## Revisions to the Residential ACM Calculations



June 15, 2007 Bruce Wilcox ^ 9.5 Tons on a Fresno house ~ 10 KW compressor



1.7 kW furnace fans



13 tons AC on a 3763 ft2 Palm Springs house 282 ft2/ton - 2.2 kW furnace fans

### **ACM Change Topics**

Air tightness and ventilation

oFurnace fan

Duct leakage

oSlab edge

## Air Tightness and Ventilation



### **Air Tightness**

- Current default Specific Leakage Area (SLA) 4.4 (sealed ducts) based on California houses built in 1984-1987
- Typical houses are getting tighter
  - RCQ Study average SLA = 3.2 3.5
  - Wilson, 76 2002 homes in Southern California, average SLA = 2.8
- Proposed new default and Standard Design
  - SLA = 3.8 with sealed ducts
  - SLA = 3.2 with no ducts in unconditioned space

### **Mechanical Ventilation**

- Mandatory ASHRAE Standard 62.2
- Default is continuous exhaust fan
- Default Ventilation Rate is
  - 0.01 \* conditioned floor area
  - + 7.5 \* number of bedrooms + 1
  - 48 CFM in the 1761 Prototype
- Default W/CFM is 0.25
  - 12 Watts in the 1761 prototype
- Standard Design W and CFM is same as proposed up to a maximum of 1.2 W/CFM

## Old Ventilation Model Removed

 No more ACM window openings for IAQ (windows still open for cooling)

 No more ventilation and adverse energy impact of low SLA

## Default IAQ Ventilation Increases Annual TDV 1%



## Furnace fan



### **Background**

- 2005 ACM models fans for air conditioning using a W/CFM and CFM per ton based model.
- 2005 ACM says fan energy is fixed at .005 x heating output
- There is no heating mode 2005 credit for an efficient distribution system

# Field Survey Heating CFM as Function of Cooling CFM



# Field Survey Heating W/CFM Function of Cooling W/CFM



## **Proposed Heating Fan Model**

- o CFM Heat = 0.93 \* CFM Cool
- o W/CFM Heat = 0.88 \* W/CFM Cool
- $\circ$  Cap Heat = 1.08 \* CFM Heat \* 40
- W/BtuHeat =
- (CFM Heat \* W/CFM Heat) / Cap Heat

### Air Distribution Systems

- Central AC fan runs on schedule to distribute IAQ ventilation air to meet the 62.2 requirement
- User inputs distribution rate
- Standard Design 0.58 W/CFM
- Runs min 20 minutes each hour
- Proposed has default fan or actual fan if tested

## Duct leakage



## **Duct leakage Topics**

Low Leakage Air Handlers

Low Leakage Ducts

Ducts in Conditioned Space

Ducts in the UZM model

### Leaky Air Handlers

- Air handlers are a significant source of distribution system air leakage
- Raters report that leaky air handlers are one of the reasons systems fail duct sealing criteria
- Field applied air handler sealing, especially around access panels, may not be reliable

## Low Leakage Air Handlers Proposed Credit

- Florida code testing definition for now. ASHRAE test standard under development.
- Manufacturers test and certify to the Commission
- HERS Verification is required for credit
- Credit must be combined with verified duct leakage

# Low Leakage Air Handlers Florida Definition

A factory sealed air handler unit tested by the manufacturer and certified to the Commission to have achieved a 2 percent or less leakage rate at 1-inch water gauge when all air inlets, air outlets and condensate drain port(s), when present, are sealed at an air pressure of 1-inch water gauge with no greater than 2percent of design cubic foot per minute discharge.

## Low Leakage Air Handlers Two ACM Credit Methods

- Credit with verified duct leakage
  - Test to 6% (current criteria)
  - Use 6% leakage in ACM calculations (instead of 8%)
- Credit with specified lower duct leakage
  - Select a leakage level <6% for ACM run</li>
  - Test to specified total duct leakage level or lower
  - Provides a way to do better than current leakage rate if done in conjunction with a low leakage air handler

# Low Leakage Ducts in Conditioned Spaces

- Ducts in conditioned space can provide significant energy savings
- Current ACM rules separate conduction and air leakage losses
- Ducts qualifying as being in conditioned space have conduction losses set to zero, but still have same air leakage losses to outside as other ducts

# Ducts in Conditioned Spaces 0% Leakage in ACM

- Use test method described in Appendix RC.4.3.3, Duct Leakage to Outside from Fan Pressurization of Ducts
- Threshold of 25 cfm to meet definition of low leakage to account for practical measurement issues
- HERS Verification is required for credit
- Credit must be combined with verified duct in conditioned space

#### Ducts in the UZM Model

- Same as current inputs except:
- Cooling supply CFM for each zone
  - Defaults and Standard Design based on calculated AC capacity
  - Default 300 CFM/ton
  - Standard Design 350 CFM/ton
  - Proposed with verification is 350 CFM/ton or greater

### Slab Heat Flow



#### **CEC Slab Loss Model**

- Developed in 2000 by Huang et. Al. at LBNL
- Simplified model for hourly simulation
  - Based on results of detailed 2D model
  - Regression coefficients for conductance to annual, monthly and weekly temperatures
  - Carpeted and hard surface slabs
  - Prototype implemented in DOE2

### Residential ACM

- Keep current slab inputs
  - Area carpeted and hard surface
  - Perimeter length of each
- Adapt for Residential ACM
  - Apply to bottom of slab
- User selects library input for slab edge insulation
  - Location/type
  - R and depth of insulation
    Include shallow insulation for floating slabs