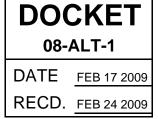


Comments on the CEC AB 118 Investment Plan



Paul Wuebben, Clean Fuels Officer South Coast Air Quality Management District

to

CEC AB 118 Workshop

Staff Workshop Regarding the Investment Plan for the Alternative and Renewable Fuel and Vehicle Technology Program

Diamond Bar, CA – February 17, 2009

SCAQMD Staff Recommendations

- We agree with the draft IP focus on low carbon technologies
- Should ULC technologies be commercialized and available within the next two years, the funding distribution should be re-evaluated.

Comments on Investment Plan

- Multiple benefits are better than GHG alone
 - GHG + petroleum displacement + criteria + toxics
- Shorter term gaseous fuels like NG build expertise + "literacy" for H₂ transition
- Infrastructure is the hardest part to rationalize, given the strengths of incumbent fuels
- Balance in Investment Plan is critical
 - Locked in allocations can be too formulaic
 - Each fuel pathway needs careful "feeding"
 - They're all on life support @ low oil prices

Current Recession Gives Special

- OEMs need synergies for successful PHEVs
- School Districts need added help
- CA clean tech investors need to leverage public \$\$\$s with greater flexibility
- LCFS depends on unprecedented breakthroughs in biofuel technology
- State Prop B funding moratorium places greater reliance on AB118 funding

Pragmatic Realities

AB 118 Ranking System

- A good 1st step
- Should evolve over time
- Getting accurate data on which to judge WTW distinctions is very difficult and costly
- Enabling technologies have complex pathways
- Timing to commercial viability is very speculative
- Some projects may overlap CEC categories due to synergies, leveraged technologies, etc.
- Need for flexibility should remain paramount
 - LC, ULC, SULC + FEI: should not be rigid definitions

SCAQMD Technology Priorities and the AB 118 Investment Plan

	Sub-Category	Brief Description	SCAQMD	
Category			2009 *	Previous
Low Carbon	Natural Gas	Financial incentives for LD, MD, HD vehicles	\checkmark	\checkmark
		Advanced MD and HD engines, fueling and fuel storage technologies	\checkmark	\checkmark
		New and retrofit fueling infrastructure	\checkmark	\checkmark
	Bio/renewable fuels	Fuel blending	\checkmark	
Ultra Low Carbon	Biofuels	Transition from corn to biomass feed stocks	\checkmark	
		In-state production facilities	\checkmark	
		Biomethane/biogas production	\checkmark	
		Expand E-85 stations	\checkmark	
Super Ultra Low Carbon	Electric Vehicles	Demonstration and deployment of LD/MD/HD applications	\checkmark	\checkmark
		Upfit and retrofit applications, LD/MD/HD	\checkmark	\checkmark
		Electric charging infrastructure	\checkmark	\checkmark
		Non-road applications e.g., TSE, TRU, APUs, cold ironing, forklifts, etc.	\checkmark	\checkmark
	Hydrogen	High-volume fueling stations	\checkmark	V
		Mixed-use fueling infrastructure (HCNG)	\checkmark	\checkmark
		Production from renewable feedstocks	\checkmark	\checkmark
Vehicle and Engine Efficiency		LD engine and vehicle components	\checkmark	\checkmark
		MD and HD hybrid electric and hydraulic hybrid technology	\checkmark	\checkmark
		Workforce training	\checkmark	\checkmark
		Sustainability		
Non-GHG categories		Standards and certification	\checkmark	\checkmark
_		Public education and outreach	V	\checkmark
		Analytical support	\checkmark	\checkmark
Manufacturing and Production Incentives		In-state facilities		\checkmark

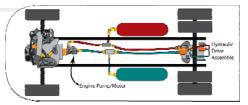
Technology Areas and Suggested Funding Levels

	SCAQMD	CEC
	Possible Funding	Funding Request
Low Carbon Technologies		
• HD natural gas incentives (\$90-100k/truck)		\$18M
NG school buses incentives		\$14M
• NG conversions or OEM introduction	\$1M	\$2M
• HD natural gas engine development	\$1M	\$2M
• NG infrastructure	\$2M	\$4M
Super Ultra Low Carbon Technologies		
Electric		
• Plug-in hybrid LD development	\$4M	\$10M
• Plug-in hybrid MD development	\$3M	\$5M
• Electric vehicle infrastructure	\$1M	\$2M
• Electric vehicle incentives	\$1M	\$2M
Super Ultra Low Carbon Technologies		
Hydrogen		
• Hydrogen infrastructure, sp. multi-use	\$3M	\$6M
Transit bus demonstrations	\$1M	\$2M
Vehicle Efficiency		
Hydraulic hybrid demonstrations	\$2M	\$4M

Specific Project Examples

Heavy Duty Natural Gas Engine Development

- The use of natural gas as a transportation fuel provides the opportunity to reduce GHG and criteria pollutant emissions.
- The Cummins ISL G is currently the only natural gas powered engine available for the heavy-duty market.
- \$3M could be used to:
 - Co-fund the development of natural gas engines by other engine manufacturers
 - Conduct a study the identify heavy-duty vehicle applications that would yield significant air quality benefits from using natural gas.
 - Develop natural gas demonstration vehicles in the targeted vehicle applications.


Heavy-Duty Natural Gas Trucks

- Replace pre-2003 heavy-duty diesel trucks with new LNG trucks
- Port and non-Port applications
- Provide \$90,000 towards purchase of each new LNG truck
- Significant reductions in criteria pollutants, toxics, and GHG emissions
- Replace 200 older diesel trucks with new LNG trucks for \$18 million

Hydraulic Hybrid Demonstrations

- Medium- and heavy-duty vehicle segments are responsible for a significant portion of air pollution and fossil fuel consumption.
- Hydraulic hybrids provide the opportunity to reduce both fossil fuel consumption and emissions for these vehicle segments.
- \$6 million in funding could be used to:
 - Conduct studies to identify medium- and heavy-duty applications suited for hydraulic hybrid drive systems.
 - Conduct study to evaluate hydraulic hybrid use in light-duty vehicles.
 - Conduct studies to evaluate the GHG and criteria pollutant impact of the hydraulic hybrids.
 - Develop and demonstrate parallel hydraulic drive systems in target applications.
 - Develop and demonstrate series hydraulic drive systems in target applications.
 - Utilize advanced technology combustion engines (HCCI) with series hybrid drive system.

Transit Bus Demonstrations

- Fuel cell buses are currently very expensive and rely on FTA funding
- Difficulty keeping some integrators
 in the market; stacks expensive
- Other integrators and architectures
 need to be evaluated
 - Battery electric buses with quick charge capability
 - Plug-in fuel cell bus
 - HCNG engine transit bus
- \$1-\$4M could be used to evaluate at least 2 different technologies and architectures

School Bus Project

- Replace MY 1987-93 diesel school buses with new CNG buses
- Significant reductions in criteria pollutants, toxics, and GHG emissions
- Provide \$140,000 per each new CNG school bus
- Replace 100 older diesel school buses with new CNG buses for \$14million

Natural Gas and H₂ Infrastructure Projects (\$000)				
Project	AQMD Possible Funding	AB 118 CEC Requested Funding		
Support Additional NG Infrastructure: Industry cost share install up to 7 stations	1,500 3,000			
Blended Fuel H2 + CNG) Bus Fueling Promotes infrastructure + potential mpg increase	1,000	2,000		
Waste-to-pipeline Bio-methane Demo	1,000	1,500		
Waste-to-Pipeline Refuse Derived CH ₄	500	1,500		
Waste-to-H ₂ -to-Energy Demo	500	1,500		
70 MPa Residential H ₂ Fueling Appliance	250	500		

Opportunities for CEC / AQMD Partnership

- Program solicitation
- Project administration
- Best practices experience
- Increased leverage
- Synergies with existing projects
- Expedited outreach
- Training and outreach
- Efficient contracting