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Challenge

The NeedThe Need
Predict the power production at individual Wind Generation Resources 
(WGRs) and aggregates of WGRs with the highest possible accuracy 
over desired time intervals (e.g. an hour, day etc.) from a few minutes

The Meteorological Problem

over desired time intervals (e.g. an hour, day etc.) from a few minutes
ahead to many hours, days, weeks or months ahead

The Meteorological Problem
Predict the wind speed, direction and air density at each turbine location 

for the same time intervals and look-ahead periods

The Meteorological Challenge
Variations in wind (and other atmospheric variables) are driven by 

atmospheric features that originate, evolve and dissipate over a wide range 
of space and time scales under the control of a broad spectrum of physical 
processes. Current observational systems are able to measure only a small 

fraction of the variability associated with these atmospheric featuresfraction of the variability associated with these atmospheric features.



Meeting the Challenge:
State-of-the-Art Forecast Systems

Methods

• Combination of 
physics-based (NWP)

Input Data, Forecast Model Components and Data Flow 
for a State-of-the-Art  Forecast System

p y ( )
and statistical models

• Diverse set of input 
data with widely 
varying characteristics

• Importance of specific 
models and data types 

ar ith look aheadvary with look-ahead
period

• Forecast providers vary 
significantly in the waysignificantly in the way
in which they use 
forecast models and 
input data
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Physics-based Models
(also know as Numerical Weather Prediction (NWP) Models)

Methods

• Differential equations for basic 
physical principles are solved on a 
3-D grid

• Must specify initial values of all 
variables for each grid cell

Si l t th l ti f th• Simulates the evolution of the
atmosphere over a 3-D volume

• Some forecast providers rely on p y
government-run models; others run 
their own models

Roles of Provider-run NWP ModelsRoles of Provider run NWP Models
• Optimize model configuration and formulation for the forecasting of near-surface winds
• Use higher vertical or horizontal resolution over area of interest
• Execute simulations more frequently

I t d t t d b t d l
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• Incorporate data not used by government-run models
• Execute ensembles customized for near-surface wind forecasting



Statistical ModelsMethods

• Empirical equations are derived 
from historical predictor and 
predictand data (“training sample”)

Predict ors Predict and

• Current predictor data and 
empirical equations is then used to 
make forecasts

P1,P2,... F

SMLR

• Many different model-generating
methods available (linear regression, 
neural networks etc.) F = f(P P )

Training
Algorithm

SMLR
ANN
SVM

neural networks etc.) F = f(P1,P2,...)

Roles of Statistical Models
• Correct systematic-errors in the NWP forecasts
• Account for (local) processes on a scale smaller than the NWP grid cells 
• Incorporate additional observational data 

• received after the initialization of most recent NWP model runs  
• not effectively included in NWP simulations
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• not effectively included in NWP simulations
• Combine met forecasts and power data into power predictions (implicit plant output model)



Plant Output Models
Methods

• Relationship of met variables to 
power production for a specific 
WGR

• Many possible formulations
• implicit or explicit

Plant-scale Power Curve: 1 Year of Data
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Roles of Plant Output Models
• Facility-scale variations in wind (among turbine sites)
• Turbine layout effects (e g wake effects)• Turbine layout effects (e.g. wake effects)
• Operational factors (availability, turbine performance etc)
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Forecast Ensembles
Methods

• Uncertainty present in any 
forecast method due toforecast method due to
– Input data
– Model type

Model configuration– Model configuration

• Approach: perturb input data and model parameters 
within their range of uncertainty and produce a setwithin their range of uncertainty and produce a set
of forecasts (I.e. an ensemble)

• Benefits
– An ensemble composite is often the best forecast

– Statistical weighting of individual forecasts often yields best performance
– Spread of ensemble provides a case-specific measure of forecast 
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uncertainty



Forecast Products
Methods

• Deterministic Predictions
– Most likely MW production for a specific time interval (e.g. hourly)
– Tuned to minimize a performance metric (e g RMSE etc )– Tuned to minimize a performance metric (e.g. RMSE etc.)

• Often results in “hedging” for extreme event forecasts

• Probabilistic Predictions
– Confidence BandsConfidence Bands
– Probability of Exceedance (POE) Values

• Event Forecasts
Probability of events in specific time windows– Probability of events in specific time windows

– Most likely values of event parameters (amplitude, duration etc.)
– Example: large up or down ramps

• Situational Awareness• Situational Awareness
– Forecasts of significant weather regimes

• Produce events (large errors, ramps etc.) that impact user’s applications

– Geographic displays of wind patterns
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Time Scales

Forecast Use Time Scales

• 5 - 60 minutes
– Regulationg
– Real time dispatch decisions of energy and Ancillary Services (AS)

• 1-6 hours ahead: 
– Load-followingLoad following
– Short-term adequacy analysis
– Next operating hour unit commitment

• Day-aheadDay-ahead
– Day-ahead unit commitment
– Ancillary Services forecasting
– Trading activities (market participants)– Trading activities (market participants)

• Multiple days ahead
– Long term adequacy analysis
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How the Forecasting Problem 
Changes by Time Scale

Time Scales

Minutes Ahead
• Large eddys, turbulent mixing transitions
• Rapid and erratic evolution; very short lifetimes
• Mostly not observed by current sensor network
• Forecasting tools: Autoregressive trends
• Very difficult to beat a persistence forecast
• Need: Very hi-res 3-D data from remote sensing

Hours Ahead
• Sea breezes, mountain-valley winds, thunderstorms
• Rapidly changing, short lifetimes
• Current sensors detect existence but not structure
• Tools: Mix of autoregressive with offsite data and NWP
• Outperforms persistence by a modest amount
• Need: Hi-res 3-D data from remote sensing

Days AheadDays Ahead
• “Lows and Highs”, frontal systems
• Slowly evolving, long lifetimes
• Well observed with current sensor network

Tools: NWP with statistical adjustments• Tools: NWP with statistical adjustments
• Much better than a persistence or climatology forecast
• Need: More data from data sparse areas (e.g. oceans)
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Forecast Evaluation IssuesPerformance

• Evaluation approach depends on type of forecast
– Deterministic vs probabilistic
– Interval values (e.g. hourly) vs. events (e.g. ramps)

• Deterministic forecasts
– Standard performance statistics: Bias, MAE, RMSE 

– Many other options: skill scores, error frequency distributions etc.y p , q y

• Probabilistic forecasts
– Error of a specific forecast can’t be calculated
– Reliability and sharpness are key conceptsReliability and sharpness are key concepts

• Event Forecasts
– Deterministic: Hit rate, false alarm rate, critical success index (CSI)
– Probabilistic: Reliability and discrimination ability (sharpness)– Probabilistic: Reliability and discrimination ability (sharpness)

• Objective of the forecast
– Forecasts can be optimized for a specific metric (e.g. RMSE)

Wh t f d t l t t th ?
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• What performance data are relevant to the user?
– Depends on user’s “cost function” and application



Typical Range of 
Forecast Accuracy

Performance

Forecast Accuracy
(Individual wind farm - Forecast time step of 1 hour)

25%• MAEs of forecasts increase 
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20%rapidly during first 6 hours and 
then much more slowly
• Statistically adjusted NWP-
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Forecast Performance 
Comparison Issues

Performance

Comparison Issues

• Forecast performance varies due to a variety of factors
– Forecast time horizon (especially for short-term)
– Amount and diversity of regional aggregation
– Quality of generation & met data from the plantQuality of generation & met data from the plant
– Distribution of wind speeds relative to the power curve
– Type of wind and weather regime
– Shape of the plant-scale power curve
– Amount of variability in the wind resource 

– Sensitivity of a forecast to initialization errory

• These factors make casual comparisons of forecast 
performance very difficult and lead to misconceptions 
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Forecast Performance Factors:

Amount and Diversity of 
Performance

Regional Aggregation

• Example: Alberta Wind 
Effect of Aggregation onForecasting Pilot Project

– 1 year: May 2007-April 2008
– 3 forecast providers

12 i d f di id d i t 4 hi

Effect of Aggregation on 
AWST 1-48 Hr Ahead Foreca

Alberta Pilot Project: 1 May 07 -
Farm Avg (12- 52.8 MW)
Regional Avg (4-158.5 MW
System (634 MW)

– 12 wind farms divided into 4 geographic
regions of 3 farms each

– Hourly 1 to 48 hrs ahead forecasts for 
farms, regions and system-wide production 25

30
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y ( )

• RMSE for regional day-ahead
forecasts was 15-20% lower 
than for the farms 10

15

20

than for the farms
• RMSE for system-wide day-

ahead forecasts was 40-45% 
lower than for the farms

0

5

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

Look-ahead Periodlower than for the farms Look ahead Period

© 2008 AWS Truewind, LLC



Impact of Aggregation on 
Performance Comparisons

Performance

Performance Comparisons

• Lack of a consideration of the 
impact of size and diversity of

From the Visit Report:
“SIPREOLICO provides detailed hourly forecasts up to 48 
hours updated every 15 minutes The accuracy of theimpact of size and diversity of

the generation resource leads to 
misconceptions about relative 
forecast performance

hours updated every 15 minutes. The accuracy of the
forecast is phenomenal: The forecast root mean square 
error for the 48-hour- ahead forecast is below 5.5% of the 
installed wind generation capacity. “

• Example: US visitors to the 
Spanish TSO “RED Electrica” 
concluded that forecast 
performance was “phenomenal” 

• The size and diversity of this 
aggregation is so great that 
there is a huge aggregationthere is a huge aggregation
effect and when this is 
considered the performance is 
typical RED Electrica System Characteristics:yp

• 14,877 MW installed; 575 wind parks 
• Average of about 30 MW capacity/park                
• Peak Generation ~ 10,000 MW
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Forecast Performance Factors:

Quality of WGR Data
Performance

Reference WGR Adjacent WGR

A comparison of forecast performance over a 1-year period at 
two adjacent WGRs with very different onsite data quality 

Reference WGR Adjacent WGR

Availability adjustedAvailability adjusted

Reference PIR: Next Operating Hour Forecasts
2007 Monthly Mean Absolute Error

Next Operating Hour

PIR #12: Next Operating Hour
Forecasts

Next Operating Hour

Annual MAE: 11.3% Annual MAE: 14.6%
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Current Status of Wind Forecasting
Operational Use

at Major U.S. Balancing Authorities
• CAISO: Forecasting for PIRP implemented in 2004 

Forecasting used for market purposes only; not currently used in grid operations– Forecasting used for market purposes only; not currently used in grid operations
– Hourly delivery of 4 to 10 hr ahead forecasts
– Once per day (5:30 AM) delivery of next calendar day forecast
– RFP process to expand scope and use of forecasting services is in progress

CO O f / /• ERCOT: Operational forecasting began on 7/1/08
– Hourly delivery of 1 to 48 hr forecasts in hourly increments
– Used for management of grid operations

NYISO O ti l f ti b 7/1/08• NYISO: Operational forecasting began on 7/1/08
– 15-minute delivery of 0 to 8 hr forecasts in 15-minute intervals
– Twice per day (4 AM and 4 PM) delivery of next 2 calendar day forecast
– Short-term (1 hr ahead) forecast used for management of grid operations( ) g g p

• Midwest ISO: Forecast provider recently selected
• PJM Interconnect: Forecasting procurement in progress
• BPA: Looking at options; receives forecasts from wind plants• BPA: Looking at options; receives forecasts from wind plants
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California ISO: PIRP
Operational Use

• Participating Intermittent Resource Program (PIRP)
• Voluntary program: can opt in or out hourlyy p g p y
• Requirements

– Must pay forecast fee: $0.10/Mwh
– Must provide real-time meteorology, production and availability data p gy, p y

according to PIRP protocols
– Must schedule to PIRP next operating hr forecast for your facility

• Benefits
– Reduction in market price risk

• In program: settle on net deviation for month with average monthly market price
• Out of program: settle deviations on market price every 10 minutes

– Exemption from some system management chargesExemption from some system management charges
– Get hour ahead and day ahead forecasts for other uses as well

• Only wind now - likely inclusion of solar by 2009
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Value of Forecasting
Value

• Value of forecast is hard to quantify and still under debate
• Value realized in multiple interconnected ways

– Cost savings from an efficient selection of the generation mix
• Day-ahead 
• Hours-ahead

– Efficiently maintaining grid reliabilityEfficiently maintaining grid reliability
– Market activities (e.g. trading)
– Enabling high grid reliability with higher wind penetration

• Recent grid integration studies have attempted to quantify• Recent grid integration studies have attempted to quantify
cost savings associated with forecasting
– California

New York– New York
– Ireland
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California 
Intermittency Analysis Project

Value

y y j
• Project conducted by GE with AWST 

as a subcontractor
E i d f i t f• Examined four scenarios, two for
2010:

– 2010T: 20%RE; 7,500 MW wind
– 2010X: 33% RE; 12,500 MW wind2010X: 33% RE; 12,500 MW wind

• Value of day-ahead forecasting 
analyzed for these two scenarios

• “State-of-the-art” forecasts saves 
about $75 M/year for 2010T; $175 
M/year for 2010X

• A large fraction of the potential 
i f f t f t bsavings of a perfect forecast can be

realized by current forecast skill
• Most of the savings are realized by 

non-wind generators From: INTERMITTENCY ANALYSIS PROJECT:non-wind generators From: INTERMITTENCY ANALYSIS PROJECT:
APPENDIX B  IMPACT OF INTERMITTENT 
GENERATION ON OPERATION OF  CALIFORNIA 
POWER, July 2007, CEC-500-2007-081-APB
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How will forecasts be improved?
(T Th Li )

Future

(Top Three List)

• (3) Improved physics-based/statistical models
– Improved physics-based modeling of sub-grid and surface processes 
– Better data assimilation techniques for physics-based models
– Learning theory advances: how to extract more relevant info from data

• (2) More effective use of models
– Enabled by more computational power
– Higher resolution, more frequent physics-based model runs
– More sophisticated use of ensemble forecasting
– Use of more advanced statistical models and training methods

• (1) More/better data
– Expanded availability and use of “off-site” data in the vicinity of wind 

plants, especially from remote sensors (e.g. Sodar. LIDAR, Doppler radar)
– Substantial potential to improve 0-6 hr forecasts

A leap in quality/quantity of global satellite based sensor data
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– A leap in quality/quantity of global satellite-based sensor data



Summary of Key Points - Part 1
Summary

• State-of-the-art forecasts are produced with a combination of 
physics-based (NWP) and statistical modelsphysics based (NWP) and statistical models

– Used to construct an ensemble of forecasts
– A composite of the ensemble is used to create deterministic forecasts

Th di i ( d) f th bl id ti t f t i t– The dispersion (spread) of the ensemble provides an estimate of uncertainty

• The relative importance of different forecast methods and 
data types varies with look-ahead period

• Forecasts are customized for a specific objective
• Forecast performance varies due to many factors which 

makes casual performance comparisons difficultmakes casual performance comparisons difficult
• Quality of data from a wind park is a significant factor in 

forecast performance (especially for 0-6 hr forecasts)

© 2008 AWS Truewind, LLC



Summary of Key Points - Part 2
Summary

y y

• Centralized forecast systems have been implemented at 
several balancing authorities in the US and others are inseveral balancing authorities in the US and others are in
the process of designing or implementing systems

• Grid integration studies suggest that day-ahead forecasts 
have a potential  value on the order of $100s M to the 
stakeholders of a grid system.

– A large fraction of it is realizable by using current state-of-the-art forecasts
– The majority of it is associated with the savings of non-wind generators
– Additional benefits may be realized through the use of forecasts to improve 

short-term grid management and trading decisions
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