


#### Mid-Level Blend Ethanol: Challenges, Opportunities & Testing Follow Through





Joint IEPR and Transportation Committee Workshop on Transportation Fuel Infrastructure Issues California Energy Commission Sacramento, CA April 14-15, 2009

# Mid-level Blend Ethanol Drivers and Concerns



- EISA 2007 mandate for "clean, renewable and alternative energy (liquid fuels)"
  - Underlying objectives America's energy security and GHG reduction
  - Accomplished through home grown fuels and greater efficiency
- Immediate EISA focus ethanol
- Alternative fuels to evolve from food feedstock to advanced biofuels
- Various studies (by EPA & others) have shown mid-level ethanol is a temporary conduit and won't achieve EISA RFS mandates
- Call to auto manufacturers make more vehicles capable to use the over-supply of ethanol
- Capability/compatibility of vehicle legacy fleet to use mid-level blends

   requires follow through on comprehensive independent testing
- E15 Waiver Application has been submitted to EPA by Growth Energy



- Levers to reduce GHG emissions & energy usage (underlying EISA objectives)
- FFV/E85 utilization and challenges
- Mid-level ethanol blends effects analysis

# Vehicle & Fuel Levers to Reduce GHG Emissions & Energy Usage



#### The Vehicle and Challenge to Automakers

- Congress, the Administration and California understand the significance of transportation in nation's GHG inventory.
- Vehicle component well-handled in EISA for maximum feasible technology going forward.
- EISA also called for 36B gallons/year of alternative fuels by 2022. However, a shortcoming is that a commercial viability determination in the future can allow for an adjustment of the goal.

# Vehicle & Fuel Levers to Reduce GHG Emissions & Energy Usage



#### The Fuel Opportunity – Challenge Fuel Providers in Similar Way

- Better mechanism needed for production and distribution of alternative fuels so that they can be sold at a price less than gasoline or diesel (when compared on an energy basis)
- Application of maximum feasible technology on the vehicle will assure minimum use of energy. However, any carbon into the tank will go out the tailpipe.
- Therefore, to phase down carbon emissions at maximum rate, the target must be to take the carbon out of the liquid fuel pool.
- Congress should direct EPA to create a rule to limit the carbon content in fuel (in form of a national LCFS). This standard could be modeled after EISA 2007 vehicle fuel provisions.

# Vehicle & Fuel Levers to Reduce GHG & Minimize



- Attacks the key chemical element (carbon) for GHG reduction and climate improvement
- Compliments: EISA 2007 RFS & associated vehicle actions, DOT's recently released 2011 fuel economy standard and President Obama's goals for national CO<sub>2</sub>/GHG reduction.
- Addresses energy security concerns
- Encourages or enables the fuel industry to develop new fuels, processes and market strategies to achieve required carbon limits.
- Fortifies a growing alternative fuel industry and American jobs for the development, production and sale of home grown fuels or energy crops.
- Serves as a step towards a long-term vision and 2050 GHG reduction goals.

# Vehicle & Fuel Levers to Reduce GHG & Minimize Energy Usage - Summary

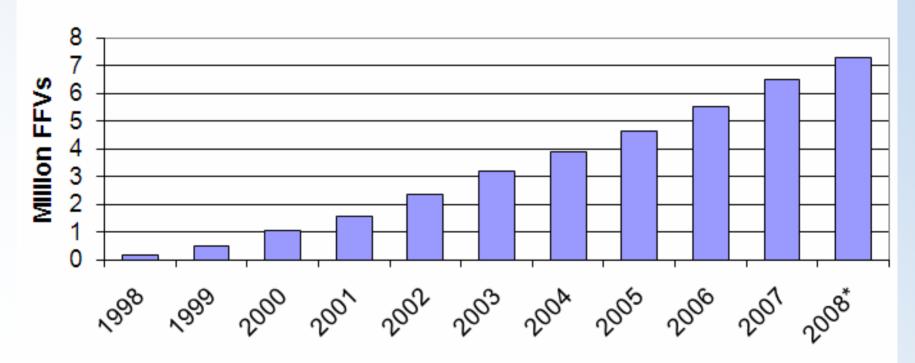
#### Actions to-date

- Some federal & state actions have been taken or are underway for achieving a low carbon fuel or contributing to desired GHG reductions.
  - However, a national program is needed to maximize the ability of using the scale of the transportation fuel distribution system to minimize the costs to consumers.
  - Some of these federal & state actions have been diluted by including the vehicle or other factors & thus diminish maximum feasible technology towards a low carbon fuel.

In summary, to secure its energy, America needs to:

- Attack the carbon in fuel
- Actively promote the development and technology for home grown energy
- Stay focused on a long-term vision for carbon-free energy and transportation




# **FFV/E85 Utilization and Challenges**

- Availability of Flexible Fuel Vehicles
- E85 FFV Portfolio Expansion
- Availability of E85 Fuel
- E85 Utilization Potential
- Technical and Policy Challenges
- E85 Growth Initiatives



# **Availability of Flexible Fuel Vehicles**

- There are over 7 million E85 flexible fuel vehicles (FFV) on the road in the U.S. today
- With almost 2 million flexible fuel vehicles on the road in the US, Chrysler is a major producer of E85 vehicles.





## **2009 Flex-Fuel Vehicles**

#### **Dodge Ram**

#### **Chrysler Town and Country**

#### **Chrysler Aspen**



#### **Chrysler Sebring**

#### **Dodge Avenger**



#### Dodge Dakota





#### **Dodge Grand Caravan**



#### **Jeep Grand Cherokee**

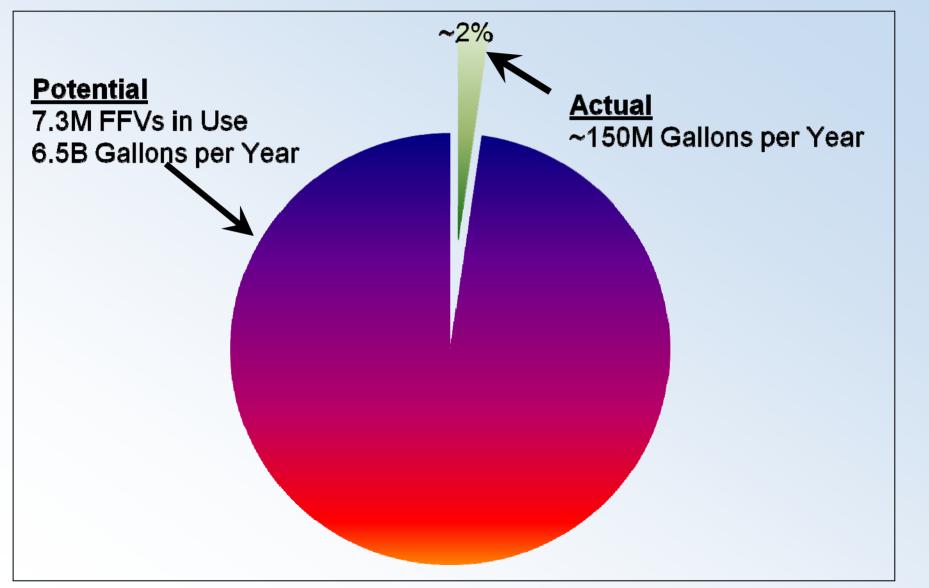


#### **Dodge Durango**





- Domestic automakers have committed that by 2012, 50% of new light-duty vehicles produced will be capable of using alternative fuels. Contingent upon continued infrastructure development.
- Automakers have already invested over \$1 Billion in developing and producing FFVs and will continue significant annual investment to meet the 50% commitment.
- In 2009 Chrysler has 10 models with flexible fuel capability




The vast majority of ethanol sold in the U.S. is with an E10 blend

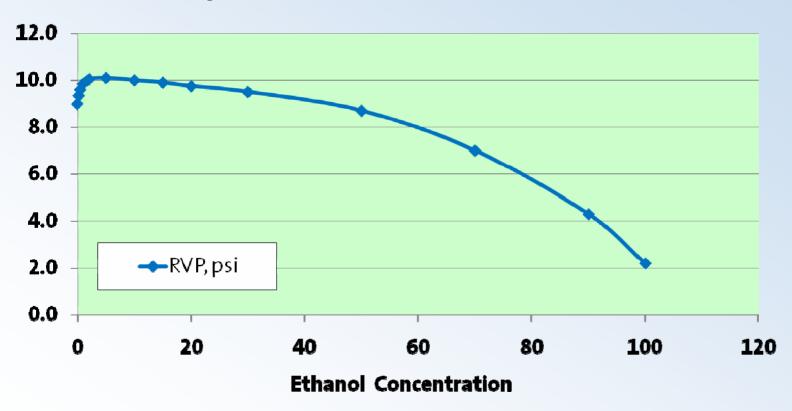
- E10 is at or nearing 80% utilization (for regular gasoline, non-FFVs)
- E85 is at approximately 2% utilization (in FFVs)
- <u>There are 1,800 public E85 stations in the U.S. (vs. approximately 121,000 gasoline stations)</u>
- 90% of FFVs do not have an E85 station in the same zip code
- Nearly half do not have an E85 station in their county



## **Current E85 Utilization vs. Potential**

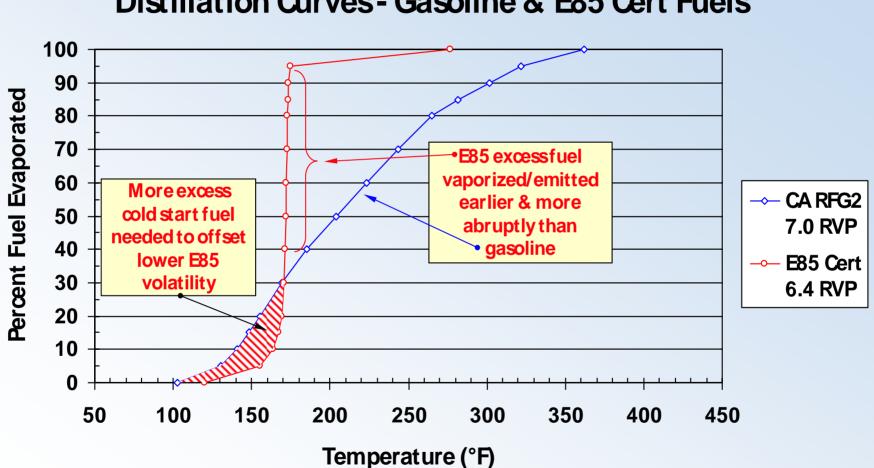





- EISA 2007 set goals that take us far beyond E10 requiring 36B gallons/year of alternative fuels by 2022
- High concentration ethanol blends play a significant role in enabling EISA-based levels of ethanol supply growth in the U.S. marketplace
- Cellulosic feedstocks could allow biofuel production to reach 90 billion gallons of ethanol by 2030. Source: Sandia National Lab & GM's joint "90-Billion Gallon Biofuel Deployment Study", February 2009.
- Mid-level blends can at best provide only a temporary conduit and cannot satisfy required ethanol utilization mandates

## **Technical & Policy Challenges: Attainment of Emission Standards**

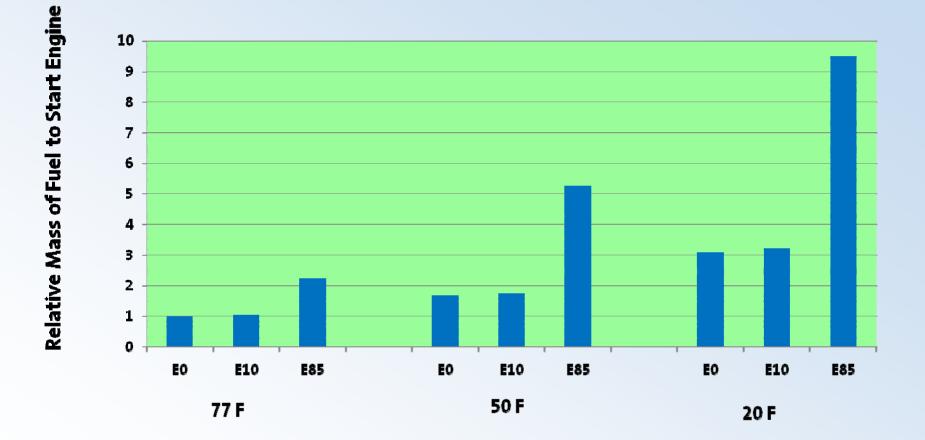



- California PZEV/AT-PZEV
- Cold (50°F and 20°F) FTP

#### **Reid Vapor Pressure of Gasoline Ethanol Blends**

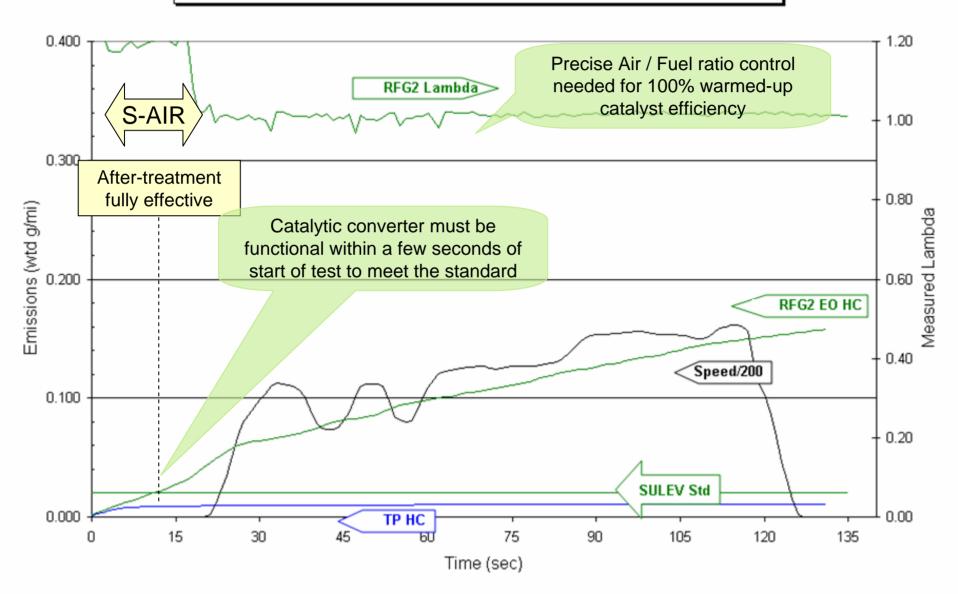


### **Technical & Policy Challenges: Attainment of Emission Standards**



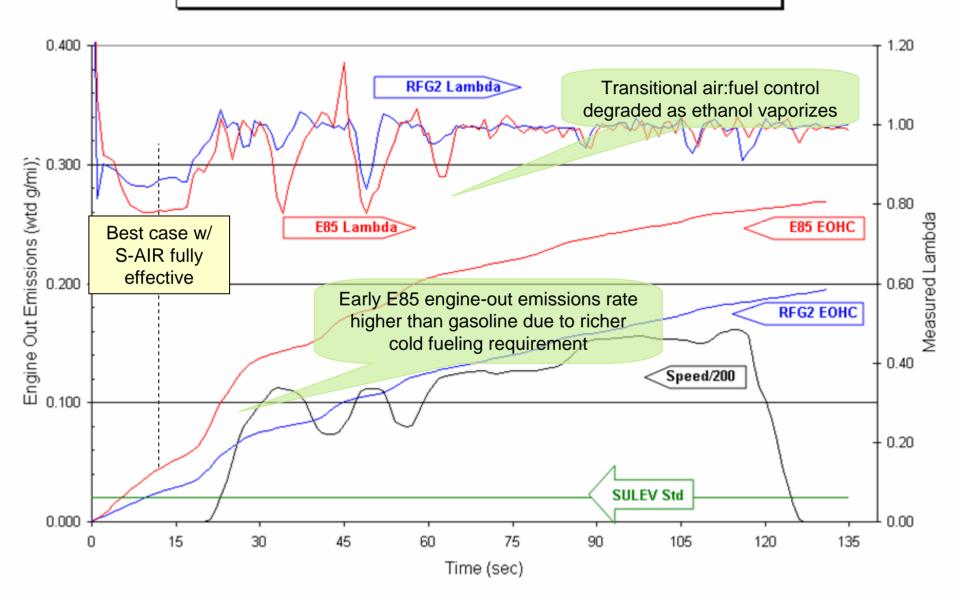



#### **Distillation Curves - Gasoline & E85 Cert Fuels**


## Technical & Policy Challenges: FFV Cold Start Fueling Data






# PZEV – Tailpipe Emissions (SULEV)





# PZEV – Tailpipe Emissions (SULEV)

#### 50°F Cycle 1 Emissions Tier 2 RFG vs.E85 Fuel






# E85 Growth Initiatives for the Industry

- Target E85 distribution growth activities in high FFV concentration markets
  - More pumps
  - Pumps in the right places
- Increase rate of growth of FFV population resolve regulatory and technology challenges to growth
- Ethanol (and other alternative fuels) prices must be less than the price of gasoline or diesel (when compared on an energy basis)
- Congress should direct EPA to create a rule to limit the carbon content of fuel (in the form of a National LCFS)



- Effort started in 2007 as a result of a push for mid-level blends
- Domestic automakers & subsequently other autos joined to:
  - Draw on their global experience with ethanol & identify potential failure modes
  - Focus on areas with known issues based upon experience & literature
  - Design a plan to look at durability effects of mid-level ethanol
  - Engage the Coordinating Research Council (CRC)
- Under CRC's leadership, the test Program has broadened and is now referred to as the Mid-level Ethanol Blends Research Coordination Group and includes members from – Industry (auto, oil, marine, outdoor power equipment, engine manufacturers, motorcycle), Government (DOE, EPA) & RFA
- Test Plans have been developed, initiated or are under development by:
  - CRC (auto/oil) for vehicles
  - NMMÀ, OPEI, EMA for boats, outdoor power equipment and small engines. CRC committees are reviewing initial test plans.







# **Components of Auto/Oil Test Plan**

- Fuel Storage and Handling
  - Pump, tank, level sender, fuel line damper, fuel injector & rail
- Base Engine Durability
- On-Board Diagnostics Evaluation
- SULEV and Cold Ambient (20F) Operation
- Catalyst Durability and Degradation
- Evaporative Emissions
  - Long-term permeation
  - Durability of fuel system components
- Emission Inventory and Air Quality Modeling
- Exhaust Emissions on aged vehicles

Note: All test procedures are balloted through CRC and details of above test programs are shown in the back up slides.



# **Details of Auto/Oil Test Plan – One Sample**

- Base Engine Durability GM/Chrysler Lead
  - This program looks at the effects of mid-level ethanol blends on engine durability, whether directly or through the engine control system
    - Engine deterioration and failure due to ethanol usage will have a significant effect on public support for ethanol
    - >As engines fail they become high emitters and will affect air quality
  - The goal is to document the composition threshold and extent of engine damage due to mid-level ethanol blends

>Automakers upgrade engines for ethanol resistance

- Many engines have their power protection systems compromised by mid-level ethanol blends
- CRC CM-136-09 Statement of Work is out for bid



# **Status of Research on Mid-Level Blends**

|                                                |          | 7 8                 |                         | 9        |        | 10         |        | 11                 |
|------------------------------------------------|----------|---------------------|-------------------------|----------|--------|------------|--------|--------------------|
|                                                |          |                     |                         |          |        | JASOND J F | MAMJJA | SONDJFMAMJ         |
| Catalyst Durability Aging Orbital              |          | CRCI                | <mark>E-87 Ph-</mark> l | DOE V    | 4      |            |        |                    |
| Evap Emissions Systems                         |          |                     |                         |          |        | CRC E-91   |        |                    |
| Base Engine                                    |          |                     |                         |          |        | CRC CM-    | 136-09 |                    |
| Fuel system, Damper, Lvl sen, Mat'l Compat.    |          |                     | AV                      | FL-15    |        |            | AVFL-1 | 5 Follow-On        |
| Catalyst Durability Aging                      |          | CRC I               | <mark>E-87 Ph-</mark> l | DOE V    | 4      |            |        |                    |
| Powertrain Systems Cold Operation (MSAT NN     | HC &SULE | V)                  |                         |          |        | CRC E      | E-XX   |                    |
| Vehicle Emissions, Late Models                 |          | DOE V1              |                         | DOE V    | 4      |            |        |                    |
| Vehicle Emissions, Late Models                 |          |                     |                         | EPAct    |        |            |        |                    |
| Vehicle Emissions, Older Models Orbital        |          |                     |                         |          |        |            |        |                    |
| Emissions - DOE will monitor                   |          | MN RFA E20 St       | <mark>udy</mark>        |          |        |            |        |                    |
| Veh Perf & Emissions - DOT sponsored           |          | RIT S               | <mark>Study</mark>      |          |        |            |        |                    |
| Evap Emissions, Permeation                     | CRC E-65 | S CRC E-77          |                         |          |        |            |        |                    |
| Evap Emissions, Permeation and Durability      |          |                     |                         |          |        | CRC E-91   |        |                    |
| Powertrain Systems Cold Operation (MSAT NN     | HC &SULE | V)                  |                         |          |        | CRC E      | -92    |                    |
| Vehicle Emissions, Late Models                 |          | DOE V1              |                         | DOE V    | 4      |            |        |                    |
| Driveability of 20 FFVs 6 non-FFVs             |          |                     | <mark>CM-138</mark>     |          |        |            |        |                    |
| Driveability of 80 vehicles - DOE will monitor |          | MN RFA E20 St       | -                       |          |        |            |        |                    |
| Veh Perf & Emissions - DOT sponsored           |          | RIT Stu             | <mark>idy</mark>        |          |        |            |        |                    |
| Base Engine                                    |          |                     |                         |          |        | CRC CM-136 | -09    |                    |
| Permeation of Fuel System                      |          |                     |                         |          |        | CRC E-91   |        |                    |
| Fuel system, Damper, Lvl sen, Mat'l Compat.    |          |                     | AV                      | FL-15    |        |            | AVFL-1 | 5 Follow-On        |
| Elastomer, Plastic & Metals - DOE will monitor |          | MN RFA E20 St       | <mark>udy</mark>        |          |        |            |        |                    |
| Emissions/Air Quality Monitoring               |          |                     |                         |          |        |            | E-68   | a Follow-on / A-73 |
| On-Board Diagnostics                           |          |                     |                         |          |        | CRC E-90   |        |                    |
| Key:                                           | Compre   | ehensive            |                         |          |        |            |        |                    |
| I Study includes preliminary data for          | Compre   | ehensive in develo  | opment                  |          |        |            |        |                    |
| tests & materials compatibility.               | Prelimi  | nary, partial or sc | reening                 |          |        |            |        |                    |
|                                                | Gap      | Program             | is with Re              | d Border | rs are | e Unfunded |        |                    |



#### Mid-Level Blend Ethanol: Challenges, Opportunities & Testing Follow Through

#### James Frusti Senior Specialist – Fuels & Energy Affairs Chrysler LLC

Joint IEPR and Transportation Committee Workshop on Transportation Fuel Infrastructure Issues California Energy Commission Sacramento, CA April 14-15, 2009



- Single page summary of CRC Auto/Oil Test Plan
- Details of each major component of the CRC Auto/Oil Test Plan
- FFV density map by county



#### Auto/Oil E10+ Test Program for Highway "Non-FFV" Vehicles

| ltem #                                                                                                      | Title                                                                                                                                                                                                 | Project #                                                                                                                                                                              | Status                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                           | Fuel Storage and Handling                                                                                                                                                                             | CRC AVFL-15                                                                                                                                                                            | While AVFL-15 is funded the                                                                                                                                                                                                                                          |
| I                                                                                                           | Tuer Storage and Handling                                                                                                                                                                             | GRO AVI E-13                                                                                                                                                                           | follow-on program is not                                                                                                                                                                                                                                             |
| above 10% th                                                                                                | nat E10-rated parts fail. The c                                                                                                                                                                       | bjective of AVFL-15 is to dete                                                                                                                                                         | nclear at what level of ethanol content<br>rmine the durability of wetted fuel<br>systems durability testing. Resource                                                                                                                                               |
|                                                                                                             | ted the scope of AVFL-15, preventi                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |
| 2                                                                                                           | Base Engine Durability                                                                                                                                                                                | CRC CM-136-09                                                                                                                                                                          | This expensive program awaits<br>outside funding                                                                                                                                                                                                                     |
| done internal te<br>testing for base                                                                        | esting and have found sensitivity to                                                                                                                                                                  | intermediate ethanol blend level<br>ne actual machinery as opposed                                                                                                                     | and E100. Some automakers have<br>s for non-FFV vehicles. The proposed<br>to the sensors, controls and the like) is<br>009.                                                                                                                                          |
| 3                                                                                                           | On-Board Diagnostics (OBD)<br>Evaluation                                                                                                                                                              | CRC E-90                                                                                                                                                                               | The first phase of E-90, site<br>selection, is funded by CRC                                                                                                                                                                                                         |
|                                                                                                             | a fleet of aged production vehicles                                                                                                                                                                   |                                                                                                                                                                                        | OBD. The issue is how OBD systems is defined in CRC Project No. E-90.                                                                                                                                                                                                |
| 4                                                                                                           | Tailpipe Emissions for<br>SULEV Vehicles and at Cold<br>Ambient Temperatures                                                                                                                          | CRC E-92                                                                                                                                                                               | A final project plan will be<br>prepared by May 2009                                                                                                                                                                                                                 |
| gives concerns<br>their required e<br>aging the vehic                                                       | that existing and planned vehicles                                                                                                                                                                    | designed for federal and Californ<br>d on mid-level ethanol blends. Si<br>ensive.                                                                                                      | on of the fuel blend at low temperature<br>nia emissions test fuels will not meet<br>nee this program does not envision<br>The course and fate of this                                                                                                               |
| 5                                                                                                           | Degradation                                                                                                                                                                                           | CRC E-87                                                                                                                                                                               | program is currently unclear                                                                                                                                                                                                                                         |
| study conducte<br>that had proble<br>the US fleet wil                                                       | ed in Australia. DOE found that 44<br>ms with E20 in Australia and their<br>Il have this sensitive control archit<br>E-87-2. E87-1 was funded by CR<br>RC.                                            | 4% of vehicles they tested had t<br>data, when combined with CRC<br>ecture. Durability testing to ider                                                                                 | Il-documented in the Orbital research<br>he same control architecture as those<br>E-87-1 data, indicates that 35-45% of<br>tify this phenomenon was planned for<br>-87-2 was funded by DOE with minor                                                                |
| 6                                                                                                           | Evaporative Emissions<br>Durability                                                                                                                                                                   | CRC E-91                                                                                                                                                                               | This expensive program awaits<br>outside funding                                                                                                                                                                                                                     |
|                                                                                                             |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |
| projects under                                                                                              | E-65 and E-77 on the effects of et<br>i short exposures. This project has                                                                                                                             | hanol on evaporative emissions.                                                                                                                                                        | tings, CRC has conducted research<br>However, these tests have all looked<br>-91 which will be ready for contracting                                                                                                                                                 |
| projects under at the effects of                                                                            | E-65 and E-77 on the effects of et                                                                                                                                                                    | hanol on evaporative emissions.                                                                                                                                                        | However, these tests have all looked                                                                                                                                                                                                                                 |
| projects under<br>at the effects of<br>in mid 2009.<br>7<br>The CRC Atm<br>ethanol blends<br>Reformulation) | E-65 and E-77 on the effects of et<br>i short exposures. This project has<br>Emissions Inventory and Air<br>Quality Modeling<br>ospheric Impacts Committee is le<br>requires final release of the EPA | hanol on evaporative emissions.<br>been defined in CRC RFP No. E<br>A-67 / A-73<br>eading this effort in coordination<br>MOVES Emission Factor Mod<br>nd Air Quality Modeling) are the | However, these tests have all looked<br>-91 which will be ready for contracting<br>A-67 are underway and A-73 is<br>planned for a start in 2009<br>with others. A program to evaluate<br>el, A-67 (Estimating Ozone from Fuel<br>CRC programs that will address this |





- Fuel Storage and Handling (vehicle perspective) Ford Lead
  - CRC program AVFL-15 screening to identify sensitive components and vehicles underway
  - The industries understand system components for E10 and also for E85, but it is unclear at what level of ethanol above 10% that rated parts fail.
  - The objective of AVFL-15 is to determine the durability of wetted fuel components/systems. Fuel storage and handling testing is embodied within this program.
  - Resource constraints limited the scope of AVFL-15, preventing a definitive program additional testing is required.



- On-Board Diagnostics Evaluation Honda Lead
  - This program looks at the effect of mid-level ethanol blends on the On-Board Diagnostic (OBD) system.
  - There are several diagnostic tests that are affected by increasing the oxygen in the fuel.
    - Excessive oxygen can cause MILs (malfunction indicator lights) to set when no problem exists
    - Conversely, excessive oxygen can prevent MILs from setting when real problems exist
  - Many states use OBD as part of their in-use monitoring programs
  - The goal is to document the effects of increased fuel oxygen on the OBD system.
  - CRC E-90 is in test site selection phase and a follow-on to this pilot study will likely be needed



- Tailpipe Emissions for SULEV z& Cold Ambient Operation Toyota Lead
  - This program looks at the effects of mid-level ethanol blends on tailpipe emissions, both the 20F MSAT NMHC requirement being phased in with 2010 model year vehicles, and the longstanding SULEV (Tier 2 Bin 2) standards
    - >Vehicles are certified on federal emissions test fuel (E0).
    - Rigorous emissions standards emphasize minimization of cold start emissions
    - For most manufacturers ethanol levels are not recognized during cold start and emissions compliance is at risk
  - The goal is to document effects of mid-level ethanol blends on emissions relative to these rigorous standards
    - Testing will initially not use appropriately aged catalysts and will thus be only a snap shot or "Quick Look"
    - Follow-on testing using appropriately aged catalyst based on modified parameters developed during the catalyst aging program is possible depending on the results of other programs
  - Statement of Work under development



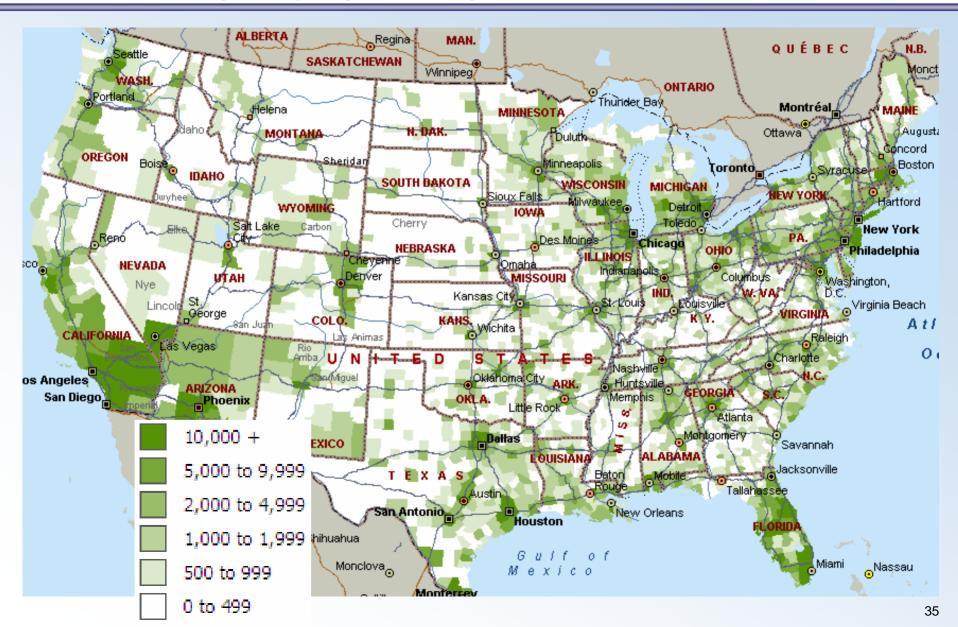
- Catalyst Durability & Degradation GM Lead
  - This program looks at the effects of mid-level ethanol blends, directly and through the engine control system, on catalyst durability
     Catalyst deterioration will have a significant effect on air quality
  - The goal is to determine the existence and extent of the catalyst deterioration documented by the study done for the Australian Department of the Environment
  - CRC program E87-1, screening to identify sensitive vehicles
    - ≻Complete
    - ➢ Report pending
  - CRC program E87-2, durability testing on sensitive vehicles
     Complete revision of test program has been proposed by DOE
     The course and fate of this program is currently unclear



- Evaporative Emissions Useful Life Chrysler/GM Lead
  - This program looks at the effects of mid-level ethanol blends on evaporative emissions durability
    - Deterioration of the evaporative emissions system will have a significant effect on air quality
  - The goal is to build on CRC programs E-65 that documented ethanol's evaporative emissions effects. The test plan is built using the California regulations regarding evaporative emissions durability testing

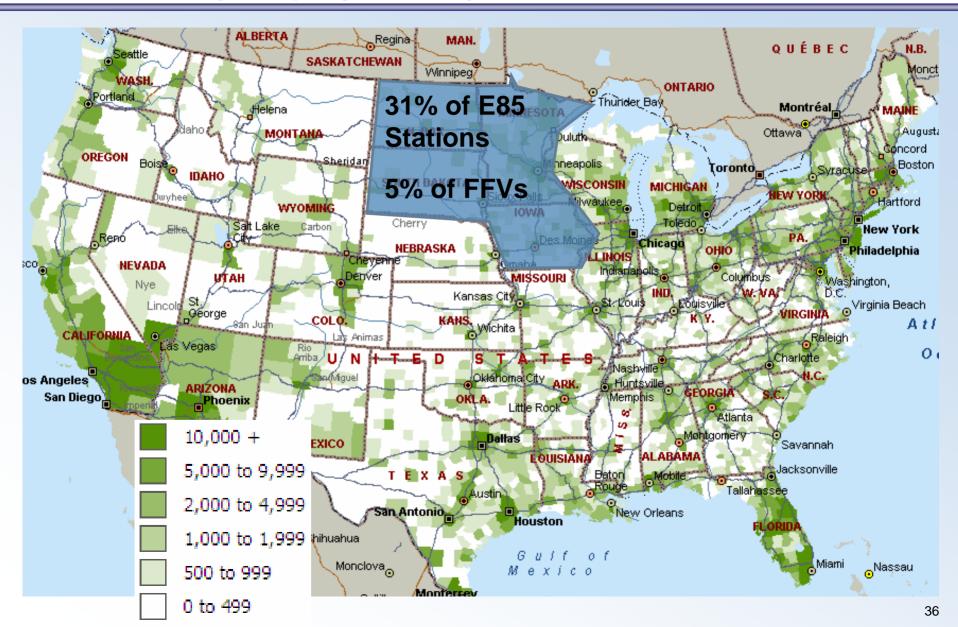
California data is used for EPA certification

• CRC program E-91 Statement of Work is out for bid



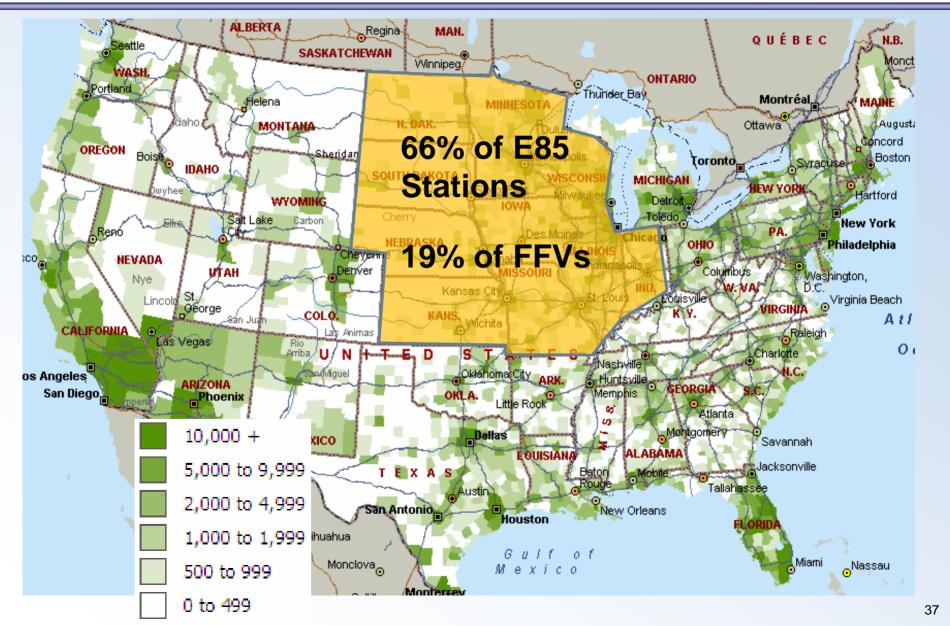

# **Details of Auto/Oil Test Plan**

- Exhaust Emissions
  - The effects of long term exposure need to be determined for vehicles likely to be exposed to mid-level ethanol blends
  - This will be done as part of the other portions of the CRC program
- Emission Inventory and Air Quality Modeling Chevron/Ford Lead o CRC E-68a Follow-on (MOVES Emission Factor Model Evaluation) o A-67 (Estimating Ozone from Fuel Reformulation) o A-73 (Emissions Modeling and Air Quality Modeling)
  - Projects to incorporate mid-level ethanol exhaust and emission impacts into MOVES and ultimately provide an emission inventory analysis
  - These projects can begin once EPA validates their MOVES model and the data from the other portions of the CRC program




# **FFV Density Map by County**






# **FFV Density Map by County**





# **FFV Density Map by County**

