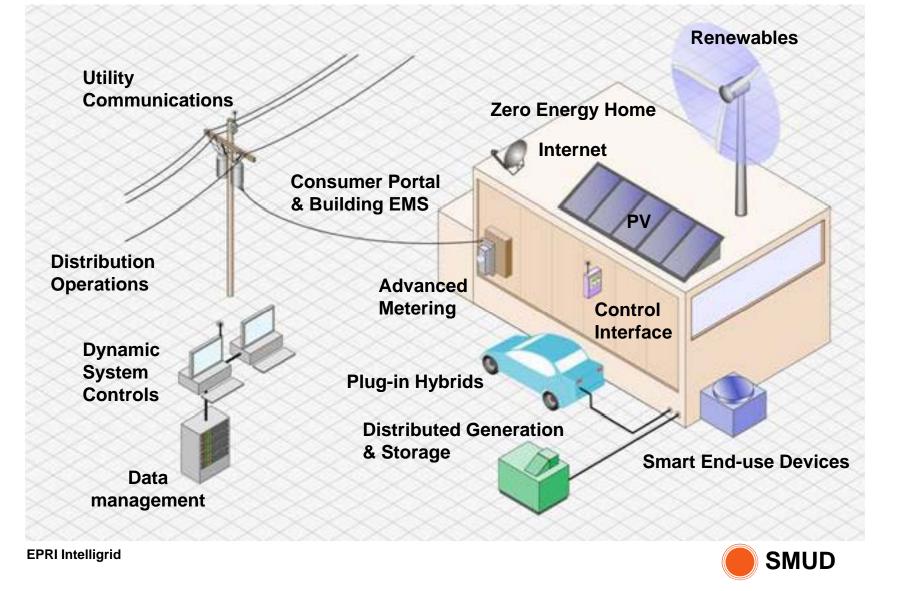


SMUD and the Smart Grid


Jim Parks

CEC Load Management Standards Smart Grid Workshop

April 29, 2008

Smart Grid Vision

SMUD Smart Grid Elements

Distribution System Smartening

Add or Expand SCADA at our distribution substations

• AMI

- Intercommunications with SCADA
- Communications with end uses

Demand Response

- System and targeted load control
- Price response

Distributed Generation

- PV
- CHP
- Plug-In Hybrids
- Storage

Zero Energy Smart Homes

Combines all of the above

Distribution System Smartening

In process of integrating existing substations into SCADA

- Updating relaying (integrated electronic devices) and metering
- Adding remote control
- One-third of existing substations rewired to date
- All new substations for last 10 years installed with SCADA
- Automating with remote control some critical 69kV switches
- Capacitor control algorithm on substation and pole capacitors that dispatches capacitors for local and system needs
- AMI RFP requirement that communication system be able to support smart SCADA

Potential Network Improvements

Focus on distribution level improvements

SMUD has own transmission control area

• Ultimate goal is to automate to the circuit level

- Integrate end point voltages into SCADA to manage voltage profiles better
- Automatic sectionalizing and load restoration
- Deploy CVR (conservation voltage reduction) to systematically run tighter margin on voltages and loading
- Dynamic circuit configurations to reduce losses
- Overlay AMI for outage notification, load management, meter and meter data management, theft detection, billing services, etc.

Distribution Efficiency

- Current distribution losses = 9%
- Specified high efficiency transformers
- Close monitoring of distribution system helps identify power theft
- Contract with NREL to determine the benefits of widedeployment PV
- Look at possibility to downsize distribution equipment based on results

Automated Metering Infrastructure

• AMI RFP is on street, due middle of June 2008

• AMI Requirements:

- Two-way communications
- Communications protocol agnostic
- Robust, secure, and scalable
- Interval data and TOU capabilities
- Home Area Network agnostic
- Enables programmable communicating thermostat control and in home displays
- Enables end-to-end system efficiencies—from generator to end use

• AMI full deployment scheduled for 2009 - 2012

Planned Demand Response

Develop load control programs to manage system peak load and target distribution system anomalies

- Replace existing residential ACLM controllers with PCTs
- Offer PCT-based temperature reset programs to residential and small commercial customers
- Offer aggregator load control program to medium and large commercial customers
- Expand auto-DR capability

Develop time-dependent rates

Offer TOU and CPP rates to all classes

• Use AMI to:

- Measure and predict load control and price response
- Identify distribution problems and manage local load and voltage

Distributed Generation

CHP/District Energy

- Key drivers are GHG reductions, customer savings and peak load reduction
- Identified 375 MW potential, 750 MW with cooling and heating
- Conducting feasibility studies with candidate customers
- Moving forward in negotiating cost effective projects
- In parallel, developing CHP Program

Plug-In Hybrids

- Investigating active charge control and energy metering
- Potential vehicle-to-grid, vehicle-to-home

Storage

- Battery storage
 - A 20kW 9hr vanadium redox flow battery installation at a Sacramento Sprint-Nextel site to be installed in September 2008
 - ZEH battery storage
- Thermal storage
- Ultracapacitors Light rail 1MW in 20 seconds

• PV

4,000+ SolarSmart (solar/>30% Title 24) homes in pipeline

SMUD SolarSmart Homes

- Long term goal : Homes that produce as much energy as they use on an annual basis (annual net-zero energy use) by 2020
- CRADA with NREL/DOE Building America Program
 - Current program = 60% reduction in energy bill
 - Target annual net-zero electricity use
 - Use commercially available technologies

Zero Energy Home Pilots

Developed cost effective prescriptive package of EE and PV

SMUD SolarSmart Homes

- Applied ZEH pilot experience (EE/PV package)
- 2007 roll out of standard utility program
- Market transformation underway 30%+ market penetration

SMUD ECOSMART Home

Next generation homes

 Build true Zero Energy Home—a home with no annual electric or natural gas utility bill, and zero net electric demand during summer peak periods

Continue R&D with NREL

Current Energy performance goals

- Annual source energy: 80% reduction
- Zero net summer peak electric demand: 4 PM to 8 PM

Develop new package of advanced (not yet commercialized) EE and DR measures, solar PV and solar thermal

- Super tight envelope advanced framing, SIPS
- Evaporative condensers
- Home automation
 - Pre-cooling
 - Price signaling
 - In home display (production and consumption)

