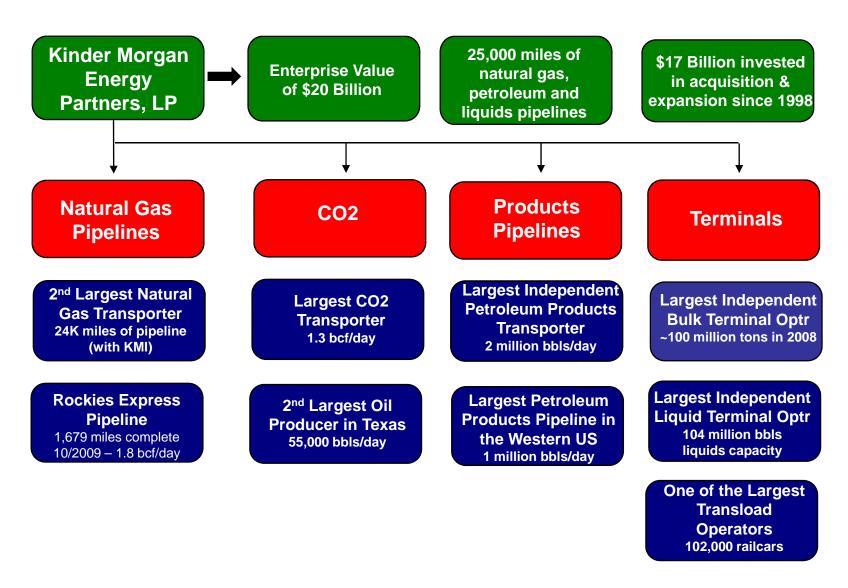
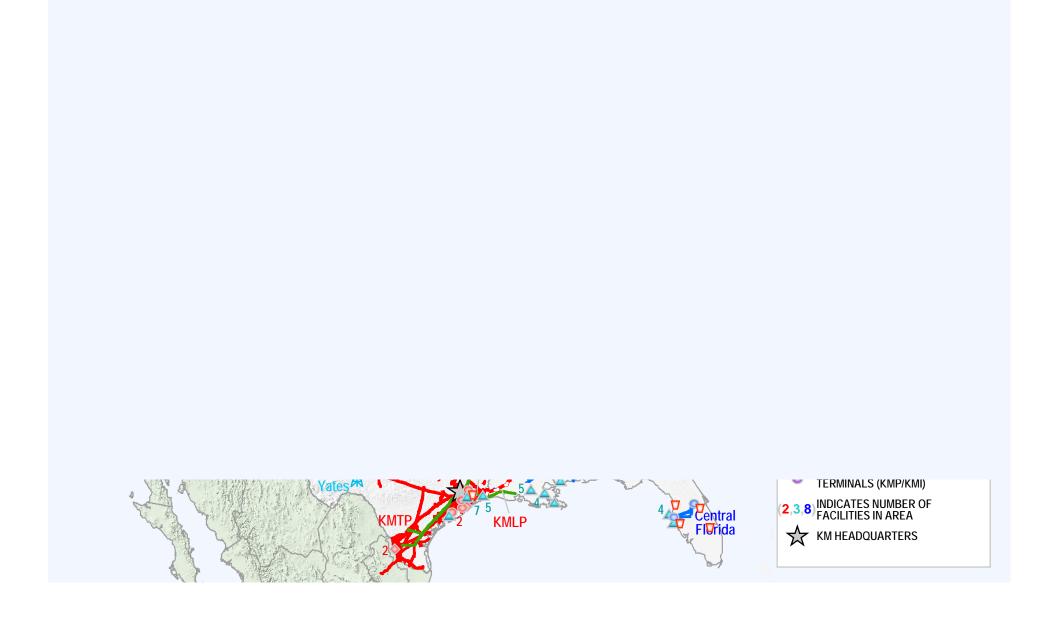


CEC Offices

Sacramento, CA


August 24, 2009

DOCKET


09-IEP-1K

DATE AUG 24 2009
RECD AUG 25 2009

Kinder Morgan has evolved into a strong, multi-product terminal & pipeline operator nationwide



KMI & KMP Asset Map

Kinder Morgan Terminals - Ethanol Role

The diverse nature of the KM assets allows for an array of solutions to meet the needs of the market...

Ethanol logistics issues have been challenging

- Production facilities were designed for unit train shipments outbound, fragmented across a wide geographic area.
- Very few destinations can actually handle trains and discharge into blending assets — LA Basin was the first, NY Harbor (Albany, Linden & Sewaren), Baltimore, Dallas (2), Houston.
- KMPP was successful in developing a pipeline solution in Florida, however, few other pipeline projects of any distance have been undertaken.
- Single car transloading operations have been set up across the US, and make sense for smaller markets, but travel at a premium to unit trains (2-4 cpg). Consistent rail service is an issue.

California Market for Gasoline & Ethanol

Assumed market size for gasoline sold*:

- 2006 1.049MM BPD

- 2007 1.017MM BPD

- 2008 965.3M BPD

2009 (thru May)
 961.3M BPD (989 in May)

- Working assumptions based off 1.0MM BPD, which include:
 - 57,000 BPD current ethanol blending
 - 100,000 BPD blending January 1, 2010 43,000 BPD additional product
 - Split 60/40 Southern and Northern California, respectively

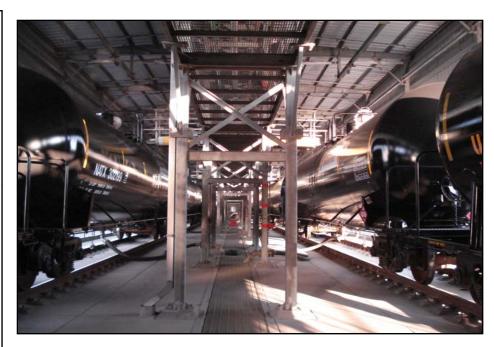
What it means:

- 26,000 BPD additional consumption in Southern California (Lomita, Colton, San Diego)
- 17,000 BPD additional consumption in Northern California (Selby, Richmond, Stockton)

*Source: EIA website - "Prime Supplier Sales Volumes"

Lomita Rail Terminal – Current Situation

Current Situation


- •Facility projected to avg 659,000 Bbls/month of throughput (22k BPD, or ten 96-car trains per month) in 2008 on a 5.7% ethanol mandate.
- •Participants include five major refiners in the LA Basin.
- •Service area (via Shell rack at Carson) is in excess of 120 mile radius.
- •Currently supplies Colton 4-5k BPD of ethanol.

10% blend effective 1/1/10

- •Volume could go to 1.1 million Bbls/month, 36-38k BPD.
- •Escalated Volume could be handled in 14-15 large trains, or 16-17 smaller trains.
- •Constraint is Shell Truck rack permit at a max of 150 trucks/day, or 28.5k Bbls. Shell has submitted a request to the City of Carson to go to 225 trucks per day via a new lane (3 total) and 130k Bbls new ethanol storage.

KMT Expansion Plans

- •Sixteen 96 car trains will not result in a bottleneck at current (24 hours +/-).
- •Additional pump in 2009 expansion budget could take as much as four hours off each train.

2008 LA Basin Ethanol Volume Estimates (indicative)

<u>Customer</u>	Daily @ 5.7%	Daily @10%		
Refiner #1	6,000	10,500		
Refiner #2	5,800	7,725*		
Refiner #3	2,000	3,500		
Refiner #4	5,000	8,750		
Refiner #5	<u>3,400</u>	<u>5,950</u>		
Total	22,200	36,425		

*May already be blending at 7%

Source: 2008 Monthly schedules

Non-participating volume – Refiner #6 5,500 BPD, Refiner #7 4,000 BPD @ 5.7%, 16.625 BPD at 10%

New Richmond, CA Ethanol Unit Train Project

Situation Overview

- Project formerly headed by VeraSun, taken out of bankruptcy proceedings by BNSF and offered conditionally to KM.
- Facility already permitted to handle unit trains of ethanol on a rail-truck basis.
- Two parallel 1,650' tracks within the BNSF Richmond Yard, enough to hold 25 railcars each.
- Unit train cuts to be switched in and out by BNSF-Unload time projected at 48 hours by using four pumps.
- Facility is directly adjacent to Chevron's Richmond refinery, approx. one mile from KMPP's Richmond Terminal.
- KM would operate under a lease at the facility through 12/31/2011.
- Other handlers include NuStar Selby (UP served, non-unit train), and imports.
- Total Bay area blending market potential at 10% is in excess of 33,000 bbls/day on paper. KM figures roughly three trains per month, on a two year basis.

Drivers

 10% blending requirement 1/1/10 and no unit train solution exists in the Bay area. Set up to compete with low cost options.

Status

- Have binding agreement from a customer for the full volume needed to support the facility, good thru 12/31/2011.
- Operation target start –up date late Q4 2009.

Note: Low cost option pursued in lieu of more comprehensive solution, due to uncertainty around ethanol mandate.

What we saw from the CARB ruling*

Assumes CARBOB

- 95.86 gCO2e/MJ
- Avg crude slate
- Avg refinery efficiencies
- The type and origin of ethanol needed to comply changes each year...

		Max CI of			
	Annual	ethanol			
	Standard CI,	with 10%			
Year	gCO2e/MJ	blend			
2010 Reporting Only					
2011	95.61	92.27			
2012	95.37	88.82			
2013	94.89	81.93			
2014	94.41	75.04			
2015	93.45	61.26			
2016	92.50	47.92			
2017	91.06	26.94			
2018	89.62	6.26			
2019	88.18	-14.41			
2020	86.27	-41.84			

Current ethanol suppliers have a short timeline

Fuel	Pathway Description	Carbon Intensity Values (gCO₂e/MJ)		
		Direct Emissions	Land Use or Other Effect	Total
Gasoline	CARBOB – based on the average crude oil delivered to California refineries and average California refinery efficiencies	95.86	0	95.86
	CaRFG-CARBOB and a blend of 100% average Midwestern corn ethanol to meet a 3.5% oxygen content by weight blend (approximately 10% ethanol)	96.09		96.09
	CaRFG-CARBOB and a blend of an 80% Midwestern average corn ethanol and 20% California corn ethanol (dry mill, wet DGS) to meet a 3.5% oxygen content by weight blend (approximately 10% ethanol)	95.85		95.85
Ethanol from Čorn	Midwest average; 80% Dry Mill; 20% Wet Mill; Dry DGS	69.40	30	99.40
	California average; 80% Midwest Average; 20% California; Dry Mill; Wet DGS; NG	65.66	30	95.66
	California; Dry Mill; Wet DGS; NG	50.70	30	80.70
	Midwest; Dry Mill; Dry DGS, NG	68.40	30	98.40
	Midwest; Wet Mill, 60% NG, 40% coal	75.10	30	105.10
	Midwest; Dry Mill; Wet, DGS	60.10	30	90.10
	California; Dry Mill; Dry DGS, NG	58.90	30	88.90
	Midwest; Dry Mill; Dry DGS; 80% NG; 20% Biomass	63.60	30	93.60
	Midwest; Dry Mill; Wet DGS; 80% NG; 20% Biomass	56.80	30	86.80
	California; Dry Mill; Dry DGS; 80% NG; 20% Biomass	54.20	30	84.20
	California; Dry Mill; Wet DGS; 80% NG; 20% Biomass	47.40	30	77.40
Ethanol from Sugarcane	Brazilian sugarcane using average production processes	27.40	46	73.40
Compressed Natural Gas	California NG via pipeline; compressed in California	67.70	0	67.70
	North American NG delivered via pipeline; compressed in California	68.00	0	68.00
	Landfill gas (bio-methane) cleaned up to pipeline quality NG; compressed in California	11.26	0	11.26
Electricity	California average electricity mix	124.10	0	124.10
	California marginal electricity mix of natural gas and renewable energy sources	104.70	0	104.70
Hydrogen	Compressed H ₂ from central reforming of NG	142.20	0	142.20
	Liquid H ₂ from central reforming of NG	133.00	0	133.00
	Compressed H ₂ from on-site reforming of NG	98.30	0	98.30
	SB 1505 Scenario; Compressed H ₂ from on-site reforming with renewable feedstocks	76.10	0	76.10

2010-14

- Estimated CI of 12 ethanol pathways including sugar cane ethanol
- Based on a pure 10% ethanol blend
- 5 types out in 2011, CI 92.27
- 2 types out in 2012, CI 88.82
- 2 types out in 2013, CI 81.93
- 2 types out in 2014, CI 75.04
- Brazilian Ethanol is no longer a viable
 10% Blend in 2015, Cl 61.26

2015 and beyond

- Post 2015 credits must be purchased to offset blends
- Credits purchased from electricity producers

11 Northeastern States

Regional Greenhouse Gas Initiative (RGGI)

- Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, Vermont, Pennsylvania
- Members of RGGI have developed Cap and Trade system
- Pledged to develop LCFS
- Goal is to reduce carbon in fuels

Letter of Intent

- January 2009
- Committed each state to MOU

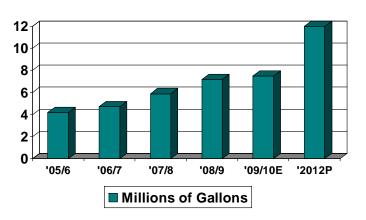
Memorandum Of Understanding

- Pledged to produce draft out of the Governors office of each state
- December 31, 2009

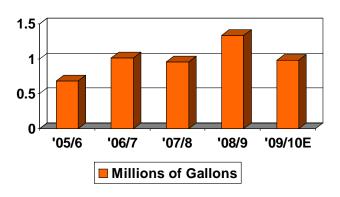
Result

Competition for Brazilian ethanol vs. California

Impact of current LCFS legislation


Cane ethanol is attractive early, but has its limitations

- Size of cargoes, supply chain issues
- Brazilian production is it enough?


Advanced biofuels have to be developed quickly and scaled up for volume

- Very aggressive timeline for new technologies
- Financial condition of the ethanol producers make their involvement challenging
- Midwest impact would they go to 15% and forego Coastal markets?
- Higher than E10 blends appear unlikely in California.
- Uncertainty freezes investment spending

Brazilian Ethanol Production

Brazilian Ethanol Exports


Source: USDA- FAS GAIN Report BR9007 7/15/09

There are options for Brazilian ethanol outside of vessel direct

Deer Park Rail Option

- •KM owns an existing rail storage yard adjacent to the Shell Deer Park refinery in Deer Park, TX.
- •The facility has room for 1,100 cars, and is currently underutilized.
- •It is served by the PTRA with access to BNSF, UP and KCS, inbound and outbound.
- •Shell has a facility adjacent to the DPRT yard where it has in the past conducted its "fuel by rail" program, with eight loading spots.

Goal: connect DPRT to the distribution system

Project...

- •KM would construct a new offloading rail rack at Deer Park Rail Terminal (DPRT);
- •An existing ethanol pipeline would be extended by 2.4-miles from the Pasadena truck rack to DPRT facility for ethanol unloading;
- Pasadena assets would be incorporated and used to receive ethanol by rail;
- •KM's DPRT facility would then receive ethanol unit trains and transfer via the new pipeline to KM Pasadena and KM Truck Rack;
- •Cane-based ethanol could be handled if sufficient incremental volume commitments are garnered to expand DPRT's ethanol loading capacity in a second phase. Construction would involve:
- •Modifying the planned ethanol pipeline to be bi-directional:
- •Building a support tank on the DPRT site;
- •Add loading capacity at the Deer Park rail rack, or using existing Shell assets.

Timeline: ETOH unloading, Q1 2010; OB cane ethanol via Shell system – mid-late 2010, depending on permitting. KM construction – TBD.

KM path going forward

- A belief in the RFS necessary for any long term ethanol investment (note: KM does not take an interest in the commodity itself).
- Search out areas where long term capital potential exists, otherwise limit investment - no "Field of Dreams".
- Long term customers (refiners) generally better credit risk than producers.
- Rail investment still a good bet by itself in the right markets, but better in conjunction with pipeline and marine assets.
- Strengthen handling protocols with experience, both on the pipeline and terminal sides.
- Helpful: A clearer picture on regulation.