
DOCKET 08-DR-1			
DATE			
RECD.	JUL 25 2008		

Two-Way Narrowband Communications Considerations for D/R Applications

> Roland Acra President and CEO roland@archrock.com

Alphabet Soup

- 6LoWPAN
- Ethernet
- HomePlug/CC
- IEEE 802.15.4
- LonTalk
- WiFi
- Z-Wave
- Zigbee
- ... (dozens more)

Rough Technology Characterization					
	<u>6LoWPAN/802.15.4</u>	Zigbee/802.15.4	HomePlug	LON	
Medium/Spectrum	RF/2.4G or 900M	RF/2.4G or 900M	PLC	PLC	
Maximum Bandwidth	250K or 40K	250K or 40K	1K-100M	1-10K	
Power Consumption	Ultra Low (mW)	Ultra Low (mW)	High (W)	Med?	
Indoor Per-Hop Reach	10's of meters	10's of meters	10's m	10's m	
Mesh/Relay Capability	Yes	Yes	Yes	Yes	
Network and Transport	TCP/IP	Zigbee	TCP/IP	LON	
D/R Profiles Specified	No: re-use	Yes	No: re-use	WIP?	
Scope of App. Profiles	Global	Local only	Global	Local only	
Scope of Security	Global	Local only	Global	Local only	
Need Edge Translation	Νο	Yes	Νο	Yes	
Comm. Module Costs (\$)	Low 10's	Low 10's	High 10's	Low 10's	

Key Considerations (I)

- The dwelling's "media", as a whole
 - Is the desired electric wiring of a "PLC" grade?
 - Is the desired RF spectrum available and "clean"?
 - Do distances or obstacles allow good comms?
 - Can "relay" nodes (PLC or Radio) extend reach?
- The individual target device's "reach-ability"
 - Is the device plugged into AC wiring?
 - Is the device reachable via radio?

Required application bandwidth

- Demand/Response transactions are generally low bit-rate...
- Most demanding transaction is likely download of new SW
- Units of kbps?
- Tens of kbps?
- Hundreds of kbps?
- Higher?

- \rightarrow PLC, HomePlug/CC
- \rightarrow 900MHz radio (e.g. IEEE 802.15.4)
- \rightarrow 2.4GHz radio (e.g. IEEE 802.15.4)
- → Ethernet, WiFi, HomePlug
- Wide-area transport network (path to dwelling)
 - Dedicated AMI?

Broadband Internet?

- \rightarrow May gate end-to-end bandwidth

 \rightarrow Always useful, at least for backup \rightarrow Ubiguitous, though long-in-tooth

- \rightarrow Depends on modulation, speeds
- → 900MHz robust, 2.4GHz universal
- \rightarrow PLC and 802.15.4: 10's of meters
- \rightarrow Repeating usually possible
- → No for 24VAC T-STAT
- → From where? Meter? GW? Without relays?

Key Considerations (II)

- For given link layer, choice of upper layers (network/transport):
 - WiFi:

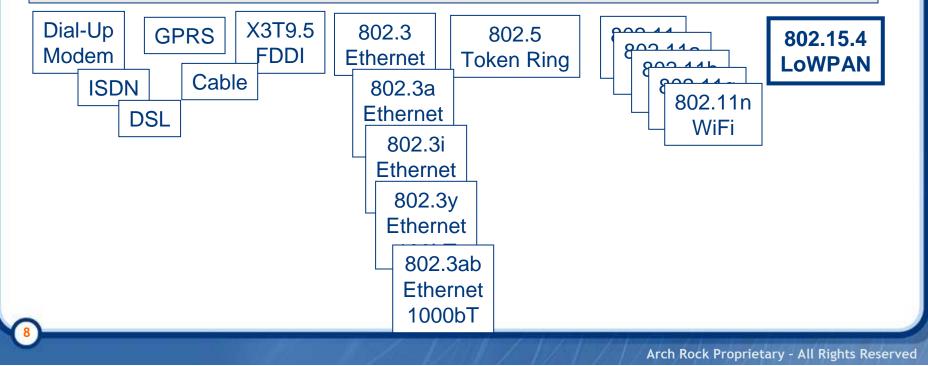
- TCP/IP on all devices
- HomePlug: TCP/IP on all devices
- IEEE 802.15.4: TCP/IP (6LoWPAN) or Zigbee or proprietary
- Other PLC: LonTalk or other standards or proprietary
- End-to-end (non-mediated) transactions to targeted devices?
 - Real "actors in the Demand/Response play":
 - Load-impacting end-devices (PCT. LCM, IHD), ←→ Utility operations center (servers)
 - Leave network elements (gateways) out of the secure relationship between utility ops center and devices
 - Possible only when using IP on target D/R devices (PCT, LCM)
- $\rightarrow IP/6LoWPAN \text{ for } 802.15.4$ k $\rightarrow Can't \text{ "splice" on foreign GW}$
 - Necessary if reaching D/R devices through shared home network
 - Or "splice" sessions with translations and mappings at intermediary points (gateways, meters, ESPs)
 - Possible with TCP/IP but necessary with all non-IP approaches
 - Possible only when using dedicated and utility-controlled GW
- Demarcating end-point (last point of utility ownership)
 - Pole-top access point?
 - Meter?
 - Home Gateway? (Energy Services Portal?)
 - D/R Device? (PCT, LCM, IHD)
 - D/R Device's Comm. Module?
- Installation "ownership"
 - Send D/R device or comm. module by mail and let user "DIY"?

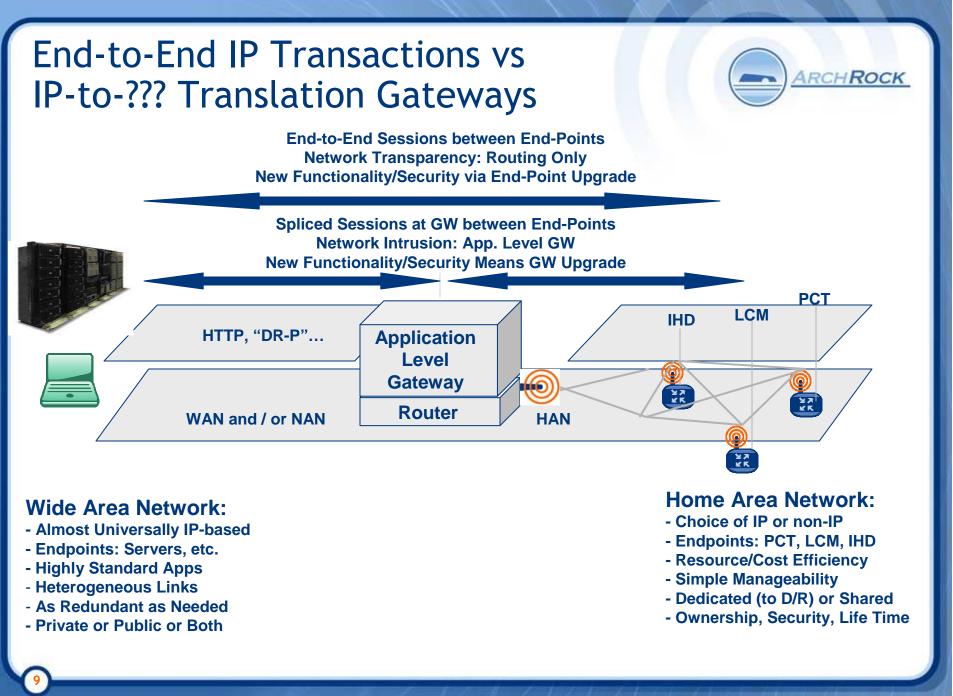
- → Nice if have common comm. network with devices
 → Nice for ubiquity Modularity? Common network?
- → Dedicated to D/R? Costs? Support?
- \rightarrow "Shared" ownership (utility, user) issues?
- \rightarrow Nice for modularity, security, IF standard network
 - → What about network?
- Utility responsible for installation and performance of system?
- → Issue at large scale
 - Arch Rock Proprietary All Rights Reserved

Highlights of IP Architecture -...or Benefits of "Going Postal"

- Build a global identification, addressing and routing mechanism: "IP"
 - Analogy: postal addressing system with streets, zip codes, cities, etc.
 - Consequence: global reach, local sorting and ultimate scale and flexibility
- Provide end-to-end transport protocols, reliable or best effort: "TCP, UDP"
 - Analogy: regular mail, certified mail, express, signature required, etc.
 - Consequence: universal footprint yet individual choice for each application
- Allow proxies, firewalls, network address translators, where useful
 - Analogy: "care-of" mail delivery, apartments, guest rooms in hotel, etc.
 - Consequence: local decision, typically not "minded" by remote end or network
- Co-opt all link technologies and mix-and-match them judiciously
 - Analogy: user indifference to how mail carried (planes, trains, trucks or all of the above)
 - Consequence: locally develop optimum transportation mechanism, at each leg of journey
- Leave applications and data models to end-systems and leave the network out of them
 - Analogy: postal indifference to what I write, in what language, and whether crypto-coded
 - Consequence: network doesn't need upgrades when I change languages or crypto-codes

Highlights of IP Architecture




Diverse Object and Data Models (HTML, XML, ...)

Diverse Applications (HTTP, Mail, VoIP, IPTV, SNMP, "DR-P")

Transport (UDP/IP, TCP/IP): End to End

Why should infrastructure providers care about IP?

- The test of TIME and investment protection:
 - The IP architecture has stood the test of time over a 25+ year history
 - Several utility deployment decisions are 20-year (or longer) decisions

• The test of SCALE and ability to expand:

- The IP architecture is the only demonstrated ~1 billion node scale network
- Has gracefully evolved and accommodated diverse and tough applications

• The test of SCOPE with MEDIA diversity (below TCP/IP):

- The IP architecture has embraced dozens of legacy and new links, in ONE network
- Any-to-any communication: Dial, BPL, Ethernet, DSL, Cable, WiFi, Cell, 802.15.4...

• The test of SCOPE with APPLICATION diversity (above TCP/IP):

- Architectural diversity: Client-Server, Peer-to-Peer, Web Services...
- Application diversity: Email, File Transfers, VoIP, Web, Video, Signaling...
- Device and operating system diversity: PC, PDA, Phone, Server, Sensor...
- Industrial applications: BACnet over IP, LonTalk over IP, SP100.11a ...
- The test of LEVERAGE and non-reinvention:
 - Management tools, security tools, deployment and configuration tools
 - Naming (DNS), Addressing (DHCP), Management (SNMP)
- The test of SECURITY:
 - Highest security networks on IP: DoD, DoE, NSA, Treasury, Health, Banking/SWIFT
 - Understood threat models and remedies: Firewalls, Intrusion Prevention, Encryption

