarks or on a se	
Woody Vine Stratum				Problematic Hydrophytic Ve	egetation* (Explain)
1. None 2.				* Indicators of hydric soil and wetla be present.	nd hydrology must
2 Total Cover:	N/A	. <u></u>		Hydrophytic	
	Cover of Bio	tic Crust	N/A	Vegetation Present? Yes	No X
Remarks: Lolium multiflorum is not listed on Reed (198	38) but is a	enerally consi	dered to be a		

Remarks: Lolium multiflorum is not listed on Reed (1988) but is generally considered to be a facultative species. Vegetation in this area is typical f the grasslands throughout the Project study area.

Depth	Matrix		Re	dox Featu	ures						
(inches)	Color (moist) %		Color (moist) % Type ^a			Loc ^b	Texture	Remarks			
0-12	10 YR 4/1	100					CL	No Redoximorphic Features			
	Concentration, D=Dep					^b Location:		g, RC=Root C			
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Sandy Redox (S5)								rs for Probler	•	Soils [°] :	
Histic Epipedon (A2) Stripped Matrix (S6)								n Muck (A9) (L	,		
	Histic Epipedon (A2) Stripped Matrix (S6) Black Histic (A3) Loamy Mucky Mineral (F1)						2 cm Muck (A10) (LRR B)				
	()			. ,			Reduced Vertic (F18)				
```	gen Sulfide (A4)	-	Loamy Gleyed Matrix (F2)				Red Parent Material (TF2)				
Stratifi	ed Layers (A5) (LRR	R C)	Depleted	Matrix (F	-3)		Othe	Other (Explain in Remarks)			
1 cm N	/luck (A9) (LRR D)		Redox D	ark Surfa	ce (F6)						
Deplet	ed Below Dark Surfa	ace (A11)	Depleted	Dark Sur	rface (F7)						
Thick I	Dark Surface (A12)		Redox D	epression	ns (F8)						
Sandy	Mucky Mineral (S1)		Vernal Po	ools (F9)			^c Indicators of hydrophytic vegetation and wetla				
Sandy	Gleyed Matrix (S4)						hydrology must be present.				uana
Restrictive	Layer (if present):										
Type: N	NE										
Depth (in	ches): >12						Hydric S	Soil Present?	Yes	No	Х
Remarks: S	oils very hard and de	ense – diffi	cult to excavate at th	nis locatio	n.						
YDROLO	DGY										
Netland Hy	/drology Indicators	:					Seco	ndary Indicato	rs (two or mo	re require	ed)
Primary Indicators (any one indicator is sufficient)							Water Marks (B1) (Riverine)				
Primary inc	Surface Water (A1) Salt Crust (B11)								( <b>ittive</b> inte)		

Primary indicators (any on	le indicator	is suincie	nu				Water Marks (B1) (Riverine)				
Surface Water (A1)				Salt Crust (B11)		-	Sediment Deposits (B2) (Riverine)				
High Water Table (A2)		-		Biotic Crust (B12)		-	Drift Deposits (B3) ( <b>Riverine</b> )				
Saturation (A3)		-		Aquatic Invertebrate	es (B13)	-	Drainage Patterns (B10)				
Water Marks (B1) (No	nriverine)	-		Hydrogen Sulfide O	dor (C1)	-	Dry-Season Water Table (C2)				
Sediment Deposits (B2	2) ( <b>Nonrive</b>	erine)		Oxidized Rhizosphe	res along Liv	ving Roots (C3)	Thin Muck Surface (C7)				
Drift Deposits (B3) (Nonriverine)						-	Crayfish Burrows (C8)				
Surface Soil Cracks (B6)         Recent Iron Reduction in Plowed Soils (C6)						Saturation Visible on Aerial Imagery (C9)					
Inundation Visible on A	ery (B7)		Other (Explain in Remarks)			Shallow Aquitard (D3)					
Water-Stained Leaves	(B9)	-				-	FAC-Neutral Test (D5)				
Field Observations:											
Surface Water Present?	Yes	No	Х	Depth (inches):							
Water Table Present?	Yes	No	Х	Depth (inches):	>12						
Saturation Present?	Yes	No	Х	Depth (inches):	>12	Wetland Hy	drology Present? Yes No X				
(includes capillary fringe)											
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:											
Remarks: Sample point loc	ated on ter	race adja	cent	to seasonal drainage	e channel – r	o evidence of pr	olonged saturation or inundation at this location.				

Project/Site: Mariposa Energy Center	City/County: Alameda	Date: 4/8/2009
Applicant/Owner: Diamond Energy Corp.	State: CA Sampling	Point: SP-08
Investigator(s): Russell Huddleston, Todd Ellwood	Section, Township, Range: SW 1/4 Sec 36; T 1 S; R	3 E (MDM)
Landform (hillslope, terrace, etc.):	Local relief (concave, convex, none): Concave	Slope (%): 0-1 %
Subregion (LRR):         C         Lat:         37° 47'	47.811" Long: <u>-121° 36' 17.289"</u>	Datum: WGS1984
Soil Map Unit Name: Linne Clay Loam 3 to 15 percent slopes	NWI classification:	None
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)	
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly distu	rbed? Are "Normal Circumstances" present? Yes	X No
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>Yes</u> naturally problem	ematic? (If needed, explain any answers in Remark	(S.)
SUMMARY OF FINDINGS – Attach site map showing sar	npling point locations, transects, import	ant features, etc.

Hydrophytic Vegetation Present?	Yes	Х	No	Is the Sampled Area within a Wetland?	Yes	х	No
Hydric Soil Present?	Yes	Х	No				
Wetland Hydrology Present?	Yes	Х*	No				

Remarks: Small drainage channel on east side of Bruns Road just west of PG&E Bethany Compressor Station, north of Kelso Road – flows to the east into rock-lined drainage ditch within the PG&E facility; 12-inch-diameter culvert (cmp) under the road in this area; shown as a blue line creek on the USGS topographic map – area may be more of a vegetated waters than a wetland, but duration of inundation/saturation is indeterminate.

#### VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:	
1. None				Number of Deminerat Creasies	
2				Number of Dominant Species that are OBL, FACW, or FAC:	<u> </u>
3				Total Number of Dominant	
4	. <u></u>			Species Across All Strata:	<u> </u>
Total Cover:	N/A			Percent of Dominant Species	
Sapling/Shrub Stratum				that are OBL, FACW, or FAC:	100% (A/B)
1. None					
2				Prevalence Index Worksheet:	
3				Total % Cover Of:	Multiply By:
4				OBL species ×1	=
5.					=
Total Cover:	N/A	;			=
Herb Stratum Plot Area: ~1m ²				FACU species ×4	=
1. Lolium multiflorum	40	Х	(FAC)	UPL species ×5	=
2. Distichlis spicata	35	Х	FACW	Column Totals: (A	(B)
3. Hordeum brachyantherum	25	Х	FACW	Prevalence Index = $B/A =$	·
4				—	
5				Hydrophytic Vegetation Indica	tors:
6.				X Dominance Test is >50%	
7				Prevalence Index is ≤3.0*	
8.				Morphological Adaptations	* (Provide supporting
Total Cover:	95%			data in Remarks or on a s	
Woody Vine Stratum				Problematic Hydrophytic	Vegetation* (Explain)
1. <u>None</u> 2.				* Indicators of hydric soil and weth be present.	and hydrology must
Total Cover:	N/A			Hydrophytic	
% Bare Ground in Herb Stratum 5% % C	Cover of Bio	tic Crust	N/A	Vegetation Present? Yes X	No
Remarks: I olium multiflorum is not listed on Reed (198	38) but is ae	enerally consid	lered to be a f	facultative species. Vegetation in thi	s area is similar to

Remarks: Lolium multiflorum is not listed on Reed (1988) but is generally considered to be a facultative species. Vegetation in this area is similar to the adjacent grassland area on low terrace above the drainage feature.

### SOIL

Depth	Matrix		Re	edox Feat	ures					
inches)	Color (moist)	%	Color (moist)	%	Type ^a	Loc ^b	Texture	Remarks		
0-5	10 YR 4/2	98	7.5 YR 3/4	2	С	М	SCL	pH 8.2		
5-16	2.5 Y 6/4	95	10 YR 2/1	5	С	М	CL	Mn Nodules		
		2								
		elation DN						- DO Deet Chennel M Matrix		
	ioncentration, D=Dep			orwiso na		Location:		g, RC=Root Channel, M=Matrix.		
Histos				edox (S5	•			•		
	Epipedon (A2)			Matrix (S	,			1 cm Muck (A9) (LRR C) 2 cm Muck (A10) (LRR B)		
_					,		Reduced Vertic (F18)			
_	Histic (A3)			/lucky Mir	. ,					
- ' '	gen Sulfide (A4)	-		Sleyed Ma			Red Parent Material (TF2)			
Stratifi	ed Layers (A5) (LRR	(C)	A Deplete	d Matrix (I	-3)		Othe	er (Explain in Remarks)		
1 cm N	/luck (A9) (LRR D)		Redox D	ark Surfa	ice (F6)					
 Deplet	ed Below Dark Surfa	ace (A11)	Deplete	d Dark Su	rface (F7)					
 Thick I	Dark Surface (A12)		Redox D	epressio	ns (F8)					
_ Sandy	Mucky Mineral (S1)		Vernal F	ools (F9)			^C Indiaate	are of hydrophytic vegetation and waters		
Sandy	Gleyed Matrix (S4)							ors of hydrophytic vegetation and wetland gy must be present.		
estrictive	Layer (if present):									
Type: N	NE									
Depth (in	ches): >16						Hydric S	oil Present? Yes X No		
emarks: S	urface soil is modera	ately alkali	ne in this area.							

Wetland Hydrology Indic	ators:						Se	condary Indicators (two or more required)		
Primary Indicators (any or		is sufficie	nt)					Water Marks (B1) (Riverine)		
Surface Water (A1)				Salt Crust (B11)		-		Sediment Deposits (B2) (Riverine)		
High Water Table (A2	2)	-		Biotic Crust (B12)		-		Drift Deposits (B3) ( <b>Riverine</b> )		
Saturation (A3)		-		Aquatic Invertebrate	es (B13)	-	Х	X Drainage Patterns (B10)		
Water Marks (B1) (Nonriverine)				Hydrogen Sulfide O	dor (C1)	-		Dry-Season Water Table (C2)		
Sediment Deposits (B2) (Nonriverine)				Oxidized Rhizosphe	eres along Liv	ing Roots (C3)		Thin Muck Surface (C7)		
Drift Deposits (B3) (N	Presence of Reduce	ed Iron (C4)	-		Crayfish Burrows (C8)					
Surface Soil Cracks (	Surface Soil Cracks (B6)					Soils (C6)		Saturation Visible on Aerial Imagery (C9)		
Inundation Visible on	Inundation Visible on Aerial Imagery (B7)				Other (Explain in Remarks)			Shallow Aquitard (D3)		
Water-Stained Leaves	s (B9)	-				-	Х	FAC-Neutral Test (D5)		
Field Observations:						-		-		
Surface Water Present?	Yes	No	х	Depth (inches):						
Water Table Present?	Yes	No	Х	Depth (inches):	>16					
Saturation Present?	Yes	No	Х	Depth (inches):	>16	Wetland Hy	ydro	logy Present? Yes X No		
(includes capillary fringe)										
Describe Recorded Data (	stream gauç	ge, monito	oring	well, aerial photos, p	previous insp	ections), if availa	able	:		
- this area may function m	nore as vege	etated wat	ers ı	rather than a wetland	I, wetland hyd	trology (18 cons	secu	s to convey seasonal flows for some duration tive days of saturation or inundation) was nd hydrology was tentatively assumed to be		

Project/Site: Mariposa Energy Center	City/County: Alamed	ta	Date: 4/8/2009
Applicant/Owner: Diamond Energy Corp.		State: CA Samplin	ng Point: SP-09
Investigator(s): Russell Huddleston, Todd Ellwood	Section, Township, F	Range: SW ¼ Sec 36; T 1 S; F	R 3 E (MDM)
Landform (hillslope, terrace, etc.): Terrace	Local relief (concave	, convex, none): None	Slope (%): 0-1 %
Subregion (LRR): C Lat: 37° 47'	47.881"	Long: -121° 36' 17.276"	Datum: WGS1984
Soil Map Unit Name: Linne Clay Loam 3 to 15 percent slopes		NWI classification:	: None
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes <u>X</u> No	(If no, explain in Remarks.)	)
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly dist	urbed? Are "Norma	I Circumstances" present? Ye	es <u>X</u> No
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> naturally prob	lematic? (If needed	l, explain any answers in Rema	ırks.)
CUMMARY OF FINDINGS Attack site man abouting as		tione trenente imme	stant factures ato

#### SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes X	No	Is the Sampled Area within a Wetland?	Yes	No <u>X</u>
Hydric Soil Present?	Yes	No <u>X</u>			
Wetland Hydrology Present?	Yes	No <u>X</u>			
Remarks: Elevated area adjacent to sm	all drainade cha	nnel on the east sid	le of Bruns Road, near PG&E I	Rethany Compres	sor Station – Vegetation

Remarks: Elevated area adjacent to small drainage channel on the east side of Bruns Road, near PG&E Bethany Compressor Station – Vegetation similar to that found in adjacent drainage, but this area lacks evidence of wetland hydrology. May be occasionally flooded in response to heavy rains, but unlikely that water persists in this area.

#### VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet	
1. None	<u>78 COver</u>	<u>opecies:</u>	<u>018103</u>		
2				Number of Dominant Species that are OBL, FACW, or FAC:	1 (A)
3 4				Total Number of Dominant Species Across All Strata:	1 (B)
Total Cover:	N/A			Percent of Dominant Species	( )
Sapling/Shrub Stratum				that are OBL, FACW, or FAC:	100% (A/B)
1. None					
2				Prevalence Index Workshe	et:
3.				Total % Cover Of:	Multiply By:
4				OBL species	x1 =
5.					×2 =
Total Cover:	N/A			FAC species	×3 =
Herb Stratum Plot Area: ~1m ²				FACU species	×4 =
1. Hordeum brachyantherum	90	Х	FACW	UPL species	×5 =
2. Distichlis spicata	<1		FACW	Column Totals:	
3				Prevalence Index = B/A =	
4.					
5.				Hydrophytic Vegetation Inc	licators:
6.				X Dominance Test is >5	0%
7				Prevalence Index is ≤	3.0*
8.				Morphological Adaptat	ions* (Provide supporting
Total Cover:	90%			data in Remarks or on	
Woody Vine Stratum				Problematic Hydrophy	tic Vegetation* (Explain)
1. None				* Indicators of hydric soil and	wetland hydrology must
2.				be present.	, ,
Total Cover:	N/A Cover of Bio	tic Crust	N/A	Hydrophytic Vegetation Present? Yes	ΧΝο
Remarks: Sample point characterized by dense meado	ow barley; n	o distinct veg	etation change		

Depth	Matrix		Re	dox Feat	ures						
(inches)	Color (moist)	%	Color (moist)	%	Type ^a	Loc ^b	Texture		Remarks		
0-6	10 YR 4/1	100					CL	pH 8.6 to 8.	8		
6-15	10 YR 3/2	100	2.5 Y 7/4	<2	С	Μ	С	Light conce nodules and features			'X
Type: C=C	oncentration, D=De	pletion, RN	I=Reduced Matrix.		b	Location: I	PL=Pore Linin	g, RC=Root C	nannel, M=	Matrix.	
lydric Soil	Indicators: (Applic	able to all	LRRs, unless oth	erwise no	oted.)		Indicato	rs for Problen	natic Hydri	c Soils ^c :	
Histoso	ol (A1)		Sandy R	edox (S5	)		1 cm Muck (A9) (LRR C)				
Histic E	Epipedon (A2)		Stripped	Matrix (S	6)		2 cm Muck (A10) (LRR B)				
Black H	Histic (A3)		Loamy N	/lucky Min	eral (F1)		Reduced Vertic (F18)				
Hydrog	jen Sulfide (A4)		Loamy C	Gleyed Ma	atrix (F2)		Red	Red Parent Material (TF2)			
Stratifie	ed Layers (A5) (LRF	R C)	Depleted	d Matrix (F	=3)		Othe	Other (Explain in Remarks)			
1 cm N	luck (A9) (LRR D)		Redox D	ark Surfa	ce (F6)						
Deplete	ed Below Dark Surfa	ace (A11)	Depleted	d Dark Su	rface (F7)						
Thick E	Dark Surface (A12)		Redox D	epressior	ns (F8)						
Sandy	Mucky Mineral (S1)		Vernal F	ools (F9)			^c Indicat	ors of hydrophy	rtic vegetati	on and we	atland
Sandy	Gleyed Matrix (S4)							gy must be pre			Juanu
Restrictive	Layer (if present):										
Туре: N	IE										
Depth (in	ches): >16						Hydric S	Soil Present?	Yes	No	Х

## HYDROLOGY

Wetland Hydrology Indicators:	Secondary Indicators (two or more required)			
Primary Indicators (any one indicator is sufficient	Water Marks (B1) (Riverine)			
Surface Water (A1)	Salt Crust (B11)	Sediment Deposits (B2) (Riverine)		
High Water Table (A2)	Biotic Crust (B12)	Drift Deposits (B3) ( <b>Riverine</b> )		
Saturation (A3)	Aquatic Invertebrates (B13)	Drainage Patterns (B10)		
Water Marks (B1) (Nonriverine)	Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)		
Sediment Deposits (B2) (Nonriverine)	Oxidized Rhizospheres along Living Roots (C3)	Thin Muck Surface (C7)		
Drift Deposits (B3) (Nonriverine)	Presence of Reduced Iron (C4)	Crayfish Burrows (C8)		
Surface Soil Cracks (B6)	Recent Iron Reduction in Plowed Soils (C6)	Saturation Visible on Aerial Imagery (C9)		
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Shallow Aquitard (D3)		
Water-Stained Leaves (B9)		FAC-Neutral Test (D5)		
Field Observations:				
Surface Water Present? Yes No	X Depth (inches):			
Water Table Present? Yes No	X Depth (inches): >16			
Saturation Present? Yes No	X Depth (inches): >16 Wetland Hy	drology Present? Yes No X		
(includes capillary fringe)				
Describe Recorded Data (stream gauge, monitor	ing well, aerial photos, previous inspections), if availa	ble:		
Remarks: Elevated areas adjacent to small drainaterm flooding due to heavy storm events.	age feature, no evidence of prolonged saturation or ir	undation in this area. Possibly subject to short-		

Project/Site: Mariposa Energy Center	City/County: Alameda	Date: 6/4/2009
Applicant/Owner: Diamond Energy Corp.	State: CA Samplin	g Point: SP-10
Investigator(s): Russell Huddleston	Section, Township, Range: SW 1/4 Sec 36; T 1 S; R	8 3 E (MDM)
Landform (hillslope, terrace, etc.):	Local relief (concave, convex, none): Concave	Slope (%): 0-1 %
Subregion (LRR): <u>C</u> Lat: 37° 48'	D0.183" Long: -121° 36' 17.334"	Datum: WGS1984
Soil Map Unit Name: Solano Fine Sandy Loam	NWI classification:	PEMH
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)	
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly distu	rbed? Are "Normal Circumstances" present? Yes	sXNo
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> naturally proble	ematic? (If needed, explain any answers in Rema	rks.)
SUMMARY OF FINDINGS – Attach site map showing sam	npling point locations, transects, impor	tant features, etc.

Hydrophytic Vegetation Present?	Yes	Х	No	Is the Sampled Area within a Wetland?	Yes	Х	No
Hydric Soil Present?	Yes	Х	No				
Wetland Hydrology Present?	Yes	Х	No				

Remarks: Shallow well-defined drainage perennial drainage channel on east side of Bruns Road; 6-foot by 6-foot cement box culvert under road. This feature is shown as a blue line creek on the USGS topographic map and is a Palustrine Emergent Permanently Flooded (PEMH) on the National Wetland Inventory Map.

### VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet	
1. None	<u>78 COVEL</u>	<u>opecies:</u>	<u>Olalus</u>		
2				Number of Dominant Species that are OBL, FACW, or FAC:	(A)
3 4				Total Number of Dominant Species Across All Strata:	(B)
Total Cover:	N/A			Percent of Dominant Species	
Sapling/Shrub Stratum				that are OBL, FACW, or FAC:	100% (A/B)
1. None					
2				Prevalence Index Workshee	≱t:
3				Total % Cover Of:	Multiply By:
4				OBL species	×1 =
5				FACW species	×2 =
Total Cover:	N/A			FAC species	×3 =
Herb Stratum Plot Area: ~1m ²				FACU species	×4 =
1. Bolboschoenus maritimus	70	Х	OBL	UPL species	×5 =
2. Distichlis spicata	15		FACW	Column Totals:	(A) (B)
3. Chenopodium album	<1		FAC	Prevalence Index = B/A =	
4.					
5.				Hydrophytic Vegetation Ind	icators:
6.				X Dominance Test is >50	)%
7				Prevalence Index is ≤3	5.0*
8.				Morphological Adaptati	ons* (Provide supporting
Total Cover:	85%			data in Remarks or on	
Woody Vine Stratum				Problematic Hydrophy	tic Vegetation* (Explain)
1. None				* Indicators of hydric soil and v	vetland hydrology must
2.				be present.	
Total Cover:	N/A Cover of Bio	tic Crust	N/A	Hydrophytic Vegetation Present? Yes	X No
Remarks: Dense cosmopolitan bulrush throughout the	channel, re	latively distind	ct vegetation b	boundary with the adjacent grass	es.

Derth	Matrix			Re	dox Feat	ures			
Depth (inches)	Color (moist)	%	Color	(moist)	%	Type ^a	Loc ^b	Fexture	Remarks
0-6	Gley 1 2.5/5GY	60	7.5 YR 4	/6	5	С	М	CL	Strong reaction to $\alpha$ $\alpha$ -dipyrdyl
	5Y 2.5/2	35							
			.,						
			4						
			ę						
	Concentration, D=Dep						[°] Location: PL=		ng, RC=Root Channel, M=Matrix.
-	I Indicators: (Applica	able to a	ll LRRs, u						ors for Problematic Hydric Soils ^c :
	sol (A1)		. <u> </u>	Sandy R		,			m Muck (A9) (LRR C)
	Epipedon (A2)			Stripped					m Muck (A10) (LRR B)
	Histic (A3) gen Sulfide (A4)			Loamy M Loamy G	-				duced Vertic (F18) d Parent Material (TF2)
	ied Layers (A5) (LRR	$\sim$	X	Depleted	-				er (Explain in Remarks)
		0)							
	Muck (A9) (LRR D)			Redox D					
	ted Below Dark Surfa	ce (A11)				rface (F7)			
	Dark Surface (A12)			Redox D		ns (F8)			
	/ Mucky Mineral (S1)			Vernal P	50IS (F9)				ors of hydrophytic vegetation and wetlan
	Gleyed Matrix (S4)							Tryuroic	ogy must be present.
Depth (ir	NE nches): >6							-	Soil Present? Yes X No
Depth (ir Remarks: S the upper p	NE hches): <u>&gt;6</u> Soils were inundated a part with alpha alpha-d			vey with e	xtensive	roots and r	hizomes in the	-	
Depth (ir Remarks: S the upper p	NE Inches): _>6 Soils were inundated a bart with alpha alpha-d	lipyrdyl d		vey with e	xtensive	roots and ri	hizomes in the	upper par	t, evidence of reducing condition noted in
Depth (ir Remarks: S the upper p IYDROL( Wetland H	NE hoches): _>6 Soils were inundated a hoart with alpha alpha-d DGY ydrology Indicators:	lipyrdyl d	ye test.	vey with e	xtensive	roots and ri	hizomes in the	upper par	t, evidence of reducing condition noted in ondary Indicators (two or more required)
Depth (ir Remarks: S the upper p IYDROLO Wetland H Primary In	NE hches): <u>&gt;6</u> Soils were inundated a part with alpha alpha-d DGY ydrology Indicators: dicators (any one indicators)	lipyrdyl d	ye test.			roots and ri	hizomes in the	upper par <u>Secc</u>	rt, evidence of reducing condition noted in ondary Indicators (two or more required) Vater Marks (B1) ( <b>Riverine</b> )
Depth (ir Remarks: S the upper p IYDROLO Wetland H Primary In X Surfac	NE hoches): >6 Soils were inundated a hoart with alpha alpha-d DGY ydrology Indicators: dicators (any one indicators) e Water (A1)	lipyrdyl d	ye test.	Salt Crust	(B11)	roots and r	hizomes in the	<u>Secc</u>	t, evidence of reducing condition noted in ondary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> )
Depth (ir Remarks: S the upper p IYDROL( Wetland H Primary In X Surfac High V	NE hches): <u>&gt;6</u> Soils were inundated a bart with alpha alpha-d DGY ydrology Indicators: dicators (any one indic e Water (A1) Vater Table (A2)	lipyrdyl d	ye test.	Salt Crust Biotic Crus	(B11) st (B12)		hizomes in the	<u>Secc</u> <u>Secc</u> <u>Secc</u>	rt, evidence of reducing condition noted in ondary Indicators (two or more required) Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> )
Depth (ir Remarks: S the upper p YDROL( Wetland H Primary In X Surfac High V	NE hoches): >6 Soils were inundated a hoart with alpha alpha-d DGY ydrology Indicators: dicators (any one indicators) e Water (A1)	lipyrdyl d	ye test.	Salt Crust	(B11) st (B12)		hizomes in the	<u>Secc</u> <u>Secc</u> <u>Secc</u>	t, evidence of reducing condition noted in ondary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> )
Depth (ir Remarks: S the upper p YDROLO Wetland H Primary In X Surfac High V Satura	NE hches): <u>&gt;6</u> Soils were inundated a bart with alpha alpha-d DGY ydrology Indicators: dicators (any one indic e Water (A1) Vater Table (A2)	lipyrdyl d	ufficient)	Salt Crust Biotic Crus	(B11) st (B12) vertebrate	es (B13)	hizomes in the	<u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u>	rt, evidence of reducing condition noted in ondary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> )
Depth (ir Remarks: S the upper p IYDROL( Wetland H Primary In X Surfac High V Satura Water	NE hches): <u>&gt;6</u> Soils were inundated a hart with alpha alpha-d DGY ydrology Indicators: dicators (any one indic e Water (A1) Vater Table (A2) tion (A3)	ipyrdyl d	ye test. 	Salt Crust Biotic Crus Aquatic In Hydrogen	(B11) st (B12) vertebrate Sulfide C	es (B13) Odor (C1)	hizomes in the	<u>Secc</u> V S C C	t, evidence of reducing condition noted in ondary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10)
Depth (ir Remarks: S the upper p IYDROL( Wetland H Primary In X Surfac High V Satura Water Sedim	NE hoches): >6 Soils were inundated a hoart with alpha alpha-d DGY ydrology Indicators: dicators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonriver	cator is s cator is s rine)	ye test. .ufficient)   e)	Salt Crust Biotic Crus Aquatic In Hydrogen Oxidized F	(B11) st (B12) vertebrate Sulfide C Rhizosphe	es (B13) Odor (C1)	Living Roots (C	Secc <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u>	t, evidence of reducing condition noted i <u>ondary Indicators (two or more required)</u> Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2)
Depth (ir Remarks: S the upper p IYDROLO Wetland H Primary In X Surfac High V Satura Water Sedim Drift D	NE hoches): _>6 Soils were inundated a hoart with alpha alpha-d DGY ydrology Indicators: dicators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonriver ent Deposits (B2) (No	cator is s cator is s rine)	ve test.	Salt Crust Biotic Crus Aquatic In Hydrogen Oxidized F Presence	(B11) st (B12) vertebrate Sulfide C Rhizosphe of Reduc	es (B13) Ddor (C1) eres along ed Iron (C4	Living Roots (C	Secc <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>Secc</u>	t, evidence of reducing condition noted in ondary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7)
Depth (ir Remarks: S the upper p IYDROLO Wetland H Primary In X Surfac High V Satura Water Sedim Drift D Surfac	NE hches): <u>&gt;6</u> Soils were inundated a bart with alpha alpha-d OGY ydrology Indicators: dicators (any one indiv e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonriver ent Deposits (B2) (No eposits (B3) (Nonriver	ipyrdyl d cator is s rine) nriverin rine)	e)	Salt Crust Biotic Crus Aquatic In Hydrogen Oxidized F Presence	(B11) st (B12) vertebrati Sulfide C Rhizosphe of Reduct n Reduct	es (B13) Ddor (C1) eres along ed Iron (C4 tion in Plow	Living Roots (C	Secc <u>Secc</u> <u>Secc</u> <u>Secc</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u>	t, evidence of reducing condition noted i <u>ondary Indicators (two or more required)</u> Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8)
Depth (ir Remarks: S the upper p IYDROLO Wetland H Primary In X Surfac High V Satura Water Sedim Drift D Surfac Inunda	NE hches): <u>&gt;6</u> Soils were inundated a part with alpha alpha-d OGY ydrology Indicators: dicators (any one indiv e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonriver ent Deposits (B2) (No eposits (B3) (Nonrive e Soil Cracks (B6)	ipyrdyl d cator is s rine) nriverin rine)	e)	Salt Crust Biotic Crus Aquatic In Hydrogen Oxidized F Presence Recent Iro	(B11) st (B12) vertebrati Sulfide C Rhizosphe of Reduct n Reduct	es (B13) Ddor (C1) eres along ed Iron (C4 tion in Plow	Living Roots (C	3) C	t, evidence of reducing condition noted in ondary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Orainage Patterns (B10) Ory-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Depth (ir Remarks: S the upper p IYDROLO Wetland H Primary In X Surfac High V Satura Water Sedim Drift D Surfac Inunda	NE hoches): <u>&gt;6</u> Soils were inundated a bart with alpha alpha-of <b>DGY</b> ydrology Indicators: dicators (any one indiv e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonriver ent Deposits (B2) (No eposits (B3) (Nonriver e Soil Cracks (B6) ation Visible on Aerial Stained Leaves (B9)	ipyrdyl d cator is s rine) nriverin rine)	e)	Salt Crust Biotic Crus Aquatic In Hydrogen Oxidized F Presence Recent Iro	(B11) st (B12) vertebrati Sulfide C Rhizosphe of Reduct n Reduct	es (B13) Ddor (C1) eres along ed Iron (C4 tion in Plow	Living Roots (C	3) C	t, evidence of reducing condition noted i <u>ondary Indicators (two or more required)</u> Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)
Depth (ir Remarks: S the upper p IYDROLO Wetland H Primary In X Surfac High V Satura Water Sedim Drift D Surfac Inunda Water- Field Obse	NE hoches): <u>&gt;6</u> Soils were inundated a bart with alpha alpha-of <b>DGY</b> ydrology Indicators: dicators (any one indiv e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonriver ent Deposits (B2) (No eposits (B3) (Nonriver e Soil Cracks (B6) ation Visible on Aerial Stained Leaves (B9)	ine) rine) rine) rine) lmagery	e)	Salt Crust Biotic Crus Aquatic In Hydrogen Oxidized F Presence Recent Iro	(B11) st (B12) vertebrati Sulfide C Rhizospho of Reduct of Reduct olain in R	es (B13) Ddor (C1) eres along ed Iron (C4 tion in Plow	Living Roots (C	3) C	t, evidence of reducing condition noted in <u>ondary Indicators (two or more required)</u> Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)
Depth (ir Remarks: S the upper p IYDROLO Wetland H Primary In X Surfac High V Satura Water Sedim Drift D Surfac Inunda Water- Field Obse	NE https:: >6 Soils were inundated a hart with alpha alpha-d DGY ydrology Indicators: dicators (any one indir e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonriver ent Deposits (B2) (No eposits (B3) (Nonriver e Soil Cracks (B6) ation Visible on Aerial Stained Leaves (B9) ervations:	ipyrdyl d cator is s rine) nriverin rine) Imagery X	ufficient)	Salt Crust Biotic Crus Aquatic In Hydrogen Oxidized F Presence Recent Iro Other (Exp	(B11) st (B12) vertebrati Sulfide C Rhizosphe of Reduct of Reduct olain in R	es (B13) Odor (C1) eres along ed Iron (C4 tion in Plow emarks)	Living Roots (C	3) C	t, evidence of reducing condition noted in <u>ondary Indicators (two or more required)</u> Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)
Depth (ir Remarks: S the upper p IYDROLO Wetland H Primary In X Surfac High V Satura Water Sedim Drift D Surfac Inunda Water- Field Obse	NE hoches): <u>&gt;6</u> Soils were inundated a bart with alpha alpha-of DGY ydrology Indicators: dicators (any one indiv e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonriver ent Deposits (B2) (No eposits (B3) (Nonriver e Soil Cracks (B6) ation Visible on Aerial Stained Leaves (B9) prvations: ater Present? Yes e Present? Yes	cator is s cator is s rine) nriverin rine) Imagery X	ve test.	Salt Crust Biotic Crus Aquatic In Hydrogen Oxidized F Presence Recent Iro Other (Exp 	(B11) st (B12) vertebrate Sulfide C Rhizosphe of Reduct of Reduct of Reduct of Reduct of Reduct of Reduct of Reduct of Reduct of Reduct n Reduct	es (B13) Odor (C1) eres along ed Iron (C4 tion in Plow emarks)	Living Roots (C I) red Soils (C6)	3) 5 6 6 6 7 7 7	t, evidence of reducing condition noted i <u>ondary Indicators (two or more required)</u> Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: Shallow perennial drainage, flows to the north into open water area located outside of the Project study area.

Project/Site: Mariposa Energy Center	City/County: Alameda Date: 6/4/200	)9
Applicant/Owner: Diamond Energy Corp.	State: CA Sampling Point: SP-11	
Investigator(s): Russell Huddleston	Section, Township, Range: SW ¼ Sec 36; T 1 S; R 3 E (MDM)	
Landform (hillslope, terrace, etc.): Terrace	Local relief (concave, convex, none): None Slope (%): 0-	1 %
Subregion (LRR): C Lat: 37°	48' 00.241" Long: -121° 36' 17.340" Datum: W	'GS1984
Soil Map Unit Name: Solano Fine Sandy Loam	NWI classification: None	
Are climatic / hydrologic conditions on the site typical for this time of year	ar? Yes X No (If no, explain in Remarks.)	
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly	disturbed? Are "Normal Circumstances" present? Yes X No	
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> naturally p	oroblematic? (If needed, explain any answers in Remarks.)	

### SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes X	No	Is the Sampled Area within a Wetland?	Yes	No <u>X</u>
Hydric Soil Present?	Yes	No <u>X</u>			
Wetland Hydrology Present?	Yes	No <u>X</u>			
Remarks: Sample point on north side of	drainage chan	nel above the ordina	ary high water line, area is chara	acterized by dens	e saltgrass, but lacks

evidence of hydric soil and wetland hydrology.

#### VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. None	<u>78 COVEL</u>	<u>opecies:</u>	<u> 018105</u>	
2				Number of Dominant Species           that are OBL, FACW, or FAC:         1 (A)
3				Total Number of Dominant Species Across All Strata: 1 (B)
Total Cover:	N/A			Percent of Dominant Species
Sapling/Shrub Stratum				that are OBL, FACW, or FAC: 100% (A/B)
1. None				
2				Prevalence Index Worksheet:
3				Total % Cover Of: Multiply By:
4				OBL species ×1 =
5.				FACW species x2 =
Total Cover:	N/A			FAC species x3 =
Herb Stratum Plot Area: ~1m ²				FACU species ×4 =
1. Distichlis spicata	100	Х	FACW	UPL species x5 =
2. Cressa truxillensis	<1		FACW	Column Totals: (A) (B)
3. Cirsium vulgare	<1		FACU	Prevalence Index = B/A =
4				
5				Hydrophytic Vegetation Indicators:
6.				X Dominance Test is >50%
7.				Prevalence Index is ≤3.0*
8.				Morphological Adaptations* (Provide supporting
Total Cover:	100%			data in Remarks or on a separate sheet)
Woody Vine Stratum				Problematic Hydrophytic Vegetation* (Explain)
1. None				* Indicators of hydric soil and wetland hydrology must
2.				be present.
Total Cover:	N/A			Hydrophytic
% Bare Ground in Herb Stratum 0% % C	Cover of Bio	tic Crust	N/A	Vegetation Present? Yes X No
Remarks: Dense saltgrass along the upper edges of th	e channel.			•

Depth	Matrix		Re	dox Featu	ures					
(inches)	Color (moist)	%	Color (moist)	%	Type ^a	Loc ^b	Texture	Remarks		
0-12	2.5 Y 4/2	80					SL	CaCO ₃ Noc	lules Present	
	2.5 Y 5.2	20								
						- <u> </u>				
Type: C=C	concentration, D=De	pletion, RN	I=Reduced Matrix.			^b Location: I	PL=Pore Linin	g, RC=Root C	hannel, M=M	latrix.
lydric Soil	Indicators: (Applic	able to al	I LRRs, unless othe	rwise no	ted.)		Indicato	rs for Proble	matic Hydric	Soils [°] :
Histos	ol (A1)		Sandy Re	edox (S5)	)		1 cm	Muck (A9) (L	.RR C)	
Histic I	Epipedon (A2)		Stripped	Matrix (S	6)		2 cm	Muck (A10)	(LRR B)	
Black I	Histic (A3)		Loamy M	ucky Min	eral (F1)		Red	uced Vertic (F	18)	
Hydrog	gen Sulfide (A4)		Loamy G	leyed Ma	trix (F2)		Red	Parent Mater	al (TF2)	
Stratifi	ed Layers (A5) (LRR	R C)	Depleted	Matrix (F	-3)		Othe	er (Explain in I	Remarks)	
1 cm N	/luck (A9) (LRR D)		Redox Da	ark Surfa	ce (F6)					
Deplet	ed Below Dark Surfa	ace (A11)	Depleted	Dark Su	rface (F7)					
Thick [	Dark Surface (A12)		Redox D	epressior	ns (F8)					
Sandy	Mucky Mineral (S1)		Vernal Po	ools (F9)			^c Indicato	rs of hydroph	vtic vegetatio	n and wetland
Sandy	Gleyed Matrix (S4)							gy must be pr		
Restrictive	Layer (if present):									
Type: N	NE									
Depth (in	ches): >12						Hydric S	oil Present?	Yes	No X

## HYDROLOGY

Wetland Hydrology Indic	ators:						Secondary Indicators (two or more required)
Primary Indicators (any or	ne indicator	is sufficie	nt)				Water Marks (B1) (Riverine)
Surface Water (A1)				Salt Crust (B11)		-	Sediment Deposits (B2) (Riverine)
High Water Table (A2	)	-		Biotic Crust (B12)		-	Drift Deposits (B3) (Riverine)
Saturation (A3)				Aquatic Invertebrate	es (B13)		Drainage Patterns (B10)
Water Marks (B1) (No	onriverine)			Hydrogen Sulfide C	dor (C1)	-	Dry-Season Water Table (C2)
Sediment Deposits (B	2) ( <b>Nonrive</b>	rine)		Oxidized Rhizosphe	eres along Li	ving Roots (C3)	Thin Muck Surface (C7)
Drift Deposits (B3) (No	onriverine)	•		Presence of Reduc	ed Iron (C4)	-	Crayfish Burrows (C8)
Surface Soil Cracks (B	36)	•		Recent Iron Reduct	tion in Plowe	d Soils (C6)	Saturation Visible on Aerial Imagery (C9)
Inundation Visible on	Aerial Image	ery (B7)		Other (Explain in R	emarks)	-	Shallow Aquitard (D3)
Water-Stained Leaves	s (B9)					-	FAC-Neutral Test (D5)
Field Observations:							
Surface Water Present?	Yes	No	Х	Depth (inches):			
Water Table Present?	Yes	No	Х	Depth (inches):	>12		
Saturation Present?	Yes	No	Х	Depth (inches):	>12	Wetland Hy	vdrology Present? Yes No X
(includes capillary fringe)							
Describe Recorded Data (	stream gaug	ge, monito	oring	well, aerial photos,	previous insp	pections), if availa	able:
Remarks: Upper edge of d inundation. Sample point is	•				0.		his area is subject to prolonged saturation or

Project/Site: Mariposa Energy Center	City/County: Alamed	la	I	Date: 4/15/	2009
Applicant/Owner: Diamond Energy Corp.		State: CA	Sampling F	Point: SP-1	2
Investigator(s):Russell Huddleston, Todd Ellwood	Section, Township, R	ange: NW ¼ Sec 3	6; T 1 S; R 3	E (MDM)	
Landform (hillslope, terrace, etc.): Terrace	Local relief (concave	, convex, none): Cor	ncave	Slope (%):	0-1 %
Subregion (LRR): C Lat: 37°	48' 19.996"	Long: -121° 36' 17.	153"	Datum:	WGS1984
Soil Map Unit Name: Solano Fine Sandy Loam		NWI cla	ssification: F	PEMF	
Are climatic / hydrologic conditions on the site typical for this time of year	ar? Yes <u>X</u> No	(If no, explain in	Remarks.)		
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly	disturbed? Are "Normal	Circumstances" pres	sent? Yes	XN	lo
Are Vegetation <u>No</u> , Soil Yes, or Hydrology Yes naturally p	problematic? (If needed	, explain any answer	s in Remarks	s.)	
SUMMARY OF EINDINGS Attach site man chausing	compling point loor	tions transat	importo	nt faatuur	

#### SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes _	Х	No	Is the Sampled Area within a Wetland?	Yes _	Х	No
Hydric Soil Present?	Yes	Х	No				
Wetland Hydrology Present?	Yes _	Х	No				

Remarks: Sample point taken at outer edge of drainage channel on the east side of Bruns Road, 30-inch-diameter cmp culvert under the road in this area. Sample point at the edge of the ordinary high water line – likely subject to shallow groundwater saturation during the wet season. This feature is shown as a blue line on the USGS topographic map and is a Palustrine Emergent Semi-permanently Flooded (PEMF) on the National Wetland Inventory Map.

#### VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant	Indicator	Dominance Test worksheet	
1. None	<u>% Cover</u>	Species?	<u>Status</u>		-
2				Number of Dominant Species that are OBL, FACW, or FAC:	
2					<u> </u>
3			·	Total Number of Dominant	4 (D)
4			·	Species Across All Strata:	<u> </u>
Total Cover:	N/A			Percent of Dominant Species	
Sapling/Shrub Stratum				that are OBL, FACW, or FAC:	<u>    100%    (A/B)</u>
1. None	. <u></u>				
2			<u></u>	Prevalence Index Workshee	
3				Total % Cover Of:	Multiply By:
4				OBL species	x1 =
5				FACW species	×2 =
Total Cover:	N/A			FAC species	x3 =
Herb Stratum Plot Area: ~1m ²				FACU species	×4 =
1. Distichlis spicata	75	Х	FACW	UPL species	×5 =
2.				Column Totals:	(A) (B)
3.				Prevalence Index = B/A =	
4.					
5				Hydrophytic Vegetation Ind	licators:
6.				X Dominance Test is >5	0%
7				Prevalence Index is ≤	3.0*
8.	<u> </u>			Morphological Adaptati	ions* (Provide supporting
Total Cover:	100%			data in Remarks or on	
Woody Vine Stratum				Problematic Hydrophy	tic Vegetation* (Explain)
Á Norra				* Indicators of hydric soil and y	<b>e</b> (1, 7
1. <u>None</u> 2.			·	be present.	
Total Cover:	N/A			Hydrophytic	
% Bare Ground in Herb Stratum 25% % C	Cover of Bio	tic Crust	N/A	Vegetation Present? Yes	X No
Remarks: Dense, lush saltgrass along the outer edges	of the char	nel, center p	art of the chan	nel filled with dense cattails.	

٦

Depth	Matrix		F	Redox Feat	ures			
(inches)	Color (moist)	%	Color (moist)	%	Type ^a	Loc ^b	Texture	Remarks
0-3.5	10 YR 4/2	100					FSCL	pH 9.6
3.6-16	10 YR 4/2	100					CL	pH 9.2
		2						
		ł						
^a Type: C=C	oncentration, D=De	pletion, RM=	Reduced Matrix			[°] Location:	PL=Pore Linir	ng, RC=Root Channel, M=Matrix.
Hydric Soil	Indicators: (Applic	able to all L	RRs, unless ot	herwise no	oted.)		Indicato	ors for Problematic Hydric Soils [°] :
Histoso	ol (A1)		Sandy	Redox (S5	5)		1 cr	m Muck (A9) (LRR C)
Histic E	Epipedon (A2)		Strippe	d Matrix (S	S6)		2 cr	m Muck (A10) (LRR B)
	Histic (A3)			Mucky Mir				duced Vertic (F18)
	gen Sulfide (A4)			Gleyed Ma				d Parent Material (TF2)
Stratifie	ed Layers (A5) (LRF	RC)	Deplet	ed Matrix (	F3)		X Oth	er (Explain in Remarks)
1 cm N	luck (A9) (LRR D)		Redox	Dark Surfa	ace (F6)			
Deplet	ed Below Dark Surfa	ace (A11)	Deplet	ed Dark Su	ırface (F7)			
Thick [	Dark Surface (A12)		Redox	Depressio	ns (F8)			
Sandy	Mucky Mineral (S1)		Vernal	Pools (F9)			^c Indicat	ors of hydrophytic vegetation and wetland
Sandy	Gleyed Matrix (S4)							ogy must be present.
FACW vege	o redoximorphic fea	ographic lov	v position adjace	nt to draina			kaline and wa	Soil Present? Yes X No s therefore considered problematic. Lush a are likely seasonally saturated or
Remarks: N FACW vege nundated fo	o redoximorphic fea tation along with top or a period of time a DGY	oographic lov nd hydric cor	v position adjace	nt to draina			kaline and wa oils in this are	s therefore considered problematic. Lush a are likely seasonally saturated or
Remarks: N FACW vege nundated fo YDROLC Wetland Hy	o redoximorphic fea tation along with top or a period of time a	bographic lov nd hydric cor	/ position adjace ditions likely exi	nt to draina			kaline and wa oils in this are	s therefore considered problematic. Lush
Remarks: N FACW vege nundated for YDROLC Wetland Hy Primary Ind	o redoximorphic fea tation along with top or a period of time a OGY rdrology Indicators	bographic lov nd hydric cor	/ position adjace ditions likely exi	nt to draina st.			kaline and wa oils in this are <u>Secc</u>	s therefore considered problematic. Lush a are likely seasonally saturated or ondary Indicators (two or more required)
Remarks: N FACW vege inundated fo YDROLC Wetland Hy Primary Ind Surface	o redoximorphic fea tation along with top or a period of time an OGY drology Indicators licators (any one inc e Water (A1)	bographic lov nd hydric cor	v position adjace ditions likely exi <u>cient)</u> Salt Cru	nt to draina st. st (B11)			kaline and wa oils in this are <u>Secc</u> V S	s therefore considered problematic. Lush a are likely seasonally saturated or ondary Indicators (two or more required) Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> )
Remarks: N FACW vege inundated fo <b>YDROLC</b> Wetland Hy <u>Primary Ind</u> Surface High W	o redoximorphic fea tation along with top or a period of time al OGY rdrology Indicators licators (any one inc e Water (A1) ater Table (A2)	bographic lov nd hydric cor	v position adjace ditions likely exi cient) Salt Cru Biotic C	nt to draina st. st (B11) rust (B12)	age channe		kaline and wa oils in this are <u>Secc</u> V	s therefore considered problematic. Lush a are likely seasonally saturated or ondary Indicators (two or more required) Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> )
Remarks: N FACW vege inundated fo <b>YDROLC</b> Wetland Hy Primary Ind Surface High W Saturat	o redoximorphic fea tation along with top or a period of time an OGY drology Indicators licators (any one inc e Water (A1) ater Table (A2) ion (A3)	bographic lov nd hydric cor	v position adjace ditions likely exi cient) Salt Cru Biotic C Aquatic	nt to draina st. st (B11) rust (B12) Invertebrat	age channe		kaline and wa oils in this are <u>Secc</u> V S C	s therefore considered problematic. Lush a are likely seasonally saturated or ondary Indicators (two or more required) Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10)
Remarks: N FACW vege inundated fo <b>YDROLC</b> Wetland Hy Primary Ind Surface High W Saturat	o redoximorphic fea tation along with top or a period of time al OGY rdrology Indicators licators (any one inc e Water (A1) ater Table (A2)	bographic lov nd hydric cor	v position adjace ditions likely exi cient) Salt Cru Biotic C Aquatic	nt to draina st. st (B11) rust (B12)	age channe		kaline and wa oils in this are <u>Secc</u> V S C	s therefore considered problematic. Lush a are likely seasonally saturated or ondary Indicators (two or more required) Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> )
Remarks: N FACW vege inundated fo <b>YDROLC</b> Wetland Hy Primary Ind Surface High W Saturat Water N	o redoximorphic fea tation along with top or a period of time an OGY drology Indicators licators (any one inc e Water (A1) ater Table (A2) ion (A3)	bographic lov nd hydric cor s: licator is suff erine)	v position adjace ditions likely exi cient) Salt Cru Biotic C Aquatic Hydroge	nt to draina st. st (B11) rust (B12) Invertebrat	age channe	I suggest s	kaline and wa oils in this are <u>Secc</u> V S C C C	s therefore considered problematic. Lush a are likely seasonally saturated or ondary Indicators (two or more required) Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10)
Remarks: N FACW vege inundated fo <b>YDROLC</b> Wetland Hy Primary Ind Surface High W Saturat Water N Sedime	o redoximorphic fea tation along with top or a period of time an OGY rdrology Indicators licators (any one inc e Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonrive	erine)	v position adjace ditions likely exi cient) Salt Cru Biotic C Aquatic Hydroge Oxidized	nt to draina st. st (B11) rust (B12) Invertebrat en Sulfide C d Rhizosph	age channe es (B13) Ddor (C1)	Living Roof	Secc	s therefore considered problematic. Lush a are likely seasonally saturated or ondary Indicators (two or more required) Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Orainage Patterns (B10) Ory-Season Water Table (C2)
Remarks: N FACW vege inundated fo <b>YDROLC</b> Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De	o redoximorphic fea tation along with top or a period of time al <b>DGY</b> <b>drology Indicators</b> <u>licators (any one inc</u> e Water (A1) ater Table (A2) ion (A3) Marks (B1) ( <b>Nonrive</b> ent Deposits (B2) ( <b>N</b> eposits (B3) ( <b>Nonriv</b>	erine)	v position adjace ditions likely exi cient) Salt Cru Biotic C Aquatic Hydroge Oxidize Presend	nt to draina st. st (B11) rust (B12) Invertebrat n Sulfide ( d Rhizosph e of Reduc	es (B13) Ddor (C1) eres along ced Iron (C4	Living Root	Secc	s therefore considered problematic. Lush a are likely seasonally saturated or <u>ondary Indicators (two or more required)</u> Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Orainage Patterns (B10) Ory-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8)
Remarks: N FACW vege inundated fo <b>YDROLC</b> Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface	o redoximorphic fea tation along with top or a period of time an OGY rdrology Indicators licators (any one inc e Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonriv e Soil Cracks (B6)	erine) erine) erine)	v position adjace ditions likely exi cient) Salt Cru Biotic C Aquatic Hydroge Oxidized Presend Recent	nt to draina st. st (B11) rust (B12) Invertebrat en Sulfide ( d Rhizosph e of Reduc ron Reduc	es (B13) Ddor (C1) eres along ed Iron (C4 tion in Plow	Living Root	xaline and wa         oils in this are	s therefore considered problematic. Lush a are likely seasonally saturated or ondary Indicators (two or more required) Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Orainage Patterns (B10) Ory-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Remarks: N FACW vege inundated fo <b>YDROLC</b> Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface	o redoximorphic fea tation along with top or a period of time al <b>DGY</b> <b>drology Indicators</b> <u>licators (any one inc</u> e Water (A1) ater Table (A2) ion (A3) Marks (B1) ( <b>Nonrive</b> ent Deposits (B2) ( <b>N</b> eposits (B3) ( <b>Nonriv</b>	erine) erine) erine)	v position adjace ditions likely exi cient) Salt Cru Biotic C Aquatic Hydroge Oxidized Presend Recent	nt to draina st. st (B11) rust (B12) Invertebrat n Sulfide ( d Rhizosph e of Reduc	es (B13) Ddor (C1) eres along ed Iron (C4 tion in Plow	Living Root	xaline and wa         oils in this are	s therefore considered problematic. Lush a are likely seasonally saturated or <u>ondary Indicators (two or more required)</u> Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Orainage Patterns (B10) Ory-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8)
Remarks: N FACW vege inundated fo <b>YDROLC</b> Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Inundat	o redoximorphic fea tation along with top or a period of time an OGY rdrology Indicators licators (any one inc e Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonriv e Soil Cracks (B6)	erine) erine) licator is suff erine) erine)	v position adjace ditions likely exi cient) Salt Cru Biotic C Aquatic Hydroge Oxidized Presend Recent	nt to draina st. st (B11) rust (B12) Invertebrat en Sulfide ( d Rhizosph e of Reduc ron Reduc	es (B13) Ddor (C1) eres along ed Iron (C4 tion in Plow	Living Root	xaline and wa         oils in this are	s therefore considered problematic. Lush a are likely seasonally saturated or ondary Indicators (two or more required) Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Orainage Patterns (B10) Ory-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Remarks: N FACW vege inundated fo <b>YDROLC</b> Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Inundat	o redoximorphic fea tation along with top or a period of time al <b>OGY</b> <b>drology Indicators</b> <u>licators (any one inc</u> water (A1) ater Table (A2) ion (A3) Marks (B1) ( <b>Nonrive</b> ent Deposits (B2) ( <b>N</b> eposits (B3) ( <b>Nonriv</b> soil Cracks (B6) ion Visible on Aeria Stained Leaves (B9)	erine) erine) licator is suff erine) erine)	v position adjace ditions likely exi cient) Salt Cru Biotic C Aquatic Hydroge Oxidized Presend Recent	nt to draina st. st (B11) rust (B12) Invertebrat en Sulfide ( d Rhizosph e of Reduc ron Reduc	es (B13) Ddor (C1) eres along ed Iron (C4 tion in Plow	Living Root	xaline and wa         oils in this are	s therefore considered problematic. Lush a are likely seasonally saturated or ondary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Orainage Patterns (B10) Ory-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)
Remarks: N FACW vege inundated for YDROLC Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Inundat Water-S Field Obset	o redoximorphic fea tation along with top or a period of time an OGY rdrology Indicators licators (any one inc e Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonriv e Soil Cracks (B6) ion Visible on Aeria Stained Leaves (B9) rvations: ter Present? Ye	bographic lov hd hydric cor i: licator is suff erine) onriverine) erine) I Imagery (B7 s N	v position adjace ditions likely exi cient) Salt Cru Biotic C Aquatic Hydroge Oxidized Present Recent 7) X Other (E	nt to draina st. st (B11) rust (B12) Invertebrat en Sulfide C d Rhizosph e of Reduc ron Reduc ixplain in R (inches):	es (B13) Ddor (C1) eres along ced Iron (C4 tion in Plow emarks)	Living Root	xaline and wa         oils in this are	s therefore considered problematic. Lush a are likely seasonally saturated or ondary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Orainage Patterns (B10) Ory-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)
Remarks: N FACW vege inundated for Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Inundat Water-S Field Obsel Surface Wa Water Table	o redoximorphic fea tation along with top or a period of time an OGY rdrology Indicators licators (any one inc e Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N sposits (B3) (Nonriv e Soil Cracks (B6) ion Visible on Aeria Stained Leaves (B9) rvations: ter Present? Ye e Present? Ye	bographic lov hd hydric cor i: licator is suff erine) onriverine) erine) I Imagery (B7 s N s N	<pre>v position adjace ditions likely exi cient)  cient)  Salt Cru Biotic C Aquatic Hydroge Oxidizee Presend Recent v) X Other (E Conterned Conter</pre>	nt to draina st. st (B11) rust (B12) Invertebrat en Sulfide ( d Rhizosph e of Reduc ron Reduc ixplain in R (inches): (inches):	es (B13) Dodor (C1) eres along ced Iron (C4 tion in Plow remarks) >16	Living Root	xaline and wa         oils in this are	s therefore considered problematic. Lush a are likely seasonally saturated or <u>ondary Indicators (two or more required)</u> Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Orainage Patterns (B10) Ory-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5)
Remarks: N FACW vege inundated for <b>YDROLC</b> Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Inundat Water-S Field Obser Surface Wa Water Table Saturation F	o redoximorphic fea tation along with top or a period of time al OGY rdrology Indicators licators (any one inc e Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonrive ont Deposits (B2) (N eposits (B3) (Nonrive e Soil Cracks (B6) ion Visible on Aeria Stained Leaves (B9) rvations: ter Present? Ye Present? Ye	bographic lov hd hydric cor i: licator is suff erine) onriverine) erine) I Imagery (B7 s N s N	<pre>v position adjace ditions likely exi cient)  cient)  Salt Cru Biotic C Aquatic Hydroge Oxidizee Presend Recent v) X Other (E Conterned Conter</pre>	nt to draina st. st (B11) rust (B12) Invertebrat en Sulfide C d Rhizosph e of Reduc ron Reduc ixplain in R (inches):	es (B13) Ddor (C1) eres along ced Iron (C4 tion in Plow emarks)	Living Root	xaline and wa         oils in this are	s therefore considered problematic. Lush a are likely seasonally saturated or <u>ondary Indicators (two or more required)</u> Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Orainage Patterns (B10) Ory-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5)
Remarks: N FACW vege inundated for YDROLC Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Inundat Water -S Field Obset Surface Wa Water Table Saturation F	o redoximorphic fea tation along with top or a period of time an OGY rdrology Indicators licators (any one inc e Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N sposits (B3) (Nonriv e Soil Cracks (B6) ion Visible on Aeria Stained Leaves (B9) rvations: ter Present? Ye e Present? Ye	erine) I Imagery (B s s s s s s s s s s s s s	v position adjace ditions likely exi cient) Salt Cru Biotic C Aquatic Hydroge Oxidized Presend Recent Y X Other (E	nt to draina st. st (B11) rust (B12) Invertebrat en Sulfide C d Rhizosph e of Reduc ron Reduc ron Reduc xplain in R (inches): (inches):	es (B13) Ddor (C1) eres along ced Iron (C4 tion in Plow emarks) >16 >16	Living Roof	xaline and wa         oils in this are	s therefore considered problematic. Lush a are likely seasonally saturated or <u>ondary Indicators (two or more required)</u> Vater Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Orainage Patterns (B10) Ory-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5)

Project/Site: Mariposa Energy Center	City/County: Con	tra Costa	Date: 4/15/2009
Applicant/Owner: Diamond Energy Corp.		State: CA	Sampling Point: SP-13
Investigator(s):Russell Huddleston, Todd Ellwood	Section, Township	o, Range: NW ¼ Sec	36; T 1 S; R 3 E (MDM)
Landform (hillslope, terrace, etc.): Terrace	Local relief (conca	ave, convex, none): No	one Slope (%): 0-1 %
Subregion (LRR): C Lat: 37°	48' 20.115"	Long: -121° 36' 17	7.127" Datum: WGS1984
Soil Map Unit Name: Solano Fine Sandy Loam		NWI cl	assification: PUSC
Are climatic / hydrologic conditions on the site typical for this time of year	ar? Yes <u>X</u> No_	(If no, explain i	n Remarks.)
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly	disturbed? Are "Norr	mal Circumstances" pr	esent? Yes X No
Are Vegetation <u>No</u> , Soil Yes, or Hydrology Yes naturally p	problematic? (If need	ded, explain any answe	ers in Remarks.)
CUMMARY OF FINDINGS Attack site man abouting		antiona transco	to important factures at

#### SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydric Soil Present?     Yes     X*     No       Wetland Hydrology Present?     Yes     X*     No	Hydrophytic Vegetation Present?	Yes	Х	No	Is the Sampled Area within a Wetland?	Yes _	Х	No
Wetland Hydrology Present? Yes X* No	Hydric Soil Present?	Yes	Χ*	No				
	Wetland Hydrology Present?	Yes _	Х*	No				

Remarks: Sample point is within alkali sink wetland adjacent to drainage channel on the east side of Bruns Road – just north of the Alameda County line. Area is characterized by notable change in vegetation and soils from the surrounding grassland areas. Considered a problem area due to the strongly alkaline soils and probable seasonal wetland hydrology. Area is Palustrine Unconsolidated Shore Seasonally Flooded (PUSC) wetland on the National Wetland Inventory Map.

#### VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. None		<u> </u>	olaldo	
2				Number of Dominant Species that are OBL, FACW, or FAC: <u>3</u> (A)
3				Total Number of Dominant
4				Species Across All Strata: 3 (B)
Total Cover:	N/A			Percent of Dominant Species
Sapling/Shrub Stratum				that are OBL, FACW, or FAC: 100% (A/B)
1. None				
2				Prevalence Index Worksheet:
3				Total % Cover Of: Multiply By:
4.				OBL species ×1 =
5.				FACW species x2 =
Total Cover:	N/A			FAC species x3 =
Herb Stratum Plot Area: ~1m ²				FACU speciesx4 =
1. Distichlis spicata	30	Х	FACW	UPL species x5 =
2. Kochia californica	30	Х	FACW	Column Totals: (A) (B)
3. Hordeum brachyantherum	25	Х	FACW	Prevalence Index = B/A =
4. Lolium multiflorum	<1		(FAC)	
5				Hydrophytic Vegetation Indicators:
6				X Dominance Test is >50%
7.				Prevalence Index is ≤3.0*
8.				Morphological Adaptations* (Provide supporting
Total Cover:	85%			data in Remarks or on a separate sheet)
Woody Vine Stratum				Problematic Hydrophytic Vegetation* (Explain)
1. None 2.				* Indicators of hydric soil and wetland hydrology must be present.
Total Cover:	N/A			Hydrophytic
% Bare Ground in Herb Stratum 15% % 0	Cover of Bio	tic Crust	N/A	Vegetation Present? Yes X No
Remarks: Vegetation includes bydronbytic plant specie	e that area	also tolerant	of saling/alkal	ine soil conditions – notable change in vegetation from

Remarks: Vegetation includes hydrophytic plant species that area also tolerant of saline/alkaline soil conditions – notable change in vegetation from the adjacent grassland areas. *Lolium multiflorum is* not included on Reed (1988) but is generally considered a facultative species.

Depth (inches)	Matrix			Redox Feat				
	Color (moist)	%	Color (mo	oist) %	Type ^a	Loc ^b	Texture	Remarks
0-6	10 YR 4/2	100					CL	pH 8.8-9.0
6-16	10 YR 31/1	80				<u> </u>	CL	
	10 YR 4/2	20						
		;-				<u> </u>		
	oncentration, D=De	t	Roduced N	Actrix	b	Location	DI – Doro Linin	g, RC=Root Channel, M=Matrix.
	Indicators: (Applic							rs for Problematic Hydric Soils ^c :
Histoso				andy Redox (S5				n Muck (A9) (LRR C)
	Epipedon (A2)			tripped Matrix (S	,			n Muck (A10) (LRR B)
	Histic (A3)			oamy Mucky Mi				uced Vertic (F18)
	gen Sulfide (A4)			oamy Gleyed M				Parent Material (TF2)
Stratifi	ed Layers (A5) (LRF	R C)	D	epleted Matrix (	F3)		X Othe	er (Explain in Remarks)
1 cm N	/luck (A9) (LRR D)		R	edox Dark Surfa	ace (F6)			
	ed Below Dark Surf	ace (A11)		epleted Dark Su				
	Dark Surface (A12)	- \ /		edox Depressio				
	Mucky Mineral (S1)	)		ernal Pools (F9)			^c Indicate	ors of hydrophytic vegetation and wetlan
_ `	Gleyed Matrix (S4)			. ,				gy must be present.
estrictive	Layer (if present):							
undated fo	or a period of time a	nd hydric con	ditiona lika					
				iy exist.				
DROLC								
Vetland Hy	drology Indicators	, ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		iy exist.				ndary Indicators (two or more required)
<b>/etland Hy</b> Primary Ind	drology Indicators	, ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	cient)				w	/ater Marks (B1) (Riverine)
<b>/etland Hy</b> Primary Ind	drology Indicators	, ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	cient)	ly exist.			w s	/ater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> )
<b>/etland Hy</b> Primary Ind Surface High W	rdrology Indicators dicators (any one inc e Water (A1) dater Table (A2)	, ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	<u>cient)</u> Sa Bic	It Crust (B11)				/ater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rift Deposits (B3) ( <b>Riverine</b> )
Vetland Hy Primary Ind Surface High W	vdrology Indicators dicators (any one inc e Water (A1)	, ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	<u>cient)</u> Sa Bic	It Crust (B11)	tes (B13)			/ater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> )
Primary Ind Primary Ind Surface High W Saturat	rdrology Indicators dicators (any one inc e Water (A1) dater Table (A2)	s: dicator is suffi	<u>cient)</u> Sa Bic Aq	It Crust (B11)	( )			/ater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rift Deposits (B3) ( <b>Riverine</b> )
Primary Ind Surface High W Saturat Water M	rdrology Indicators dicators (any one inc e Water (A1) dater Table (A2) ion (A3)	s: dicator is suffi erine)	<u>cient)</u> Sa Bic Aq Hy	It Crust (B11) htic Crust (B12) uatic Invertebra	Odor (C1)	iving Root		/ater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rift Deposits (B3) ( <b>Riverine</b> ) rrainage Patterns (B10)
Vetland Hy Primary Ind Surface High W Saturat Water M Sedime	vdrology Indicators licators (any one inc water (A1) later Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N	3: dicator is suffi erine) onriverine)	<u>cient)</u> Sa Bic Aq 	It Crust (B11) otic Crust (B12) uatic Invertebrat drogen Sulfide ( idized Rhizosph	Ddor (C1) eres along L	-	W D D D D D 	Vater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rrift Deposits (B3) ( <b>Riverine</b> ) rrainage Patterns (B10) rry-Season Water Table (C2) hin Muck Surface (C7)
Vetland Hy Primary Ind Surface High W Saturat Water M Sedime Drift De	vdrology Indicators licators (any one inc e Water (A1) later Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonriv	3: dicator is suffi erine) onriverine)	<u>cient)</u> Sa Bic Aq Hy Ox Pre	It Crust (B11) otic Crust (B12) uatic Invertebra drogen Sulfide ( idized Rhizosph esence of Reduc	Ddor (C1) eres along L ced Iron (C4)			Vater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rrift Deposits (B3) ( <b>Riverine</b> ) rrainage Patterns (B10) rry-Season Water Table (C2) hin Muck Surface (C7) rrayfish Burrows (C8)
Vetland Hy Primary Ind Surface High W Saturat Water M Sedime Drift De Surface	vdrology Indicators dicators (any one inc e Water (A1) dater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonriv e Soil Cracks (B6)	s: dicator is suffi erine) onriverine) rerine)	<u>cient)</u> Sa Bic Aq Hy Ox Pre Re	It Crust (B11) otic Crust (B12) uatic Invertebra drogen Sulfide ( idized Rhizosph esence of Reduc cent Iron Reduc	Ddor (C1) eres along L ced Iron (C4) ttion in Plowe			Vater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rrift Deposits (B3) ( <b>Riverine</b> ) rrainage Patterns (B10) rry-Season Water Table (C2) hin Muck Surface (C7) rrayfish Burrows (C8) aturation Visible on Aerial Imagery (C9)
Vetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Inundat	vdrology Indicators dicators (any one inc e Water (A1) dater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonriv e Soil Cracks (B6) tion Visible on Aeria	s: dicator is suffi erine) onriverine) rerine) I Imagery (B7	<u>cient)</u> Sa Bic Aq Hy Ox Pre Re	It Crust (B11) otic Crust (B12) uatic Invertebra drogen Sulfide ( idized Rhizosph esence of Reduc	Ddor (C1) eres along L ced Iron (C4) ttion in Plowe			Vater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rrift Deposits (B3) ( <b>Riverine</b> ) rrainage Patterns (B10) rry-Season Water Table (C2) hin Muck Surface (C7) rrayfish Burrows (C8) aturation Visible on Aerial Imagery (C9) hallow Aquitard (D3)
Vetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Inundat Water-S	vdrology Indicators licators (any one inc e Water (A1) later Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonriv e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9)	s: dicator is suffi erine) onriverine) rerine) I Imagery (B7	<u>cient)</u> Sa Bic Aq Hy Ox Pre Re	It Crust (B11) otic Crust (B12) uatic Invertebra drogen Sulfide ( idized Rhizosph esence of Reduc cent Iron Reduc	Ddor (C1) eres along L ced Iron (C4) ttion in Plowe			Vater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rrift Deposits (B3) ( <b>Riverine</b> ) rrainage Patterns (B10) rry-Season Water Table (C2) hin Muck Surface (C7) rrayfish Burrows (C8) aturation Visible on Aerial Imagery (C9)
Vetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Inundat Water-S ield Obsel	vdrology Indicators dicators (any one inc water (A1) 'ater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonriv e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9) rvations:	s: dicator is suffi erine) onriverine) rerine) I Imagery (B7	<u>cient)</u> Sa Bic Aq Hy Ox Pre Re 7) X Ott	It Crust (B11) otic Crust (B12) uatic Invertebrat drogen Sulfide ( idized Rhizosph esence of Reduc cent Iron Reduc ner (Explain in R	Ddor (C1) eres along L ced Iron (C4) ttion in Plowe			Vater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rrift Deposits (B3) ( <b>Riverine</b> ) rrainage Patterns (B10) rry-Season Water Table (C2) hin Muck Surface (C7) rrayfish Burrows (C8) aturation Visible on Aerial Imagery (C9) hallow Aquitard (D3)
Vetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Inundat Water-S ield Obser urface Water	vdrology Indicators dicators (any one inc e Water (A1) dater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonriv e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9) rvations: ter Present? Ye	s: dicator is suffi erine) onriverine) rerine) I Imagery (B7	<u>cient)</u> Sa Bic Aq Hy Ox Pre Re y X Ott	It Crust (B11) otic Crust (B12) uatic Invertebra drogen Sulfide ( idized Rhizosph esence of Reduc cent Iron Reduc ner (Explain in R	Ddor (C1) eres along L ced Iron (C4) ttion in Plowe Remarks)			Vater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rrift Deposits (B3) ( <b>Riverine</b> ) rrainage Patterns (B10) rry-Season Water Table (C2) hin Muck Surface (C7) rrayfish Burrows (C8) aturation Visible on Aerial Imagery (C9) hallow Aquitard (D3)
Vetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Inundat Water-S ield Obser urface Wa /ater Table	vdrology Indicators dicators (any one inc Water (A1) Vater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonrive Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9) rvations: ter Present? Ye Present? Ye	s: dicator is suffi erine) onriverine) rerine) I Imagery (B7 ) s No s No	<u>cient)</u> Sa Bic Aq Hy OX Pre r) X Ott Co X [ Co X [ Co	It Crust (B11) otic Crust (B12) uatic Invertebrat drogen Sulfide ( idized Rhizosph esence of Reduc cent Iron Reduc ner (Explain in R Depth (inches):	Ddor (C1) eres along L ced Iron (C4) tion in Plowe Remarks) >16	ed Soils (C		Vater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rrift Deposits (B3) ( <b>Riverine</b> ) rrainage Patterns (B10) rry-Season Water Table (C2) hin Muck Surface (C7) trayfish Burrows (C8) aturation Visible on Aerial Imagery (C9) hallow Aquitard (D3) AC-Neutral Test (D5)
Vetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Unundat Water-S ield Obser urface Wa /ater Table aturation F	vdrology Indicators licators (any one inc e Water (A1) l'ater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonrive e Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9) rvations: ter Present? Ye Present? Ye	s: dicator is suffi erine) onriverine) rerine) I Imagery (B7 ) s No s No	<u>cient)</u> Sa Bic Aq Hy OX Pre r) X Ott Co X [ Co X [ Co	It Crust (B11) otic Crust (B12) uatic Invertebra drogen Sulfide ( idized Rhizosph esence of Reduc cent Iron Reduc ner (Explain in R	Ddor (C1) eres along L ced Iron (C4) ttion in Plowe Remarks)	ed Soils (C		Vater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rrift Deposits (B3) ( <b>Riverine</b> ) rrainage Patterns (B10) rry-Season Water Table (C2) hin Muck Surface (C7) trayfish Burrows (C8) aturation Visible on Aerial Imagery (C9) hallow Aquitard (D3) AC-Neutral Test (D5)
Vetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Surface Inundat Uater S ield Obsen Surface Wa Vater Table Saturation F ncludes ca	vdrology Indicators dicators (any one inc Water (A1) Vater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (N eposits (B3) (Nonrive Soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9) rvations: ter Present? Ye Present? Ye	s: dicator is suffi erine) onriverine) rerine) I Imagery (B7 ) s No s No s No	cient)       Sa	It Crust (B11) otic Crust (B12) uatic Invertebra drogen Sulfide ( idized Rhizosph esence of Reduc cent Iron Reduc ner (Explain in R Depth (inches): Depth (inches):	Ddor (C1) eres along L ced Iron (C4) ttion in Plowe Remarks) >16 >16	ed Soils (C		Vater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rrift Deposits (B3) ( <b>Riverine</b> ) rrainage Patterns (B10) rry-Season Water Table (C2) hin Muck Surface (C7) trayfish Burrows (C8) aturation Visible on Aerial Imagery (C9) hallow Aquitard (D3) AC-Neutral Test (D5)
Vetland Hy Primary Ind Surface High W Saturat Water M Sedime Drift De Surface Inundat Water S Vater Table Saturation F Includes ca	Adrology Indicators dicators (any one inc Water (A1) dater Table (A2) ion (A3) Marks (B1) (Nonrive ent Deposits (B2) (Norrive soil Cracks (B6) tion Visible on Aeria Stained Leaves (B9) rvations: ter Present? Ye Present? Ye present? Ye poillary fringe) ecorded Data (stream	s: dicator is suffi erine) onriverine) rerine) I Imagery (B7 ) s No s No s No m gauge, mo	cient)       Sa	It Crust (B11) otic Crust (B12) uatic Invertebrat drogen Sulfide ( idized Rhizosph esence of Reduc cent Iron Reduc ner (Explain in R Depth (inches): Depth (inches): Depth (inches):	Ddor (C1) eeres along L ced Iron (C4) etion in Plowe Remarks) >16 >16 >16 previous ins	ed Soils (C		Vater Marks (B1) ( <b>Riverine</b> ) ediment Deposits (B2) ( <b>Riverine</b> ) rrift Deposits (B3) ( <b>Riverine</b> ) rrainage Patterns (B10) rry-Season Water Table (C2) hin Muck Surface (C7) trayfish Burrows (C8) aturation Visible on Aerial Imagery (C9) hallow Aquitard (D3) AC-Neutral Test (D5)

Project/Site: Mariposa Energy Center	City/County: Contra	Da	Date: 6/4/2009		
Applicant/Owner: Diamond Energy Corp.		State: CA	Sampling Poi	nt: SP-1	4
Investigator(s): Russell Huddleston	Section, Township, F	Range: NW ¼ Sec 3	6; T 1 S; R 3 E	(MDM)	
Landform (hillslope, terrace, etc.): Terrace	Local relief (concave	, convex, none): Non	e Slo	ope (%):	0-1 %
Subregion (LRR): C Lat: 37° 48'	21.291"	Long: -121° 36' 16.8	354"	Datum:	WGS1984
Soil Map Unit Name: Solano Fine Sandy Loam		NWI clas	sification: PU	SC	
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes <u>X</u> No	(If no, explain in I	Remarks.)		
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly dist	urbed? Are "Norma	I Circumstances" pres	ent? Yes	X N	lo
Are Vegetation <u>No</u> , Soil <u>Yes</u> , or Hydrology <u>Yes</u> naturally prob	elematic? (If needed	l, explain any answers	s in Remarks.)		
SUMMARY OF FINDINGS – Attach site map showing sa	mpling point loca	ations, transects	, important	featur	es, etc.

Hydrophytic Vegetation Present?	Yes	Х	No	Is the Sampled Area within a Wetland?	Yes	x	No
Hydric Soil Present?	Yes	Х	No				
Wetland Hydrology Present?	Yes	Х	No				

Remarks: Sample point take in the alkali sink wetland adjacent to drainage channel on the east side of Bruns Road – just north of the Alameda County line. Area is characterized by notable change in vegetation and soils from the surrounding grassland area. Shown as a Palustrine Unconsolidated Shore Seasonally Flooded wetland on the National Wetland Inventory Map.

#### VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet	+-
1. None	<u>/// 00/01</u>	000000	Oldido		
2				Number of Dominant Species that are OBL, FACW, or FAC:	
3 4				Total Number of Dominant Species Across All Strata:	(B)
Total Cover:	N/A			Percent of Dominant Species	
Sapling/Shrub Stratum				that are OBL, FACW, or FAC:	100% (A/B)
1. None					
2				Prevalence Index Workshe	et:
3				Total % Cover Of:	Multiply By:
4				OBL species	×1 =
5					x2 =
Total Cover:	N/A			FAC species	×3 =
Herb Stratum Plot Area: ~1m ²				FACU species	×4 =
1. Distichlis spicata	50	Х	FACW	UPL species	×5 =
2. Kochia californica	25	Х	FACW	Column Totals:	(A) (B)
3				Prevalence Index = B/A =	
4					
5.				Hydrophytic Vegetation Inc	licators:
6.				X Dominance Test is >5	0%
7				Prevalence Index is ≤	
8				Morphological Adaptat	ions* (Provide supporting
Total Cover:	75%			data in Remarks or on	
Woody Vine Stratum				Problematic Hydrophy	tic Vegetation* (Explain)
1. None				* Indicators of hydric soil and	wetland hydrology must
2.				be present.	, ,
Total Cover:	N/A Cover of Bio	tic Crust	N/A	Hydrophytic Vegetation	
				Present? Yes	X No
Remarks: Vegetation includes hydrophytic plant specie the adjacent grassland areas.	es that area	also tolerant	of saline/alkal	ine soil conditions – notable cha	nge in vegetation from

Donth	Matrix			Redo	x Featu	res			
Depth (inches)	Color (moist)	%	Color (mo	oist)	%	Type ^a	Loc ^b	Texture	Remarks
0-8	10 YR 4/2	100						FiSCL	pH 9.2 - 9.4; moderate rxn to HCl
8-24	10 YR 3/2	100						CL	pH 8.8; weak rxn to HCl
Type: C=C	Concentration, D=De	oletion, RM	Reduced N	latrix.		b	Location: F	L=Pore Lin	ing, RC=Root Channel, M=Matrix.
Hydric Soi	I Indicators: (Applic	able to all	LRRs, unle	ss otherw	/ise not	ed.)		Indicat	tors for Problematic Hydric Soils ^c :
Histos	sol (A1)		S	andy Red	ox (S5)			10	cm Muck (A9) (LRR C)
Histic	Epipedon (A2)		S	tripped Ma	atrix (S6	5)		20	cm Muck (A10) (LRR B)
Black	Histic (A3)		L	oamy Muc	ky Mine	eral (F1)		Re	educed Vertic (F18)
Hydro	gen Sulfide (A4)		Lo	oamy Gley	yed Mat	rix (F2)			ed Parent Material (TF2)
Stratif	ied Layers (A5) (LRR	: C)	D	epleted M	latrix (F3	3)		X Ot	her (Explain in Remarks)
1 cm I	Muck (A9) (LRR D)		R	edox Dark	< Surfac	e (F6)			
Deple	ted Below Dark Surfa	ace (A11)	D	epleted D	ark Surf	ace (F7)			
Thick	Dark Surface (A12)		R	edox Dep	ressions	s (F8)			
Sandy	/ Mucky Mineral (S1)		V	ernal Pool	ls (F9)			° Indica	ators of hydrophytic vegetation and wetlan
Sandy	/ Gleyed Matrix (S4)								logy must be present.
Type: Depth (ir Remarks: N								aline and w	Soil Present? Yes X* No as therefore considered problematic. Shal
Depth (ir Remarks: N	nches): No redoximorphic fea ion possible in this ar							aline and w	
Type: Depth (ir Remarks: N soil saturati	nches): No redoximorphic fea ion possible in this ar	ea resulting						aline and w vet season.	
Type: Depth (ir Remarks: N soil saturati	nches):	ea resulting	in the deve					aline and w vet season. <u>Sec</u>	as therefore considered problematic. Shal
Type: Depth (ir Remarks: N soil saturati IYDROLO Wetland H Primary Inc	nches): No redoximorphic fea ion possible in this ar DGY ydrology Indicators	ea resulting	in the deve		f hydric			aline and w vet season. <u>Sec</u>	as therefore considered problematic. Shal
Type: Depth (ir Remarks: N soil saturati IYDROLO Wetland H <u>Primary Ind</u> Surfac	nches): No redoximorphic fea ion possible in this ar OGY ydrology Indicators dicators (any one ind	ea resulting	ficient)	lopment o	f hydric			aline and w vet season. <u>Sec</u>	as therefore considered problematic. Shal condary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> )
Type: Depth (ir Remarks: N soil saturati IYDROLO Wetland H Primary In Surfac  High W	nches): No redoximorphic fea ion possible in this ar OGY ydrology Indicators dicators (any one ind e Water (A1)	ea resulting	in the deve	lopment o	f hydric (B12)	condition		aline and w vet season. <u>Sec</u>	as therefore considered problematic. Shal condary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> )
Type: Depth (ir Remarks: N soil saturati YDROLO Wetland H Primary In Surfac  High W Satura	nches): No redoximorphic fea ion possible in this ar DGY ydrology Indicators dicators (any one ind e Water (A1) Vater Table (A2)	ea resulting	ficient) Sa Aq	lopment o	(B12) rtebrate:	s (B13)		aline and w vet season. <u>Sec</u>	as therefore considered problematic. Shal condary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> )
Type: Depth (ir Remarks: N soil saturati IYDROLO Wetland H Primary Ind Surfac  High W Satura  Water	hches): No redoximorphic fea ion possible in this ar DGY ydrology Indicators dicators (any one ind e Water (A1) Vater Table (A2) tion (A3)	ea resulting : icator is suf rine)	ficient) (icient) Sa Bic Aq Hy	lopment o It Crust (B otic Crust ( uatic Inver drogen Su	(B12) (B12) (Ifide Oc	s (B13)		aline and w vet season. <u>Sec</u>	as therefore considered problematic. Shal condary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10)
Type: Depth (ir Remarks: N soil saturati IYDROLO Wetland H Primary In Surfac  High W Satura  Water  Sedim	hches): No redoximorphic fea ion possible in this ar DGY ydrology Indicators dicators (any one ind e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonrive	ea resulting : icator is suf rine) pnriverine)	ficient) ficient) Sa Bic Aq Hy Ox	lopment o It Crust (B otic Crust ( uatic Inver drogen Su idized Rhi	if hydric (B12) rtebrate: ulfide Oc	s (B13)	during the v	aline and w vet season. <u>Sec</u> 	as therefore considered problematic. Shal condary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2)
Type: Depth (ir Remarks: N soil saturati IYDROLO Wetland H Primary In Surfac High W Satura Water Sedim Drift D	Anches):	ea resulting : icator is suf rine) pnriverine)	ficient) ficient) Sa Bic Aq Hy Ox Pre	lopment o It Crust (B otic Crust ( uatic Inver drogen Su idized Rhi esence of	if hydric (B12) rtebrate: ulfide Oc izosphei Reduce	s (B13) dor (C1) res along I d Iron (C4	during the v	aline and w vet season. <u>Sec</u> 	as therefore considered problematic. Shal condary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7)
Type: Depth (ir Remarks: N soil saturati IYDROLO Wetland H Primary In Surfac High W Satura Water Sedim Drift D Surfac	nches): No redoximorphic fea ion possible in this ar DGY ydrology Indicators dicators (any one ind e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (No eposits (B3) (Nonrive	ea resulting : icator is suf ponriverine) erine)	ficient) ficient) Sa Bic Aq Hy Ox Pre Re	lopment o It Crust (B otic Crust ( uatic Inver drogen Su idized Rhi esence of	(B12) (B12) rtebrate: Julfide Oc izosphei Reductio	s (B13) dor (C1) res along I d Iron (C4 on in Plow	uiving Roots	aline and w vet season. <u>Sec</u>	as therefore considered problematic. Shal condary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8)
Type: Depth (ir Remarks: N soil saturati <b>YDROLO</b> Wetland H Primary In Surfac High W Satura Water Sedim Drift D Surfac Inunda	Anches): No redoximorphic feation possible in this ar DGY ydrology Indicators dicators (any one ind e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (Nonrive eposits (B3) (Nonrive e Soil Cracks (B6)	ea resulting : icator is suf rine) ponriverine) erine) Imagery (B	ficient) ficient) Sa Bic Aq Hy Ox Pre Re	lopment o It Crust (B otic Crust ( uatic Inver drogen Su idized Rhi esence of cent Iron I	(B12) (B12) rtebrate: Julfide Oc izosphei Reductio	s (B13) dor (C1) res along I d Iron (C4 on in Plow	uiving Roots	aline and w vet season. <u>Sec</u>	as therefore considered problematic. Shal condary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Type: Depth (ir Remarks: N soil saturati IYDROLO Wetland H Primary In Surfac High W Satura Water Sedim Drift D Surfac  Surfac  	nches): No redoximorphic fea ion possible in this ar DGY ydrology Indicators dicators (any one ind e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (No eposits (B3) (Nonrive e Soil Cracks (B6) ttion Visible on Aerial Stained Leaves (B9)	ea resulting : icator is suf rine) ponriverine) erine) Imagery (B	ficient) ficient) Sa Bic Aq Hy Ox Pre Re	lopment o It Crust (B otic Crust ( uatic Inver drogen Su idized Rhi esence of cent Iron I	(B12) (B12) rtebrate: Julfide Oc izosphei Reductio	s (B13) dor (C1) res along I d Iron (C4 on in Plow	uiving Roots	aline and w vet season. <u>Sec</u>	as therefore considered problematic. Shal condary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)
Type: Depth (ir Remarks: N soil saturati IYDROLO Wetland H Primary In Surfac High W Satura Satura Drift D Surfac Inunda Water- Field Obse Surface Wa	Anches): No redoximorphic feation possible in this art DGY ydrology Indicators dicators (any one indi- e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (Non- eposits (B3) (Nonrive e Soil Cracks (B6) tion Visible on Aerial Stained Leaves (B9) prvations: ater Present? Yest	ea resulting : icator is suf inne) ponriverine) erine) Imagery (B	in the deve ficient)	Iopment o It Crust (B otic Crust ( uatic Inver idized Rhi esence of cent Iron I ner (Expla	f hydric (11) (112) (112) (112) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113	s (B13) dor (C1) res along I d Iron (C4 on in Plow	uiving Roots	aline and w vet season. <u>Sec</u>	as therefore considered problematic. Shal condary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)
Type: Depth (ir Remarks: N soil saturati IYDROLO Wetland H Primary In Surfac High W Satura Water Sedim Drift D Surfac Inunda Water- Field Obse	Aches): No redoximorphic fea ion possible in this ar DGY ydrology Indicators dicators (any one ind e Water (A1) Vater Table (A2) tion (A3) Marks (B1) (Nonrive ent Deposits (B2) (No eposits (B3) (Nonrive e Soil Cracks (B6) tion Visible on Aerial Stained Leaves (B9) ervations: ater Present? Yes	ea resulting : icator is suf inne) ponriverine) erine) Imagery (B	in the deve ficient)	lopment o It Crust (B otic Crust ( uatic Invel drogen Su idized Rhi esence of cent Iron I ner (Expla	f hydric (11) (112) (112) (112) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113) (113	s (B13) dor (C1) res along I d Iron (C4 on in Plow	Living Roots ) ed Soils (Ce	aline and w vet season. <u>Sec</u> 	as therefore considered problematic. Shal condary Indicators (two or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)

Remarks: This point was dry at the time of the survey, but potentially supports shallow seasonal inundation or shallow groundwater, resulting in saturated soil condition in the upper 12 inches. Hydrology was indeterminate at this location, but topographic position and notable change in vegetation suggest wetland hydrology may be present.

Project/Site: Mariposa Energy Center	City/County: Contra Co	City/County: Contra Costa				
Applicant/Owner: Diamond Energy Corp.		State: CA	Sampling Point:	SP-15		
Investigator(s): Russell Huddleston	Section, Township, Ran	ge: NW ¼ Sec 36	6; T 1 S; R 3 E (MI	DM)		
Landform (hillslope, terrace, etc.):	Local relief (concave, co	nvex, none): Non	e Slope	(%): <u>0-1 %</u>		
Subregion (LRR):         C         Lat: 37° 4	8' 21.387" Lo	ng: -121° 36' 16.8	78" Dat	um: WGS1984		
Soil Map Unit Name: Solano Fine Sandy Loam		NWI clas	sification: None			
Are climatic / hydrologic conditions on the site typical for this time of year	?Yes <u>X</u> No	_(If no, explain in F	Remarks.)			
Are Vegetation <u>No</u> , Soil <u>No</u> , or Hydrology <u>No</u> significantly di	sturbed? Are "Normal Ci	rcumstances" pres	ent? Yes X	No		
Are Vegetation Yes, Soil No, or Hydrology No naturally pro	blematic? (If needed, ex	plain any answers	in Remarks.)			

### SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes <u>×</u> Yes <u></u> Yes	K No No No X No X	Is the Sampled Area within a Wetland?	Yes	NoX
Remarks: Sample point taken in annu	al grassland a	adiacent to alkali sink	wetland area vegetation in thi	s area is charact	erized by facultative plant

species, but notable change from the adjacent vegetation in the alkali sink wetland area, vegetation in this area is characterized by facultative plant species, but notable change from the adjacent vegetation in the alkali sink – possible difference is due to soil chemistry rather than wetland hydrology, but this could not be definitively determined at the time of the survey.

#### VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:	
1. None	<u>,,,,,,</u>		<u></u>		
2		·		Number of Dominant Species that are OBL, FACW, or FAC:	(A)
3	. <u></u>			Total Number of Dominant	
4				Species Across All Strata:	(B)
Total Cover:	N/A			Percent of Dominant Species	
Sapling/Shrub Stratum				that are OBL, FACW, or FAC:	100% (A/B)
1. None					
2.				Prevalence Index Workshee	t:
3.				Total % Cover Of:	Multiply By:
4.				OBL species	×1 =
5.					×2 =
Total Cover:	N/A				×3 =
Herb Stratum Plot Area: ~1m ²					×4 =
1. Hordeum marinum	50	Х	FAC		×5 =
2. Lolium multiflorum	30	Х	(FAC)	Column Totals:	(A) (B)
3. Frankenia salina	15		FACW	Prevalence Index = $B/A =$	.,
4				-	
5.				Hydrophytic Vegetation Indi	cators:
6.				X Dominance Test is >50	%
7.				Prevalence Index is ≤3	.0*
8.				Morphological Adaptatio	ons* (Provide supporting
Total Cover:	95%			data in Remarks or on	
Woody Vine Stratum				Problematic Hydrophyt	ic Vegetation* (Explain)
1. None				* Indicators of hydric soil and w	etland hydrology must
2.				be present.	
Total Cover:	N/A			Hydrophytic	
% Bare Ground in Herb Stratum 5% % 0	Cover of Bio	tic Crust	N/A	Vegetation Present? Yes	<u> </u>

Remarks: *Lolium multiflorum* is not assigned an indicator status per Reed (1988) but is generally considered to be a facultative species. Sample point characterized by FAC plants, but these species are common and widespread throughout the annual grassland habitat in the surrounding area and may not be indicative of wetland conditions – notable change in vegetation from the adjacent alkali sink area.

Depth Matrix		Re	dox Feat	ures						
(inches)			Color (moist)	Color (moist) % Type ^a			Texture	Remarks		
0-7	10 YR 4/2	100					CL	pH 8.4; weak rxn to HCl		
7-14	10 YR 4/2	90					CL	pH 8.4; weak rxn to HCl		
	2.5 Y 4/3	10								
T		{				Lesstien		- DO Dest Obernel M Metric		
••	oncentration, D=De					Location:		ng, RC=Root Channel, M=Matrix.		
•	•••	cable to all	LRRs, unless othe					ors for Problematic Hydric Soils ^c :		
Histoso	( )		Sandy Ro	•	,			m Muck (A9) (LRR C)		
	Epipedon (A2)		Stripped				2 cm Muck (A10) (LRR B)			
Black I	Histic (A3)		Loamy M	ucky Mir	eral (F1)		Reduced Vertic (F18)			
Hydrog	gen Sulfide (A4)		Loamy G	leyed Ma	atrix (F2)		Red Parent Material (TF2)			
Stratifie	ed Layers (A5) (LRF	Depleted	Depleted Matrix (F3)			Othe	er (Explain in Remarks)			
1 cm N	luck (A9) (LRR D)		Redox Da	ark Surfa	ce (F6)					
Deplet	ed Below Dark Surfa	ace (A11)	Depleted	Dark Su	rface (F7)					
Thick [	Dark Surface (A12)		Redox D	epressior	ns (F8)					
Sandy	Mucky Mineral (S1)		Vernal Po	ools (F9)			^c Indicators of hydrophytic vegetation and wetlar			
Sandy	Gleyed Matrix (S4)							big must be present.		
Restrictive	Layer (if present):									
Type: N	١E									
Depth (in	ches): >14						Hydric S	Soil Present? Yes No X		

### HYDROLOGY

Wetland Hydrology Indicators:		Secondary Indicators (two or more required)		
Primary Indicators (any one indicator is sufficie	nt)	Water Marks (B1) (Riverine)		
Surface Water (A1)	Salt Crust (B11)	Sediment Deposits (B2) (Riverine)		
High Water Table (A2)	Biotic Crust (B12)	Drift Deposits (B3) (Riverine)		
Saturation (A3)	Aquatic Invertebrates (B13)	Drainage Patterns (B10)		
Water Marks (B1) (Nonriverine)	Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)		
Sediment Deposits (B2) (Nonriverine)	Oxidized Rhizospheres along Living Roots (C3)	Thin Muck Surface (C7)		
Drift Deposits (B3) (Nonriverine)	Presence of Reduced Iron (C4)	Crayfish Burrows (C8)		
Surface Soil Cracks (B6)	Recent Iron Reduction in Plowed Soils (C6)	Saturation Visible on Aerial Imagery (C9)		
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Shallow Aquitard (D3)		
Water-Stained Leaves (B9)		FAC-Neutral Test (D5)		
Field Observations:				
Surface Water Present? Yes No	X Depth (inches):			
Water Table Present? Yes No	X Depth (inches): >14			
Saturation Present? Yes No	X Depth (inches): >14 Wetland Hy	drology Present? Yes No X		
(includes capillary fringe)				
Describe Recorded Data (stream gauge, monit	pring well, aerial photos, previous inspections), if availa	ble:		
Remarks: This point was dry at the time of the this area; no strong indication of wetland hydro	survey; facultative vegetation present, but consists of s ogy observed at this location.	pecies that are common in grasslands throughout		

Appendix F Selected Site Photographs

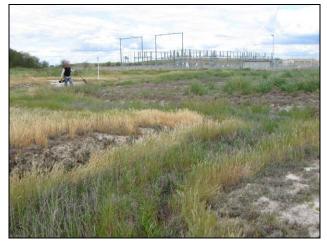


**PROJECT SITE** Looking to the south-southeast from the existing access road



LAYDOWN AREA Looking north from south end of property




DRAINAGE WETLAND (D-1) Looking east from Bruns Road



DRAINAGE WETLAND (D-1) Looking west; 6-foot by 6-foot box culvert under Bruns Road



DRAINAGE (1B) North of Kelso Road, looking northeast at defined earthen channel



DRAINAGE WETLAND (D-2) Looking east from Bruns Road



DRAINAGE (2A) Looking east at earthen channel



DRAINAGE WETLAND (D-3) Looking north along east side of Bruns Road



DRAINAGE WETLAND (D-3) Looking west; 6-foot by 6-foot box culvert under Bruns Road



DRAINAGE WETLAND (D-4) Looking east from Bruns Road (30-inch-diameter cmp under road)



DRAINAGE WETLAND (D-4) Adjacent alkali sink wetland; looking south along Bruns Road



ALKALI SINK WETLAND (ASW-1) Looking northeast from Bruns Road



SEASONAL WETLAND (SW-1) Looking north, basins connected via 18-inch-diameter cmp



PROJECT SITE

Low upland swale through center of site—no change in vegetation or evidence of any type of flow through this area



SWALE (SW-1) Looking west



SEASONAL WETLAND (SW-1) Inundated on February 19, 2009



SEASONAL WETLAND (SW-2) Weakly expressed shallow area with Italian ryegrass and sparse coyote thistle



SWALE (SW-3) Looking east from Bruns Road



E-1

Small erosional rill; looking north; flows north into seasonal wetland area



E-3

Large erosional channel with deeply scoured channel; looking north; flows north into large seasonal wetland area



E-2 Erosional feature; looking south toward the PG&E Kelso Substation



BBID CANAL 45 Looking east from Bruns Road

Appendix G List of Plant Species Observed at Sample Points

# TABLE G-1

Plant Species Observed at Sample Point Locations

Scientific Name ¹ (Name per Reed 1988)	Common Name (Name per Reed 1988)	Indicator Status ²	Stratum
Bolboschoenus maritimus (Scirpus maritimus)	Cosmopolitan bulrush (Saltmarsh bulrush)	OBL	Н
Bromus hordeaceus (Bromus mollis)	Soft chess (Soft brome)	FACU-	н
Chenopodium album	White goosefoot	FAC	Н
Cirsium vulgare	Bull thistle	FACU	н
Cotula coronopifolia	Brass buttons	FACW+	Н
Crassula aquatica	Water pigmy-weed	OBL	н
Cressa truxillensis	Spreading alkali weed	FACW	н
Distichlis spicata	Saltgrass (Inland)	FACW*	н
Epilobium densiflorum (Boisduvalia densiflora)	Dense flower willowherb (Dense flower spike-primrose)	OBL	н
Erodium botrys		NL	н
Erodium moschatum		NL	н
Eryngium vaseyi	Vasey's coyote thistle	FACW	н
Frankenia salina (Frankenia grandiflora)	Alkali heath	FACW+	Н
Grindelia camporum	Great Valley gumweed	FACU	н
Hordeum brachyantherum	Meadow barley	FACW	н
Hordeum marinum ssp. gussonianum (Hordeum hystrix)	Mediterranean barley	FAC	Н
Hordeum murinum ssp. leporinum (Hordeum leporinum)	Foxtail barley (Barley)	NI	Н
Juncus bufonius	Toad rush	FACW+	н
Kochia californica	Rusty molly (California summer-cypress)	FACW	Н
Lolium multiflorum	Italian Ryegrass	NL (FAC ³ )	н
Medicago polymorpha	Bur clover	NL	н
Plagiobothrys stipitatus	Slender popcorn flower	OBL	н
Polypogon monspeliensis	Annual rabbit-foot grass	FACW+	н
Psilocarphus oregonus	Oregon woolly-heads	OBL	н
Spergularia marina	Saltmarsh sandspurry	OBL	н

### TABLE G-1

Plant Species Observed at Sample Point Locations

Scientific Name ¹ (Name per Reed 1988)	Common Name (Name per Reed 1988)	Indicator Status ²	Stratum
Trifolium hirtum	Rose clover	NL	Н
Veronica peregrina	Purslane speedwell	OBL	Н

#### NOTES:

¹ Taxonomy follows current nomenclature per the University of California (2009) *Jepson On-Line Interchange for California Floristics* 

² Indicator State follows the National List of Plant Species that Occur in Wetlands: Region 0. Reed (1988)

³Lolium multiflorum is not included on the Reed 1988 National List of Plant Species that Occur in Wetlands: Region 0, but is generally considered to be a facultative plant species

#### **Indicator Status Codes**

- NL Not included on the National List of Plant Species that Occur in Wetlands: Region 0. Reed (1988)
- NI Insufficient information available to assign an indicator status
- FACU Facultative Upland (67 to 99 percent probability of occurrence in non-wetlands)
- FAC Facultative (equally likely to occur in wetlands and non-wetlands)
- FACW Facultative Wetland (67 to 99 percent probability of occurrence in wetlands)
- OBL Obligate (99 percent probability of occurrence in wetlands)
- + Frequency tends toward the higher end of the category
- Frequency tends toward the lower end of the category

#### Stratum

H Herbaceous



BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA 1516 NINTH STREET, SACRAMENTO, CA 95814 1-800-822-6228 – <u>WWW.ENERGY.CA.GOV</u>

# APPLICATION FOR CERTIFICATION FOR THE MARIPOSA ENERGY PROJECT (MEP)

Docket No. 09-AFC-3

PROOF OF SERVICE (Revised 9/15/09)

### **APPLICANT**

Bo Buchynsky Diamond Generating Corporation 333 South Grand Avenue, #1570 Los Angeles, California 90071 <u>b.buchynsky@dgc-us.com</u>

## APPLICANT'S CONSULTANTS

Doug Urry 2485 Natomas Park Dr #600 Sacramento, CA 95833-2975 Doug.Urry@CH2M.com

## COUNSEL FOR APPLICANT

Gregg Wheatland Ellison, Schneider & Harris L.L.P. 2600 Capitol Avenue, Suite 400 Sacramento, CA 95816-5905 glw@eslawfirm.com

## **INTERESTED AGENCIES**

California ISO <u>e-recipient@caiso.com</u>

### **INTERVENORS**

### ENERGY COMMISSION

JULIA LEVIN Commissioner and Presiding Member jlevin@energy.state.ca.us

JEFFREY D. BYRON Commissioner and Associate Member jbyron@energy.state.ca.us

Kenneth Celli Hearing Officer kcelli@energy.state.ca.us

Craig Hoffman Siting Project Manager choffman@energy.state.ca.us

Kerry Willis Staff Counsel <u>kwillis@energy.state.ca.us</u>

*Public Adviser's Office publicadviser@energy.state.ca.us

# **DECLARATION OF SERVICE**

I, <u>Mary Finn</u>, declare that on <u>September 29, 2009</u>, I served and filed copies of the attached <u>USACE Delineation of Wetlands and Other Waters</u> dated <u>July 2009</u>. The original document, filed with the Docket Unit, is accompanied by a copy of the most recent Proof of Service list, located on the web page for this project at: [http://www.energy.ca.gov/sitingcases/mariposa/index.html].

The document has been sent to both the other parties in this proceeding (as shown on the Proof of Service list) and to the Commission's Docket Unit, in the following manner:

# (Check all that Apply)

# For service to all other parties:

<u>X</u> sent electronically to all email addresses on the Proof of Service list;

____by personal delivery or by depositing in the United States mail at Sacramento, California, with first-class postage thereon fully prepaid and addressed as provided on the Proof of Service list above to those addresses NOT marked "email preferred."

AND

# For filing with the Energy Commission:

<u>X</u> sending an original paper copy and one electronic copy, mailed and emailed respectively, to the address below (preferred method);

OR

____depositing in the mail an original and 12 paper copies, as follows:

# CALIFORNIA ENERGY COMMISSION

Attn: Docket No. 09-AFC-3 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512 docket@energy.state.ca.us

I declare under penalty of perjury that the foregoing is true and correct.

Mary Finn