

Hardwired Standby Loads CASE Study Lighting Controls California Energy Commission Title 24 Workshop July12, 2006

Prepared by: Ecos Consulting Conway & Silver, Energy Associates LLC

1

Project Scope

- Evaluate Title 24 Code Change Recommendations to Address the Hardwired Standby Loads of Devices
- Examined Standby Loads of Lighting Controls for Both Non-Residential & High-Rise Residential Buildings
- Today's Scope Limited to Non-Residential Control Devices Not Lighting Systems:
 - Motion sensors
 - Occupancy sensors
 - Photo sensors

•

Residential Hardwired Standby CASE Study

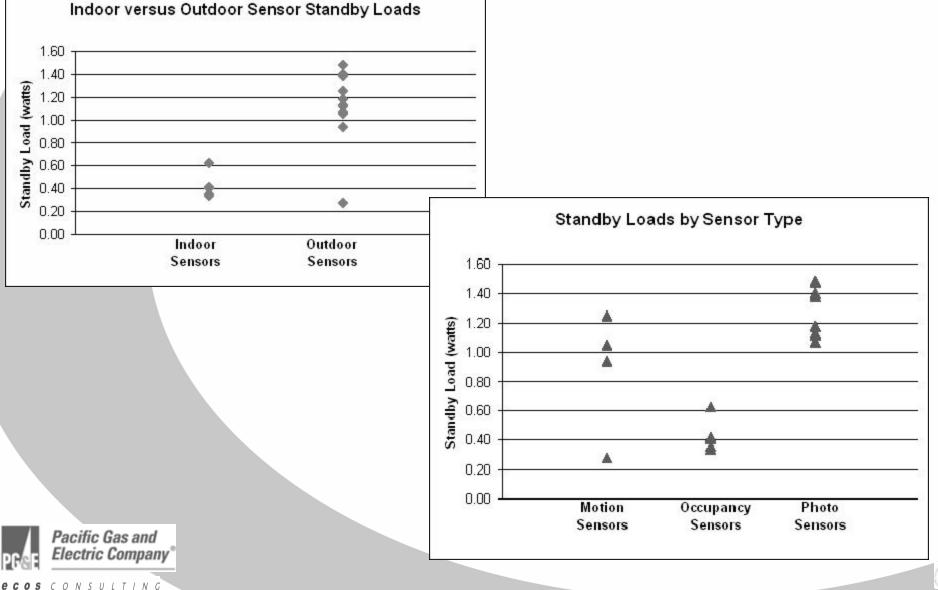
- Draft CASE study prepared for residential hardwired devices
- Evaluated 2 devices:
 - class 2 transformers (doorbell transformers)
 - ground fault circuit interrupters (GFCIs)
- Believe increased efficiency opportunities exist but recommend these be addressed under Title 20 appliance standards

Overview & Methodology

- <u>Overview</u>: Evaluated standby loads of lighting control products and the potential for improving the efficiency of controls mandated in current Title 24 language.
- <u>Methodology</u>: Primary research and testing was required and included the following activities:
 - Manufacturer interviews
 - Contractor interviews
 - Standby load device testing (IEC 62301)
 - Industry publication review
 - Existing standards review
 - Statewide impact estimates
 - Cost-effectiveness scenario analysis
 - Code language review
 - Proposal development

Preliminary Testing Results

	Product Type	Location	Connection	Standy-By Power Consumption (W)	Retail Price (no installation)
1	Motion Sensor	Outdoor	120VAC, 60Hz	1.05	\$53.00
2	Motion Sensor	Outdoor	120 VAC	1.25	\$14.50
3	Motion Sensor	Outdoor	120 VAC	0.94	\$36.00
4	Motion Sensor	Outdoor	125	0.28	\$23.00
5	Occ Sensor	Indoor	120VAC, 60 Hz	0.63	\$35.00
6	Occ Sensor	Indoor	125VAC/CA Hz	0.34	\$22.99
7	Occ Sensor	Indoor	120 VAC	0.36	\$22.73
8	Occ Sensor	Indoor	120VAC	0.34	\$18.62
9	Occ Sensor	Indoor	120VAC	0.34	\$15.87
10	Occ Sensor	Indoor	125VAC/60 Hz	0.34	\$19.99
11	Occ Sensor	Indoor	125	0.41	\$20.00
12	Occ Sensor	Indoor	125	0.42	\$25.00
13	Photo Sensor	Outdoor	120VAC	1.38	\$12.98
14	Photo Sensor	Outdoor	120 VAC	1.40	\$12.98
15	Photo Sensor	Outdoor	120 VAC	1.48	\$9.98
16	Photo Sensor	Outdoor	120 VAC/ 15 A	1.18	\$9.98
17	Photo Sensor	Outdoor	120 VAC/ 15 A	1.38	\$9.98
18	Photo Sensor	Outdoor	120 VAC/ 15 A	1.07	\$6.98
19	Photo Sensor	Outdoor	120 VAC/ 15 A	1.13	\$7.98
20	Photo Sensor	Outdoor	120 VAC/ 15 A	1.12	\$9.99



есо

ONSULTING

2

Preliminary Testing Results Continued

ONSULTING C

9

6

Industry Interview Results

- Overwhelming Response to: Do you measure standby loads of your controls?
 - "I've never been asked that question before"
- Of over15 manufacturers evaluated, only 1 found that currently lists "power consumption" on specification sheets
 - reported value was within 5% measured value
- efficiency improvements for sensors could be achieved through more efficient power pack design
- Manufacturers have not developed products with standby load as a design criterion.
- If required, cost impacts associated with redesign of products could be significant

Recommended Code Change Process

a two-phase process for implementing code changes to reduce hardwired standby loads:

- <u>Phase 1</u>: mandated "test and list" requirement for all lighting control devices to be established in the 2008 Title 24 standards.
- <u>Phase 2:</u> Two-years after the implementation of Phase 1, evaluate establishing minimum efficiency requirements by device type / technology.
 - Phase 2 code changes could occur under either a future Title 20 proceeding or the next Title 24 update

Statewide Impact Analysis

	Type of Code Change	0	kW Savings after 1 Year (average)	Year 1 Million sq. ft. (Non- Residential)	CA High Rise Residential Buildings
Lighting Controls	Test & List	300	40	156	35,700
Lighting Controls	Minimum Efficiency	1,900	280	156	35,700

Population of new commercial controls is estimated using the following assumptions:

- Annual growth =156 million new sq ft of non-residential
- Lighting Density: 1.2 1.9 (ASHRAE Building Area Method)
- Control Density: 1 control/500 watts
- Yields approximately 1 control device per 700 sq.ft.

Population of new high rise residential controls is estimated using the following assumptions:

• 1 control per floor and an average of 10 floors per high rise building

Cost -Effectiveness Analysis

Lighting Controls: Phase One Test and List Proposal Using TDV Weighted Average Values Range of Cost-effectiveness (negative values = cost effective)					
0	Cost Premium over Baseline				
PV Savings	Min	Average	Max		
Min	(\$9,541)	\$70,360	\$230,160		
Average	(\$367,306)	(\$287,405)	(\$127,605)		
Max	(\$814,512)	(\$734,612)	(\$127,605) (\$574,811)		

Lighting Controls: Phase Two Minimum Efficiency Proposal

Using TDV Weighted Average Values

Range of Cost-effectiveness (negative values = cost effective)

· · · ·	00 /	
Cost Premium over Baseline		
Min	Average	Max
(\$812,294)	\$1,100,543	\$3,013,380
(\$2,153,913)	(\$241,076)	\$1,671,761
(\$3,495,531)	(\$925,765)	\$330,143
	(\$812,294) (\$2,153,913)	MinAverage(\$812,294)\$1,100,543(\$2,153,913)(\$241,076)

- Scenario analysis indicates code changes could be cost-effective
- Phase One proposal assumes a small savings range resulting from lighting designer behavioral changes and other state initiatives (e.g. design for zero-energy new homes)

Proposed New Title 24 Language (Phase One)

(k) All Devices: Test and List. The Manufacturer shall:

- <u>Test the standby power requirements for each</u> <u>device per IEC 62301 testing protocol</u> <u>or other test</u> <u>approved by the Commission, and</u>
- Provide a listing of the standby power requirements on the both the control and the external packaging.
- <u>Clearly indicate area of product application</u>: <u>interior or exterior</u>

CASE Recommendations

- Include Phase One Test and List mandate for all lighting controls in 2008 Title 24 Update
- Analyze manufacturer data from Phase One and work with stakeholders to establish Phase Two mandated efficiency standards, as appropriate by device technology/technology
- Develop any Phase 2 code changes under either a future Title 20 proceeding or the next Title 24 update
- Investigate opportunities to reduce standby load in conjunction with overall lighting system efficiency rather than on a device-only basis

