414 Morgan Street
P.O. Box 116

Brownsville, TN 38012-0116
TEL (731) 772-3180 (800) 776-2756

December 4,2007

CALIFORNIA ENERGY COMMISSION
1516 Ninth Street, MS-4
Sacramento, CA 95814

Reference Docket No. 07-BSTD-1

I wish to direct this discussion in reference to the 2008 Update to the Building Energy Efficiency Standards (45-day language). The portion that I direct your attention is the swimming pool system piping and is located at Subchapter 7, Section 150.p.2.C.(page 202 of the document).

"C. All elbows shall be sweep elbows or elbow-type fittings with a friction factor less than or equal to equivalent sweep elbows"

The wording of this statement is troubling because it is undefined and imprecise. What is the definition of an "equivalent sweep elbow" as stated? Since there is not a standardized definition of a sweep elbow to which a comparison is to be made, this paragraph does not have a quantitative measure or guideline. There is not currently a standardized method to derive the "friction factor" defined or referred to in this statement. The pipe fitting industry has used data developed decades ago by a manufacturer of iron fittings to calculate the head loss of various fittings and valves. This information is commonly referenced in engineering handbooks and manuals to this day ${ }^{1}$. In 2002, LASCO Fittings, Inc. commissioned the Center for Irrigation Technology ${ }^{2}$, to evaluate the affect of replacing standard elbows with "sweep elbows" and submits this data for your consideration. The results of the testing illustrates that any reduction in friction head loss is trivial.

The Plastic Pipe Institute (PPI) a division of the Society of the Plastics Industry (SPI), ancl manufacturers of PVC pipe and fittings recommend that velocities within a piping be limited to 5 feet per second ${ }^{3}$. This serves multiple functions, the most common to reduce friction loss within the system. It is common practice in the process piping, irrigation and most hydraulic designs to reduce the friction loss and energy requirements by lowering the system flow velocity or by going to larger piping size. For example, using 2 " Schedule 40 pipe (commonly used in swimming pools construction) and reducing the flow velocity of $\mathbf{8}$ feet per second (paragraph B of the same section) by just 1 foot per second, will lower the friction loss by $1 / 2 \mathrm{psi}$ or about 12%.

However, restricting the system velocity to 5 feet per second, as recommended by the industry, the friction loss in the complete system, not just the elbows, would be reduced by as much as 60%. There are many ways to reduce the flow velocities within a system, such as pump sizing, pump speed and piping size. In a system with $11 / 2$ inch piping flowing at 50 gallons per minute, or about 8 feet per second, just by increasing the piping one size, to 2 inch, the system witie friction loss would be decreased by as almost 70%. By limiting the flow velocity within a piping
system, there is a quantitative method to work out the friction losses as compared to an undefined "equivalent sweep elbow".

The use of "sweeps" in place of elbows have not proven to provide the total energy savings perceived and can substantially increase the cost of swimming pools being built. Without a standardized test method, the irrigation and hydraulics industry rely on the information developed by Crane Co. ${ }^{5}$ that represents the friction loss of various fittings in equivalent length of pipe. The attached testing conducted by the Center for Irrigation Technology (CIT), at California State University at Fresno, illustrates and corroborates the friction loss data of elbows. With that data, the difference between a standard 90° Elbow and a 90° long radius Elbow can be about to 30 diameters of pipe. Using $11 / 2 "$ piping, for example, the difference is 1.59 " (actual I.D. diameter) x $30=47.7$ inches of addition pipe. The friction loss of 48 inches of pipe at the flow velocity of 8 feet per second, the comparison of a standard and a "long sweep elbow" reveals a savings of less than $1 / 4$ psi or the equivalent of lowering the system velocity about one foot per second.

Then by using efficiency data for a pump commonly, used swimming pool illustrates that 1 psi savings would equate to $1 / 6$ horsepower. The savings of $1 / 4$ psi would thus result in only .0 .04 horsepower or 0.0298-kilowatt savings. Whereas using 2" piping, with the same gallon per minute flow, would yield a 0.020-kilowatt savings. This should illustrate that lowering the system velocity is a more effective and cost efficient method to save energy than requiring sweep elbows in swimming pool construction.

The design and construction of swimming pool systems with lower flow rates will provide a healthy, safe, and enjoyable addition to any residential property without undue construction cost increase while lowering the energy requirements to circulate the water properly.

I submit that the revised Section 150.2 .B should be:
B. Pool piping shall be sized so that the velocity of the water at maximum flow for auxiliary pool loads does not exceed eight five feet per second in the return line and six feet per second in the suction line; and or suction piping system.
C. All elbows shall be sweep elbows or elbow-type fittings with a friction factor less than or equal to an equivalent sweep elbow.

Respectfully submitted;
Larry Workman
National Product Manager

1. Standard Handbook for Mechanical Engineers, Baumeister \& Marks, Seventh edition, pg 3-63
2. Center for Irrigation Technology (CIT), California State University at Fresno, Testing for LASCO Fittings, Inc. Jan, 2002, S4-406-3a, S4-D300-3a, \& S4-D304-3a
3. Plastic Pipe Institute, a division of the Society of the Plastics Industry, Thermoplastic piping for Swimming Pool Water Circulation Systems, TR17
4. Plastic Pipe Institute, a division of the Society of the Plastics Industry, Water Flow characteristics of Thermoplastic Pipe, TR14
5. Crane Co., Technical Paper 410, Flow of Fluids

Headloss Comparision (psi)

Composite of CIT Test Data

	Note A			
	406	$=0.0004631 q^{2}-0.000749 \mathbf{q}+0.0106344$		1112" Standard Schedule 40 Elbow
11⁄2"	D300	$=0.0002354 q^{2}-0.001791 q+0.0622547$	\longleftarrow	11⁄2" Short Sweep (DWV style)
	D304	$=0.0001751 q^{2}-0.001717 q+0.0527348$	\longleftarrow	1½" Long Sweep (DWV Style)
2"	406	$=0.0002753 q^{2}-0.001054 q+0.024666$		2" Standard Schedule 40 Elbow

```
        Velocity = 0.4085 x q/D }\mp@subsup{}{}{2
11⁄2" Schedule 40 (i.d.) = 1.59
    2" Schedule 40 (i.d.) = 2.067
```


Note A:
i.) Data taken from testing performed at CIT for LASCO Feb-2002. Equations developed by using "best fit" analysis of the test data collected.
ii.) Information was based on an assembly of fittings that included 3 elbows of the styles listed and in the figure shown. The total headloss was then divided by 3 to obtain an average value.

Figure 2

Collected Test Data by CIT
1½" Elbows \& Sweeps

Flow Rate (GPM) Headloss (psi) S4-406-3a (1½" 90° Elbow)

10.10	0.057
13.90	0.08
18.20	0.128
24.30	0.281
29.20	0.391
35.30	0.561
42.20	0.788
48.50	1.096
57.20	1.496
61.20	1.715
65.50	1.954
70.20	2.204
81.40	3.002
90.00	3.669
100.70	4.663

$Y=0.0004631 q^{2}-0.000749 q+0.0106344$

S4-D300-3a (1½" Short Sweep)

9.30	0.065
13.50	0.086
20.50	0.109
27.40	0.187
34.80	0.304
40.80	0.384
50.10	0.579
55.00	0.688
60.10	0.771
67.50	0.989
77.40	1.341
87.70	1.738
90.00	1.812
100.10	2.23
$\mathbf{0 0 0 2 3 5 4 q ^ { 2 }} \mathbf{- 0 . 0 0 1 7 9 1 q + \mathbf { 0 . 0 6 2 2 5 4 7 }}$	

S4-D304-3a (1½" Long Sweep)

10.20	0.056
13.50	0.063
24.90	0.109
32.80	0.181
39.10	0.259
45.40	0.355
53.40	0.441
59.90	0.599
71.60	0.813
83.50	1.149
90.00	1.313
109.40	1.969
$\mathbf{Y = 0 . 0 0 0 1 7 5 1} \mathbf{q}^{2}-\mathbf{0 . 0 0 1 7 1 7 q}+\mathbf{0 . 0 5 2 7 3 4 8}$	

S44063a						
File Edt Hep Cakulator						
Data Display/Editor iplcittes-1184-407-1.c8Y		Equations		ration Coeffic b	cients	Conelation Enefficient
		-. 939489	0483719		0.9382512	
X	Y			0338995		0.8327997
10.1	0.05		10.10205	-. 134452		0.5027747
13.9	. 08		-2.27604	. 0629634	19.41207	0.9788476
18.2	. 128		2.666893	-38.0755		0.4409078
24.3	. 281		-2.84398	198.9657		0.968186
29.2	. 391		4.452524	-154.043	1156.246	0.7249697
35.3	. 561		. 0106344	-. 000743	. 0004631	0.9997543
42.2	. 788		-.000329	. 0004597		0.9897567
48.5	1.096		. 0004734	1.988988		0.9968193
57.2	1.496		0722814	1.048427		0.9124423
61.2	1.715					0.
65.5	1.954		1106147	0095217		0.8773707
70.2	2.204		9.352863	-24.9411		0.9551784
81.4	3.002		0722814	0472913		0.9124423
90	3.669		3.819836	-51.2984		0.8814685
100.7	4.663		-4.97351	1.735746		0.7250682
	-		27.95072	-6.61152		0.7830997
Fit to 25 Equalions \Rightarrow			000593	1.002413	1.895992	0.9967957
Iatular Companixan			0002194	118.7175 99.13495	2.155716	0.9973831
Giaphical Companixan						
Forecast			54.52704	1148771	1895992	0.18967957
Fit to 3 Polynomials			0038531	-70.4776	-1.13223	0.8023049

S4.0.04838					
Fik Edt Hep Catulatar					
Data Display/Editor pheittes-1/84-d30-2.e8Y	Equations		tion Coel	ent:	Conelation Cocfficient
			. 0184434		0.9198698
$X \quad Y$. 0132072		0.8284951
10.2 . 056			-. 159144		0.6561148
13.5 . 063		-. 941105	. 0244278	8.388512	0.9759802
24.9 . 109		1.035918	-13.7750		0.3473325
32.8 . 181		-1.42373	213.7188		0.9721907
39.1 . 259		1.899351	-71.8483	563.3051	0.687103
45.4 . 355		. 0527348	-. 001717	. 0001757	0.9994211
59.4		0001854	. 0001615		0.9894269
59.9 . 599		000992	1.565912		0.9646469
71.6 . 813		0498874	1.037889		0.9598514
83.51 .149					
$90 \quad 1.313$		0703266	0071181		0.9324335
109.4 1.969		2.297747	-18.9411		0.8576268
		0498874	. 0371897		0.9598514
		1.111961	-37.6412		0.7537147
		-1.89660	6670531		0.6558798
		34.10591	-7.77527		0.9225933
Fit to 25 Equalions \rightarrow,		0058264	1.018534	8363692	0.9911177
Inhular Companixan		0000187	32207594 1350962	2.122877	0.9983611
Graphical Companison		0399902	1.485249	- 2591540	0.9373068
Furecast					
Fit to 3 Polynomials		1649491	51.45212	8363692	0.9911177
		0033679	-80.9978	- 482097	0.9414936

Screen prints of data evualation done with Kurv+
KURV+ for WINDOWS is (C) Copyright 1992-95 by Conrad Button's Software
If you are not a licensed user, a licensing fee of $\$ 20.00$ (U.S. funds) should be sent to:
Conrad Button's Software

Collected Test Data by CIT
 2" Elbows

	Curve Fi						
Flow Rate (GPM) Headloss (psi)	File	Help Soleabt					
S4-406-4a (2" 90)		play/Editor	Equations		uation Coeffi	ients	Correlation
10.100 .057	top\ci	\2indata.csv	Equations	a		c	Coefficient
15.70 0.054			() $Y=\mathbf{a}+\mathbf{b}^{*} \boldsymbol{X}$	-. 606822	0296677		0.939417
	\times	Y	O $Y=\mathbf{b}^{*} X$. 0208847		0.8385728
25.40 0.166	10.1	. 057	O $Y=1 /\left(a+b^{*} X\right)$	12.97378	-. 161415		0.5373962
32.40 0.282	15.7	054	(1) $Y=\mathbf{a}+\mathbf{b}^{*} X+\mathbf{c} / X$	-1.40082	. 0379791	11.86904	0.9808575
37.90 0.389	25.4	. 166	(1) $Y=a+b / X$	1.678411	-23.4869		0.3948247
	32.4	. 282	O $Y=X /\left(a^{*} X+b\right)$	-2.47657	231.5396		0.8815442
44.50 0.524	37.9	. 389	() $Y=a+b / X+c / X^{\wedge} 2$	2.909579	-106.133	803.7071	0.7323234
51.20 0.715	44.5	. 524	(0) $Y=a+b^{*} X+c^{*} X^{\wedge} 2$	024666	-. 001045	. 0002753	0.9994266
$60.80 \quad 0.964$	51.2	. 715	(1) $Y=a^{*} X+b^{*} X^{\wedge} 2$	-. 000119	. 000268		0.9894323
66.901 .202	60.8	. 964	© $Y=a^{*} X^{\wedge} b$	0004882	1.851405		0.9771741
$\begin{array}{ll}77.00 & 1.202\end{array}$	66.9	1.202	© $Y=a^{*} b^{\wedge} \times$. 0549377	1.043744		0.92358
86.80 1.979	77	1.591	O $Y=a^{*} b^{\wedge}(1 / X)$				
90.002 .129	90	2.129					
103.40 2.889	103.4	2.889		0549377	,		0.8999561
103.40 2.889				2.124599	-46.1804		0.92358
			O $Y=a+b^{*} \ln X$	-3.19509	1.102735		0.7105583
		\checkmark	O $\mathrm{Y}=1 /\left(\mathrm{a}+\mathrm{b}^{*} \ln X\right)$	35.05245	-8.10399		0.8007813
	Fit to 25 Equations =>		$\boldsymbol{=} \mathrm{a}^{*} \mathrm{~b}^{\wedge} \mathrm{X}^{*} \mathrm{X}^{\wedge} \mathrm{c}$	0014125	1.010865	1.418232	0.9816698
	Iabular Comparison		$0 \mathrm{Y}=\mathrm{a}^{*} \mathrm{e}^{\wedge}\left((X-b)^{\wedge} 2 / c\right)$. 0.50032	23463066	2.438564	0.9886105
$Y=0.0002753 q^{2}-0.001045 q+0.024666$	Graphical Comparison				-. 225525	4.061152	0.9847751
			$Y=a^{*} X^{\wedge} b^{*}(1-X)^{\wedge} c$ $Y=a^{*}(x / b)^{\wedge} c^{*} e^{\wedge}(x / b)$ $Y=1 /\left(a^{*}(X+b)^{\wedge} 2+c\right)$. 0091621			
	Forecast			868336	92.53650	1.418232	0.9816698
	Fit to 3 Polynomials			0044555	-73.8958	-1.13565	0.8476279

Screen prints of data evualation done with Kurv+
KURV+ for WINDOWS is (C) Copyright 1992-95 by Conrad Button's Software
If you are not a licensed user, a licensing fee of $\$ 20.00$ (U.S. funds) should be sent to:
Conrad Button's Softwar
20230 Lake Riley Rd.
Arlington, WA 98223
Figure 4

Calculated Headloss Comparison

Based on test data developed by CIT

Headloss: (tt/10oft)

$$
f=.2083 \times(100 / C)^{1.852} \times\left(\mathbf{q}^{1.852} / \mathrm{d}^{4.8655}\right) \quad \text { Hazen -Williams }
$$

$$
\begin{aligned}
(100 / 150)^{1.852} & =0.47193 \\
1 / 1.852 & =0.53996
\end{aligned}
$$

$\mathbf{d}^{4.8655}=$	$\mathbf{1 ½ "}$
9.54768	2"

	Headloss (psi)							
	1½ Inch					2 inch		
GPM	Velocity	Pipe/ft	90°	Short Sweep	Long Sweep	Velocity	Pipe(ft)	90°
30.95	5.001019	0.025696	0.143686	0.077438	0.055774	2.959183	0.007169	0.085345
32	5.170682	0.027334	0.153627	0.081997	0.059031	3.059575	0.007626	0.091044
34	5.493849	0.030581	0.173504	0.091161	0.065591	3.250798	0.008532	0.102461
36	5.817017	0.033996	0.194616	0.100952	0.072617	3.442022	0.009485	0.114612
38	6.140184	0.037577	0.216963	0.111371	0.080111	3.633245	0.010484	0.127496
40	6.463352	0.041321	0.240545	0.122418	0.088072	3.824469	0.011529	0.141115
42	6.78652	0.045229	0.265362	0.134093	0.096499	4.015692	0.012619	0.155468
44	7.109687	0.049298	0.291413	0.146395	0.105393	4.206915	0.013754	0.170556
46	7.432855	0.053529	0.318700	0.159325	0.114755	4.398139	0.014935	0.186377
48	7.756022	0.057918	0.347222	0.172883	0.124583	4.589362	0.016159	0.202932
49.54	8.004861	0.061407	0.370025	0.183750	0.132469	4.736604	0.017133	0.216180

		Equivalent Diameters of pipe		
GPM	Velocity	$\mathbf{9 0}^{\circ}$	Short Sweep	Long Sweep
$\mathbf{3 0 . 9 5}$	5.0010186	42.2	22.7	16.4
$\mathbf{3 2}$	5.1706815	42.4	22.6	16.3
$\mathbf{3 4}$	5.4938491	42.8	22.5	16.2
$\mathbf{3 6}$	5.8170167	43.2	22.4	16.1
$\mathbf{3 8}$	6.1401843	43.6	22.4	16.1
$\mathbf{4 0}$	6.4633519	43.9	22.4	16.1
$\mathbf{4 2}$	6.7865195	44.3	22.4	16.1
$\mathbf{4 4}$	7.1096871	44.6	22.4	16.1
$\mathbf{4 6}$	7.4328547	44.9	22.5	16.2
$\mathbf{4 8}$	7.7560223	45.2	22.5	16.2
$\mathbf{4 9 . 5 4}$	$\mathbf{8 . 0 0 4 8 6 1 4}$	45.5	22.6	16.3

Figure 4

Test Specimens at CIT

