
Bioenergy policy should be resilient to climate change in California *and* around the world

Lara M. Kueppers Elliott Campbell

www.ucmerced.edu

What is bioenergy?

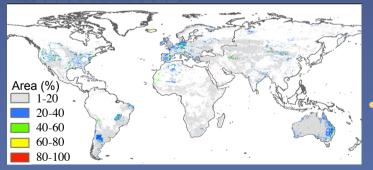
Solar energy recently captured by plants converted to useable fuel (liquid, pellets, gas)

 Lower energy densities than fossil fuels

Sources

- Dedicated crops (e.g., corn for ethanol)
 - both annual and perennial
- Agricultural or forestry waste (e.g., crop residue for ethanol*)
- Municipal waste (e.g., landfill biogas)


* not yet commercially viable


Facts and figures

California Electricity

biomass
coal
natural gas
oil
nuclear electric power
hydroelectric power
geothermal
solar/PV
wind
electricity net imports

Source: Energy Information Administration (May 2009)

 3.6% of CA electricity and 2.3% of CA transportation fuel were from biomass in 2006

> most corn ethanol, grown outside of CA

 Executive Order for 20% of biofuel to be produced in CA and 20% of renewable electricity to be biomass by 2010

 Area to grow bioenergy crops uncertain - 8.9 million acres in CA

Source: Campbell et al. 2008

Pros and cons of bioenergy

 Can reduce GHG emissions

+

- Productive use of marginal cropland
- Decrease waste from urban, ag land
- No intermittency problems like with solar, wind*

- Life cycle accounting required to assess
 GHG reductions
- Competes with other land uses
- Some crops resource intensive
- Vulnerable to climate variability* & change

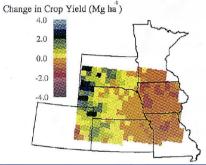
* Variability in resource months --> decades

Short rotation poplar

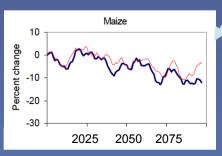
Methane digester

How will climate change affect bioenergy resources?

Perennial grass (Miscanthus)



Biodiesel refinery



Climate change will alter biofuel crop productivity

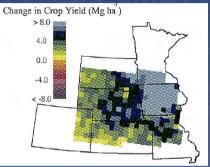
Source: Brown et al. 2000

Rainfed corn

 CO₂
 yield
 rainfall
 yield

- Irrigated corn
 - temperature ↓ yield, except in far north
 - Crop dependent effects
- Climate variability and extreme events affect yields, volatility in supply and price

Source: Lee et al. 2009, Tubiello et al 2002



Source: Lee et al. 2009

Climate change will alter biofuel crop productivity

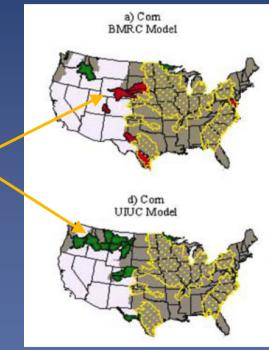
•

Switchgrass

Source: Brown et al. 2000

Rainfed corn
 – ↑ CO₂ ↑ yield
 – ↑ rainfall ↑ yield

- Irrigated corn
 - temperature ↓ yield, except in far north
 - Crop dependent effects
- Climate variability and extreme events affect yields, volatility in supply and price


Source: Lee et al. 2009, Tubiello et al 2002

Source: Lee et al. 2009

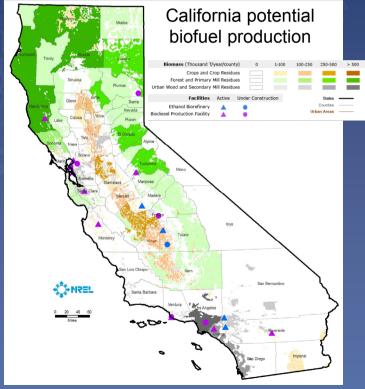
Climate change will alter where bioenergy crops are grown

- Suitable climate may shift geographically
 - alters fuel transport distance
 - transport affects fuel life cycle performance
- Regions where corn yields borderline are improved or become unsuitable
 - changes in distribution of marginal cropland available to biofuel crops
- European assessment found northward shift for bioenergy crops (Tuck et al. 2006)

Source: Thomson et al. 2005

Climate change will affect crop water supply and demand

Table 14. Water use by region (in TAF/yr)


Scenario	Sacramento	San Joaquin	Tulare	Southern California	Total
2050 Standard	6,149.8	5,772.6	3,655.5	8,856.0	24,433.9
2050 Climate Change	4,623.4	4,490.0	2,794.7	7,460.8	19,368.9
% Change	-24.82	-22.22	-23.55	-15.75	-20.73

Source: Howitt et al. 2009

- Bioenergy crops most sustainable without irrigation; California mostly irrigated cropland
- Decrease in water available for irrigation in California
- Higher temperatures increase plant water use
 - water requirements are crop specific
- Water required by refineries and power plants
 - 4 9.5 gal H₂O per gal biofuel vs 0.4 gal H₂O per gal gasoline

Mitigation & adaptation policies may alter bioenergy landscape

- Carbon sequestration requires biomass to remain on site
 - native grass system better for C storage or fuel?
- Crop management adaptations (e.g., erosion prevention) may require crop residue
- Forest thinning for wildfire management --> more woody biomass
- Biofuel accounting & mandates
 UCMERCED

Conclusions

- Bioenergy resources are diverse some are vulnerable to climate change.
- Uncertainties in climate change impacts include
 - emissions pathways, federal and state polices
 - regional precipitation and temperature changes, and
 - varying resource sensitivities (e.g., corn vs switchgrass).
- Bioenergy commodities are subject to national and international pricing and supply, making climate change in remote areas relevant to California.

Research needs

- How will biofuel water demand and yields change with climate change in CA and other source regions?
- Where will water availability limit the sustainability of bioenergy sources?
- How will changes in land use, climate, and in mitigation and adaptation policies influence where bioenergy crops are grown?
- Can bioenergy compliment other renewable but intermittent energy sources?
- What would a resilient bioenergy system look like?

