

GWF Henrietta Combined Cycle Amendment

Soils and Water Resources Data Response Clarifications

The following clarifications are responses to comments provided by Mark Lindley on February 19, 2009 and discussion held between the CEC and GWF on March 3, 2009.

Data Response 24

GWF has created an Equivalent Annual Cost (EAC) estimate as suggested by the CEC comparing the cost of utilizing secondary treated water from the Lemoore Naval Air Station Sewage Treatment Plant as the primary water source for GWF Henrietta versus the proposed use of State Water Project and Central Valley Project water rights. The analysis is attached as Attachment DR3.2-24.

Siemens Water Technologies Corporation provided engineering guidance and capital cost estimates for the equipment required to treat the recycled water and the resultant waste streams. The Turlock Irrigation District was contacted for operational and maintenance costs for recycled water treatment and use. These values were scaled to account for differences in system sizing, operational conditions, and water source quality.

The EAC analysis estimates the use of recycled water for GWF Henrietta would cost approximately \$13.32 per MWh. The proposed water source is estimated to cost approximately \$2.60 per MWh. The difference of \$10.72 per MWh shows that the use of recycled water at GWF Henrietta is economically infeasible.

GWF also analyzed the severe drought scenario where the facility would only be granted 15% of the water allocated to the project. Under this scenario GWF would purchase land with the associated water rights to make up the water shortfall of 31.4 acre-ft. GWF assumed the water purchased with the land would also be subject to a 15% allocation, so the required land would total approximately 81.7 acres. The total cost to exercise that option is \$694,056. The capital cost of the land was spread over 9 years and the equivalent cost per MWh was estimated to be \$0.26. Under this scenario the total cost per MWh of the proposed water source increases to \$2.86. The difference of \$10.46 per MWh demonstrates that the use of recycled water at GWF Henrietta is economically infeasible when compared to the proposed water source with severe allocation restrictions imposed.

Data Response 29

The contributing watershed has been highlighted in Attachment DR3.2-29. All areas within the permanent fence shall drain to the new stormwater retention basin.

Areas outside of the permanent fence shall be routed away from the site and will not discharge to the stormwater retention basin. Runoff from the construction parking and laydown areas shall be handled under the Construction SWPPP.

The storm water retention basin in service at GWF Henrietta is exempt from the Industrial Activities Storm Water General Permit requirements because of criteria 4 under **Types of Discharges Not Covered By This General Permit:** Facilities Which Do Not Discharge Storm Water To Waters of the United States: 4b. Facilities That Do Not Discharge Storm Water To Surface Waters or Separate Storm Sewers: ... "storm water that disposed of to evaporation ponds, percolation ponds, or combined sewer systems are not required to obtain a storm water permit."

As a Best Management Practices, GWF Henrietta will maintain a Storm Water Pollution Prevention Plan that will identify pollution prevention controls and monitoring activities of storm water discharges. The levels of oil and grease, pH, TSS and metals that have been reported from the current monitoring activities are insignificant and below any threshold limits that would be required by an NPDES permit were this facility subject to waste discharge orders for surface water discharges.

Data Response 30

Based on the scaled drawing in Attachment DR3.2-29 it was estimated that the shaded area totaled approximately 409,940 square ft. The stormwater retention basin was sized for a drainage area of 431,244 square ft. The 10 yr - 10 day storm runoff of 4 inches across the site was calculated to total 142,310 cubic feet as shown in Attachment DR3.2-30. The stormwater retention basin volume was sized to contain this volume with 1 foot of freeboard. The final design volume of the basin is 222,278 cubic feet. As a final step, the storm water retention basin was verified to be able to contain the 100 yr-10 day storm runoff event.

With respect to the vector management, the retention basin at Hanford has been in active use for nearly 20 years and the retention basin at Henrietta has been in operation for nearly 5 years without a single incident related to vector management. Based on this extensive history of operation over a range of conditions, there is no evidence to suggest that vector management is a significant concern. The potential for occurrence of a vector management issue is extremely low and can be adequately addressed (in the unlikely event of occurrence) through means other than designing the retention basin's capacity to drain within three to five days. Options could include application of an

approved vector control agent to the surface of the pond or if necessary, removal of standing water for discharge to an approved offsite facility using a properly licensed hauler. Since neither of these actions has been necessary at GWF's operations in the area, GWF does not anticipate the need for them in the future.

Attachment DR3.2-24 GWF Henrietta Recycled Water Cost Analysis

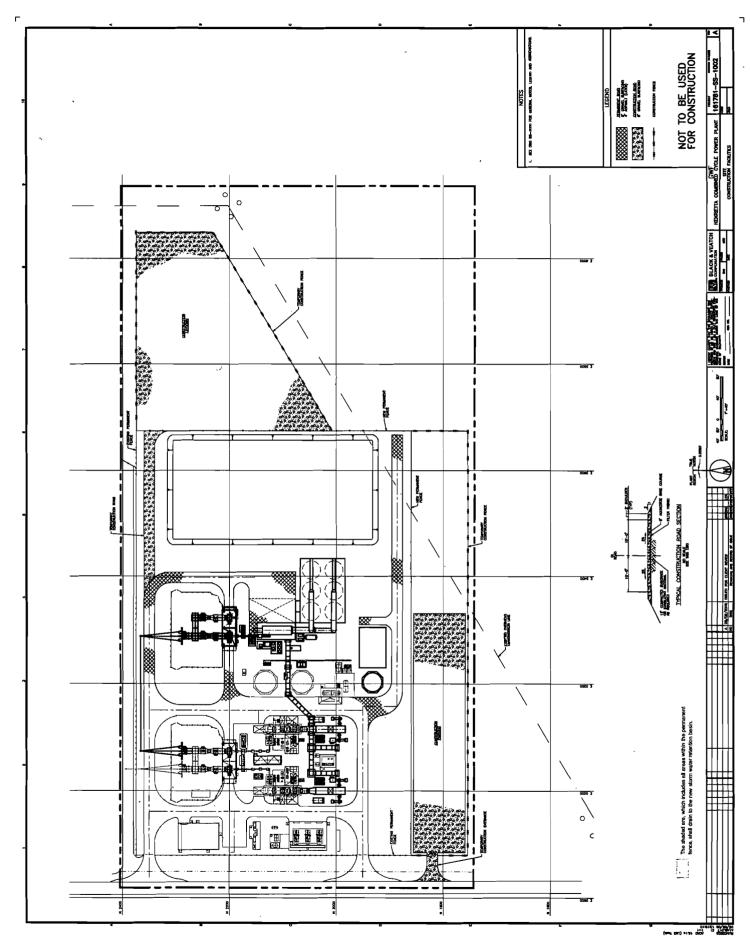
GWF Henrietta Combined Cycle Project

Capital C	ost Es	stim	ate
-----------	--------	------	-----

Capital Cost Estimate						
Category Item	Hours	Rate		Esti	mated Cost	Notes
Environmental Study/ Permitting				\$	40,000	
Easements				\$	50,000	
Water Purchase Agreement				\$	50,000	
Legal				\$	10,000	
Engineering		480	125	\$	60,000	
Pump Station						
Equipment Cost				\$	100,000	
Install				\$	60,000	
Pipeline						
Material cost				\$	100,000	
Install				\$	400,000	•
Tertiary Treatment Unit						
Equipment Cost				\$	1,980,000	Based on quote from Siemens
Foundation				\$	54,000	
Installation				\$	1,188,000	
OEM T/A				\$	38,000	\$200/hr for 3 man-weeks + 3x\$1000 flights + 15x\$100 per diem
Training				\$	9,500	\$200/hr for 1 man-week + \$1000 flight + 5x\$100 per diem
Startup and Testing				\$	19,000	\$200/hr for 2 man-weeks + 2x\$1000 flight + 10x\$100 per diem
Zero Liquid Discharge System						
Equipment Cost				\$	5,760,000	Based on quote from Siemens + 1.5M for Crystallizer and auxiliaries
Foundation				\$	90,000	
Installation				\$	3,456,000	
OEM T/A				\$	38,000	\$200/hr for 1 man-month + 4x\$1000 flights + 20x\$100 per diem
Training				\$	9,500	\$200/hr for 1 man-week + \$1000 flight + 5x\$100 per diem
Startup and Testing				\$		\$200/hr for 2 man-weeks + 2x\$1000 flight + 10x\$100 per diem
Total				\$	13,531,000	,

Attachment DR3.2-24 GWF Henrietta Recycled Water Cost Analysis

Operational Cost Estimate


Fixed O&M				
Labor - Operators	8760	52.5	\$ 459,900	\$35/hr with 50% burden
Labor - Ops./Maint Supervisor	2080	75	\$ 156,000	\$50/hr with 50% burden
Labor - Maintenance	4160	60	\$ 249,600	\$40/hr with 50% burden
Environmental/Safety			\$ 40,000	
Electricity			\$ 392,500	estimated load of 700 kW for Tertiary treatment and ZLD
Fixed regular maintenance			\$ 93,020	
Other				
Contingency			\$ 208,653	
Subtotal			\$ 1,599,673	•
Variable O&M				
Variable regular maintenance			\$ 329,799	
Chemicals			\$ 122,869	
Water				
Waste removal/disposal			\$ 327,652	
Resin Bottle charge			\$ 368,608	
Subtotal			\$ 1,148,927	•
Total Annual Cost			\$ 2,748,601	=

Attachment DR3.2-24 GWF Henrietta Recycled Water Cost Analysis

Equivalent Annual Cost			
Cost of Capital	8%		
Equivalent Annual Capital Cost	\$ 2,113,875	Assume 9 years financing	
Annual Operating Cost	\$ 2,748,601		
Total Equivalent Annual Cost	\$ 4,862,475		
Estimated Electricity Generated			
Hours of operation per year	3500 hours		
Generation Capacity	120 MW		
Annual MWh generated	420,000 MWh		
Cost per MWh Comparison		15% Allocation Scenario	
Cost per MWH for option Cost per MWh for Ion Exchange (no	\$ 11.58	Cost of Capital 8% Cost of Land Option for 15%	
sewer)	\$ 1.74	allocation scenario \$ 694,056	
Estimated Cost per MWh total (recycled			
water option)	\$ 13.32	Equivalent Annual Capital Cost \$ 108,429	
		Cost per MWh for land option \$ 0.26	
Cost per MWH for base water Cost per MWh for Ion Exchange	\$ 0.86		
(Henrietta actual 2007)	\$ 1.74	Cost per MWh for base water \$ 0.86	
Total Cost per MWh (proposed option)	\$ 2.60	Cost per MWh for Ion Exchange \$ 1.74 Total Cost per MWh (proposed	
		option) \$ 2.86	
Cost increase for recycled water	\$ 10.72 per MWH		
		Cost increase for recycled water \$ 10.46 per MWh	

Assumptions

- 1) Capital costs for tertiary treatment and ZLD were based on Siemens Water Technologies quote and discussions.
- 2) Operational Costs were based on conversations with operating plants utilizing recycled water as a major water source.
- 3) Operational Costs were scaled to account for differences in system size and operational conditions.
- 4) ZLD operational costs were used as a proxy for tertiary treatment operational costs based on conversations with Siemens and operating companies.
- 5) Cost estimates for water and Ion Exchange were based on actual costs from Henrietta Peaker and other GWF operating plants.
- 6) Assumed zero cost for recycled water.
- 7) Assumed 9 year financing and a cost of capital of 8%.
- 8) Assumed 3,500 hours of operation, based on historical California grid operational data for equivalent heat rate plants.
- 9) Assumed water right with purchased land option would also be subject to a 15% allocation during that scenario.

L

Owner	GWF	Computed By	Leroy Kashka	<u>Date</u>	05/16/08
<u>Plant</u>	Henrietta	Checked By		<u>Date</u>	
Project #	160129			<u>Page</u>	#REF!

POST-CONSTRUCTION RETENTION POND DESIGN

The pond shall be designed to provide storage for a 100-year, 10 day storm. Calculate the volume of runoff for the 2 yr. - 24 hr., 5 yr. - 24 hr., 25 yr. - 24 hr. and a 100 yr. - 24 hr. storms and compare to the volume of storage available.

Compute Runoff Coefficient:

	C	Area (ac)	Product A*C
paved	0.95	2.03	1.93
aggregate	0.75	6.05	4.88
pond	1.00	1.82	1.82
	Total Area	9.90	acres
	Wt C	0.87	

Volume Required:

Sources: Kings County, CA Department of Public Works Improvement Standards, and Technical Paper No. 40, Rainfall Frequency Atlas of the United States, US Department of Commerce Weather Bureau, 1961.

Volume of Runoff to be Contained: Vreq (ft3) = C A R (Based on Kings County Public Works)

Design for 10 yr - 10 day storm (4 in.), Check for 100 yr - 10 day storm (6 in.)

C = Runoff Coef.	0.87
A = Drainage Area (ft2)	431,244.00
R = Rainfall (ft) for 10 yr, 10 day	0.33
R = Rainfall (ft) for 100 yr, 10 day	0.50

Vrunoff (10 yr - 10 day)= 142,310 ft3 Vrunoff (100 yr - 10 day)= 215,622 ft3

Volume of Runoff for the 5, 10, 25, and 100 yr storms

<u>Storm</u>	Rainfall (in)	Volume (ft3)	<u>x 2*</u>
5 yr, 24 hr	1.3	46,718.10	93,436.20
10 yr, 24 hr	1.5	53,905.50	107,811.00
25 yr, 24 hr	1.9	68,189.30	136,378.60
100 yr, 24 hr	2.3	82,655.10	165,310.20

^{*} indicates the volume of runoff in the event of 2 storms back to back

Calculate Volume of Pond:

Γ	Contour	ontour Area of Average Area		Cumm, Avg
	Elevation	Contour (ac) Volume (ft ³)		Volume (ft ³)
	222.5	1.82	39,340	222,278
	222	1.78	38,404	182,938
	221.5	1.74	37,477	144,534
	221	1.70	36,559	107,057
/[220.5	1.66	35,650	70,498
	220	1.62	34,848	34,848
	219.5	1.58	. 0	0

Required top of basin elevation = Water surface elevation for 10 yr -10 day storm + 1 ft. Water surface elevation for 10 yr - 10 day storm event = 221.47 ft.

Required top of basin elevation = 222.47 ft.

Actual top of basin is approximately 221.5 ft. due to natural topography

Basin shall hold 100 yr. - 10 day event without overflowing

Water surface elevation for 100 yr. - 10 day event = 222.425 ft.

Top of Basin Elevation	222.50	Depth	Freeboard
Water Elevation for 10 yr 10 day storm	221.47 ft.	1.97 ft.	1.03 ft.
Water Elevation for 100 yr 10 day storm	222.425 ft.	2.925 ft	0.075 ft.
Water Elevation for 2 - 25 Yr, 24 Hr. Storms	221.1 ft.	1.6 ft.	1.4 ft.
Water Elevation for 2 - 100 Yr, 24 Hr. Storms	221.73 ft.	2.23 ft.	0.77 ft.