AB 1613 CEC Workshop

April 13, 2009

Eric Wong, Cummins Inc.

California Clean DG Coalition

DOCKET

08-WHCE-1

DATE April 13 2009

RECD. April 14 2009

TOPICS

- Recent CHP Report
 - One Finding: 66 % HHV average efficiency
 - Combined Heat and Power, Effective Energy
 Solutions for a Sustainable Future, ORNL, December
 1, 2008; ORNL/TM-2008-224
- LHV vs HHV
- SHP and CHP
 - Massachusetts investigation

ORNL REPORT- DATABASE

- ICF maintains a database of CHP installations for the U.S. DOE through a contract with ORNL – <u>www.eea-inc.com</u>
- The database includes over 3300 sites representing over 85,000 MW of CHP capacity – CHP is broadly defined including within the fence systems owned by the facility, IPP systems selling thermal energy to an adjacent steam host, and waste heat power systems.
 - The database is meant to be comprehensive coverage of systems > 1 MW is thought to be >98%; coverage of smaller systems is most likely > 80%

ORNL REPORT- DATABASE (con't)

Based on this analysis, overall CHP fleet performance in 2006 is estimated to be:

Net power generation: 505,949 GWh

Thermal energy provided: 3,776 TBtu

Average CHP efficiency: 66.3 % (HHV)

Average CHP system P/H ratio 0.5

Total CO2 savings:248 million metric tones*

(*based on avoiding national average fossil fuel generation emissions of 1,879 lb CO2/MWh, 9% average T&D losses, and 75 to 83 % onsite boiler efficiency depending on fuel type)

LHV vs. HHV Must Always be Designated by Fuel Type

Heating values for selected fuels^[2]

Name	<u>HHV</u> (<u>MJ</u> /kg)	LHV (<u>MJ</u> /kg)	HHV/LHV	LHV/HHV
Coal [a]	34.1	33.3	1.024	0.977
CO	10.9	10.9	1.000	1.000
Methane	55.5	50.1	1.108	0.903
Natural gas [b]	42.5	38.1	1.115	0.896
Propane	48.9	45.8	1.068	0.937
Gasoline [c]	46.7	42.5	1.099	0.910
Diesel [C]	45.9	43.0	1.067	0.937
<u>Hydrogen</u>	141.9	120.1	1.182	0.846

a) ^ Anthracite, average

b) - Groningen (The Netherlands)

c) - Average gas station fuels

LHV vs HHV CONVERSION FACTORS MUST BE GIVEN FOR EACH FUEL

Heat Content Conversion factor (natural gas)

1.1% * LHV = HHV or LHV = 90% of HHV

Efficiency conversion factor (natural gas) LHV = 1.1 * HHV

CHP AND SHP -- MASSACHUSETTS INVESTIGATION

- PACE Energy and Climate Center (PECC)
 - Comments on the Alternative Energy Portfolio
 Standards Program, Feb. 19, 2009

PECC is concerned about the baseline efficiency levels put forth by DOER. No credits are accumulated unless and until a CHP system meets or exceeds a 50 percent electrical efficiency level and a 95 percent thermal efficiency level¹. Evidence from several experts in this field, including project developers and equipment sales companies, have demonstrated that the effect of these very high standards will be to provide a very small incentive, or no incentive at all, to socially beneficial, high efficiency, low emissions CHP projects in Massachusetts.

CHP AND SHP -- MASSACHUSETTS INVESTIGATION (con't)

PECC further commented:

The average electrical efficiency from the grid to the point of end use is typically stated in the range of 30% to 33%, depending upon location, seasonal, peak day and diurnal factors. Though the newest and best gas turbine combined cycle (GTCC) system designs may approach 47% to 50% efficiency this is an inaccurate characterization of the "average" efficiency performance of the grid. Similarly, while an end user may theoretically purchase a 95% efficiency boiler, data indicates that the average boiler efficiency rating for new purchases is less than 83%. The fleet average, including all pre-existing boilers from the very old to newer models, will have an efficiency profile much lower than 83% and an emissions profile much worse than newly available models. We speculate that a substantial portion of incremental CHP systems will come first from the stock of older, perhaps very old, and inefficient boilers. ² By setting an attribute standard as high as the one proposed in this instance, the incentive effect will be precluded, or greatly blunted for many otherwise potentially beneficial projects.

Recommendations

- ORNL Report
 - CEC can ask for specific analysis and the supporting data
- HHV vs. LHV
 - Ratio be stated for different fuels: eg., natural gas, landfill gas, digester gas
- CHP metrics
 - Address both topping and bottoming cycles
- SHP and CHP
 - Review investigation of Massachusetts and others

CONTACT INFORMATION

Eric.R.Wong@Cummins.com