

Contribution of Medium-Sized Commercial Buildings

by Michael Stadler and Tim Lipman

http://der.lbl.gov / http://www.chpcenterpr.org

California Energy Commission - 23 July 2009

Team: Chris Marnay, Michael Stadler, Judy Lai, Tim Lipman, Gonçalo Cardoso, Olivier Megel, and Srirupa Ganguly

- Study Overview
- DER-CAM Overview, the Distributed Energy Resources Customer Adoption Model
- CEUS Database
- Results for Medium-Sized Commercial Buildings
- PRAC Update
- "Appendix": More CEUS / Result Background

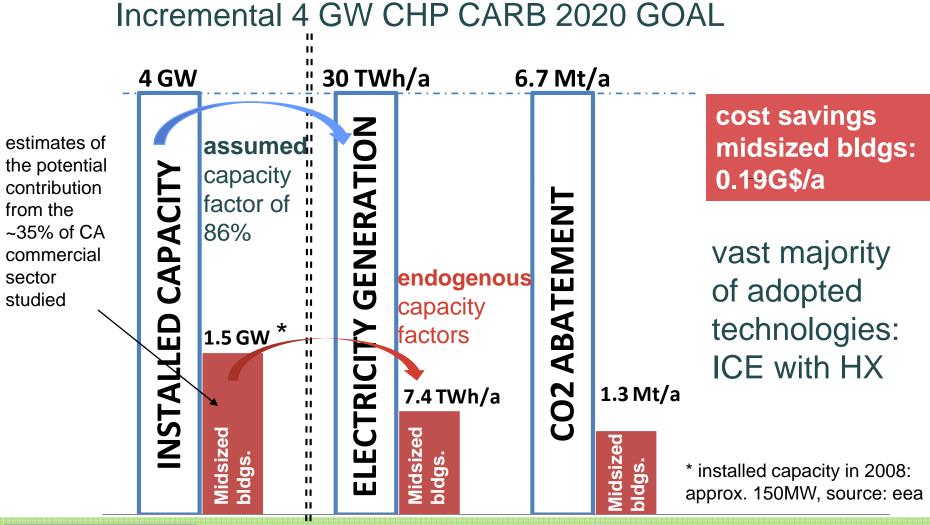
Study Overview: CHP in CA Medium-Sized Commercial Buildings

Study Summary

4

- objective: to estimate the 2020 CO₂ abatement potential of CHP for medium-sized CA commercial buildings (100 kW 5 MW electric peak load)
- pick a sample of representative buildings from CEUS
- use DER-CAM to examine CHP attractiveness in sample, with competition from other technologies, e.g. PV
- estimate and report CO₂ results relative to CARB goals
- model reference case and alternative scenarios including carbon taxes and "feed-in tariff" (FiT) cases in relation to AB 32 and AB 1613

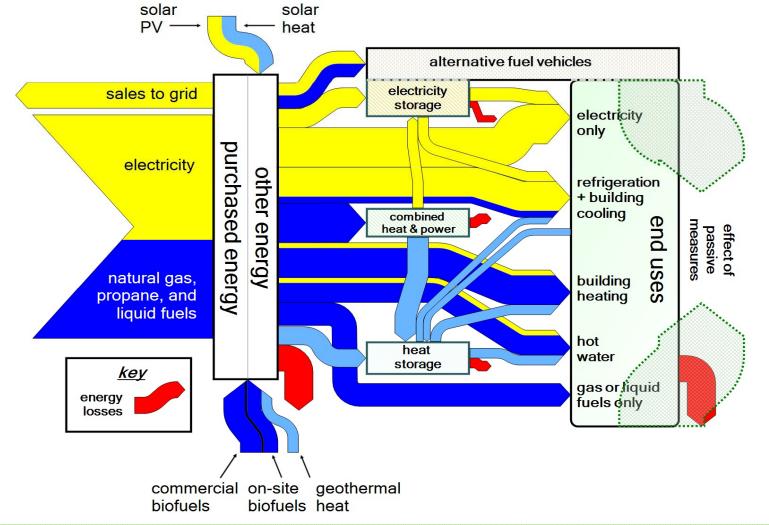
• propose further work in this under-explored sector



Results Summary

(Reference Case)

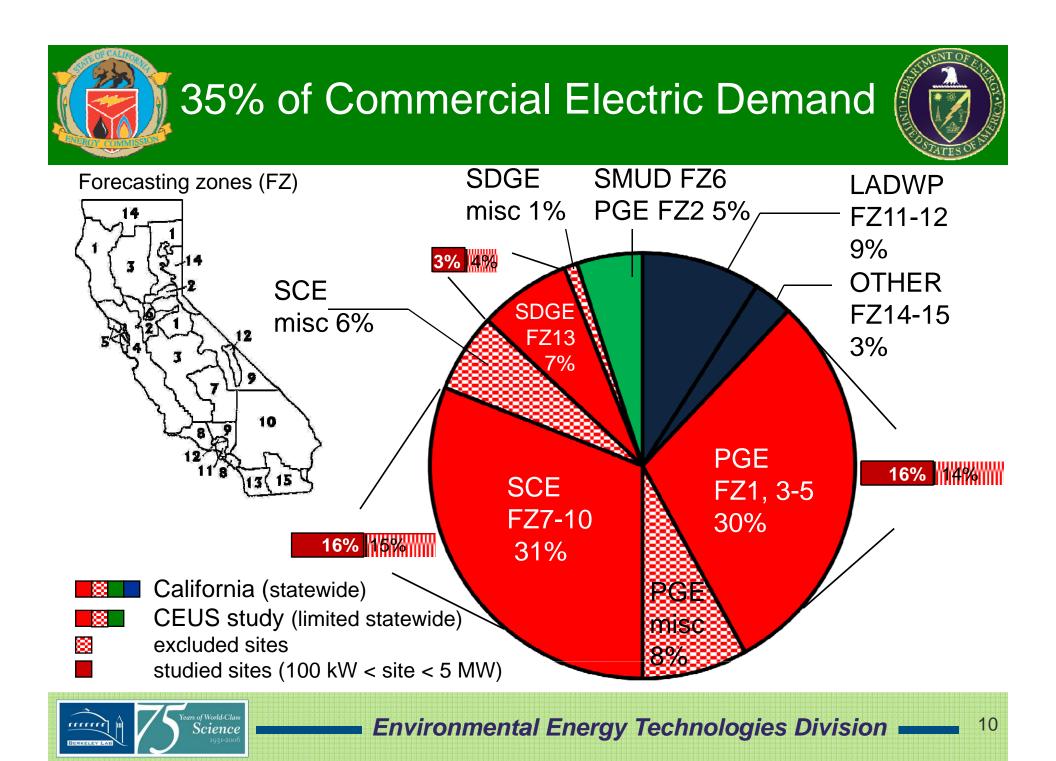
Distributed Energy Resources Customer Adoption Model (DER-CAM)



DER-CAM Concept

7

- considers multiple technologies as CHP, PV, solar thermal, and storage at the same time
- optimizes costs and / or CO₂ emissions
- uses a bottom up approach, every single building is considered in detail
- can also analyze zero-net energy buildings by adding that as a constraint



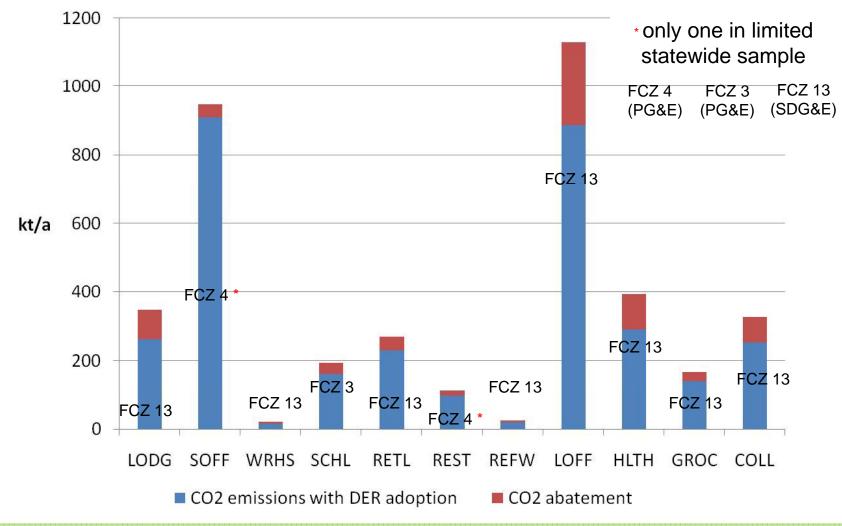
CEUS Database

- Objective: to estimate the 2020 CO₂ abatement potential of CHP for medium-sized CA commercial buildings (100 kW 5 MW electric peak load)
- Scope: buildings with electricity peak within range of 100 kW – 5 MW (35% of total electric demand)
- Building sample: 138 buildings of different types and in various climate zones

Results for Medium-Sized Commercial Buildings

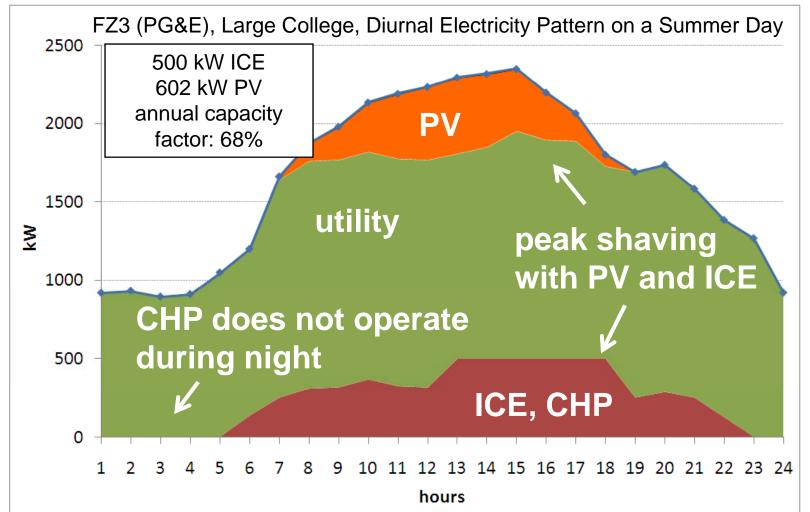
Key Assumptions

- not only CHP is considered, also PV, solar thermal
- technology costs in 2020 are based on "Assumptions to the Annual Energy Outlook", e.g.
 - FC with HX: \$2220 \$2770/kW, lifetime: 10 years
 - ICE with HX: \$2180 \$3580/kW, lifetime: 20 years
 - PV: \$3237/kW, lifetime: 20 years
 - o etc.
- natural gas tariffs are constant in real terms
- electricity tariffs from early 2009 / late 2008 are used and constant in real terms
- 6% real interest rate (except one sensitivity run)

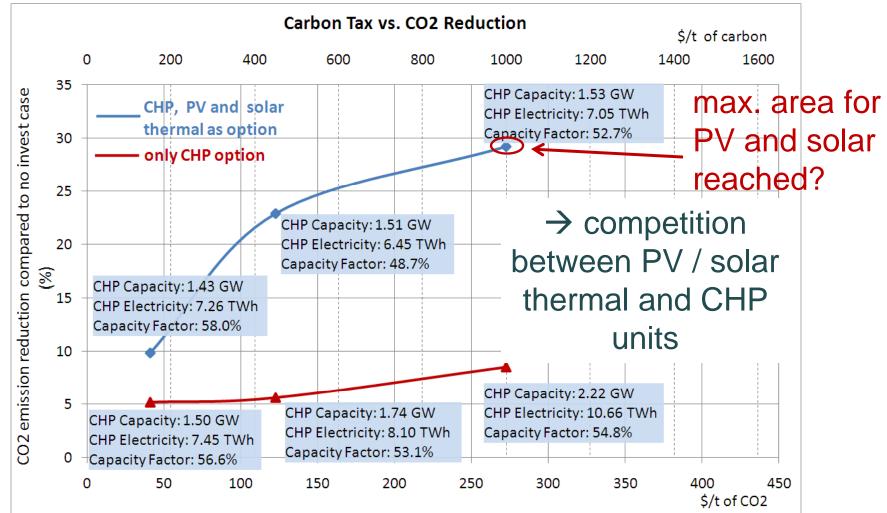


Science

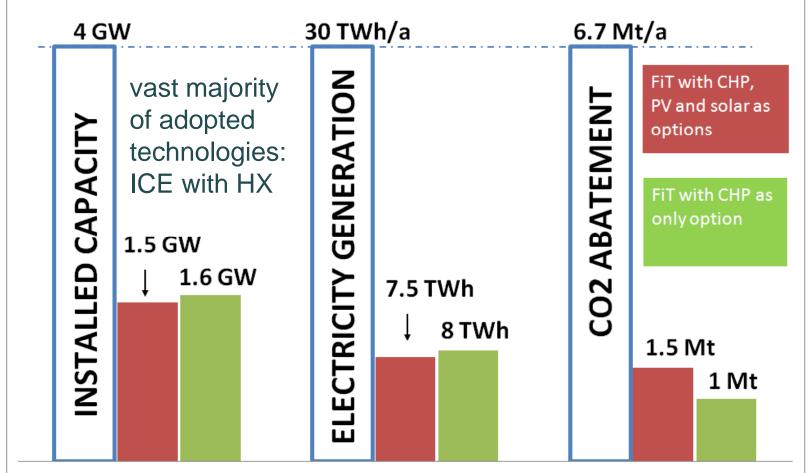
CO₂ Abatement Best Bldgs. (Reference Case)


14

Electric Supply Results (Reference Case)



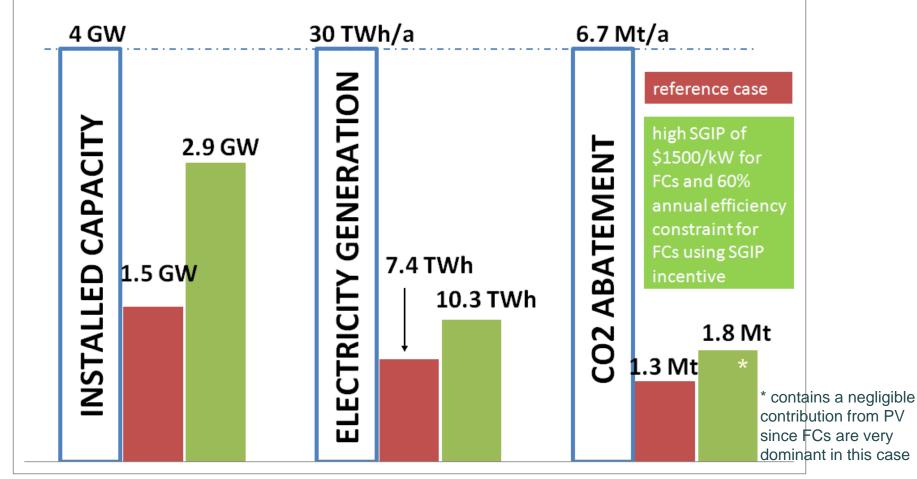
Carbon Tax Cases (for Considered Midsized Bldgs.)


.....

Science

Feed-in Tariff

sales tariff = total purchase tariff, no SGIP incentives



Science

High SGIP for FCs versus Reference Case

High SGIP: vast majority of adopted technologies are FCs with HX

Observations

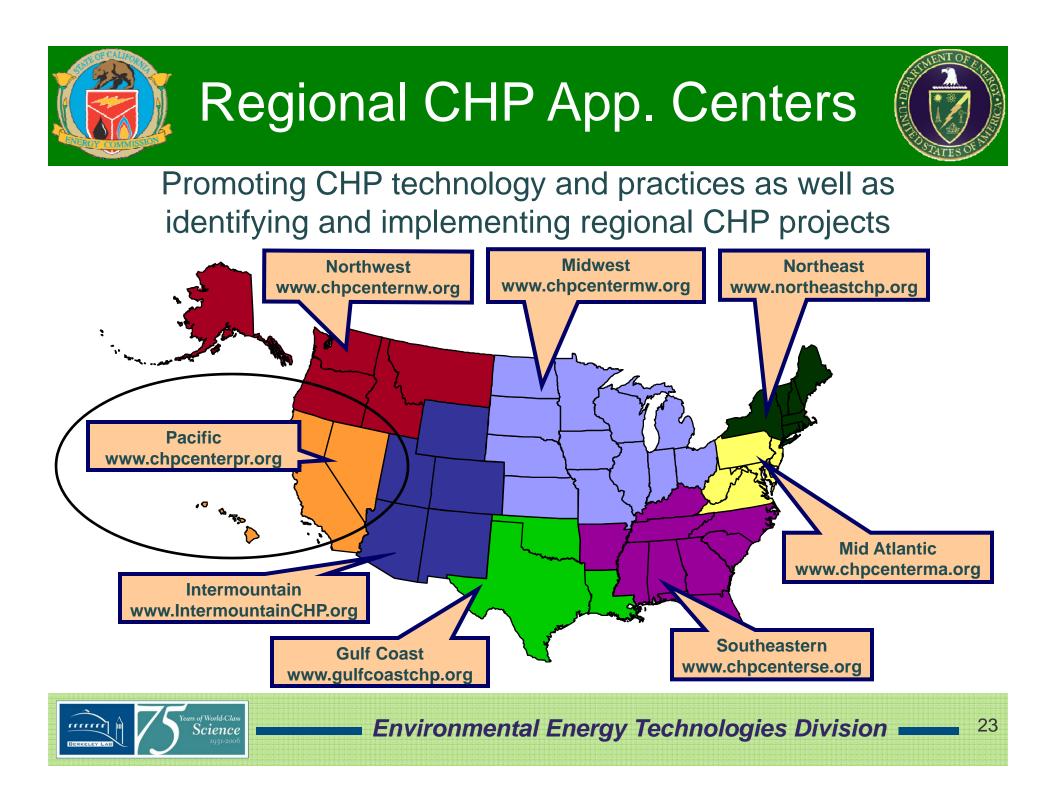
- DER-CAM delivers highly variable capacity factors between 30% and 88% depending on the considered site and tariff
 - an average capacity factor of 55% is observed in the reference case
 - high average capacity factors of 86% assumed by ARB in scoping plan appear unrealistic
- The lower observed capacity factors impact the electricity generation from CHP considerably
- Carbon taxes drive CHP and PV / solar thermal adoption

Conclusions

20

- In the reference case, 1.5 GW of CHP is adopted through 2020 in this analysis of the medium-size commercial sector
 - high SGIP case raises this to 2.9 GW
- FiT slightly increases the energy output from CHP
- SGIP for FCs has a big impact
- Future work:
 - more work on appropriate FiT tariffs and impacts on adoption and capacity factors
 - interaction between PV, solar thermal, and CHP
 - effect of inclusion of storage technologies

PRAC Update



PRAC Update

22

- PRAC is the Pacific Region Combined Heat and Power Application Center, operated by UC Berkeley, UC Irvine, and San Diego State University since 2005
- Sponsored by U.S. DOE and the CA Energy Commission, and with involvement from key partners including electric and gas utilities, Berkeley Lab, CA Clean DG Coalition, etc.
- One of eight DOE regional application centers for CHP
- Has conducted a range of educational, outreach, and direct project assistance activities to promote appropriate CHP adoption in the Pacific Region: CA, NV, HI
- PRAC: http://www.chpcenterpr.org

PRAC Update (cont'd)

24

- The PRAC team has just been awarded a three-year \$1.5M continuation grant by the U.S. Department of Energy
- Proposal cost-matched (20%) by the CA Energy Commission, the Energy Biosciences Institute, and the Univ. of California
- New name for the RACs:

"Pacific Region Clean Energy Application Center"

- Still a strong focus on CHP, adding also waste heat-topower and waste/biogas power applications
- Eventual further expansion into other renewable energy and clean fuels is possible

PRAC Update (cont'd)

Workplan for the new center phase:

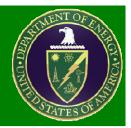
- maintain and expand PRAC website
- target market workshops
- waste-heat-to-energy workshop
- revised state "baseline assessment and action plan" reports
- project case study profiles
- policy roadmapping with stakeholders
- identify and facilitate high impact projects
- project management

Contact Info:

Michael Stadler / mstadler@lbl.gov / 510-486-4929

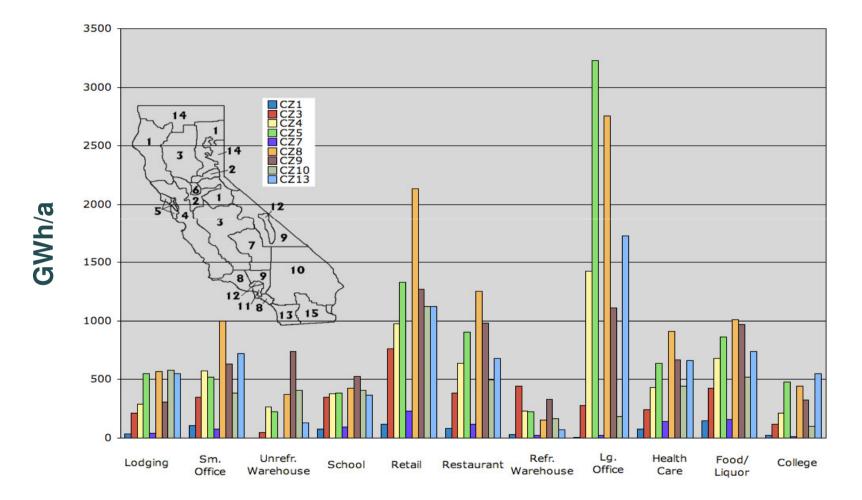
Tim Lipman / telipman@berkeley.edu / 510-642-4501

Thank you!



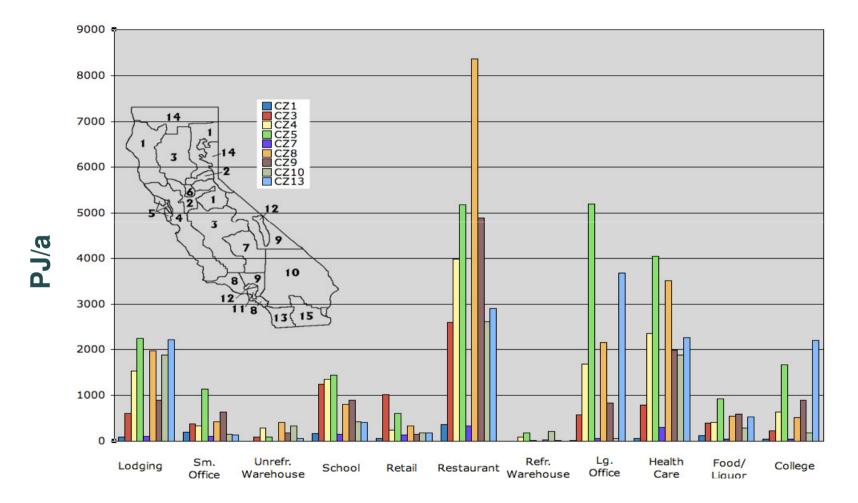
"Appendix": More CEUS / Result Background

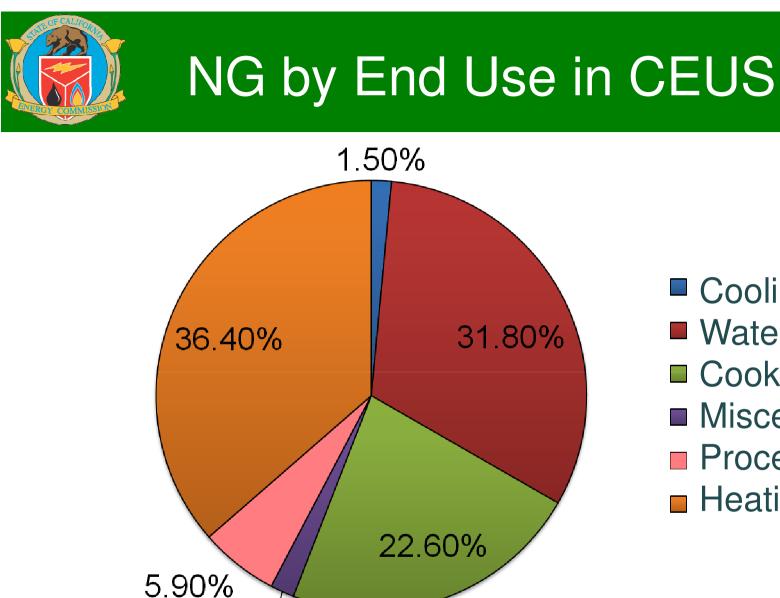
End-Uses in CEUS

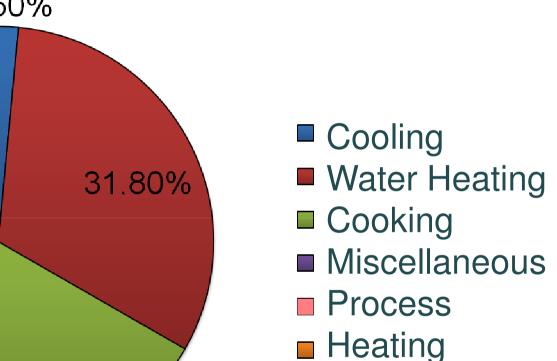

2

- 3 HVAC End Uses
 - Space Heating
 - Space Cooling
 - Ventilation
- 10 Non-HVAC End Uses
 - Water Heating
 - Cooking
 - Refrigeration
 - Interior Lighting
 - Exterior Lighting

- Office Equipment
- Miscellaneous Equipment
- > Air Compressors
- Motors (non-HVAC)
- Process Equipment







1.80%

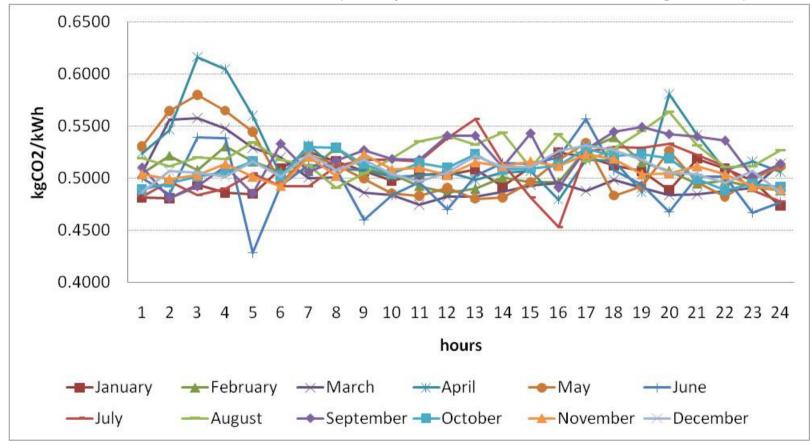
Considered Blg. Types

6

	-		r.					Restauration Restations				- 14-1						
	Sm	all Of	fice	Lar	Large Office		Restaurant		Retail Store			Food/Liquor			Un. Warehouse			
TOTAL		1			25		1			9		9				7		
Zone	S	м	L	S	м	L	S	М	L	S	М	L	S	М	L	S	М	L
FCZ 01				☆	4							☆			4			
FCZ 03				☆	☆	☆						☆			4			4
FCZ 04			☆	☆	4	☆			≯			☆			☆			☆
FCZ 05				☆	☆	☆						☆			4			4
FCZ 07				☆	☆	☆						☆			4			
FCZ 08				☆	4	☆						☆			4			☆
FCZ 09				☆	☆							☆			4			4
FCZ 10				☆	4	☆						☆			☆			☆
FCZ 13				☆	☆	☆						☆			☆			☆

optimizations take up to 10 hours

																_			
		Schoo		0	Colleg	e	He	alth C	are		Hotel		Misc			Ref. Warehouse			
TOTAL		18			18			17		16		0			17				
Zone	S	м	L	S	м	L	S	м	L	S	м	L	S	м	L	S	М	L	TOTAL
FCZ 01		☆	☆		☆	☆		☆	☆			☆					☆		12
FCZ 03		☆	¥		☆	☆		¥	☆		☆	☆					☆	⋫	16
FCZ 04		☆	☆		☆	☆		☆	☆		☆	☆					☆	☆	18
FCZ 05		☆	¥		☆	☆			☆		☆	☆					☆	⋫	15
FCZ 07		☆	☆		☆	☆		☆	☆			☆					☆	☆	14
FCZ 08		☆	☆		☆	☆		☆	☆		☆	☆					☆	≯	16
FCZ 09		☆	¥		☆	☆		¥	☆		☆	☆					☆	⋫	15
FCZ 10		☆	☆		☆	☆		☆	☆		☆	☆					☆	☆	16
FCZ 13		☆	☆		☆	☆		☆	☆		☆	☆					☆	☆	16
																	TO	TAL	138



Marginal Macrogrid CO₂ Emission Rates in 2020

used for the whole state (except run M-hc, see following slides)

source: Developing a Greenhouse Gas Tool for Buildings in California: Methodology and Use, Amber Mahone, Snuller Price, William Morrow, Energy and Environmental Economics, Inc., September 10, 2008 and PLEXOS Production Simulation Dispatch Model.

O PGE

- electric peak load 0 199 kW: flat tariff A-1, no demand charge, seasonal difference between winter and summer months of a factor of 1.45
- electric peak load 200 kW 499 kW: TOU tariff A-10, seasonal demand charge
- Electric peak load 500 kW and above: TOU tariff E-19, seasonal demand charge

O SCE

- electric peak load 20 200 kW: flat tariff GS-2, no demand charge, seasonal difference between winter and summer months of a factor of 1.1
- electric peak load 200 kW 500 kW: tariff TOU-GS-3, seasonal demand charge
- electric peak load 500 kW and above: tariff TOU-8, seasonal demand charge

• SDGE

The same electricity rate is uses for all simulations, AL-TOU. The main difference is that fixed cost is higher for above 500kW than below.

Sources: PGE tariffs effective March 1 2009, SCE tariffs effective February 9 2009, SDGE tariffs effective January 1 2009 A-1: http://pge.com/tariffs/tm2/pdf/ELEC_SCHEDS_A-1.pdf A-10: http://www.pge.com/tariffs/tm2/pdf/ELEC_SCHEDS_A-10.pdf E-19: http://www.pge.com/tariffs/tm2/pdf/ELEC_SCHEDS_E-19.pdf GS-2: http://www.sce.com/NR/sc3/tm2/pdf/CE281.pdf TOU-GS-3: http://www.sce.com/NR/sc3/tm2/pdf/CE281.pdf TOU-8: http://www.sce.com/NR/sc3/tm2/pdf/cE54-12.pdf AL-TOU: http://www.sdge.com/tm2/pdf/ELEC_ELEC-SCHEDS_AL-TOU.pdf

9

18 different scenarios have been performed so far for the midsize commercial sector

- Low NG prices in 2020, spring 2009 NG prices are kept constant in real terms, SGIP of \$500/kW for FCs, run L
- High natural prices in 2020, maximum NG prices in 2008 are kept constant in real terms, SGIP of \$500/kW for FCs, **run H**
- <u>Medium NG prices in 2020</u>, average of the NG prices between January 2006 and March 2009 are constant in real terms, SGIP of \$500/kW for FCs, <u>run M</u>, <u>"Reference Case"</u>
- Medium NG prices in 2020 and higher marginal carbon emission rates during off-peak hours in southern CA, SGIP of \$500/kW for FCs, run M-hc (marginal CO₂ rate during off-peak hours of 0.7883kgCO2/kWh, Marnay, C. et al., "Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector", Lawrence Berkeley National Laboratory Report LBNL 49945, Aug.2002.)

- Medium NG prices in 2020 and higher marginal carbon emission rates during offpeak hours in southern CA and SGIP incentive of \$750/kW for FCs, run M-hc-SGIP
- Medium NG prices in 2020 and **no min**. load constraint, SGIP of \$500/kW for FCs, **run M-no-min** (for all other runs a minimum load constraint of 0.5 is imposed and the engines cannot operate with less than 50% nameplate capacity)
- Medium NG prices in 2020 and only FCs are allowed, SGIP of \$500/kW for FCs, run M-onlyFC
- Medium NG prices in 2020, high carbon emissions in Southern CA, no PV and no solar thermal, SGIP of \$500/kW for FCs, run M-hc-noPVSolar

do-nothing	run L	run H	run M	run M-hc	run M-hc- SGIP	run M-no- min	run M- onlyFC	run M-hc- noPVSolar
total annual costs (M\$)	4859.7	5381.8	5030.8	5030.8	5030.8	5030.8	5030.8	5030.8
total annual CO2 emissions (Mt/a)	19.7	19.7	19.7	21.4	21.4	19.7	19.7	21.4

invest cases	run L	run H	run M Reference Case	run M-hc	run M-hc- SGIP	run M-no- min	run M- onlyFC	run M-hc- noPVSolar
total annual costs (M\$)	4103.6	5257.0	4837.9	4837.9	4836.1	4838.7	4921.1	4857.6
total annual CO2 emissions (Mt/a)	18.5	18.7	18.4	19.7	19.7	18.4	18.5	20.0
total installed capacities (without PV) (GW)	4.7	0.1	1.5	1.5	1.5	1.6	0.7	1.5
total electricity produced by DG (without PV) (TWh)	24.1	0.4	7.4	7.4	7.4	7.4	3.7	7.4
total cooling offset (TWh)	2.2	0.0	0.4	0.4	0.4	0.4	0.0	0.4
changed costs compared to do- nothing (%)	-15.6	-2.3	-3.8	-3.8	-3.9	-3.8	-2.2	-3.4
changed CO2 compared to do-nothing (%)	-6.2	-4.9	-6.7	-8.0	-8.0	-6.7	-6.1	-6.4
average capacity factor DG (without PV) (%)	58.8	55.5	54.9	54.9	55.0	53.0	63.6	57.9

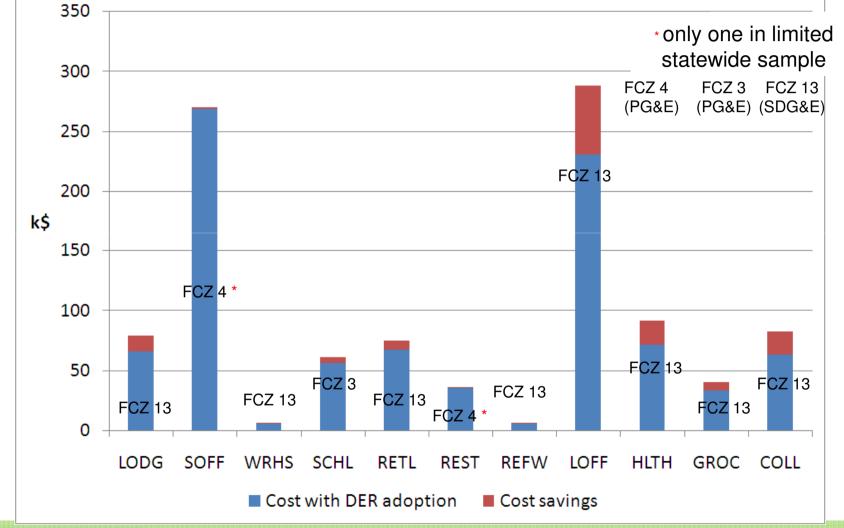
11

12

- Medium NG prices in 2020 and a 4% interest rate, SGIP of \$500/kW for FCs, run M-4%i
- Six different carbon tax runs with and without PV / solar thermal as possible option, SGIP of \$500/kW for FCs
 \$150/tC (= \$40.1/tCO₂), run M-lowCtax; run M-lowCtax-noPVSolar
 \$450/tC (= \$122.7/tCO₂), run M-medCtax; run M-medCtax-noPVSolar
 \$1000/tC (= \$272.7/tCO₂), run M-highCtax; run M-highCtax-noPVSolar
- Medium NG prices in 2020 and a Feed-in Tariff which reflects the whole purchase tariff, the feed-in tariff applies to all DG technologies, no SGIP, **run M-FiT** (constraint: purchase > sales; this constraint is needed otherwise some sites would install CHP without limits. This can drive the energy conversion efficiency near the macrogrid efficiency of ca. 34% since most of the waste heat could not be utilized)

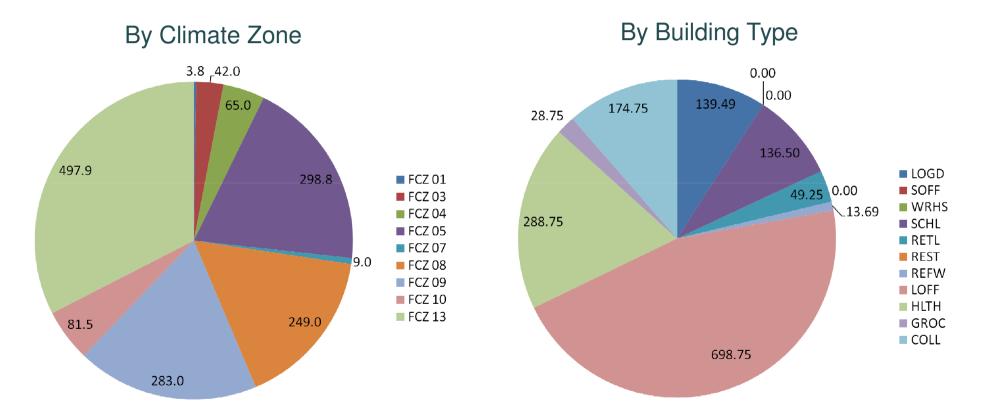
- Medium NG prices in 2020 and a Feed-in Tariff which reflects the whole purchase tariff, the feed-in tariff applies to all CHP technologies, no PV and no solar, no SGIP, run M-FiTnoPVSolar (constraint: purchase > sales)
- Medium NG prices in 2020 and a high SGIP incentive of \$1500/kW (=60% of the 2008 incentive value) for FCs and a 60% annual efficiency constraint for FCs using SGIP, **run M-SGIP60%**
- Medium NG prices in 2020 and a Feed-in Tariff which reflects the generation component of the tariff, the feed-in tariff applies to all DG technologies, no SGIP, run M-FiTg
- Medium NG prices in 2020 and a Feed-in Tariff using the MPR and TOD, run M-MPR, some technical problems / issues needs to be resolved

in all runs electricity tariffs (for purchase) from early 2009 / late 2008 are used and constant in real terms

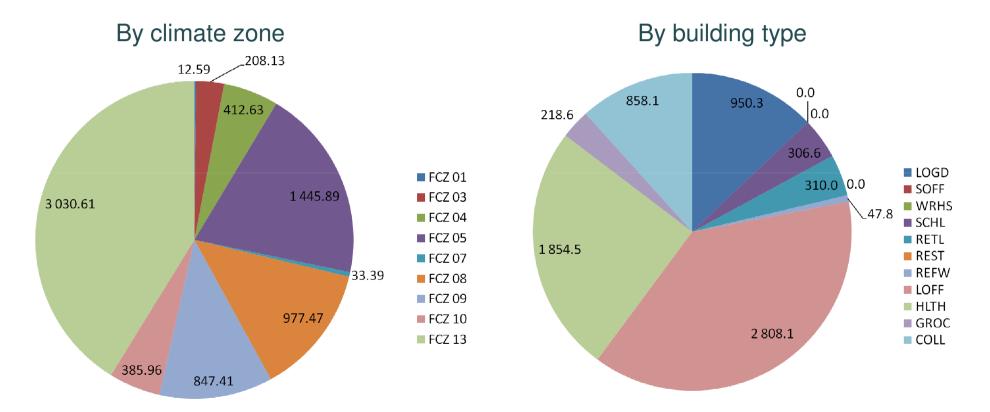

do-nothing	run M- 4%i	run M- IowCtax	run M- lowCtax - noPVSolar	run M- medCtax	run M- medCtax -noPVSolar	run M- highCtax	run M- highCtax -noPVSolar	run M-FiT	run M-FiT noPVSolar	run M- SGIP60%
total annual costs (M\$)	5030.8	5837.4	5837.4	7449.0	7449.0	10408.1	10408.1	5030.8	5030.8	5030.8
total annual CO2 emissions (Mt/a)	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7

invest cases	run M- 4%i	run M- IowCtax	run M- lowCtax - noPVSolar	run M- medCtax	run M- medCtax -noPVSolar	run M- highCtax	run M- highCtax -noPVSolar	run M-FiT	run M-FiT noPVSolar	run M- SGIP60%
total annual costs (M\$)	4757.0	5574.5	5624.5	6885.8	7147.2	9068.2	9934.4	4828.0	4848.9	4706.9
total annual CO2 emissions (Mt/a)	17.5	17.8	18.7	15.2	18.6	13.9	18.0	18.2	18.7	17.9
total installed capacities (without										
PV) (GW)	1.4	1.4	1.5	1.5	1.7	1.5	2.2	1.5	1.6	2.9
total electricity produced by DG										
(without PV) (TWh)	7.4	7.3	7.5	6.4	8.1	7.0	10.7	7.5	8.0	10.3
total cooling offset (TWh) :	0.4	0.4	0.4	0.2	0.4	0.1	0.2	0.4	0.5	0.6
changed costs compared to do- nothing (%)	-5.4	-4.5	-3.6	-7.6	-4.1	-12.9	-4.6	-4.0	-3.6	-6.4
changed CO2 compared to do- nothing (%)	-10.9	-9.9	-5.2	-22.9	-5.6	-29.2	-8.5	-7.8	-5.1	-9.3

Cost Savings – Best Bldgs. (Reference Case)



Installed Capacity (MW) (Reference Case)


Total installed capacity in limited statewide = 1.5 GW

Environmental Energy Technologies Division

16

Total on site generation in limited statewide = 7.4 TWh

Environmental Energy Technologies Division

17