		CVE	- T
U	U	CKE	-

09-IEP-1G

DATE

RECD. May 13 2009

The Distribution Grid of the Future

Wanda Reder

VP – Power Systems Services S&C Electric Company 773-338-1000 x2318 wreder@sandc.com

Agenda

- Recognizing Future Needs
- Vision of a Smart Grid
- Distribution vision in the Smart Grid
- Distribution Smart Grid technologies / characteristics
- Example of dynamic islanding
- Seek real solutions to achieve benefits
- Impacts for suppliers and users

Recognizing the Future Power Needs

- By 2010, the Consumer Electronics (CE) sector will be represent the largest single usage category for domestic electricity
- By 2020, entertainment, computers and gadgets will account for 45% of electricity used in the home and need the equivalent of 14 average-sized power stations to power them.

The average US household owns 26 consumer electronic products

Further increases in dependency on electronic devices drives demand for near-perfect power quality and uninterrupted power availability

Is a Smart Grid a Green Grid?

- Initial estimated annual energy savings are
 37 – 194 billion kWh
 - equivalent to reducing24 126 million metrictons of CO2
 - equivalent to removing4 to 20 million cars offthe road

Vision of a Smart Grid

- Enable active participation by consumers
- Accommodate all generation & storage
- Enable new products, services, markets
- Provide power quality for digital economy
- Optimize asset utilization, operate efficiently
- Anticipate & respond to system disturbances
- Operate resiliently against attack & natural disasters

Distribution Vision in the Smart Grid

- Performs real-time simulation and contingency analysis
- Automatically adjusts
- Interacts between distribution devices, meters, home area networks, DG sources and substations
- Readily accommodates renewables, distributed generation, storage, plug-invehicles
- Supports islanding and reestablished interconnection
- Provides diagnostics / statistics

- phase balancing
- self-healing
- peak reduction
- loss management
- congestion management
- curtailment / price signals

Distribution Smart Grid Technologies

- Distribution Grid Management
 - distribution automation
 - advanced metering infrastructure
- Distributed Resources
 - energy storage
 - distributed generation
 - electric vehicles
 - wind generation
 - solar generation
- Integration with meters, home area networks and substations

Smart Meters

Intelligent
Distribution Devices

Renewables

Energy Storage

Technology Characteristics

- Capable of being updated dynamically
- Supports present and future protocols, DNP compatible
- Uses the most secure technologies
- Deployable in stages, scaleable
- Utilizes integrated communications:
 - Adequate bandwidth for AMI, DA,DG,PHEV
 - Capable of prioritizing traffic minimal latency
 - Avoids interference and is redundant
 - Supports peer-to-peer and peer-to-master communications

EPRI Smart Grid Demonstration

Smart Grid Infrastructure: Software/database, network communication and monitoring, and control architecture

Reduce Peak Demand, Enable Energy Efficiency, and Reduce CO₂ Footprint Through Dynamic Pricing & DER Integration

Energy Storage

- Energy Storage Benefits
 - Cost deferral of new substations
 - Improved service reliability
 - Less stress on aging infrastructure
 - Integration of renewable energy
 - Energy market value
 - Frequency regulation

Energy Storage

- Have installed several 1 MW -- 7.2 MWh NaS Batteries
 - Peak shaving for a station transformer
 - Dynamic islanding with distribution automation integration
 - Facilitating more dispatchable wind generation

2008 NaS Storage Project Overviews

AEP - Balls Gap, West Virginia

AEP - Bluffton, Ohio

AEP - Churubusco, Indiana

Xcel – Beaver Creek, Minnesota

Dynamic Islanding from Storage and DA

- Load information is captured by Intelliteam II devices
- Dynamic islanding activated upon loss of power
- The maximum number of customers are restored serviced by the battery based upon:
 - Last load information
 - Energy in the battery
- The island can be minimized as the battery depletes
- Customer load served until battery is exhausted or power is restored

Using a NaS Battery to Mitigate Outages A Fault Occurs Locking Out the Balls Gap Feeder

Using a NaS Battery to Mitigate Outages All IT-II Devices Open (on Loss Of Voltage)

Using a NaS Battery to Mitigate Outages IT-II Closes SW-1 to Energize Team 3

Using a NaS Battery to Mitigate Outages IT-II Closes SW-7 to Energize Team 2

Using a NaS Battery to Mitigate Outages IT-II Closes SW-4 to Energize Team 1

Using a NaS Battery to Mitigate Outages IT-II Closes SW-5 to Energize Team 4

Using a NaS Battery to Mitigate Outages IT-II Closes SW-2 to Energize Team 5

Using a NaS Battery to Mitigate Outages IT-II Closes SW-8 to Energize Team 6

Real Solutions Achieve Benefits Today

- S&C innovates upon proven technology
 - Expanding existing automation functionality
 - Using Universal Interface Module for inter-operability
 - Installing IntelliRupter NEW self powered, self contained, fault-interrupting switch
 - fast communication, priority messaging
 - remote control/communication
 - low-energy pulse senses fault and reduces energy pushed through circuit
 - mimics any fuse curve
 - can be fuse saving AND fuse blowing without intervention
 - selects the right speed based on the fault current

IntelliRupter

Impacts for Suppliers

- Suppliers
 - need to collaborate with other suppliers
 - consider backward / forward compatibility
 - support interoperability standards
 - stay abreast of security requirements, policies and technologies
 - seek technologies from non-traditional sources

Impact for Utilities

- Think through the macro smart grid roadmap
- Work with others for technology assessments
- Gain experience with large-scale integrated deployments
- Validate business case assumptions
- Get started!

Conclusion

- Smart Grid is critical to maintaining reliability
- The industry is on the cusp of a wave of change presenting a growing opportunity for innovation and collaboration
- Requires:
 - Awareness of smart grid initiatives
 - Long range planning
 - Innovative technologies
 - Deployments: scaleable, interoperable, and secure
 - Willingness to explore new thinking, manage expectations