FULL FUEL CYCLE ASSESSMENT: WELL-TO-WHEELS ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS

STATE PLAN TO INCREASE THE USE OF NON-PETROLEUM TRANSPORTATION FUELS AB 1007 (Pavley) Alternative Transportation Fuels Plan Proceeding

Prepared for:
California Energy Commission

Prepared by: TIAX LLC

CONSULTANT REPORT

REVISED: 8/1/2007 CEC-600-2007-004-REV p.imms gnihoosi

PETROLEUM TRANSPORTATION FUELS
PETROLEUM TRANSPORTATION FUELS
PETROLEUM TRANSPORTATION FUELS
Townsendistion Fools Plans (December)

nonumero 3 verana amortina

Prepared By:

TIAX, LLC Jennifer Pont Cupertino, California Contract No. 600-02-003

Prepared For:

California Energy Commission

Sherry Stoner Contract Manager

Tim Olson

AB 1007 Project Manager

McKinley Addy Project Manager

Rosella Shapiro

Deputy Director

TRANSPORTATION DIVISION

B. B. Blevins Executive Director

Transportation Committee
James D. Boyd
Vice Chairman and Presiding Member

Jeffrey D. Byron
Associate Member

DISCLAIMER

This report was prepared as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views of the Energy Commission, its employees or the State of California. The Energy Commission, the State of California, its employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the California Energy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this report.

THE COME SHE CALL YOUR THE CALL THE CAL

California Energy

a any Stones Curricus Maringar

Angeness to our Vision St.

white years to be

Copper Process
Copper

3. B. Slovies Executive Director

Tru se serados formanes denses de devel una seracoren mod Pasados democr

control of years.
Associate dentity

BOULD INDIA

and of the control of

ACKNOWLEDGMENTS

The authors wish to acknowledge the contributions to this report. The participation of the individuals listed was key to the success of the endeavor:

California Energy Commission

TIAX

Gerald Bemis Erin Briaht Susan J. Brown Pierre duVair Jim Folkman Guido Franco Asish Gautam David Hetzel Kenneth Koyama Michael McCormack Philip Misemer Suzanne Phinney Patty Rinaldi Elizabeth Sandoval Diana Schwyzer Mike Smith Najiba Shariq GiGi Tien Malachi Wang-Gutierrez Peter Ward Jerry Wiens

California Air Resources Board

Lorraine White

Gary Yowell

Gerhard Achtelik
Analisa Bevan
Steve Brisby
Ben Deal
Bob Fletcher
Susan L. Fischer
Barbara Fry
Jose Gomez
Narcisco Gonzales
Ben Hancock
Jeff Long
Anil Prabhu
Michael Scheible
Dean Simeroth

Matt Hooks Michael Jackson Jennifer Pont Dan Rutherford Larry Waterland

Stefan Unnasch

FULL FUEL CYCLE ANALYSIS PEER REVIEWERS

Argonne National Laboratory Michael Wang

Lawrence Livermore National Laboratory

David Armstrong
Chris Campbell
Gretchen Gallegos
Alan D. Lamont
Annette T. MacIntyre
David W. Rice
Jefferey Stewart
Ravi Upadhye

National Energy Technology Laboratory

Michael Reed

University of California, Berkley

Alex E. Farrell Richard Plevin

University of California, Davis

Anthony Eggert Joan M. Ogden Christopher Yang

PARTICIPATING ORGANIZATIONS

The following organizations were given an opportunity to review and comment on the AB 1007 full fuel cycle analysis. Comments submitted improved the report.

Accubuilt Mobility Division Alliance of Auto Manufacturers

Autumn Wind Associates
Aventine Renewable

Energy Baytech BNSF BP

CALCARS

California Department of Food and Agriculture California Electric

Transportation Coalition

California Fuel Cell Partnership

California Invasive Plant

Council

California Natural Gas Vehicle Coalition

California Renewable Fuel

Partnership

CAMPBELL-PARNELL

Center for Energy
Efficiency and
Renewable
Technologies
ChevronTexaco
Clean Energy
Clean Fuels USA

Community Environmental

Council

Crimson Renewable

Energy

Cummins-Westport (engine manufacturer)

DaimlerChrysler
DELTA LIQUID
ENERGY/San Luis

Butane

Diesel Technology Forum Downstream Alternatives,

Inc.

ECO Fuel Systems Inc Electric Power Research

Institute

Energy Independence

Now

Exxon Mobil

Ferrellgas-Blue Rhino First Southwest Company

Ford Motor Co.

Friends of the Earth/Blue

Water Network General Motors Corporation

Honda

Imperial Valley Biorefining,

Inc.

Interstate Oil
Kinder Morgan
Los Angeles County

Department of Public

Works

Miles Automotive

National Biodiesel Board National Ethanol Vehicle

Coalition

Natural Resources Defense Council

Neste Oil Nissan O2Diesel Pacific Ethanol

Pacific Gas & Electric

Company Plug-in America

Praxair

Propane Education and Research Council Refinery Consulting Renewable Energy Action

Project

Sacramento Municipal

Utility District

Schwans

Sempra Energy

Shell Silvas Oil

Sleegers Machining &

Fabricating

South Coast Air Quality
Management District
Southern California Edison

Southern California Gas

Company

Sustainable Conservation

Swan Biomass,

Technocarb Equipment

Ltd. Tesoro

Transportation Fuels

Consulting
TSS consultants

Union of Concerned

Scientists

Verasun Energy

Waste Management Board

Water Resources Control

Board

Western Propane and Gas

Association

Western States Petroleum

Association

NOTATION

Acronyms and Abbreviations

AB 1493 Assembly Bill 1493

AP-42 EPA document on emission factors

API American Petroleum Institute ARB California Air Resources Board

atm 1 atmosphere = 14.7 psi bbl barrel of crude oil (42 gal) Bcf billion standard cubic feet

BD biodiesel

bhp-hr brake horsepower hour (dynamometer measurement)

bsfc brake specific fuel consumption

BTL biomass-to-liquid

Btu British thermal unit = 1.055 kJ

bu bushel CA California

CARBOB California Reformulated Gasoline Blendstocks for Oxygenate Blending

CCCT Combined Cycle Combustion Turbine
CCS Carbon Capture and Sequestration
CEC California Energy Commission

cH₂ compressed hydrogen¹

CH₄ methane

CNG compressed natural gas

CO carbon monoxide CO₂ carbon dioxide DME dimethyl ether

DOE United States Department of Energy

DWT dead weight ton

E-10 Ethanol, 10 percent blended in gasoline E-85 Ethanol, 85 percent blended in gasoline

E100 ethanol, 100 percent with no blending components

EER Energy Economy Ratio

EIA Energy Information Administration EMA Engine Manufacturers Association

EMFAC Emissions Factors Model (ARB vehicle emissions factor model)

EPA Environmental Protection Agency

ESP Electrostatic Precipitator

EtOH Ethanol

EUCAR European Council for Automotive Research & Development

EV electric vehicle

¹ The lower case c is used to prevent confusion with hydrocarbon radicals.

FCC fluid catalytic cracker
FCV Fuel Cell Vehicle
FE Fuel economy
FFV flexible fuel vehicle
FT Fischer Tropsch
FTD Fischer Tropsch diesel

g gram

g/bhp-hr grams per brake horsepower-hour

g/GJ grams per giga joule g/mi grams per mile

g/Mj grams per mega joule
gal gallon = 3.7854 Liter
gal/yr gallons per year
GHG greenhouse gas

GREET Greenhouse gases Regulated Emissions and Energy in Transportation Model

GRI Gas Research Institute

GTL gas-to-liquid

GVW gross vehicle weight

GWh gigaWatt hour = 1,000,000 kWh

GWP global warming potential

H₂ hydrogen HC hydrocarbon

HEV hybrid electric vehicle

HHV higher heating value of fuel or feedstock

hp-hr shaft horsepower hour IC internal combustion ICEV IC engine vehicle

IGCC Integrated Gasification Combined Cycle

J Joule kg kilogram kJ kilo Joule

kn nautical mile, 2000 yards

kWh kilo-Watt hour = 3.6 MJ = 3,412 Btu

lb pound mass = 453.53 g

LEM Life cycle Emissions Model

LEV low emission vehicle
LH2 liquid hydrogen

LHV lower heating value, HHV less heat of vaporization of water vapor in

combustion products

LNG liquefied natural gas LPG liquefied petroleum gas

LUST Leaking Underground Storage Tank

M100 methanol, 100 percent with no blending components

mi mile

MJ Mega Joule = 3.6 kWh

MMBtu million Btu

MMscf million scf

mpg miles per gallon

MTBE methyl tertiary butyl ether

MW molecular weight MWh megaWatt hour

NERD Non-esterified renewable diesel

NG natural gas

NGV natural gas vehicle

NMOG non-methane organic gases

NO_x oxides of nitrogen

NREL National Renewable Energy Laboratory NSPS new source performance standards

 O_3 ozone

OEM original equipment manufacturer
ORVR Onboard Refueling Vapor Recovery

PADD Petroleum Administration Defense District

PAH polycyclic aromatic hydrocarbons PHEV plug-in hybrid electric vehicle

PM particulate matter

PM₁₀ particulate matter of ten micron diameter

psi pressure, lb/in², 14.7 psi = 1 atm
RECLAIM Regional Clean Air Incentive Market

RFG reformulated gasoline

RFG3 reformulated gasoline, current California requirement remote natural gas, produced outside North America

ROW rest of world

RPS renewable portfolio standard

RVP Reid vapor pressure

SCAQMD South Coast Air Quality Management District

SCCT Simple Cycle Combustion Trubine

SCE Southern California Edison

scf standard cubic feet of gas, at 60°F and 1 atm

scfm standard cubic feet per minute SCR selective catalytic reduction SoCAB South Coast Air Basin

SO_x oxides of sulfur SR steam reformer

SRWC short rotation woody crops T&D Transmission and Distribution

t/d tons/day

TEOR thermally enhanced oil recovery

THC total hydrocarbons
TOG total organic gases

ton United States short ton, 2000 lb

tonne Metric ton, 1000 kg
TTW Tank-To-Wheels

TVP true vapor pressure

UCD University of California Davis

ULSD ultra low sulfur diesel

U.S. EPA United States Environmental Protection Agency

UG underground V_E equilibrium vapor

VOC volatile organic compounds

WTT Wheel-To-Tank WTW Well-To-Wheels

ZEV Zero Emission Vehicle

ABSTRACT

As mandated by Assembly Bill 1007, this study assesses the energy inputs, greenhouse gas emissions, criteria pollutant emissions, air toxics emissions, and multimedia impacts from the production and use of a variety of conventional and alternative fuels that are considered options for on-road vehicle and off-road equipment applications in California on a full fuel cycle basis through 2030 to determine their "net material" impact. Seventeen different vehicle/fuel combinations with more than 50 fuel production pathways are evaluated. Possible uses of the results of the analysis are identified. Criteria pollutant emission calculations are determined for vehicle operation and emissions within California. Total global greenhouse gas emissions are quantified. The results are presented in three separate volumes. The fuel cycle, or "well-to-tank," impacts evaluate feedstock production, processing, fuel production, and fuel delivery. Vehicle energy use, or "tank-to-wheels," emissions were analyzed separately. The fuel cycle and vehicle impacts were combined and results are reported on a "well-to-wheels" basis in this report. The approach to the full fuel cycle analysis and the key assumptions are discussed. Results are presented for well-to-wheels emissions for selected feedstock/fuel/vehicle cases. Emissions associated with the production or decommissioning of facilities or vehicles are not in the scope of this project. The executive summary highlights the findings of the three-volume set that present the assumptions, method, and results of the full fuel cycle analysis prepared to support the development of the alternative transportation fuels plan as directed by AB 1007.

KEY WORDS

Criteria Pollutants, Full Fuel Cycle, Greenhouse Gas, Multi-media Impacts, Tank-to-Wheels, Well-to-Tank, Well-to-Wheels

TABLE OF CONTENTS

ACKNOWLED	DGMENTS	
NOTATION	the state of a worldy of consupplement and also see the	ili
ABSTRACT	and fishing the contraction of 0000 even in a contraction of the contr	vii
TABLE OF CO	ONTENTS	
LIST OF TAB	LES	xi
LIST OF FIGU	JRES	xii
EXECUTIVE	SUMMARY	
OVERVIEW	gall art, are treating edge institution in the edge in Edge	ES-1
GHG E	missions	ES-8
	Pollutant and Air Toxics Emissions	
	edia Impacts	
	ND RECOMMENDATIONS	
Finding	gs	ES-17
Recom	nmendations	ES-18
CHAPTER 1	INTRODUCTION	1
CHAPTER 2	FULL FUEL CYCLE ANALYSIS	4
Well-to	o-Tank Analysis Approach	5
	aphic Boundary Assumptions	
Margin	al Emissions	6
Fuel a	nd Feedstock Analysis Matrix	7
Tank-to	o-Wheels Analysis Approach	9
Vehicle	e Fuel Economy Assumptions	10
Vehicle	e Emission Factors	11
Well-T	o-Wheels Emissions Estimation	12
CHAPTER 3	WELL-TO-WHEEL ANALYSIS RESULTS	13
Conve	ntional (Petroleum) Fuels: Gasoline and Diesel	13
Ethano	ol	18

	Biodiesel and Renewable Diesel	25
	Natural Gas	29
	Electricity	37
	XTL Fuels	41
	Hydrogen	45
	Synthetic Fuels (Methanol and DME)	51
	LPG	55
CHAP	TER 4 DISCUSSION	60
	Energy Inputs	60
	Petroleum Production and Refining	60
	Alternative Fuel Production	61
	Power Generation	61
	WTT Modeling	62
	Transportation Logistics	62
	Greenhouse Gas (GHG) Emissions	62
	Criteria Pollutant Emissions	63
	Air Toxics Emissions	64
	Effect of Scenario Year	65
	Key WTW Sensitivities	70
	Multimedia Impacts	70
	Water Impacts	.70
	Agricultural Impacts	71
	Fuel Spill Impacts	.71
	Summary Multimedia Impacts	.71
CHAP	TER 5 CONCLUSIONS	72
	Energy Input and GHG Emissions Conclusions	72
	Criteria Pollutant and Air Toxics Emissions	.73
	Multimedia Impacts	.75
CHAP	TER 6 RECOMMENDATIONS	.76
	Analysis Methods	.76
	Data Collection	.77
	Boundary Considerations	77

APPENDIX A.	CALCULATION RESULTS	A-1
	GENERAL RESPONSE TO COMMENTS ON THE DRAFT FULL FULL CYCLE ASSESSMENT REPORTS	
APPENDIX C.	RESPONSES TO SPECIFIC COMMENTS ON THE DRAFT FULL FU	

LIST OF TABLES

Table 1-1.	Past Studies with a Fuel Cycle Analysis Component	3
Table 2-1.	Effect of Study Parameters on Fuel Cycle Results	5
Table 2-2.	Finished Liquid Fuels and Feedstocks Considered	8
Table 2-3.	Fuel/Feedstock Scenarios for Electricity Generation and Hydrogen Production	9
Table 2-4.	Baseline Vehicles for Estimating Alternative Fueled Vehicle Emissions	11
Table 3-1.	Energy and GHG Impacts of Gasoline Vehicles	15
Table 3-2.	Energy and GHG Impacts of New Diesel Passenger Cars	15
Table 3-3.	Pollutant Impacts of Gasoline Vehicles	17
Table 3-4.	Pollution Impacts of New Diesel Passenger Cars	18
Table 3-5.	Energy and GHG Impacts of E-85 Vehicles - Corn Based Ethanol	20
Table 3-6.	Energy and GHG Impacts of E-85 Vehicles –Sugar Cane and Biomass Based Ethanol	21
Table 3-7.	Pollution Impacts of E-85 Vehicles – Corn Based Ethanol	23
Table 3-8.	Pollution Impacts of E-85 Vehicles – Sugarcane and Biomass Based Ethanol	24
Table 3-9.	Energy and GHG Impact of Biodiesel and Renewable Diesel Vehicles	27
Table 3-10.	Pollution Impacts of Biodiesel Vehicles – BD20	29
Table 3-11.	Energy and GHG Impacts of CNG Vehicles	31
Table 3-12.	Energy and GHG Impacts of LNG Vehicles	32
Table 3-13.	Pollution Impacts of CNG Vehicles	36
Table 3-14.	Pollution Impacts of LNG Vehicles	37
Table 3-15.	Energy and GHG Impacts of Electric Vehicles	39
Table 3-16.	Pollution Impacts of Electric Vehicles	41
Table 3-17.	Energy and GHG Impacts of XTL Vehicles	43
Table 3-18.	Pollution Impacts of GTL Vehicles	44
Table 3-19.	Energy and GHG Impacts of Hydrogen Vehicles	48
Table 3-20.	Pollution Impacts of Hydrogen Vehicles	51
Table 3-21.	Energy and GHG impacts of Methanol and DME Buses	53
Table 3-22.	Criteria Pollutant Impacts of Methanol and DME Buses	
Table 3-23.	Energy and GHG Impacts of LPG Vehicles	57
Table 3-24.	Pollution Impacts of LPG Vehicles	59

LIST OF FIGURES

Figure ES-1.	Emission Events Included in a Full Fuel Cycle Assessment	E S-4
Figure ES-2.	Total Vehicle Well-to-Wheels Energy Cycle	ES-5
Figure ES-3.	Summary of Light-Duty Vehicle Fuel Economy	ES-6
Figure ES-4.	Summary of Urban Bus EERs Utilized in TTW Analysis	ES-6
Figure ES-5.	2012 GHG Emissions for Spark Ignited Passenger Car Options (new stock)	ES-9
Figure ES-6.	2022 GHG Emissions for Spark Ignited Passenger Car Options (new stock)	.ES-10
Figure ES-7.	2012 GHG Emissions for Urban Bus Options (new stock)	.ES-10
Figure ES-8.	2022 GHG Emissions for Urban Bus Options (new stock)	.ES-11
Figure ES-9.	2012 WTW Criteria Pollutant Emissions from Passenger Cars (new stock)	.ES-13
Figure ES-10). 2022 WTW Criteria Pollutant Emissions from Passenger Cars (new stock)	.ES-14
Figure ES-17	I. 2012 WTW Criteria Pollutant Emissions from Urban Buses (new stock)	.ES-14
Figure ES-12	2. 2022 WTW Criteria Pollutant Emissions from Urban Buses (new stock)	.ES-15
Figure ES-13	Discharges of Hydrocarbons from Petroleum Fuel Processes in California	.ES-16
Figure 2-1.	Total Vehicle Energy Cycle	5
Figure 2-2.	Summary of Light-Duty Vehicle Fuel Economies Used in TTW Analysis	10
Figure 2-3.	Summing up Fuel Cycle Emission Components	12
Figure 3-1.	WTW Energy Consumption for Petroleum Fuels in Mid-Size Vehicles (2012 New Vehicle Stock)	14
Figure 3-2.	WTW GHG Emissions for Petroleum Fuels in Mid-Size Vehicles (2012 New Vehicle Stock)	14
Figure 3-3.	WTW Criteria Pollutant Emissions for Gasoline Fuels in Mid-Size Vehicles (2012 New Vehicle Stock)	16
Figure 3-4.	WTW Air Toxic Contaminant Emissions for Gasoline Fuels in Mid- Size Vehicles (2012 New Vehicle Stock)	16
Figure 3-5.	WTW Energy Consumption for Ethanol Fuels in Mid-Size Vehicles (2012 Existing Vehicle Stock)	19
Figure 3-6.	WTW GHG Emissions for Ethanol Fuels in Mid-Size Vehicles (2012 Existing Vehicle Stock)	

Figure 3-7.	Criteria Pollutant Emissions for Ethanol Fuels (2012 Existing Vehicle Stock)	22
Figure 3-8.	Air Toxic Contaminant Emissions for Ethanol Fuels (2012 Existing Vehicle Stock)	22
Figure 3-9.	WTW Energy Consumption for Bio and Renewable Diesel Fueled Midsize Vehicles (2012 Existing Vehicle Stock)	25
Figure 3-10.	WTW Energy Consumption for Bio and Renewable Diesel Fueled Urban Buses (2012 Existing Vehicle Stock)	26
Figure 3-11.	WTW GHG Emissions for Bio and Renewable Diesel Fueled Midsize Vehicles (2012 Existing Vehicle Stock)	26
Figure 3-12.	WTW GHG Emissions for Bio and Renewable Diesel Fueled Urban Buses (2012 Existing Vehicle Stock)	27
Figure 3-13.	Criteria Pollutant Emissions for Bio and Renewable Diesel Fueled Midsize Vehicles (2012 Existing Vehicle Stock)	28
Figure 3-14.	Criteria Pollutant Emissions for Bio and Renewable Diesel Fueled Urban Buses (2012 Existing Vehicle Stock)	28
Figure 3-15.	WTW Energy Consumption for CNG Midsize Vehicles (2012 New Vehicle Stock)	30
Figure 3-16.	WTW GHG Emissions for CNG Midsize Vehicles (2012 New Vehicle Stock)	30
Figure 3-17.	WTW Energy Consumption for LNG and CNG Heavy Duty Vehicles (2012 New Vehicle Stock)	31
Figure 3-18.	WTW GHG Emissions for LNG and CNG Heavy Duty Vehicles (2012 New Vehicle Stock)	32
Figure 3-19.	Criteria Pollutant Emissions for CNG Vehicles (2012 New Vehicle Stock)	33
Figure 3-20.	Criteria Pollutant Emissions for LNG and CNG Urban Buses (2012 New Vehicle Stock)	34
Figure 3-21.	Air Toxic Contaminant Emissions for CNG Vehicles (2012 New Vehicle Stock)	34
Figure 3-22.	Air Toxic Contaminant Emissions for LNG and CNG Urban Buses (2012 New Vehicle Stock)	35
Figure 3-23.	WTW Energy Consumption for Midsize Electric Vehicles (2012 New Vehicle Stock)	38
Figure 3-24.	WTW GHG Emissions for Electric Vehicles (2012 New Vehicle Stock)	38
Figure 3-25.	Criteria Pollutant Emissions for Midsize Electric Vehicles (2012 New Vehicle Stock)	
Figure 3-26.	Air Toxic Emissions for Midsize Electric Vehicles (2012 New Vehicle Stock)	40

Figure 3-27.	WTW Energy Consumption for XTL Urban Buses	42
Figure 3-28.	WTW GHG Emissions for XTL Urban Buses	42
Figure 3-29.	Criteria Pollutant Emissions for XTL Urban Buses	43
Figure 3-30.	Air Toxic Contaminant Emissions for XTL Urban Buses	44
Figure 3-31.	WTW Energy Consumption for Hydrogen Midsize Vehicles (2012 New Vehicle Stock)	45
Figure 3-32.	WTW Energy Consumption for Hydrogen Urban Buses (2012 New Vehicle Stock)	46
Figure 3-33.	WTW GHG Emissions for Midsize Hydrogen Vehicles (2012 New Vehicle Stock)	46
Figure 3-34.	WTW GHG Emissions for Hydrogen Urban Buses (2012 New Vehicle Stock)	47
Figure 3-35.	Criteria Pollutant Emissions for Midsize Hydrogen Vehicles (2012 New Vehicle Stock)	49
Figure 3-36.	Criteria Pollutant Emissions for Hydrogen Urban Buses (2012 New Vehicle Stock)	49
Figure 3-37.	Air Toxic Emissions for Midsize Hydrogen Vehicles (2012 New Vehicle Stock)	50
Figure 3-38.	Air Toxic Emissions for Hydrogen Urban Buses (2012 New Vehicle Stock)	50
Figure 3-39.	WTW Energy Consumption for Synthetic Fuel Vehicles (2012 New Stock)	52
Figure 3-40.	WTW GHG Emissions for Synthetic Fuel Vehicles (2012 New Stock)	52
Figure 3-41.	Criteria Pollutant Emissions for Synthetic Fuel Vehicles (2012 New Stock)	54
Figure 3-42.	Air Toxic Contaminant Emissions for Synthetic Fuel Vehicles (2012 New Stock)	54
Figure 3-43.	WTW Energy Consumption for LPG Vehicles (2012 New Vehicle Stock)	56
Figure 3-44.	WTW GHG Emissions for LPG Vehicles (2012 New Vehicle Stock)	56
Figure 3-45.	Criteria Pollutant Emissions for LPG Vehicles (2012 New Vehicle Stock)	57
Figure 3-46.	Air Toxic Contaminant Emissions for LPG Vehicles (2012 New Vehicle Stock)	58
Figure 4-1.	Urban California Weighted Air Toxics Emissions for New Passenger Car Vehicles (2012 New Stock)	65
Figure 4-2.	WTW Energy Inputs for Gasoline Passenger Cars (MY2010 and newer)	66

Figure 4-3.	WTW GHG Emissions for Gasoline Passenger Cars (MY2010 and newer)	67
Figure 4-4.	WTW Criteria Pollutant Emissions for Gasoline Passenger Cars (MY2010 and newer)	67
Figure 4-5.	WTW GHG Emissions for Biomass Based E-85 Passenger Cars (MY2010 and newer)	68
Figure 4-6.	WTW GHG Emissions for CNG Passenger Cars (MY2010 and newer)	68
Figure 4-7.	WTW GHG Emissions for PHEV Passenger Cars (MY2010 and newer)	69
Figure 4-8.	WTW GHG Emissions for Natural Gas Derived FTD30 Buses (MY2010 and newer)	69
Figure A-1.	LDA Vehicle Class: All Model Years (Gasoline, E10, Diesel, LPG and CNG)	A-3
Figure A-2.	LDA Vehicle Class: Model Years 2010 and Newer (Gasoline, E10, Diesel, LPG and CNG)	A-7
Figure A-3.	LDA Vehicle Class: Model Years 2010 and Newer (EVs and PHEVs)	. A-11
Figure A-4.	LDA Vehicle Class: Model Years 2010 and Newer (Hydrogen)	. A-15
Figure A-5.	LDA Vehicle Class: All Model Years (E85)	. A- 19
Figure A-6.	LDA Vehicle Class: Model Years 2010 and Newer (E85)	. A-2 3
Figure A-7.	LDA Vehicle Class: All Model Years (Biodiesel Blends, Renewable Diesel Blends and XTL Blends)	. A- 27
Figure A-8.	Urban Buses: All Model Years (Diesel, Biodiesel Blends, Renewable Diesel Blends and XTL Blends)	. A-31
Figure A-9.	Urban Buses: Model Years 2010 and Newer (Diesel, Biodiesel Blends, Renewable Diesel Blends and XTL Blends)	. A- 35
Figure A-10.	Urban Buses: All Model Years (Natural Gas, DME, Methanol, and Hydrogen)	. A-3 9
Figure A-11.	Urban Buses: Model Years 2010 and Newer (Natural Gas, DME, Methanol, and Hydrogen)	A-43

•		

EXECUTIVE SUMMARY

OVERVIEW

California's transportation energy demand is rising due to population growth, economic activity and increasing vehicle miles traveled. At the same time, traditional supplies of conventional transportation fuels are uncertain. In-state production of crude oil has declined by 60 percent over the last 10 years. California's import of crude oil from Alaska, a dominant domestic source, has also fallen. Increasing competition for crude oil internationally and price volatility limits California's import options of unrefined and refined petroleum products.

Assembly Bill 1007 (Pavley), Chapter 371, Statutes of 2005, responds to California's rising transportation energy demand and the uncertainties related to conventional petroleum products by requiring development of a plan for increased use of alternative, non-petroleum fuels by California's consumers through designated milestone years, 2012, 2017, 2022. The California Energy Commission (Energy Commission) and the California Air Resources Board (ARB) extended analysis for the State Alternative Fuels Plan (SAFP) to 2030 and 2050. The additional periods allow an assessment of alternative non-petroleum transportation fuels and technologies with longer development time frames.

The 2003 Joint Agency Report on Reducing California's Petroleum Dependence² identified alternative fuels as one of five options to meet California's future transportation energy demand and set important non-petroleum transportation fuel goals. By 2020, 20 percent of California's transportation energy use would come from alternative fuels. By 2030, the Joint Agency Report specified that 30 percent of the state's transportation fuel needs would be met by non-petroleum fuels. The Energy Commission's 2003 and 2005 Integrated Energy Policy Reports reaffirmed these goals.

For AB 1007, the Energy Commission and the ARB conducted a full fuel cycle assessment of the possible combination of more than 50 feasible non-petroleum fuel/vehicle technologies (Pathway). The full fuel cycle analysis examines feedstock production and processing, fuel production and delivery, and fuel use in vehicles. For fuel/vehicle pathway, the analysis assesses the energy inputs, greenhouse gas emissions, criteria pollutant emissions and multimedia impacts to determine their net material impact. The agencies identified the following possible uses of this analysis:

 Determining and understanding the emissions footprint and other multimedia impacts of alternative fuels/vehicles on a full fuel cycle basis.

² The Joint Agency Report on Reducing California's Petroleum Dependence was published by the California Energy Commission and the California Air Resources Board in August 2003, as directed by AB 2076 (Reducing California's Petroleum Dependence - Assembly Bill 2076, Shelley, Chapter 936, Statutes of 2000). The full report identified conservation, efficiency, non-petroleum fuels, land-use planning as measures to meet mismatched supply and demand in California through 2030.

- Determining whether there is a "net material increase in emissions" for a particular fuel/feedstock and vehicle technology combination. (For example, a slight increase in emissions occurred for some fuel/feedstock and vehicle technology combination pathways, namely, selected Midwest corn ethanol.) If an increase is identified, knowing where in the fuel production and use cycle the increase occurs that is, the Well-To-Tank or Tank-To-Wheel portion. As applied in the SAFP, determining what remedies, research and development focus, and investments are required for the fuel/feedstock and vehicle technology combination to satisfy the AB 1007 "No Net Material Increase in Emissions" standard.
- As applied to the SAFP, the magnitude of change in emissions that advances other state policies such as the AB 32³ Transportation Sector greenhouse gas reduction targets, on a full fuel cycle basis, as a function of the AB 1007 fuel use volumes in the milestone years.
- As a foundation for potential alternative compliance mechanisms in the low carbon fuels standard (LCFS) and AB 32 policy frameworks.
- As applied to the SAFP, the magnitude of the change in emissions that
 promotes achieving the low carbon fuels standard LCFS targets through
 2020, and maintains the standard post 2020, as determined by the
 Average Fuel Carbon Intensity (AFCI), and as a function of the AB 1007
 fuel use volumes in the milestone years (or other schedule).
- Identifying areas of future work where time, resource, and data availability
 constraints prevented this full fuel cycle assessment from capturing the
 breadth of issues such as agricultural impacts, displacement effects, and
 sustainability impacts related to the increased use of biofuels.

ASSESSMENT APPROACH

AB 1007 specifically requires the Energy Commission, in partnership with the ARB to "develop and adopt a state plan to increase the use of alternative transportation fuels" in California. It directs the Energy Commission to consult with the State Water Resources Control Board, Department of Food and Agriculture, and other relevant state agencies in developing an Alternative Fuels Plan. One requirement of AB 1007 is to assess emissions on a full fuel cycle basis. This report is the assessment of the full fuel cycle emissions for alternative fuels use as required by AB 1007.

³ The AB 32 (Global Warming Solutions Act - Assembly Bill 32 (Nunez), Chapter 488, Statutes of 2006) directs the Air Resources Board to adopt measures to reduce 175 million metric tons of CO2 emissions from California activities by 2020. The state's transportation sector accounts for an estimated 43 percent of the reduction target.

Full fuel cycle emissions from the production and use of 10 fuels were assessed:

- 1. Biodiesel
- 2. Conventional (Petroleum) Fuels (Gasoline and Diesel)
- 3. Electricity
- 4. Ethanol (E-10 and E-85)
- 5. Hydrogen
- 6. Natural Gas (compressed natural gas [CNG], and liquefied natural gas [LNG])
- 7. Propane
- 8. Renewable Diesel
- 9. Synthetic Fuels (Dimethyl Ether and Methanol)
- 10. XTLs (Biomass-to-Liquid, Coal-to-Liquid, Gas-to-Liquid)

The emissions were analyzed on a well-to-wheels (WTW) basis (Figure ES-1). WTW emissions are divided into two components: the fuel cycle, or well-to-tank (WTT) emissions and the vehicle cycle, or tank-to-wheels (TTW). The analysis is separated in this way because the tank to wheels emissions are already regulated and better known. WTT impacts include all emission events from fuel production to final transport and vehicle fueling. TTW impacts include vehicle exhaust and evaporative emissions. The WTT and TTW emissions and energy consumption for each fuel/feedstock combination are provided in two separate reports. The combined WTW results are presented here.

This report explains the WTW results. Energy inputs, emissions of greenhouse gases (GHG), criteria pollutants and air toxic contaminants, and multimedia impacts are provided. GHG emissions from the fuel cycle processes and vehicle operation include carbon dioxide (CO_2), nitrous oxide (N_2O), and methane (CH_4). All WTW emission results are provided on a gram per mile (g/mi) basis. Emissions associated with the production of materials for vehicles or facilities typically fall into the category of life cycle analysis, and are not covered in the full fuel cycle analysis presented in this report.

PRODUCTION

PROCESSING PRODUCT

BULK FUEL

TRANSPORTATION AND

DISTRIBUTION

VEHICLE

Out of CA Emissions

WTT emissions include those associated with feedstock production, fuel refining, transport, and local delivery (Figure ES-2). Overarching assumptions were made in two areas: geographic boundaries for emission quantification, and marginal fuel production. GHGs were quantified on a global basis while criteria and air toxic pollutant emissions were quantified both globally and within California (including California waters). The WTT analysis was completed using the latest version of the GHGs Regulated Emissions and Energy in Transportation (GREET) Model 1.7 as the platform. The primary parameters and key assumptions that affected the WTT analysis include:

Offset CA Emissions Marginal CA Emissions CA Water Impacts

- Natural gas/ renewable power electricity mixes for vehicle and fuel production applications in California.
- Transportation modes and distances that reflect transit to California and allow for separate accounting of emissions within California (assuming ozone nonattainment).
- Fuel production technologies and energy inputs that are consistent with the assessment scenario timeframe.
- Fuel delivery truck and agricultural equipment emissions declining as lower emitting engines are introduced.
- California emission control requirements and offset requirements for stationary equipment and fueling stations applicable in the state.

Figure ES-2. Total Vehicle Well-to-Wheels Energy Cycle

To meet California and worldwide demand for the fuels considered in this study, it is assumed that new growth in production capacity will be required. Therefore, any increases in alternative fuel production or power generation due to a reduction in petroleum consumption are assumed to come from new, more efficient plants built to meet growing demand. This overarching assumption regarding feedstock and fuel supplies is referred to as marginality. This marginal approach was also applied to the gasoline and diesel base cases — marginal gasoline and diesel products are produced overseas and shipped to California. This assumption is validated by the fact that California refineries are essentially operating at capacity and increases or decreases in petroleum consumption will not affect their emissions.

For the TTW portion of the fuel cycle, two separate calculation steps were performed. First, baseline and alternative fueled vehicle efficiencies were determined. Baseline vehicle fuel consumption was assumed to comply with AB1493⁴ and these values on a fleet-wide basis for each analysis year and vehicle class were provided by ARB. Fuel consumption estimates for the alternative fueled mid-size vehicles are shown in Figure ES-3 and are consistent with the comparative performance of conventional and alternative fueled vehicles. Figure ES-4 shows the Energy Economy Ratio (EER) for alternative fueled urban buses as compared to the conventional fueled urban bus. The TTW report provides the exact energy consumption ratios used for each alternative fuel vehicle.

The ratios of alternative fuel vehicle fuel consumptions relative to the baseline vehicles are assumed to remain constant over time. Therefore, as the baseline vehicle fuel consumptions decline over time, so do the fuel consumptions of the alternative fuel vehicles. This assumption will likely need to be revisited as more information becomes available. The vehicle fuel economies and finished fuel carbon content are combined to estimate vehicle GHG emissions.

⁴ AB 1493 Vehicular Emissions: Greenhouse Gases – (Assembly Bill 1493 (Pavley), Chapter 200, Statutes of 2002) directs the Air Resources Board to begin regulating carbon dioxide emissions from passenger vehicles.

Figure ES-3. Summary of Light-Duty Vehicle Fuel Economy

Figure ES-4. Summary of Urban Bus EERs Utilized in TTW Analysis

The second TTW calculation step is estimation of criteria pollutant and air toxic contaminant emissions. The ARB's Emission Factors (EMFAC) 2007 model was used to determine vehicle criteria and air toxic pollutant emissions for conventional gasoline and diesel vehicles for different scenario years on a g/mi basis. These results reflect the impact of vehicle retirement and mileage assumptions for the entire California vehicle fleet.

Two different sets of criteria and toxic pollutant emission factors for each scenario year were assembled. The first set is referred to as "new vehicle stock" and includes only model year 2010 and newer vehicles. This set of data was used to evaluate alternative fuels that require new vehicle technologies to be deployed. The second set of data, referred to as "existing vehicle stock" includes all model years in the California motor vehicle inventory and is used for fuel blend strategies, since blends can be used by the entire fleet as they are introduced at the fueling station. The key difference between the new technology strategy and the blend strategy is that an extended period of time is required for the new technology vehicles to roll into the inventory, and then only a fraction of the fleet will correspond to this technology. With blend strategies, essentially all vehicles in the inventory are affected as soon as the blend is available.

The criteria pollutant emissions for the base case vehicles decline significantly over the scenario years evaluated (2012, 2017, 2022, and 2030). An interesting artifact of the "new vehicle stock" methodology is that the pool of vehicles in 2012 is two-years old and newer while the pool of vehicles in 2030 is up to 20 years old. The 10 micron size of particulate matter (PM₁₀) deterioration rates in the ARB EMFAC model have the effect of increasing the "new vehicle stock" PM₁₀ emission factor significantly from 2012 to 2030.

An overriding assumption in determining the criteria pollutant emissions for the alternative fuels was that blend fuels must meet petroleum fuel emission standards for NO_x; hydrocarbons (HC), with a carbon monoxide (CO) credit; and weighted air toxics emissions as determined by ARB's Predictive Model. Further, alternative fuel vehicles (namely, liquefied petroleum gas [LPG] and compressed natural gas [CNG]) must meet prevailing fuel-specific California emission standards. While an extensive review of the criteria emissions reduction potential of each alternative fuel vehicle type was not performed, the effect of alternative fuels on criteria pollutant emissions was estimated from published adjustment factors. The adjustment factors are applied to the baseline EMFAC values. Please refer to the TTW volume of the report for specific adjustment factors for each alternative fuel.

WELL-TO-WHEELS SELECTED RESULTS

GHG Emissions

The WTW GHG emissions for selected feedstock/fuel/vehicle combinations are presented in this section. Five key conclusions can be made regarding GHG emissions from the full fuel cycle assessment of transportation fuels:

- GHG emissions from fossil fuels depend on both the carbon content of the fuel and process energy inputs. In all cases except hydrogen and electricity, the vehicle GHG emissions dominate WTW emissions.
- The effect of alternative fuel use in off-road equipment with internal combustion (IC) engines on GHG emissions is comparable to the effect for on road vehicles.
- A wide range of GHG emission reductions are achieved for various hydrogen and electric generation pathways. Greater GHG emission reductions are largely due to the higher vehicle efficiency for electric drive technologies.
- Electricity pathways are highly dependent upon generation mix assumptions. An electric generation mix based on natural gas combined cycle power plants combined with California's Renewable Portfolio Standard (RPS) constraint is the most likely future marginal generation mix. The figures indicate that coal fired IGCC plants utilized carbon capture and sequestration (CCS) also provide low WTW GHG emissions. It is important to note that some generation technologies, such as CCS, that apply to coal power plants are emerging (may not be operational by 2012) and could also be applied to the natural gas fired generators resulting in significantly lower GHG emissions. The use of renewable power also allows for the mitigation of GHG emissions.
- GHG emissions from biofuels production and use depend on agricultural inputs, allocation to byproducts, and the level and carbon intensity of process energy inputs.

Figures ES-5 and ES-6 provide midsize passenger car results for 2012 and 2022, respectively. Corresponding results for urban buses are shown in Figures ES-7 and ES-8. Many other combinations of results are discussed later in this report.

The GHG emissions from biofuels production and use depend on many other factors. In particular, land use change assumptions can significantly impact GHG emissions for biofuel based pathways. Land use impacts require further study. The present analysis provides only the vehicle emissions and WTT process inputs employed. Emissions impacts associated with changes in land use will be addressed in future updates to the full fuel cycle assessment. Land use issues associated with a modest growth in U.S. based energy crops are likely to be somewhat insignificant because energy crops are likely to replace other crops rather than expand agricultural areas. To the extent that this assumption holds true, the impact of differing agricultural land uses represents a small portion of the WTW impact. Land use impacts associated with biofuels sources outside the U.S. also require further study.

The issue of deforestation also needs to be examined with several biofuel options. In the case of Brazilian ethanol, the sugar cane feedstock is not grown in the Amazon. However, agricultural displacement effects should be documented. A large fraction of the palm oil produced in the world is from areas with extensive tropical deforestation and the sustainable use of this fuel needs to be addressed.

Figure ES-5. 2012 GHG Emissions for Spark Ignited Passenger Car Options (new stock)

Figure ES-6. 2022 GHG Emissions for Spark Ignited Passenger Car Options (new stock)

Figure ES-7. 2012 GHG Emissions for Urban Bus Options (new stock)

Figure ES-8. 2022 GHG Emissions for Urban Bus Options (new stock)

Criteria Pollutant and Air Toxics Emissions

The WTW analysis takes into account vehicle and fuel production emissions consistent with vehicle operation in California.

The key conclusions regarding criteria pollutant and air toxics emissions are:

- California places stringent requirements on vehicle emissions and fuels properties. ARB requires that changes in fuel blends result in no increase in emissions. Therefore, the primary change in criteria pollutant emissions is expected to occur in the WTT portion of the fuel cycle.
- Some fuel blends such as biodiesel and Fischer Tropsch (FT) diesel result in a
 decrease in criteria pollutant emissions in today's vehicles. The effect on future
 vehicles is being examined by ARB and others. It is not clear whether the new
 engines will be optimized to reduce emissions below standards or for fuel
 economy.
- Assumptions regarding the marginal source of gasoline result in the attribution of emissions to refineries and fuel production facilities outside California. New fuel production facilities in California would be subject to stringent local emission standards or regulations. In general criteria pollutant emissions in California tend to decrease for fuels that are produced in the state. However, emissions outside of California are generally greater for imported fuels. Fuel production facilities outside of California are assumed to comply with the prevailing environmental regulations where such facilities are located.

- Emissions of NO_x, volatile organic compounds (VOC), and in some cases PM would need to be offset from new fuel production facilities in California.
 Obtaining permits and offsets, and installing emission control equipment will play an important role in the construction of new fuel production facilities.
- Emissions from marine vessel and rail transport are the dominant source of fuel/feedstock delivery emissions in California. Agricultural equipment is also a significant source of emissions for biofuels. For the assumed transportation distances in California, delivery emissions from fuels transported by rail are comparable to those imported by tanker ship on a WTW basis.
- Diesel PM is the major contributor to weighted toxics emissions in California for the marginal fuel production analyses. Therefore, fuels that are delivered by ship or rail have the highest weighted toxics impact. This point is clearly demonstrated in the difference between the two liquefied petroleum gas (LPG) production cases.
- Criteria pollutant emissions for electric transportation are comparable to, or lower than, those from conventional fuels. The lower emission levels result from efficient new power plants that are required to offset NO_x and VOC emissions combined with very efficient vehicles. Although the PM₁₀ emissions will likely be offset as well, this is not reflected in the analysis. Offsetting PM₁₀ emissions will have a minimal impact on WTW PM₁₀ emissions since tire and brake emissions are much larger than WTT emissions. Emissions associated with the average statewide generation mix are higher than the marginal mix, but are still below the baseline vehicle.
- Emissions from hydrogen reforming and gasification production facilities are inherently low because the waste gas that is burned to generate process heat consists primarily of Carbon Monoxide (CO) and hydrogen. However, limited source test data were identified to quantify these emission levels, especially PM.
- Fugitive losses and fuel spills are a source of benzene and 1-3 butadiene emissions associated with gasoline as well as polycyclic aromatic hydrocarbons (PAH) from diesel. These emissions from fuel transport and delivery are largely eliminated with alternative fuels use. The weighted impact of these fugitive and fuel spill losses is lower than that of diesel PM associated with fuel delivery.

Figures ES-9 and ES-10 provide estimated WTW criteria pollutant emissions for selected light duty vehicle cases for 2012 and 2022, respectively. Figures ES-11 and ES-12 provide the corresponding urban bus results for criteria pollutant emissions.

Figure ES-9. 2012 WTW Criteria Pollutant Emissions from Passenger Cars (new stock)

Figure ES-10. 2022 WTW Criteria Pollutant Emissions from Passenger Cars (new stock)

Figure ES-11. 2012 WTW Criteria Pollutant Emissions from Urban Buses (new stock)

Figure ES-12. 2022 WTW Criteria Pollutant Emissions from Urban Buses (new stock)

Multimedia Impacts

Fuel production and vehicle operations can result in significant impacts on rivers, oceans, groundwater, and other water media. The significant sources of multimedia impacts from vehicle operation include:

- Engine oil leaks and illegal discharges
- Tanker ship spills
- Fuel spills from delivery trucks and vehicle fueling
- Underground storage tank leaks
- Agricultural runoff
- Oil and gas production

The following multimedia impact conclusions are based on the analyses in this study:

- Multimedia impacts are difficult to compare in a unified manner because of the wide range of release scenarios and impacted environments.
- While agricultural activities are subject to oversight from environmental agencies, the impacts are difficult to quantify in an integrated manner.
- Oil and gas production results in significant potential multimedia impacts. These impacts are subject to stringent regulation in the U.S.
- The potential for hydrocarbon releases are significantly reduced with the use of non-hydrocarbon alternative fuels.

 Electric drive systems can reduce or eliminate engine oil losses, a significant source of potential multimedia impacts as noted above.

Figure ES-13 illustrates the relative potential multimedia impacts of several of the transport, production process, and vehicle use pathways evaluated for petroleum fuels in terms of their hydrocarbon discharge rate (1,000 gallons per year).

Figure ES-13. Discharges of Hydrocarbons from Petroleum Fuel Processes in California

FINDINGS AND RECOMMENDATIONS

The results of this full fuel cycle assessment using the GREET Model 1.7 modified for California can be used to satisfy the requirements of AB 1007. The analysis and the results and key findings summarized below, adequately serve the purposes and possible uses identified, and satisfy the requirements of AB 1007 in developing the state plan to increase the use of alternative non-petroleum transportation fuels.

Findings

Alternative Fuels Provide GHG Benefits in Midsize Autos and Urban Buses Across the Evaluation Timeframe.

- Depending on fuel pathway alternative fuels like ethanol, natural gas, LPG, electricity and hydrogen can provide significant reductions in well to wheels GHG emissions when used in midsize autos.
 - Biofuels provide large reductions (~75 percent compared to gasoline) depending on processing intensity because CO₂ emissions are recycled through plant photosynthesis.
 - Low carbon containing fuels like natural gas and LPG also reduce GHG emissions (20 to 30 percent compared to gasoline).
 - Zero carbon fuels and power production options also substantially reduce GHG emissions depending on the specific fuel or power production technology and associated pathways.
 - Hydrogen produced from natural gas using steam reforming provides a 54 percent reduction in GHG emissions in a hydrogen fuel cell vehicle (compared to gasoline).
 - Electricity use reduces GHG emissions compared to gasoline by 68 percent in electric vehicle's (EV) and 44 percent in plug-in hybrid electric vehicle's (plug-in hybrid electric vehicle [PHEV]).
- For urban buses (heavy duty vehicles) many of the fuels provide a GHG benefit, but not as significant a benefit as for light duty vehicles.
 - Electric buses provide the most significant benefit at 55 percent reduction followed by hydrogen fuel cells and CNG at 23-24 percent reduction.
 - A 30 percent renewable diesel blend yields approximately 20 percent reduction while a 20 percent biodiesel blend provides approximately 12 percent reduction.
 - Methanol provides an estimated 18 percent reduction.
 - Dimethyl Ether (DME) and a 30 percent blend of gas-to-liquid (GTL30) (remote natural gas as feedstock) increase GHG emissions. However, utilizing a biomass feedstock provides a 28 percent reduction for the GTL30 and a 94 percent reduction for biomass based DME.

A number of pathways result in higher emissions of criteria and toxic pollutant emissions for both midsize autos and urban buses.

- For midsize autos, alternative fuel pathways result in criteria pollutant emissions comparable to gasoline pathways.
 - Natural gas based hydrogen pathways reduce criteria pollutant emissions.
 - LPG has higher VOCs, if not controlled.
 - California cellulosic ethanol production and use increase NO_x and PM emissions slightly, with the impact decreasing over time.
 - Air toxics emission impacts are dominated by diesel exhaust PM.
- For urban buses, criteria pollutant emissions for alternative fuel pathways are generally either similar or slightly below the diesel baseline.
 - Hydrogen and electric drive have lower emissions than diesel.
 - Toxics dominated by PM emissions and options roughly comparable.

Recommendations

Based on the information developed in this study, the following recommendations are made to support the requirements of AB1007 and further improve future full fuel cycle analyses.

- The GREET model served as a suitable tool for assessing the transportation logistics for conventional and alternative fuels production and distribution pathways in California. The model approach should be maintained to accommodate revised analyses and more transparent input assumptions.
- The analysis in this study provides information to assess the emission impacts
 of different fuel production pathways. The emissions within and outside of
 California, as well as the location of marine vessel emissions should be taken
 into account when assessing the impacts of criteria pollutant and toxics
 emissions.
- Displacement effects are a key aspect of a fuel cycle analysis. The
 assumptions of a marginal analysis, California emission regulations, and offset
 requirements define the outcomes for criteria pollutants. The assumptions on
 emission boundaries should always be identified.
- 4. Changes in agricultural land use have a dominant impact on the evaluation of biofuel pathways. The potential land use impacts should be quantified and shown as a separate component of the WTT and WTW analysis. There is a need to provide measurements to support sustainable agricultural practices. Prevention of tropical deforestation associated with fuel production needs to be incorporated into efforts to promote alternative fuel use, as a key measure to use non-petroleum fuels sustainably.

CHAPTER 1 INTRODUCTION

The Energy Commission's 2005 Integrated Energy Policy Report and comments to the report from Governor Schwarzenegger make clear that the state needs to promote the efficient use of petroleum products and promote reductions in the demand for petroleum. California Assembly Bill (AB) 1007⁵ reaffirms the ongoing need to address these critical transportation energy issues. While primarily directed to increase non-petroleum fuel use in California, AB 1007 responds to several other policy directives and state and federal legislation, including reduction of greenhouse gas emissions and improved air quality.

Chaptered in September 2005, AB 1007 requires the Energy Commission to "develop and adopt a state plan to increase the use of alternative transportation fuels" in California. It directs the Energy Commission to work with the California Air Resources Board (ARB), State Water Resources Control Board, Department of Food and Agriculture, and "other relevant state agencies" in developing this plan, termed here the Alternative Fuels Plan. AB 1007 defines an alternative fuel as any non-petroleum fuel including electricity, ethanol, biodiesel, hydrogen, methanol, and natural gas that has demonstrated the ability to meet applicable vehicular emission standards.

In developing the Alternative Fuels Plan, the Agencies must perform three tasks:

- 1. Evaluate the alternative fuels on a full fuel cycle basis.
- 2. Set goals for 2012, 2017, and 2022 ensuring no net material increase in air pollution, water pollution, or other substances known to damage human health⁶.
- 3. Recommend policies that ensure the alternative fuel goals will be met.

In support of AB 1007 policy making, TIAX has performed a California specific full fuel cycle assessment (FFCA) for a variety of alternative transportation fuels. This analysis is one of several ongoing efforts that provide a foundation for Energy Commission activities in response to AB 1007. This report is part of a three-volume set of reports describing the FFCA assumptions and results. The intention has been to clearly present all important assumptions that have been made in the quantification of fuel cycle emissions so that stakeholders may understand how the final emission estimates were determined.

FFCA emissions are determined on a well-to-wheels (WTW) basis, which includes fuel production and distribution, or fuel cycle emissions, and vehicle emissions. The fuel cycle, or well-to-tank (WTT) emissions and energy inputs, and the vehicle, or tank-to-wheel (TTW) emissions and energy consumption, are provided in separate volumes of

⁵ The AB 1007 (Pavley), Chapter 371, Statutes of 2005) directs the Energy Commission to develop a state plan to increase the use of alternative fuels.

⁶ The Energy Commission and the ARB extended analysis for the State Alternative Fuels Plan to 2030 and 2050. The additional periods allow an assessment of alternative non-petroleum transportation fuels and technologies with longer development time frames.

the three volume set of reports on the analysis. The combination of the vehicle and fuel cycle results into the well-to-wheels (WTW) analysis is examined in this report. Energy inputs and GHG and criteria pollutant emissions from baseline gasoline and diesel vehicles, toxic air contaminant emissions, and water impacts are provided and estimates of the effect of alternative fuel operation are included. GHG emissions from the fuel cycle processes and vehicles include CO₂, nitrous oxide (N₂O), and methane (CH₄). WTW emissions on a grams per mile basis are included in this report. Emissions associated with the production of materials for vehicles or facilities typically fall into the category of life cycle analysis, and are not covered in the full fuel cycle analysis presented in this report

Fuel cycle analyses have been used for many years to support the quantification of energy use and vehicle impacts. Table 1-1 lists a number of past studies that have had a fuel cycle analysis component in them. This study builds on these past efforts to provide a much more complete and in-depth analysis.

The complete WTW analysis is discussed in the following report sections:

Full Fuel Cycle Analysis. This section describes the analysis approach and identifies the information sources utilized to supply the data needed to perform the analysis. The approach to the WTT and TTW portions of the full WTW analysis are separately discussed.

Well-to-Wheel Analysis Results. The energy inputs, GHG emissions, and criteria pollutant emissions results for the full fuel cycle for select vehicle/ fuel/ fuel production pathways are presented in some detail by fuel in this section. Air toxics emissions and multimedia impacts for the production and use of each fuel are also described.

Discussion. This section discusses the effects of the dominant assumptions on the analyses, key points of the analyses, or results that require further attention. Projections of the 2012 full fuel cycle analyses to the out years of 2017, 2022, and 2030 are outlined.

Conclusions. This section summarizes key conclusions of the analyses.

Recommendations. This section outlines recommendations for addressing limitations of the analysis methodology and information needs to allow better analyses to be performed.

Table 1-1. Past Studies with a Fuel Cycle Analysis Component

Study, Year	Focus
ARB Fuel Cycle Emissions – Reactivity Basis, 1996	California emissions evaluated for Southern California Air Basin (SoCAB). Reactivity adjusted HC emissions. Vapor mass and speciation data for alcohol blends. HC losses tied to ARB emissions inventory.
ARB Fuel Cycle Emissions – Refinement, 2001	Refine California emission analysis for near ZEV candidates. Dispatch modeling of power generation for EV charging.
AB 2076 – Petroleum Dependency, 2003	Use 2001 analysis as input to Benefits of Displacing Gasoline and Diesel.
CA H2 Highway, 2005	Hydrogen production and vehicle analysis. Assessment of renewable power for transportation fuels. Apply analysis to California instead of SoCAB.
GM/ANL, 2001, 2003, 2005	General Motors (GM)/Argonne National Laboratory (ANL) modeling of comparable vehicles. GREET model for fuel cycle. Average criteria pollutants.
UCD/LEM, 1997-2005	University of California Davis (UCD)/Life cycle Emission Model (LEM) extensive analysis of all fuel pathways, biofuels land use.
EUCAR, 2005	European Council for Automotive Research & Development (EUCAR) analysis. Extensive evaluation of biofuels.

CHAPTER 2 FULL FUEL CYCLE ANALYSIS

This report presents the results of a full fuel cycle assessment (FFCA) of alternative transportation fuel use in California. Specifically, the full fuel cycle energy and emissions impacts of each alternative fuel are quantified and compared to the emissions from gasoline and diesel vehicles in 2012, 2017, 2022, and 2030.

The boundaries of the FFCA, shown in Figure 2-1, include emissions generated during the extraction of feedstocks, processing or refining, transport, local distribution, and vehicle emissions. Vehicle emissions include both evaporative and tailpipe emissions. The construction and decommissioning of fuel and vehicle production facilities fall into the category of lifecycle analysis, and are not included here.

Full fuel cycle analyses are commonly divided into two parts: the well-to-tank (WTT) portion and the tank-to-wheels (TTW) portion. The combination of the WTT and TTW analyses represents the full fuel cycle analysis, or the well-to-wheels (WTW) analysis. Many different terms are used to define activities in the full fuel cycle; to eliminate confusion the terms are used in the following manner in this report:

- WTT Impacts associated with feedstock extraction, transport to processing, processing/refining, and distribution, expressed in per unit energy in the fuel. The term "fuel cycle" is sometimes used for WTT.
- TTW Fuel consumption and emissions from vehicle refueling, evaporation, and operation expressed on a per mile basis. The term "vehicle cycle" is sometimes used for TTW.
- WTW WTT plus TTW impacts expressed as per mile driven with the split between the upstream (WTT) and vehicle (TTW) emissions indicated.

The reporting of the present analysis has been done in three volumes according to the natural division discussed above: WTT, TTW and WTW. The WTT report presents the assumptions made and resulting energy consumption and emissions associated with producing each finished fuel from a variety of different feedstocks. The TTW report presents the assumptions made and resulting emissions from each vehicle type and finished fuel combination. This volume presents the WTW results from pairing finished fuels and feedstocks with vehicles.

Many factors affect well-to-wheel fuel cycle emissions. The most significant parameters, shown in Table 2-1, affect the amount of fuel or feedstock required in the fuel cycle, emission control requirements, or the composition of fuels. The WTW analysis results are dependent on assumptions made, particularly in the WTT portion of the analysis. Therefore, researchers made an effort made to clearly and prominently indicate key assumptions and uncertainties. Some of these assumptions may be discussed in this volume, but the reader is directed to the companion WTT and TTW volumes for a comprehensive discussion of assumptions. The following sections summarize the approaches used for the WTT and TTW analyses.

Table 2-1. Effect of Study Parameters on Fuel Cycle Results

Parameter	Effect on Fuel Cycle Analysis
Timeframe	Affects emission rules and infrastructure capacity
Production Technology	Affects energy inputs and emissions
Region	Affects stationary source and vehicle emission standards, and transport distances
Vehicle Technology	Fuel cycle emissions and vehicle CO ₂ are proportional to fuel consumption. Assumed vehicle NO _x and CH ₄ emissions are proportional to fuel consumption. CH ₄ , N ₂ O, and CO emissions vary with vehicle technology.

Well-to-Tank Analysis Approach

Researchers performed the WTT analysis using the latest version of the GREET1.7, an Excel spreadsheet-based model, as the platform. Many emission factors and transport modes and distances were modified to reflect alternative fuel use in California. These modifications became what is referred to as the modified California GREET model. Overarching assumptions were made in two areas: geographic boundaries for emission quantification, and emission marginality. The following sections briefly describe each approach and then provide the matrix of finished fuel and feedstock combinations considered. For details on the analysis approach, please consult the companion WTT report.

Geographic Boundary Assumptions

Geographic location of each pollutant emission event from feedstock extraction to final distribution was tracked for each fuel/feedstock combination. Location of each step determines the electricity resource mix as well as prevailing emission standards for mobile and stationary sources, and transportation distances and modes. While emissions of GHGs are summed regardless of location, the study looked at criteria and air toxic emissions from the perspective of exposure to an individual in California. Both 'total' and 'urban' California criteria and air toxic pollutant emission results are presented.

Stringent stationary source emission standards in California limit the emissions associated with conventional fuel production, fuel transport through marine terminals, electric power generation, and alternative fuel production facilities. Because a significant portion of California does not attain the ambient standard for ozone, it was assumed that new alternative fuel production facilities will be located in ozone non-attainment areas. This assumption requires that combustion equipment installed at these facilities utilize Best Available Control Technology (BACT) and offset their emissions of NO_x and VOC. Therefore, new California combustion equipment NO_x and VOC emissions were set to 0. For operations outside of California, the default GREET emission factors and fuel mixes were utilized with only a few exceptions.

In addition to emissions from fuel production, emissions for fuel or feedstock transportation and distribution were also divided into the geographic categories. For example, emissions for ships entering and exiting the San Pedro Bay ports were attributed to California for a portion of the trip. The rest of these emissions were attributed to the rest of the world (ROW). Both land and sea transport emissions were allocated proportionally according to their transport route.

Marginal Emissions

For this analysis, production capacity in California and many other regions involved in the logistics of fuel supply is well enough understood that a first order estimate of the marginal sources provides a good basis for the study assumptions. To meet California and worldwide demand for most of the fuels considered in this study, new growth in production capacity will be required. Any increases in fuel production or power generation due to a reduction in petroleum use were assumed to come from new, more efficient plants built to meet growing demand. Therefore, the overarching assumption regarding WTT emissions was marginality.

Population growth projections and related trends in California gasoline consumption indicate a larger than 30 percent increase in gasoline demand over 2002 levels by 2030. Industry experts anticipate that in-state refinery capacity increases will not be

⁷ The GREET model defines 'total emissions' as emissions occurring in all locations covering the well-to-tank and tank-to-wheel stages. 'Urban emissions' are emissions occurring in urban area-metropolitan areas defined in the Energy Policy Act of 1992."

sufficient to meet the increased demand and that all of the gasoline use that could be displaced by alternative fuel use would be imported. Because of this assumption, this marginal analysis considers WTT emissions associated with imported finished petroleum fuels.

Another consequence of a marginal analysis is that no hydroelectric or nuclear power is included in the electric generation mix needed to supply increased demand. Reducing gasoline demand by increasing electric power demand for alternative fuel production or other electric transportation options does not increase the output from nuclear or hydroelectric generation facilities. Thus, the marginal source of electric power was assumed to be natural gas combined cycle combustion turbines and renewable power that complies with California's Renewables Portfolio Standard (RPS) goals.

Natural gas marginal considerations preclude the use of California natural gas. Because only a small percentage of natural gas consumed in California is produced in-state, a marginal approach requires continued pipeline imports from other continental locations and imports of foreign LNG. These assumptions result in greater energy inputs and GHG emissions for natural gas or natural-gas-derived fuels than those derived from California natural gas.

The key WTT assumptions employed were:

- Additional petroleum fuel demand is met by importing finished liquid fuels to California.
- Marginal electric power demands from fossil fuels are projected to be met by natural gas power generation with sufficient renewables to meet the Renewables Portfolio Standard goals.
- Emissions from new stationary sources are consistent with local permitting equipment including BACT for criteria pollutants and NO_x/VOC offsets.
- Emissions from fuel transport vehicles are consistent with ARB requirements.
- Marginal natural gas supplies originate from outside California.
- Displacement and changes in land use for agriculture are complex and evolving issues and will be addressed separately from the present analysis.

Fuel and Feedstock Analysis Matrix

The finished fuel and feedstock combinations considered in the WTT analysis are shown in Tables 2-2 and 2-3. The analysis reflects a variety of pathways for many of the fuels to illustrate the impact of different production technologies or delivery routes. The production locations given in the tables affects the emissions constraints for the fuel production facility, as well as the delivery distance and transportation mode used to calculate energy inputs and emissions. Many of the fuels analyzed in this study are available today as fuels or industrial chemicals. Others could be produced with either a straightforward adaptation or significant investment in fuel production infrastructure. The status of fuel production technologies is also indicated in Tables 2-2 and 2-3. Therefore, the reader should recognize that the comparisons made here with new fuel technologies are only applicable if they are produced at a commercial scale.

Table 2-2. Finished Liquid Fuels and Feedstocks Considered

Fuel	Feedstock	Production Location	Existing Pathway	New Application	New Technology
	Crude Oil, SE Asia	Singapore	Х	W.LSOVIERCH	DE CALLED
CARBOB/ E5.7	Heavy Crude Oil	Venezuela	X		Tradition of
	Tar Sands	Canada	X	iden ne s	angrica a
CA RFG0	Crude Oil, SE Asia	Singapore	sknotts	X	(c) que
CA RFG - E-10	Crude Oil, SE Asia	Singapore		Х	100
Diesel, ULSD (10 ppm S)	Crude Oil, SE Asia	Singapore	X	HOLOGAN I	AND THE RESERVE
100	Crude Oil	California	Х	- Charmen	e lener
LPG	Natural Gas	Arizona	X	stantische is	duraged in
mell bevaller eden n	Natural Gas	Texas, Canada	Х	THE YEAR	A COL
CNG	LNG	Indonesia	X	ab jeyesiy	t district
	Natural Gas	Indonesia	×	S	130 11 10
LNG	Pipeline NG	CA	X	11-11-11	
es ala in the Payer No.	Natural Gas	Indonesia	X	er Vanochi	dal a
Methanol	Biomass (Poplar)	California		X	Cal
	Coal	Wyoming	X	Balana.	sW =
ten barra ter	Natural Gas	Indonesia	X	SEN SE	2597
DME	Biomass (Poplar)	CA		×	1377
	Coal	Wyoming	X	in efficient	m2 +
	Natural Gas	Malaysia	X		
XTL	Biomass (Poplar)	CA	a result mic	x	research to the
	Coal	Wyoming	X	met is one	
	Palm Oil	Malaysia	X	100	
Biodiesel (esterified)	Soy Bean Oil	Midwest	X	No. 1011. Plan der 1815	
Renewable Diesel	Palm Oil	Malaysia	X	dated to	ins la
(non-esterified)	Canola	CA	X		
E-Diesel	Corn, Midwest	Midwest	X	marile in to	Settorn 2 i
	Corn, Midwest	Midwest	X		
	Corn, Midwest	CA	X		
	Sugar Cane	CA, Brazil	X		
Ethanol, E-85	Poplar	CA			Х
	Switch Grass	CA			X
	Forest Residue	CA			X

Table 2-3. Fuel/Feedstock Scenarios for Electricity Generation and Hydrogen Production

Fuel	Feedstock	Production Location	Existing Pathway	New Application	New Technology
N STATES IN	CA Average Mix	Various	X		
Electricity	CA Marginal, 20% RPS	CA	Х		
Licotrioity	Dedicated Renewable Power	CA	Х		
	Petroleum Coke	CA			X
_	NG SR, LH ₂ , 20% RP	CA	Х		
	NG SR, LH ₂ , 100% RP	CA		X	
ļ	NG SR, Pipeline	CA		Χ	
	Petroleum Coke, Gasification	CA			Х
Lludrogon	Biomass, Gasification	CA			X
Hydrogen	On Site NG SR, 20% RP	CA	X		
	On Site NG SR, 700 bar, 20% RP	CA	X		
	On Site NG SR, 100% RP	CA		Χ	
	On-Site Electrolysis, CA Marginal	CA	Χ		
	On-Site Electrolysis, 70% RP	CA		X	

RPS = Renewable portfolio standard

RP = Renewable Power

Tank-to-Wheels Analysis Approach

For the TTW analysis, emissions from on-road and off-road equipment were compared to a base case. Each vehicle or equipment category uses predominately either gasoline or diesel fueled vehicles. In this analysis, the dominant fuel for each vehicle and equipment category was selected as the base case for comparison with alternative fuel operation.

For on-road vehicles, the analysis considered the difference between the introduction of new fuels as blends and new vehicle technologies. When fuel formulations change or new blends are introduced, all of the vehicles on the road can be affected immediately. However, new vehicle technologies displace conventional vehicle technologies. Therefore blend options and new vehicle technology options were treated with different baseline vehicle emission rates. Vehicles using blended fuels were compared to the California mix of vehicles (existing stock - all model years on the road in a given calendar year), while new alternative fuel vehicle technologies were compared to a new vehicle using the base case petroleum fuel (new vehicle stock – model years 2010 and newer on the road for a given calendar year).

The basic approach to the TTW emission analysis can be divided into two parts: vehicle fuel economy assumptions and vehicle emission factor assumptions. This section briefly discusses these two components of the TTW analysis and refers the reader to the companion TTW report for more details and references.

Vehicle Fuel Economy Assumptions

Vehicle and equipment fuel economies were used to convert the TTW emissions per unit energy in the finished fuel into a vehicle grams per mile basis so it can be added to the grams per mile vehicle emissions. A considerable amount of effort went into determining the fuel economies for the base case vehicles as well as the fuel economies for these vehicles using fuel blends and new alternative fuel and vehicle technologies. For on-road vehicles, the Energy Commission's CalCars model and ARB's EMFAC models were used. For off-road equipment, ARB's recently updated off-road model was employed. The emissions for on-road and off-road vehicles are presented in the TTW report on a grams per mile basis and a grams per gallon of finished fuel basis for a wide range of vehicle applications. Figure 2-2 provides a summary of the fuel economies assumed for each of the light duty vehicle options. Table 2-4 provides the matrix of all the vehicles evaluated for each finished fuel. Recall that many of the finished fuels can be made from several different feedstocks.

Figure 2-2. Summary of Light-Duty Vehicle Fuel Economies Used in TTW Analysis

10

Table 2-4. Baseline Vehicles for Estimating Alternative Fueled Vehicle Emissions

	Mic	Midsize Light-Duty Vehicles			Buses
Fuels	New	Blend Displacing Gasoline	Blend Displacing Diesel	New	Blend Displacing Diesel
RFG — E-0		Α		alteration	_
RFG — E-5.7	N (CAT)	A (CAT+NCAT)	_	_	_
RFG — E-5.7, HEV	N	_	_	_	_
RFG — E-10	N	Α	_	<u></u>	_
Diesel			A (DSL)	N (DSL)	A (DSL)
LPG	N		_	_	_
CNG	N		_	N	_
LNG	<u> </u>		_	N	_
Methanol			_	N	_
DME	_	_	_	N	_
FT blend (30%)	_	_	Α	_	A
FT (100%)	_		_	N	
Ethanol — E-85	_	Α	_	_	_
E-diesel	_	_	_	· —	A
Biodiesel, BD20	_		Α	_	Α
NERD (30%)	_	_	_	Α	_
Electricity	N	_	_	_	_
Hydrogen ICEV	N		_	N	
Hydrogen FCV	N	_		N	_

Baseline vehicles shown in bold

A = Average Fleet, all vehicles on-road

N = New technology

CAT = Catalyst

NACT = Non-Catalyst

Vehicle Emission Factors

The second component of the WTT analysis was the set of assumptions for vehicle emission factors. TTW emissions include vehicle evaporative emissions and vehicle tailpipe emissions. Researchers considered three different classes of pollutants: criteria pollutants, GHGs, and air toxics. The methods used to determine accurate emission factors for each finished fuel/vehicle combinations are described in the following paragraphs.

For on-road diesel and gasoline vehicles, exhaust and evaporative criteria pollutant emission factors were obtained from ARB's EMFAC2007 model. For the alternative fuels, adjustment factors were applied to the appropriate EMFAC values. The specific adjustment factors for each fuel are documented in the TTW report. Researchers used the same approach for off-road equipment. The ARB Off-road model data were used for the base case and adjustment factors were applied to determine alternative fuel emission factors.

An overriding assumption in determining the adjustment factors for the alternative fuels was that blend fuels must meet petroleum fuel emission standards for NO_x, HC (with a CO credit) and weighted air toxics emissions as determined by ARB's Predictive Model. Further, alternative fuel vehicles (for example, LPG and CNG) must meet prevailing fuel specific California emission standards.

GHG emissions considered included CO_2 , CH_4 , and N_2O . The CO_2 emissions were calculated directly from the carbon content of the fuel after accounting for fuel that is converted to CH_4 , CO, and evaporative emissions. The CH_4 and N_2O emission factors used in this analysis were the values in the California Climate Action Registry reporting protocols. The N_2O emission factor warrants further study because data are limited and the emission factor used is a fixed grams per mile value rather than a g/GJ value. The effect is that the same amount of N_2O is emitted regardless of the amount of fuel used per mile.

Refrigerants from vehicle air conditioning systems are also a source of GHG emissions. Researchers did not include refrigerant emissions in the analysis because these would not change with different fuel options, unless alternative refrigeration cycles such as those considered for electric drive systems are used. Furthermore, air conditioning losses are typically not considered part of the fuel cycle.

Finally air toxics emissions were estimated by applying ARB's organic speciation factors to the ROG emission factors from the EMFAC and the Off-road models.

Well-To-Wheels Emissions Estimation

To determine the full fuel cycle emissions for each pollutant and each vehicle/finished fuel/feedstock combination, the WTT and TTW parts of the fuel cycle are combined. Specifically, for each finished fuel, each pollutant's WTT emission factor is multiplied by the vehicle's fuel economy and then added to the vehicle's emission factor. Figure 2-3 schematically indicates how the two results are combined.

Figure 2-3. Summing up Fuel Cycle Emission Components

CHAPTER 3 WELL-TO-WHEEL ANALYSIS RESULTS

The combined results of the WTT and TTW analyses for each of the vehicle/finished fuel/feedstock combinations evaluated are presented here. The following sections present the energy and emissions of GHGs, criteria pollutants, and toxic air contaminants for each fuel considered. Multimedia impacts are also discussed in each section.

The energy inputs, GHG emissions, and criteria pollutant emissions for the vehicle/fuel/feedstock combinations described in this section are presented in a set of bar chart figures and summary tables for each fuel in the following subsections. Tables that document the GREET model and other calculation results that are shown in the figures are included in the Appendix of this report. All plots are for the 2012 calendar year. Results for other calendar years are tabulated in the appendix.

Conventional (Petroleum) Fuels: Gasoline and Diesel

This subsection presents the results for the new vehicle stock (MY2010 and newer) mid-size passenger vehicles operated on gasoline and diesel fuels. Figures 3-1 and 3-2 present the WTW energy consumption and GHG emission results, respectively, for each of the petroleum fuels considered for both conventional vehicles and HEVs. Results for an ethanol/gasoline blend (E-10) are also shown in the figures. Table 3-1 summarizes the energy and GHG impacts for gasoline fuels and Table 3-2 summarizes the energy and GHG impacts for diesel.

Figures 3-3 and 3-4 illustrate the criteria pollutant and air toxic contaminant emission impacts for the gasoline based vehicles; these results are summarized in Table 3-3. Because the EMFAC model does not have any new light duty diesel vehicles in the 2010+ timeframe in the inventory, we do not show WTW criteria pollutant results for new diesel vehicles. The underlying assumption is that these vehicles will meet the same emission standards as their gasoline counterparts. Diesel vehicle results are summarized in Table 3-4.

Figure 3-1. WTW Energy Consumption for Petroleum Fuels in Mid-Size Vehicles (2012 New Vehicle Stock)

Figure 3-2. WTW GHG Emissions for Petroleum Fuels in Mid-Size Vehicles (2012 New Vehicle Stock)

Table 3-1. Energy and GHG Impacts of Gasoline Vehicles

Parameter	Energy and GHG Impact		
Energy Factors	 Advanced gasoline technologies such as HEVs can reduce fuel consumption by ~25 percent. Requirement for producing reformulated gasoline affects energy inputs and rejected pentanes with related transportation logistics have a small impact on WTT energy. If E-10 is produced, it will require less sulfur, lower aromatics and more hydro treating of the blending component. Future gasoline fuels are more carbon intensive with growth in heavy oil and tar sands requiring hydro treating. Blends impact the entire gasoline pool including off-road vehicles with the same energy impact the same as that for on-road vehicles. 		
GHG Factors	GHG reductions are proportional to reduction in energy consumption for HEVs.		
Comparison	HEVs, Passenger Cars	and Gasoline Blends	(On- and Off-road)
Energy Impact (2012) Petroleum Fossil Fuel	HEV 25% reduction 25% reduction	E-10 3% reduction 1% reduction	Tar Sands 1% increase 13% increase
GHG Impact	HEV E-10 Tar Sands	1% red	duction duction acrease

Table 3-2. Energy and GHG Impacts of New Diesel Passenger Cars

Parameter	Energy and GHG Impact	
Energy Factors	 Low allocation of refinery energy to diesel because gasoline is the primary fuel consumed in California (better refinery efficiency than gasoline). Improvement in energy consumption over gasoline vehicles Increased hydro treating is required to achieve low sulfur specifications 	
GHG Factors	Lower WTT energy inputs are partially offset by higher carbon content in the fuel	
Comparison	Passenger Cars	
Energy Impact (2012) Petroleum Fossil Fuel	19% reduction 22% reduction	
GHG Impact	21% reduction	

Figure 3-3. WTW Criteria Pollutant Emissions for Gasoline Fuels in Mid-Size Vehicles (2012 New Vehicle Stock)

Figure 3-4. WTW Air Toxic Contaminant Emissions for Gasoline Fuels in Mid-Size Vehicles (2012 New Vehicle Stock)

Table 3-3. Pollutant Impacts of Gasoline Vehicles

Parameter		Poll	ution Impact	
Criteria Pollutants	reductio Margina local true Californi emissior Transpo rejected ARB red weighted also limi sulfur, a emissior Vapor el in vapor evapora	action in vehicle fuel consumption for HEV results in proportional ction in WTT criteria pollutants. inal WTT criteria pollutant emissions include marine vessel, rail, truck delivery, and storage/fueling losses. ornia refinery emissions are not included in the marginal sion calculations. Sportation logistics for ethanol blending and transporting ted pentanes have a minor contribution to WTT emissions. The requires no net change in NO _x and weighted HCs (with the need CO credit) for different gasoline blends. Vapor pressure is imited to 7 RVP. Some blends may need to adjust levels of reformation, and other components to achieve no increase in		
Toxics	Reduction reduction Non pett 1-3 buta ARB reduction reduction 1-3 buta ARB reduction revapora result in result in reminal rem	Reduction in vehicle fuel consumption for HEV results in proportion reduction in WTT toxics, primarily diesel PM and refueling spillage. Non petroleum ethanol reduces precursors for benzene and 1-3 butadiene but increases precursors for acetaldehyde. ARB requires no increase in weighted toxics from vehicle and evaporative emissions. Other constraints on fuel formulation coul result in a reduction in aromatics to meet NO _x requirements. Ethanol delivery requires transport to CA by train and then to bulk terminals by truck rather than pipeline. The slightly higher diesel PM ₁₀ emissions are weighted by toxicity, resulting in slightly higher air toxics for E-10.		
Multimedia Impacts	biodegrade	blends displaces gas es more rapidly in the the fate of gasoline le	environment. Unde	
Compariso	on	Gasoline HEV	E-10 ICEV	E-10 HEV
CA Criteria Pollutants – 2012 VOC CO NO _x PM ₁₀ 2022 – Benefit diminishes as gasoline vehicles improve		% Reduction 12% 0% 7% 0%	% Reduction -1% 0% -2% 0%	% Reduction 12% 0% 6% 0%
Weighted Toxics – 2	012	21% reduction	9% increase	15% reduction
		Proportional to petroleum reduction		

Table 3-4. Pollution Impacts of New Diesel Passenger Cars

Parameter	Pollution Impact	
Criteria Pollutants	 Because the EMFAC inventory shows no diesel vehicles, we are unable to show WTW criteria emissions for light duty ULSD vehicles. Diesel cars would be certified to meet ARB regulations. A mix of diesel and gasoline cars would need to meet the prevailing LEV requirements for each model year. A carmaker's mix of diesel and gasoline cars could not result in a net increase in tailpipe emissions. Very low vapor pressure results in a net reduction in VOC emissions throughout the fuel cycle. Improved fuel economy results in lower emissions from fuel delivery. 	
Toxics	Benzene and 1-3 butadiene are reduced from fuel spills but diesel contains PAHs. Diesel PM must meet ARB regulations.	
Multimedia Impacts	Fuel that is spilled at station does not evaporate rapidly. A larger fraction may enter storm water run off.	
Comparison	Passenger Cars	
Criteria Pollutants	TTW emissions should be similar to gasoline vehicles. WTW emissions should therefore be slightly lower.	
Weighted Toxics	The air toxics emissions should be slightly higher than gasoline since diesel PM is accounted for as a toxic.	
Multimedia Impacts	Same to slight increase.	

Ethanol

The results for ethanol blends (E-85) are presented in this section – note that the results for corn based ethanol are summarized separately from those for ethanol produced from sugar cane and biomass/cellulosic conversion processes. Figures 3-5 and 3-6 present the energy and GHG impacts for E-85. As discussed in the WTT report, the GREET output for the biomass and sugar cane cases, for example WTT case ID E84, includes the portion of the feedstock that actually partitions to the fuel and is not consumed in the fuel production. This has not been subtracted out and is in effect double counted in the WTW plot shown below. A line has been drawn on the plots to indicate approximately the WTW energy consumption. This accounting artifact will be corrected in future analyses. Table 3-5 summarizes the energy and GHG results for corn based ethanol, while Table 3-6 summarizes these results for biomass and sugarcane based ethanol. The accounting is correct for WTT GHG emissions.

Figure 3-7 provides criteria air pollutant emissions for E-85 and Figure 3-8 provides air toxic emissions. Tables 3-7 and 3-8 summarize these results for corn based ethanol and sugarcane/biomass derived ethanol, respectively. Note that all plots are for existing vehicle stock since blend strategies are near-term solutions for existing FFVs. For energy consumption and emissions in new vehicle stock, please refer to Appendix A.

Figure 3-5. WTW Energy Consumption for Ethanol Fuels in Mid-Size Vehicles (2012 Existing Vehicle Stock)

Figure 3-6. WTW GHG Emissions for Ethanol Fuels in Mid-Size Vehicles (2012 Existing Vehicle Stock)

Table 3-5. Energy and GHG Impacts of E-85 Vehicles – Corn Based Ethanol

Parameter	Energy	and GHG Impact	
Energy Factors	 Corn production requires fuel inputs for farming, fertilizer, and ethanol plants. Trend towards declining nitrogen inputs and no till farming, high-starc corn, and improved crop yields reduce energy input per bushel of corn year after year. New ethanol plants are dry mills which generate byproduct animal feet (DGS), 35% of energy is allocated to feed. Producing wet DGS reduces ethanol plant energy by ~ 10,000 to Btu/gal. Starch free DGS reduces ruminant methane production and had significant GHG impact from feeding corn. Strategy for using byproduct as animal feed is limited by the cattle population. DGS from California ethanol plants reduces rail shipments of feed corn but this impact is not included in the analysis. E-85 FFV analysis includes 3% improvement in energy consumption. 		
GHG Factors	 Range in GHG emissions depending on energy source and plant energy requirements. Impact of displaced agriculture crop needs to be examined (for example reduced exports of cotton). Improvements in agriculture can increase GHG benefit further. GHG impact is expressed on an E-85 basis. Similar impact could be achieved with low-level blends without improvement in energy consumption. 		
Comparison	Passenge	r Cars (E-85 basis)	
Energy Impact Petroleum Fossil Fuel	70 to 73% reduction 27 to 45% reduction		
GHG Impact	Coal-based plant Midwest corn California corn Coal-based plant Midwest corn California corn Coal-based plant Midwest corn Midwest cor		

Table 3-6. Energy and GHG Impacts of E-85 Vehicles – Sugar Cane and Biomass Based Ethanol

Parameter	Energy	and GHG Impact	
Energy Factors	 Feedstock production requires fuel inputs for farming, fertilizer, and ethanol plants with generally lower inputs than corn. Sugar cane production requires unique agricultural circumstances with plentiful water and warm climate. Fossil energy input for sugar cane and biomass are relatively low. Biomass residue provides fuel for ethanol plant. E-85 FFV analysis includes 3% improvement in energy consumption. 		
GHG Factors	 Range in GHG emissions depending on plant efficiency and excess electric power that is generated. Impact of land use needs to be considered. Converting forest to energy crops results in a multi decade GHG deficit. Cellulose-based technology is not yet proven so plant performance and byproducts may differ significantly from the analysis. GHG impact is expressed on an E-85 basis. Similar impact could be achieved with low-level blends without improvement in energy consumption. 		
Comparison	Passenger Cars (E-85 basis)		
Energy Impact Petroleum Fossil Fuel	73% to 75% Reduction 72% to 80% Reduction		
GHG Impact	Sugar Cane 68% reduction Cellulose 60% to 72% reduction		

Figure 3-7. Criteria Pollutant Emissions for Ethanol Fuels (2012 Existing Vehicle Stock)

Figure 3-8. Air Toxic Contaminant Emissions for Ethanol Fuels (2012 Existing Vehicle Stock)

Table 3-7. Pollution Impacts of E-85 Vehicles – Corn Based Ethanol

Parameter	Pollu	ution Impact
Criteria Pollutants	 2012 WTW emissions of NO_x and PM₁₀ are higher for the ethanol pathways due to WTT impacts. MW corn ethanol has higher transport NO_x and PM₁₀ emissions. California energy crop pathways have higher NO_x and PM₁₀ due to agriculture equipment. These small differences decrease over time due to emission reductions achieved by agriculture equipment, locomotives and trucks. Additional pentanes to increase E-85 volatility must be hauled by truck from the refinery to the terminal. This effect was not included here. California plants will be required to offset NO_x and VOC emissions. 	
Toxics	 ARB regulations require no net increase from vehicle exhaust plus evaporative emissions. Actual vehicle emissions will have less benzene and more acetaldehyde with a net decrease in weighted toxics emissions. Elevated diesel PM₁₀ emissions for E-85 cases due to increased locomotive and truck transport for ethanol relative to RFG for Midwest ethanol. CA biomass ethanol pathways have higher PM₁₀ emissions due to the in-state agricultural equipment. Reduced benzene and 1-3 butadiene in fuel lower toxics from fuel spillage and stationary losses. 	
Multimedia Impacts	 Most corn is grown using dry land farming (no irrigation). The requirements for the next 5 billion gallons of corn based ethanol production need to be examined. Gasoline is displaced with ethanol which biodegrades more rapidly Fate of E-85 in underground tank leaks is complex with no likely net impact. 	
Comparison	Pas	senger Car
Criteria Pollutants	VOC CO NO _x PM ₁₀	2% increase 0% 8% increase +1 increase
Weighted Toxics	Benzene 1-3 Butadiene Formaldehyde Acetaldehyde Diesel PM	2% decrease 1% increase 8% increase 18% increase 3X increase
Multimedia Impacts	85%reduction in hydrocarbon related transport	

Table 3-8. Pollution Impacts of E-85 Vehicles – Sugarcane and Biomass Based Ethanol

Parameter	Pollution Impact Base		
Criteria Pollutants	 California energy crop pathways have higher NO_x and PM₁₀ than RFG due to agriculture equipment and truck transport emissions. These differences decrease over time due to emission reductions achieved by agriculture equipment, locomotives and trucks. Additional pentanes to increase E-85 volatility must be hauled by truck from the refinery to the terminal. This effect was not included here. California plants will be required to offset NO_x and VOC emissions. California plants will be required to offset NO_x and VOC emissions. Combustion technologies with enhanced particulate control (such as gasification) will be required for plants to be permitted in California non-attainment areas. Declining emissions from off-road farming and logging equipment result in reduced WTT impact over time. 		
Toxics	 ARB regulations require no net increase from vehicle exhaust plus evaporative. Actual vehicle emissions will have less benzene and more acetaldehyde with a net decrease in weighted toxics. Reduced benzene and 1-3 butadiene in fuel lower toxics from fuel spillage and stationary losses, however this is a small portion of WTW emissions. Diesel PM emissions for the agriculture equipment are expected to contribute to slightly elevated toxic emissions relative to RFG in the near term, decreasing over time. 		
Multimedia Impacts	 Sugar cane is grown in areas with significant rainfall that cannot be replicated in many areas of the world. Sugar cane for a California based ethanol plant depends on a unique set of environmental conditions to secure its access to water. Gasoline is displaced with ethanol, which biodegrades more rapidly Fate of E-85 in underground tank leaks is complex with no likely net impact. 		
Comparison	Passenger Car		
Criteria Pollutants 2012. Impact diminishes over time.	VOC CO NO _x PM ₁₀	2% to 5% increase 0% 32% to 45% increase 10% to 17% increase	
Weighted Toxics	Likely similar to corn pathways with agriculture equipment PM from biomass pathways ~ locomotive and truck for MW ethanol. Expected to decrease over time.		
Multimedia Impacts	-85% due to reduction in hydrocarbon related transport		

Biodiesel and Renewable Diesel

This subsection presents the results for light duty (mid-size passenger car) and heavy duty (urban bus) diesel vehicles operated on biodiesel fuels. Figures 3-9 and 3-10 present the WTW energy consumption for mid-size vehicles and urban buses while Figures 3-11 and 3-12 present the corresponding GHG emission results. Two different alternative diesel fuels are shown: biodiesel (esterified vegetable oils) and renewable diesel (hydrogenated vegetable oils). A 20 percent blend is shown for biodiesel while a 30 percent blend is shown for renewable diesel (because the properties are close to GTL fuels which are blended at a 30 percent level). All plots are shown for existing vehicle stock since these fuel blends are a near term strategy impacting all existing vehicles. Table 3-9 summarizes the energy and GHG impacts for these fuels.

Figures 3-13 and 3-14 provide the criteria pollutant emission impacts of using biodiesel and renewable diesel fuels in midsize vehicles and urban buses. These results are summarized in Table 3-10 along with the air toxics emissions and multimedia impacts. Table 3-10 also notes that biodiesel blends can be used in off-road equipment with comparable criteria pollutant and air toxics emissions, and multimedia impacts. Note that biodiesel is a blend strategy that can be utilized in existing vehicles; plots show results for all model years, not new vehicles.

Figure 3-9. WTW Energy Consumption for Bio and Renewable Diesel Fueled Midsize Vehicles (2012 Existing Vehicle Stock)

25

Figure 3-10. WTW Energy Consumption for Bio and Renewable Diesel Fueled Urban Buses (2012 Existing Vehicle Stock)

Figure 3-11. WTW GHG Emissions for Bio and Renewable Diesel Fueled Midsize Vehicles (2012 Existing Vehicle Stock)

Figure 3-12. WTW GHG Emissions for Bio and Renewable Diesel Fueled Urban Buses (2012 Existing Vehicle Stock)

Table 3-9. Energy and GHG Impact of Biodiesel and Renewable Diesel Vehicles

Parameter	Energy and GHG Impact			
Energy Factors	 Petroleum and other fuels are inputs for farming and processing. Allocate 35% of soybean oil to byproducts. Mustard seed and rapeseed can be grown as cover crops with low energy inputs. 			
GHG Factors	 Relatively low fossil energy inputs reduce GHG emissions, although N₂O emissions from farming can diminish benefits. While not likely in the United States, converting forest to agricultural use results in an increase in GHG emissions for decades. Effect of displaced crops needs to be examined. Need to address sustainable agriculture for tropical oils. Bulk of the GHGs is from the vehicles. Diesel hybrid not shown, but results in 20% reduction in GHGs. 			
Comparison	BD20 LDA	RD30 LDA	BD20 UB	RD30 LDA
Petroleum Reduction	15 to 17%	29%	15 to 17%	29%
GHG Reduction	10 to 13%	20%	10 to 13%	20%

Figure 3-13. Criteria Pollutant Emissions for Bio and Renewable Diesel Fueled Midsize Vehicles (2012 Existing Vehicle Stock)

Figure 3-14. Criteria Pollutant Emissions for Bio and Renewable Diesel Fueled Urban Buses (2012 Existing Vehicle Stock)

Table 3-10. Pollution Impacts of Biodiesel Vehicles – BD20

Parameter	Pollutant Impact		
Criteria Pollutants	 Reduction in HC, CO, and PM for existing vehicles. Slight increase in WTW NO_x emissions. Impact on new technologies is under evaluation. Need to assure fuel quality to meet stringent future emission standards with new engines. WTT criteria pollutants include rail or marine vessel and local truck delivery. Biodiesel blends can also be used in off-road equipment. Slower introduction of new engine technologies could result in greater emission benefits than those achieved with new on-road vehicles. 		
Toxics	 Non-petroleum vegetable oils reduce precursors for benzene and 1-3 butadiene. Diesel PM is reduced with older technology engines. Impact on new engines is being determined. 		
Multi-media Impacts	Biodiesel biologically decomposes rapidly.		
Comparison	Passenger Cars, Heavy-Duty Vehicles, and Off-Road Equipment		
Criteria Pollutants – 2012 VOC CO NO _x PM ₁₀ 2022	20% reduction relative to diesel 10% reduction relative to diesel 3% increase relative to diesel 8% reduction relative to diesel Emission impacts could diminish with new diesel engines		
Weighted Toxics	Same to small reduction in benzene and diesel PM		
Multimedia Impacts	Proportional to % reduction in petroleum use		

Natural Gas

This subsection presents the results for vehicles operated on natural gas fuels.⁸ Figures 3-15 and 3-16 illustrate the WTW energy consumption and GHG emission results, respectively, for light-duty (mid-size passenger car) CNG vehicles as well as for baseline gasoline vehicles. Table 3-11 summarizes the energy and GHG impacts for these fuels. Figures 3-17 and 3-18 illustrate the corresponding WTW energy consumption and GHG emission results for both CNG and LNG use in heavy-duty diesel vehicles, as well as for baseline diesel fuel vehicles. Table 3-12 summarizes the energy and GHG impacts for these fuels in urban buses.

Future analysis of natural gas will assess the potential benefits from bio-methane which may reduce the WTT GHG emissions and enhance the overall WTW GHG benefit for natural gas.

Figure 3-15. WTW Energy Consumption for CNG Midsize Vehicles (2012 New Vehicle Stock)

Figure 3-16. WTW GHG Emissions for CNG Midsize Vehicles (2012 New Vehicle Stock)

Table 3-11. Energy and GHG Impacts of CNG Vehicles

Parameter	Energy and GHG Impact		
Energy Factors	 Almost no petroleum in the fuel cycle. Natural gas represents the rest of the fuel cycle with imports of LNG contributing up to 20% of future supplies. Growth in renewable power for compression energy. New technologies are closing the gap between heavy-duty natural gas and diesel engine efficiency – not taken into account here. 		
GHG Factors	 Low-carbon intensity of natural gas reduces vehicle GHG emissions. Methane leaks in the fuel cycle are a significant portion of WTT GHG emissions even after low U.S. T&D losses are taken into account. 		
Comparison	Passenger Cars	HDVs	
Energy Impact Petroleum Fossil Fuel	greater than 99% reduction 4% to 13% reduction	greater than 99% reduction 2% decrease to 8% increase	
GHG Reduction	20% to 30% reduction	11% to 23% reduction	

Figure 3-17. WTW Energy Consumption for LNG and CNG Heavy Duty Vehicles (2012 New Vehicle Stock)

Figure 3-18. WTW GHG Emissions for LNG and CNG Heavy Duty Vehicles (2012 New Vehicle Stock)

Table 3-12. Energy and GHG Impacts of LNG Vehicles

Parameter	Energy and GHG Impact		
Energy Factors	Almost no petroleum in the fuel cycle.		
	 Natural gas represents the remainder of the fuel cycle with imports of LNG contributing up to 20% of future supplies. 		
	Growth in renewable power for California-based liquefiers.		
	 New technologies are closing the gap between heavy-duty natural gas and diesel engine efficiency (not taken into account). 		
GHG Factors	 Low-carbon intensity of natural gas reduces vehicles GHG emissions. 		
	 Methane leaks in the fuel cycle are a significant portion of WTT GHG emissions (even after low U.S. T&D losses are taken into account for local liquefaction). 		
	LNG terminals and tanker ships capture and recycle boil-off methane.		
	Modern LNG fueling stations use recirculation pumps to avoid pressure build-up in tank and venting.		
	Significant venting events can occur during upset conditions, which are not prevented by ARB regulations.		
Comparison	HDVs		
Energy Impact Petroleum Fossil Fuel	greater than 99% reduction 3% to 7% increase		
GHG Impact	570 to 170 morodoo		
2012	11% to 16% reduction		
2022 12% to 16% reduction			

Figure 3-19 provides the criteria pollutant emission impacts of using CNG in light-duty vehicles. Figure 3-20 provides the corresponding criteria pollutant emission impacts of using both CNG and LNG in heavy-duty diesel vehicles. Figures 3-21 and 3-22 provide air toxic emissions for midsize vehicles and urban buses. The CNG criteria pollutant emissions results are summarized in Table 3-13 along with the air toxics emissions and multimedia impacts. Table 3-14 provides the corresponding summary of the criteria pollutant emissions impacts of CNG and LNG use in heavy duty diesel vehicles, along with the air toxics emissions and multimedia impacts for these natural gas fuels.

Figure 3-19. Criteria Pollutant Emissions for CNG Vehicles (2012 New Vehicle Stock)

33

Figure 3-20. Criteria Pollutant Emissions for LNG and CNG Urban Buses (2012 New Vehicle Stock)

Figure 3-21. Air Toxic Contaminant Emissions for CNG Vehicles (2012 New Vehicle Stock)

Figure 3-22. Air Toxic Contaminant Emissions for LNG and CNG Urban Buses (2012 New Vehicle Stock)

Table 3-13. Pollution Impacts of CNG Vehicles

Parameter	Pollutant Impact		
Criteria Pollutants	 Primary WTT emission sources are natural gas engines and electric power plants for compression, however these are negligible compared to vehicle emissions. 		
Toxics	Benzene, 1-3 butadiene, and diesel PM are reduced compared with conventional fueled vehicles.		
	 PM₁₀ emissions from CNG/LNG heavy duty engines are counted as diesel PM for air toxicity purposes. This assumption may be revisited, however for newer engines, the bulk of the PM is from lube oil combustion – same for CNG/LNG. Formaldehyde from power plants and engines contributes to WTT emissions. Tanker ship emissions for remote NG case are included in PM₁₀ however these are negligible compared to vehicle emissions. 		
Multimedia Impacts	Gaseous fuel, spills do not affect water systems. Tankers used to haul LNG from remote NG.		
Comparison	Passenger Car HDV		
Criteria Pollutants	VOC 72% reduction NO _x 12% to 19% reduction	VOC 72% reduction NO _x 0 to 4% reduction	
Weighted Toxics 2012 2022	38% to 95% reduction 36% to 95% reduction	1% to 6% reduction 0 to 5% reduction	
Multimedia Impacts	Over -90% hydrocarbon spills		

Table 3-14. Pollution Impacts of LNG Vehicles

Parameter	Pollutant Impact		
Criteria Pollutants	 Primary emission source is natural gas engines and electric power plants for compression 		
Toxics	 Benzene, 1-3 butadiene and diesel PM are reduced compared with conventional-fueled vehicles. Formaldehyde from power plants and engines contributes to WTT emissions. Tanker ship emissions for remote NG case are included in PM₁₀, but are negligible compared to vehicle emissions. 		
	 PM₁₀ emissions from CNG/LNG heavy duty engines are counted as diesel PM for air toxicity purposes. This assumption may be revisited, however for newer engines, the bulk of the PM is from lube oil combustion – same for CNG/LNG. 		
Multimedia Impacts	Gaseous fuel, spills do not affect water systems. Marine vessels haul LNG from remote natural gas.		
Comparison	HDV		
Criteria Pollutants	71% to 73% VOC reduction 1% to 2% PM ₁₀ reduction 4% increase to 5% decrease in NO _x		
Weighted Toxics 2012 2022	1% increase to 4% reduction 1% increase to 4% reduction		
Multimedia Impacts	Over -90% hydrocarbon spills		

Electricity

This subsection presents the results for mid-size passenger electric vehicles. Figures 3-23 and 3-24 present the WTW energy consumption and GHG emission results for each of the electricity cases evaluated as well as for baseline gasoline vehicles. Table 3-15 summarizes the energy and GHG impacts for this fuel, noting the impacts for both onroad vehicles and off-road (forklifts) equipment. Figure 3-25 and 3-26 provide the criteria pollutant and air toxic emission impacts of electric vehicles, respectively. These results are summarized for both on-road and off-road vehicles in Table 3-16 along with the air toxics emissions and multimedia impacts. Note that new vehicle stock WTW emissions are presented here.

Figure 3-23. WTW Energy Consumption for Midsize Electric Vehicles (2012 New Vehicle Stock)

Figure 3-24. WTW GHG Emissions for Electric Vehicles (2012 New Vehicle Stock)

Table 3-15. Energy and GHG Impacts of Electric Vehicles

Parameter	Energy and GHG Impact			
Energy Factors	 Almost no petroleum in the fuel cycle. Growth in renewable power Option to buy larger fraction of renewable power Improvement in fuel economy for PHEV operating on gasoline Reduced energy consumption in forklift applications due to high efficiency at idle and low load 			
	example, the SCCT, coa	WTW energy use dependent on primemover efficiency. For example, the SCCT, coal IGCC and NG CCCT generators have HV efficiencies of 31%, 40% and 52% respectively.		
GHG Factors	 Natural gas combined cycle represents best estimate of permanent sustainable load growth Natural gas combined cycle/RPS mix results in a GHG intensity of 460 to 490 g/kWh Constraints on California power purchase assure GHGs consistent with NG CCCT Night-time charging from wind power could support growth in RPS and help eliminate need for idling standby generation 			
Comparison	Battery Electric Car PHEV Car Forklift vs. LPG			
Energy Impact Petroleum Fossil	99.8% reduction 65% reduction	60% reduction 46% reduction	99.8% reduction 61% reduction	
GHG Impact	72% reduction	48% reduction	65% reduction	

Figure 3-25. Criteria Pollutant Emissions for Midsize Electric Vehicles (2012 New Vehicle Stock)

Figure 3-26. Air Toxic Emissions for Midsize Electric Vehicles (2012 New Vehicle Stock)

Table 3-16. Pollution Impacts of Electric Vehicles

Parameter	Pollution Impact		
Criteria Pollutants	 Zero exhaust emissions from battery electric vehicles PHEVs can be equipped for all electric operation; however the trend is to provide vehicles with smaller electric drive systems that operate in blended mode Emission certification of blended mode vehicles could be lower than other vehicle categories. These vehicles could then contribute to meeting the automakers mix Offset requirements on stationary sources limit NO_x and VOC emissions from power plants. Tire and brake PM₁₀ emissions dominate WTW PM₁₀ emissions. The PM₁₀ from electric power generation is a very small fraction of WTW PM₁₀ emissions, and would likely be offset (0) in many instances. 		
Toxics	 Benzene, 1-3 butadiene, and diesel PM are eliminated compared with conventional vehicles Formaldehyde from power plants and engines contributes to WTT emissions but toxic emissions are well below those for conventional fuels 		
Multimedia Impacts	 No fuel spills associated with electric operation No engine oil spills with battery EVs Smaller engine and less fuel and oil consumption for PHEVs 		
Comparison	Battery Electric Car PHEV Car Forklift vs. LPG		
Criteria Pollutants	PM ₁₀ : 11% decrease 96% to 99% decrease for other pollutants	PM ₁₀ : 8% decrease 62% decrease for other pollutants	PM ₁₀ : 10% reduction 96% to 99% decrease for other pollutants
Weighted Toxics	96% reduction	59% reduction	85% reduction
Multimedia Impacts	Over 90% reduction from reduced hydrocarbon spills		

XTL Fuels

This subsection presents the results for heavy duty diesel vehicles operated on Gas-, Biomass- and Coal- to Liquid (XTL) fuels. Because a 30 percent blend of XTL with diesel can be utilized in unmodified vehicles, the blends are shown for all model years in the inventory. The GTL100 case requires a new vehicle, so only model year 2010 and newer are considered. The ULSD baseline for both existing stock and new stock are provided on the plots for reference. Figures 3-27 and 3-28 present the WTW energy consumption and GHG emission results for the XTL fuels evaluated as well as for baseline diesel vehicles. Table 3-17 summarizes the energy and GHG impacts for these fuels. Figures 3-29 and 3-30 provide the criteria and air toxic emission impacts of using GTL fuels in heavy-duty diesel vehicles. These results are summarized in Table 3-18 along with the air toxics emissions and multimedia impacts.

Figure 3-27. WTW Energy Consumption for XTL Urban Buses

Figure 3-28. WTW GHG Emissions for XTL Urban Buses

Table 3-17. Energy and GHG Impacts of XTL Vehicles

Parameter		Energy and GHG Impact		
Energy Factors	 Almost no petroleum in the XTL100 fuel cycle, but total energy consumption is higher than the basecase. GTL provides an alternative pathway to import remote natural gas, which represents most of the energy in the fuel cycle. Dedicated FT100 engines can be built with potential efficiency (3% improvement in efficiency over diesel assumed here). 			
GHG Factors	 Slight decrease in carbon intensity of fuel compared with diesel. Current GTL technology results in an increase in GHG emissions with the refinery energy allocation used in this analysis. Future GTL systems will be more efficient and achieve parity with diesel fuel. BTL30 results in GHG reductions. 			
Comparison	GTL30 BTL30 CTL30 CCS			
Energy Impact Petroleum Fossil Fuel	29% reduction 12% increase	28% reduction 28% reduction	28% reduction 20% increase	
GHG Impact	4% increase 28% reduction 5% increase			

Figure 3-29. Criteria Pollutant Emissions for XTL Urban Buses

Figure 3-30. Air Toxic Contaminant Emissions for XTL

Table 3-18. Pollution Impacts of GTL Vehicles

Parameter	Pollution Impact		
Criteria Pollutants	 Primary WTT emission source is natural gas engines and electric power plants for compression, but these are dominated by vehicle emissions. FT30 blends provide reductions in criteria pollutant emissions from existing stock. Assumed that the new FTD100 vehicle not optimized to exceed existing emission standards, therefore no improvement over diesel. 		
Toxics	Benzene, 1-3 butadiene, and diesel PM are reduced compared with conventional-fueled vehicles because FT fuels contain no aromatics.		
Multimedia Impacts	Hydrocarbon fuel with similar distribution network as diesel. Zero aromatics content.		
Comparison	GTL30 UB	BTL30 UB	CTL30 CCS UB
Criteria Pollutants		- Committee of the Comm	
VOC	23% reduction	21% reduction	23% reduction
CO	16%reduction	14% reduction	16% reduction
NO _x	5% reduction	4% reduction	5% reduction
PM ₁₀	7% reduction	6% reduction	7% reduction
Weighted Toxics	7% reduction	6% reduction	7% reduction
Multimedia Impacts	Same hydrocarbon spills		

Hydrogen

This subsection presents the results for light-duty (mid-size passenger car) hydrogen fueled vehicles. Figures 3-31 and 3-32 present the WTW energy consumption for midsize vehicles and urban buses. Figures 3-33 and 3-34 provide the corresponding GHG emission results. Table 3-19 summarizes the energy and GHG impacts for this fuel, noting the impacts for on road light-duty and heavy-duty (fuel cell bus) vehicles, and off-road (forklifts) equipment.

Figures 3-35 and 3-36 provide the criteria pollutant emission impacts of the midsize vehicle and urban bus cases evaluated, respectively. Finally, Figures 3-37 and 3-38 provide air toxic contaminant results. The criteria pollutant and air toxic contaminant results are summarized in Table 3-20 for passenger car, forklift, and fuel cell bus applications, along with the air toxics emissions and multimedia impacts.

Figure 3-31. WTW Energy Consumption for Hydrogen Midsize Vehicles (2012 New Vehicle Stock)

Figure 3-32. WTW Energy Consumption for Hydrogen Urban Buses (2012 New Vehicle Stock)

Figure 3-33. WTW GHG Emissions for Midsize Hydrogen Vehicles (2012 New Vehicle Stock)

Figure 3-34. WTW GHG Emissions for Hydrogen Urban Buses (2012 New Vehicle Stock)

Table 3-19. Energy and GHG Impacts of Hydrogen Vehicles

Parameter	Energy and GHG Impact		
Energy Factors	 Almost no petroleum in the fuel cycle. Option to produce hydrogen from a variety of fossil and renewable resources Growth in renewable power for compression, liquefaction, or electrolysis Option to buy larger fraction of renewable power for electrolysis or power portion of other pathways Forklift applications likely to be based on electrolysis fuel supply because of low fuel usage Improved energy efficiency in forklifts with reduced idle fuel consumption offsets some of the energy losses from electrolysis 		
GHG Factors	 Low carbon intensity of hydrogen vehicles reduces GHG emissions Methane leaks in the fuel cycle (reforming pathways) are a significant portion of WTT GHG emissions 		
Comparison	Fuel Cell Car	Fuel Cell Bus	
Energy Impact Petroleum Fossil Fuels Natural Gas H ₂ Biomass H ₂ Electrolysis H ₂	99.7% reduction 41% reduction 89% reduction 13% reduction	99.6% reduction 0% reduction	
GHG Impact Natural Gas Biomass Electrolysis	54% reduction 91% reduction 26% reduction	21% reduction	

Figure 3-35. Criteria Pollutant Emissions for Midsize Hydrogen Vehicles (2012 New Vehicle Stock)

Figure 3-36. Criteria Pollutant Emissions for Hydrogen Urban Buses (2012 New Vehicle Stock)

Figure 3-37. Air Toxic Emissions for Midsize Hydrogen Vehicles (2012 New Vehicle Stock)

Figure 3-38. Air Toxic Emissions for Hydrogen Urban Buses (2012 New Vehicle Stock)

Table 3-20. Pollution Impacts of Hydrogen Vehicles

Parameter	Polluta	ant Impact	
Criteria Pollutants	 Zero exhaust TTW emissions from fuel cell and only NO_x emissions from ICEV PM emissions from hydrogen reformers result in comparable or lower WTW emissions Offset requirements on stationary sources limit WTT NO_x and VOC emission. Emissions from small onsite reformers are still very low. PM from electric power generation contributes to the fuel cycle Diesel PM emissions from LH2 truck are comparable to those for distributing fossil fuels as FCV uses 2x less energy 		
Toxics	 Benzene, 1-3 butadiene, and diesel PM are eliminated compared with conventional vehicles Formaldehyde from power plants and engines contributes to WTT emissions but weighted toxics emissions are well below those for conventional fuels 		
Multi-media Impacts	 Gaseous fuel, spills do not affect water systems. No engine oil leaks with FCVs No diesel used to haul fuel except LH2 pathways 		
Comparison	Passenger Car Fuel Cell Bus		
Criteria Pollutants	1% to 13% PM ₁₀ reduction 96% to 99% reduction in all other pollutants	48% reduction in PM ₁₀ 93% to 96% reduction in all other pollutants	
Weighted Toxics	greater than 99% reduction		
Multi-media Impacts	Over 90% reduction in hydrocarbon spills		

Synthetic Fuels (Methanol and DME)

This subsection presents the results for the heavy-duty vehicle (urban bus) cases evaluated using the synthetic fuels methanol and DME. Figures 3-39 and 3-40 present the WTW energy consumption and GHG emission results for each of these cases as well as for the corresponding baseline diesel vehicle. Table 3-21 summarizes the energy and GHG impacts for these synthetic fuels. Figure 3-41 illustrates the criteria pollutant emission impacts for the synthetic fuel evaluation cases while Figure 3-42 provides the air toxics results. These results are summarized in Table 3-22 along with the air toxics emissions and multimedia impacts.

Figure 3-39. WTW Energy Consumption for Synthetic Fuel Vehicles (2012 New Stock)

Figure 3-40. WTW GHG Emissions for Synthetic Fuel Vehicles (2012 New Stock)

Table 3-21. Energy and GHG Impacts of Methanol and DME Buses

Parameter	Energy and	Energy and GHG Impact		
Energy Factors	 Almost no petroleum in the fuel cycle. Methanol and DME provide an alternative pathway to import remote natural gas, which represents most of the energy in the fuel cycles. DME engines should have slight improvement in efficiency as no PM after treatment is required. Methanol fuel cell power train results in more efficient vehicle offsetting increased energy use in fuel cycle. 			
GHG Factors	 Low carbon intensity of fuel compared with diesel but more GHG emissions in the fuel cycle. Fuel grade DME plants have not been built yet. Improvements in methanol fuel cycle is possible with dedicated fuel grade methanol plant. 			
Comparison	DME UB	Methanol Fuel Cell UB		
Energy Impact Petroleum Fossil Fuel Remote NG CA Poplar Coal CCS	95% to 97% reduction 97% to 98% reduction 29% increase 3% increase 95% reduction 33% reduction 62% increase 18% increase			
GHG Impact	Contract of the contract of th	art of the		
Remote NG CA Poplar Coal CCS	3% increase 94% reduction 6% increase	18% reduction 96% reduction 17% reduction		

Figure 3-41. Criteria Pollutant Emissions for Synthetic Fuel Vehicles (2012 New Stock)

Figure 3-42. Air Toxic Contaminant Emissions for Synthetic Fuel Vehicles (2012 New Stock)

Table 3-22. Criteria Pollutant Impacts of Methanol and DME Buses

Parameter	Pollution Impact	
Criteria Pollutants	Primary WTT emission source is natural gas engines and electric power plants for compression.	
	DME has a solvable VOC problem similar to LPG (GREET artifact does not show for coal, but should also be high).	
Toxics	Benzene, 1-3 butadiene and diesel PM are reduced compared with conventional fueled vehicles.	
Multi-media Impacts	Gaseous DME does not affect water systems. Methanol rapidly biodegrades.	
Comparison	Heavy Duty Bus	
Criteria Pollutants	Reduction in PM, with declining benefit as diesel technology improves	
Weighted Toxics	DME ~40% reduction Methanol FC Bus ~90% reduction	
Multi-media Impacts	Over -90% hydrocarbon spills	

LPG

This subsection presents the results for mid-size passenger LPG-fueled vehicles. Figures 3-43 and 3-44 present the WTW energy consumption and GHG emission results for each of the LPG vehicle cases evaluated as well as for the corresponding baseline gasoline vehicle. Table 3-23 summarizes the energy and GHG impacts for this fuel. Figure 3-45 provides the criteria pollutant emission impacts of LPG vehicles. These results are summarized in Table 3-24 along with the air toxics emissions and multimedia impacts.

Figure 3-43. WTW Energy Consumption for LPG Vehicles (2012 New Vehicle Stock)

Figure 3-44. WTW GHG Emissions for LPG Vehicles (2012 New Vehicle Stock)

Table 3-23. Energy and GHG Impacts of LPG Vehicles

Parameter	Energy and GHG Impact		
Energy Factors	 Byproduct of natural gas processing or crude oil refining. Low allocation of refinery energy to LPG because it is a byproduct and refinery units are not built to increase LPG output. California LPG is exported to Mexico. Displaced products and elasticity of demand should be examined. Spark ignited engines can achieve energy equivalent performance for light-and medium-duty vehicle applications. 		
GHG Factors	Low carbon intensity of LPG fuel and low WTT energy input reduce vehicles GHG emissions.		
Comparison	LPG (petroleum)	LPG (natural gas)	
Energy Impact		(Company to the control of the cont	
Petroleum	5% reduction 98% reduction		
Fossil Fuel	9% reduction 12% reduction		
GHG Impact			
2012	18% reduction 20% reduction		
2022	18% reduction 19% reduction		

Figure 3-45. Criteria Pollutant Emissions for LPG Vehicles (2012 New Vehicle Stock)

Figure 3-46. Air Toxic Contaminant Emissions for LPG Vehicles (2012 New Vehicle Stock)

Table 3-24. Pollution Impacts of LPG Vehicles

Parameter	Pollution Impact		
Criteria Pollutants	 Vehicle exhaust is comparable to gasoline vehicle. Lower energy inputs in fuel cycle LPG transported by rail and distributed by truck – higher urban NO_x in the near term Venting losses from product and vehicle storage tanks result in over 10 times the HC emissions compared with gasoline Emission regulations do not require limiting venting losses. Codes for vehicles and ASME vessels would need to be modified. Propylene, a smog precursor from refinery based LPG, can be blended with natural gas based LPG to meet vehicle specifications. Otherwise LPG with high propylene is sold to stationary market. 		
Toxics	 Benzene and 1-3 butadiene are reduced compared with conventional fueled vehicles WTT diesel PM₁₀ ~ 10x higher for LPG case due to locomotive/truck transport assumptions. Vehicle diesel PM₁₀ = 0. 		
Multi-media Impacts	Gaseous fuel, spills do not affect water systems.		
Comparison	LPG (petroleum) LPG (natural gas)		
Criteria Pollutants VOC CO NO _x PM ₁₀	7X increase 0 3% increase 0	5X increase 0 26% increase 0	
Weighted Toxics	74% reduction	78% increase	
Multi-media Impacts	Over -90% via reduction of hydrocarbon spills		

CHAPTER 4 DISCUSSION

The WTW analysis illustrates the key effects of alternative fuels on energy impacts, GHG emissions, criteria pollutant emissions, air toxics emissions, and multimedia impacts. Effects that reflect dominant assumptions, or key points of the analysis, or require further attention are discussed here. Again, tables that document the effects of the scenario years on energy inputs and emissions results for the fuel and vehicle combination discussed in this chapter are given in the Appendix.

Energy Inputs

Energy inputs are largely driven by vehicle efficiency and process energy inputs for fuel production. For many fuels, the energy inputs for fuel production facilities are well understood with key questions related only to changes in energy efficiency or process parameters. However, a wider range of uncertainty exists for biofuels because of the wide range in agricultural practices and the assumed allocation of the energy inputs to byproducts.

Petroleum Production and Refining

A wide range of petroleum processing pathways provide gasoline and diesel fuels for the United States. A combination of trends in fuel production and distribution affects the carbon intensity of gasoline and diesel. Some of the factors affecting petroleum fuels include:

- Use of heavy oil from locations including Venezuela is increasing. Venezuelan
 gasoline is distributed to the U.S. government defined (and used by DOE's
 Energy Information Agency [EIA] Petroleum Administration for Defense District
 [PADD] 2) and does not actually reach California. Similarly, petroleum produced
 from tar sands requires significantly higher energy to extract and process the
 feedstock to gasoline. Again, Canadian tar sands based fuel does not reach
 California and is distributed to PADD 3.
- The question of refinery energy inputs and allocation to petroleum products remains uncertain. Aggregate data from EIA can be used to determine the energy inputs for gasoline production. However the allocation of energy to products is more complex. Refinery models have typically been used to identify the energy used by refinery unit and relate that to the product slate. New refinery modeling to support the Energy Commission and EPA is ongoing.
- European refineries are configured to produce a larger fraction of diesel fuel than
 gasoline. Producing additional diesel could enhance the efficiency of the refinery
 or reduce the sales of CARBOB to California. These considerations support a
 range in refinery efficiency estimates from 84 to 90 percent. The WTT GHG
 emissions decrease by 5 percent for every percentage point increase in refinery
 efficiency. A 5 percent change in WTT GHG emissions yields a one percent
 change in WTW GHG emissions.

Alternative Fuel Production

A variety of alternative fuel production options have been analyzed. Not all of these options are built on a commercial scale, and some of the options may not receive sufficient investor interest to become commercially viable.

Power Generation

Electricity generation factors into the WTW analysis as both a feedstock and a fuel. In both cases, this marginal analysis assumed that the electricity would come from new generation capacity. A variety of marginal electricity scenarios were evaluated ranging from an entirely renewable mix and the current average grid mix in California. The true marginal power generation has been assumed to be combined cycle natural gas combustion turbines with the California Renewables Portfolio Standard (RPS) imposed upon it. While this may be approximate in the near term, it is considered to be accurate once the new demand is adequately understood and planned for by the utilities. In the near term, an argument can be made that the new load would be served entirely by natural gas fired combined cycle combustion turbines. WTW results for both cases are provided.

Having said this, the resources used to achieve the RPS standard (wind, solar, geothermal, biomass combustion) drive the results. In the analysis we assumed that non-combustion renewable resources would satisfy the RPS (wind, solar, geothermal). If a significant portion of the RPS resources come from biomass boilers, the WTW criteria pollutant emissions will increase proportionally. The reader may perform this estimate using the data available in the appendices to the WTT and WTW reports. The WTT results for biomass combustion based electricity assume new units equipped with Best Available Control Technology including ESP/Fabric Filters for PM, SCR for NO_x, and oxidation catalysts for CO/VOC. Moreover, if they are located in non-attainment areas, they will be required to offset annual emissions of each non-attainment pollutant (NO_x and VOC), resulting in no net emission increase. Emissions of PM₁₀ would likely also be offset in most areas of California, but power plant emissions for PM₁₀ (very small) are included in the WTT and WTW values.

Another subtlety of the RPS requirement is the heavy reliance on wind power. Experience in Texas shows utilities are currently subject to an RPS-like requirement, in that a certain percentage of power sold must come from renewable resources. A counterproductive result of this requirement is that intermittent supplies of wind power require operation of natural gas-fired boilers to run at low loads simultaneously, ready to ramp up to cover periods when the wind generators stop producing power. One might therefore argue that wind power is not zero emission.

However, using vehicle-to-grid technology and smart-charging, EVs and PHEVs have the capacity to counteract this result. EVs and PHEVs can be charged with intermittent generation, and market penetration of these vehicles will therefore facilitate additional wind generation to be brought online. Within the timeframe this analysis covers, vehicle

owners will likely also be able to sell power to the grid, reducing the need to provide backup for intermittent resources.

WTT Modeling

Results for the WTT analysis depend on dominant assumptions regarding process energy inputs and allocation of byproducts. Some of the details of WTT analysis are computationally complex, but these have only a modest impact on the overall fuel cycle results. For example, fuel cycle energy inputs also depend on the complex interaction of fuels that support the fuel chain and the second order energy inputs associated with fuel production. These second order effects are important primarily only for diesel, natural gas, electricity and gasoline; even then the contribution toward WTW energy is small. Thus, many times these effects were only qualitatively characterized.

It is apparent from the analysis in this project that different fuel cycle modeling tools provide very similar results. Key differences in the assumptions typically involve allocation to byproducts and assumptions on land use impacts.

Transportation Logistics

Transportation distances and logistics also affect total WTT energy, but the energy inputs represent at most 6 percent of the fuel cycle. The differences in transportation options that were analyzed for the different fuel options has a significant effect on local criteria pollutant emissions but only a modest effect on energy inputs and GHG emissions. The emissions associated with fuel transportation were determined in the WTT report for a variety of delivery modes. Differences between ship and rail transport as well as transportation distances have a significant effect on the WTW diesel PM and weighted air toxics emissions. In some instances the emissions for fuel production inside California are higher, while the emissions outside California are higher for other fuels. The emissions in California non-attainment areas are grouped into the urban emissions category in the GREET model for North America. Thus, the breakdown of emissions by fuel delivery mode can only be determined using the GREET model configured for California boundaries.

Greenhouse Gas (GHG) Emissions

A broad range of factors contributes to WTW GHG emissions. These include:

- WTT energy inputs and carbon intensity (as measured by its fractional carbon content) of the finished fuel.
- · Vehicle energy consumption.
- Vehicle and WTT equipment N₂O emissions.
- Releases of N₂O from agriculture.
- Credit for byproduct energy.
- Credit for byproduct agricultural products.

The analysis covered a range of fuel production pathways that were intended to examine the range of possible GHG impacts. In addition to the process related emissions, a fuel cycle analysis ideally should also take into account the following:

- Impact of land use changes on short-term releases of carbon.
- Effect of displacement of products.

The analysis here represents the energy and pollution impacts that are directly related to fuel production and use. The impact of displaced products and land use changes was outside the boundary of the present study, but they do need to be addressed on a case-by-case basis and clearly added to the analysis results as a separate item.

Criteria Pollutant Emissions

The analysis discussed in this report considers criteria pollutant emissions from stationary and mobile sources within California. Emissions associated with transportation of fuels by truck, rail, and tanker ship are anticipated to decline as Tier 4 Standards, requiring selective catalytic reduction (SCR) for NO_x control and particulate filters for PM control, are adopted and implemented. Tier 4 standards have been adopted for on-road heavy-duty vehicles and are currently being developed by EPA for marine and rail engines. These adopted and projected standards were employed in the present analyses.

New alternative fuel production facilities located in California will need to go through New Source Review permitting. Because most of California urban areas are classified as ozone non-attainment areas, these new facilities will be required to install Best Available Control Technology (BACT) for all criteria pollutants and to offset their NO $_{x}$ and VOC emissions by surrendering emission reduction credits (ERCs) to the local permitting agency. In most cases, the ERC to emission ratio is more than one, meaning that the emissions are more than offset by the surrender of ERCs. The net effect is that local NO $_{x}$ and VOC emissions will not increase due to installation of new alternative fuel production facilities because the regulations in place will not allow such incareases.

One anomaly associated with the adopted protocol of only accounting for criteria pollutant emissions produced within California is that it unfairly favors out-of-state alternative fuel production. In general, it is assumed that criteria pollutant emissions from California facilities will be lower than equivalent facilities outside California.

One area identified for further investigation is the PM emission factor for natural gas combined cycle combustion turbines (CCCTs). The emission factor used for these units, was taken from a single source test report. While the factor used is considered more accurate than the significantly higher AP-42 value, a survey of additional source test data should be undertaken. Another subtlety for PM₁₀ emissions is that the stationary sources quantify particulate matter emissions with an entirely different method than mobile sources. The stationary method employs a sampling train that catches both solid particulate matter (the filter catch) and condensibles (nitrates and sulfates). While the mobile source method catches some condensibles as well, it is not clear whether the

two methods yield results that are additive. For this analysis, it has been assumed that PM_{10} emissions from stationary and mobile sources are equivalent and may be added together.

Gasoline vehicle fuel economy, power plant efficiency, and transmission losses play significant roles in CO₂ emissions from EV operation. Because total non-methane organic gases (NMOG) from EV operation are very low, variations in these parameters have a limited effect on total NMOG. However, the sensitivity of power plant efficiency on CO₂ emissions is a significant issue. An Energy Commission analysis indicates an energy consumption of 8,700 Btu/kWh for a new power plant while representatives of the utility industry indicate this value should be below 7,000 Btu/kWh (HHV basis). In fact, the average heat rate for existing California CCCTs in 2005 was under 7500 Btu/kWh (HHV). A key parameter in the marginal heat rate for EV operation is the total generation capacity. The Energy Commission's analysis is based on future reserve margins being lower than historical levels as deregulation would tend toward lower operating costs. However, low reserve margins also result in pressure on power prices. In practice, more power generation capacity will be required in California regardless. Thus, increased generation capacity would tend to increase the number of new high efficiency power plants.

Air Toxics Emissions

WTW air toxics emissions are compared on a weighted basis in Figure 4-1. The weighting factor is based on ARB's unit risk factors for air toxic contaminants. The weighting factor is the ratio of the unit risk factors normalized to the risk factor for formaldehyde. The primary sources of marginal toxic emissions include diesel exhaust from transportation fuels, spilled gasoline and E-85 (a source of benzene and 1-3 butadiene), diesel fuel as a source of PAHs, and power plant emissions. Oil refineries are also a leading source of toxic air contaminants in California; however, these emissions would not change with a modest growth in alternative-fueled vehicle use. The air toxic emissions are proportional to NMOG emissions, with additional diesel PM from truck, rail, and ship transport. Toxic emissions for liquid fuel delivery are driven to a large extent by transportation assumptions. Liquid fuels requiring significant rail and truck distances result in higher diesel PM emissions. E-85 toxic emissions are notably high because of the additional truck delivery legs associated with product delivery, combined with the lower energy density of the fuel. Emissions from petroleum based LPG are lower than natural gas based LPG because of the significantly shorter transport distances.

Figure 4-1. Urban California Weighted Air Toxics
Emissions for New Passenger Car Vehicles
(2012 New Stock)

Effect of Scenario Year

A variety of factors affecting the WTW emissions impact the results over the range of scenario years (2012, 2017, 2022, and 2030) that were analyzed. The key factors affecting energy inputs, GHG emissions, and criteria pollutants are:

- Roll in of the RPS to 33 percent for California power generation.
- Introduction of CO₂ emission regulations on passenger cars and light trucks.
- Improvement in battery technology and power electronics for electric vehicles.
- Improvements in fuel and agricultural production technologies.
- Improvement in the thermal efficiency of natural gas combined cycle power plants.
- Improvement in GTL plant efficiencies.
- Reduction in nitrogen input and expansion of no till corn farming.
- Modest improvement in methanol and hydrogen reforming technologies.
- Introduction of fuel-grade DME plants.
- Improvement in cellulosic conversion yields and reduced enzyme inputs for ethanol production.
- Introduction of hydrogen pipelines.
- Introduction of advanced synthetic fuel and hydrogen technologies including biomass and coal gasification.
- Reduction in vehicle emissions for the average fleet mix, which would include a larger mix of ZEV vehicles and low emission diesel technologies.

- Reduction in heavy-duty truck emissions used to transport fuel and possible reductions in other goods movement emissions.
- Roll in of light-duty vehicle ORVR evaporative control systems.
- Aging of new technologies (assumed to be introduced in 2010) with a growth in vehicle emissions due to deterioration.

The effects of key time dependent parameters in the analyses are illustrated in Figures 4-2 through 4-4 for new gasoline fueled vehicles. The vehicle stock considers all model years 2010 and newer. Therefore by 2030, there are 20 year old vehicles in the inventory. This fleet aging is the reason the criteria pollutant emissions increase over time. The trends in GHG emissions over time are also illustrated for biomass ethanol, CNG, PHEV passenger cars, and GTL fueled buses in Figures 4-5 through 4-8.

Figure 4-2. WTW Energy Inputs for Gasoline Passenger Cars (MY2010 and newer)

Figure 4-3. WTW GHG Emissions for Gasoline Passenger Cars (MY2010 and newer)

Figure 4-4. WTW Criteria Pollutant Emissions for Gasoline Passenger Cars (MY2010 and newer)

Figure 4-5. WTW GHG Emissions for Biomass Based E-85 Passenger Cars (MY2010 and newer)

Figure 4-6. WTW GHG Emissions for CNG Passenger Cars (MY2010 and newer)

Figure 4-7. WTW GHG Emissions for PHEV Passenger Cars (MY2010 and newer)

Figure 4-8. WTW GHG Emissions for Natural Gas Derived FTD30 Buses (MY2010 and newer)

Key WTW Sensitivities

This full fuel cycle analysis is relatively complex, with many assumptions made about new and evolving processes. A rigorous sensitivity analysis was not possible within the time constraints of this analysis. To a certain extent, the number of different cases analyzed here helps us understand the impacts of various assumptions. However, to shed a bit more light on key assumptions and their impact, a simple sensitivity study done at the WTT level are extended here to WTW results. Key variables tested and their results are:

Refinery efficiency for RFG production. The refinery efficiency was varied from 82.1 percent to 86.1 percent with a WTT GHG impact of 5 percent. This impact translates to a WTW GHG impact of 1 percent.

Marine transport distance of marginal RFG. The transport distance was varied from 5000 miles to 10,000 miles with a WTT GHG impact of 0.8 percent per 1000 miles. This impact translates to a WTW GHG impact of 0.2 percent per 1000 miles of marine transport.

Ethanol corn processing efficiency. The efficiency was varied from 30,000 to 34,000 Btu/gal. The WTT GHG impact of processing efficiency is 56 percent per 1000 Btu/gal change. This translates to a WTW GHG impact for E-85 of 3.9 percent per 1000 Btu/gal.

Biomass ethanol consumed as process energy. The percent consumed was varied from 40 to 50 percent with a WTT GHG impact of 0.1 percent per percent change in consumption. This translates to an 0.03 percent impact per percent change in consumption on WTW GHG emissions of E-85.

CNG Compressor efficiency was varied from 97.66 to 98.03 percent. The WTT GHG impact of this change is 11 percent per percent change in refinery efficiency. This translates to a WTW GHG impact of 1.7 percent per percent change in refinery efficiency.

Multimedia Impacts

Water Impacts

Multimedia impacts result from a wide range of potential discharges to the environment that could ultimately contaminate surface water, groundwater, and soil. These impacts can include those from agriculture and fuel production, fuel transport, fuel processing, and fuel delivery facilities. Water impacts such as from oil tanker spills or chemical runoff from farming are discussed qualitatively for each fuel option in the WTT and TTW reports.

Agricultural Impacts

Agricultural impacts were not quantified on a per-unit-of-fuel basis because of the wide range of agricultural practices, uncertainty over which fuels are displaced, and complex rules governing agricultural activity.

Fuel Spill Impacts

Tanker ship, rail, truck, and pipeline spills are a source of hydrocarbons and other chemicals entering waterways. The fates of the spills are very site-specific, and, again, it can be difficult to provide an integrated assessment of the impact of these spills. Clearly, hydrocarbon-based fuels have the greatest potential for water impacts. Alcohols and biodiesel are more biodegradable and can be eliminated from the environment more quickly than hydrocarbons. However the interaction between alcohols and hydrocarbons in the soil may impact how hydrocarbon spills affect the environment.

The potential release of fuel during delivery or storage represents the dominant potential environmental impacts. The second order full fuel cycle impacts of diesel fuel spills are significantly less for fuels such as LNG, methanol, DME, hydrogen, and LPG that are delivered by diesel truck. The diesel component for these fuels is less than 5 percent of the total fuel cycle energy.

Summary Multimedia Impacts

Therefore, in California, the most significant multimedia impacts correspond to the use of hydrocarbon fuels. Engine oil spills and drips can contribute as much to water impacts as fuels spills. Fuels that contain no petroleum hydrocarbons do not have a substantial multimedia impact associated with their use in California.

CHAPTER 5 CONCLUSIONS

This report provides an analysis of the impacts of transportation fuels on a full fuel cycle basis. The analysis includes energy, GHG, criteria pollutant, air toxics, and multimedia impacts. The analysis reflects fuels used, as well as the production of new fuel conversion facilities in California subject to prevailing emission constraints. Energy inputs and emissions correspond to vehicle technologies and fuel production assumptions in the 2012 through 2030 timeframe.

WTW emissions were evaluated in the context of marginal emissions associated with marginal alternative fuel consumption or petroleum fuel displacement. A moderate use of alternative fuels would displace finished petroleum fuels that would be imported to California. Increments of alternative fuel use would displace emissions from fuel transportation, vehicle fueling, and the use of marine vessels to import refinery blending components into the state. Many alternative fuels would be produced outside of California, so the marginal treatment of fuel production is consistent with that applied to finished petroleum fuels.

Marginal emissions correspond largely to transportation and distribution impacts associated with marine vessel activity, rail transport, fuel trucking, or distribution and local vehicle fueling. New fuel production facilities and power plant emissions attributable to incremental fuel production and use also contribute to the WTT impacts.

Vehicle emissions depend on vehicle energy consumption combined with the carbon intensity of the fuel and emission factors for WTT processes. The emission estimates shown here are consistent with ARBs projection for the existing vehicle stock for blend fuel strategies and 2010 and beyond vehicle stock for new vehicle technologies.

Energy Input and GHG Emissions Conclusions

The energy inputs and GHG emissions are determined by the conversion efficiency and carbon intensity of fuels. The study results are driven by the dominant assumptions regarding vehicle efficiency and fuel production process energy inputs. These results are consistent with others in terms of tracking the impacts of energy use and GHG emissions. The key conclusions regarding GHG emissions are:

- 1. GHG emissions from fossil fuels depend on both the carbon content of the fuel and process energy inputs.
- 2. Alternative fuel use effects on off-road equipment GHG emissions equipped with internal combustion engines are comparable to the effects for on-road vehicles.
- 3. A wide range of GHG emission factors are achievable for various hydrogen and electric generation pathways. Significant WTW GHG emission reductions are largely due to the higher vehicle efficiency for electric drive technologies.

- 4. An electric generation mix based on natural gas combined cycle power combined with California's RPS constraint is an appropriate mix for electric transportation and the electricity inputs for fuel production. The use of renewable power allows for the mitigation of GHG emissions from other processes, which is an option for all fuel providers.
- 5. The results of the analysis show reductions in GHG emissions for electric transportation on the order of 50 percent or greater for battery electric, plug-in hybrid, and forklift applications. These results are due to the high energy efficiency of electric drive technologies and the improvement in gasoline vehicle energy consumption for plug-in hybrid applications. Hydrogen Fuel Cell Vehicles, another form of electric drive technology, also reduce GHG emissions by more than 50 percent and establishes that whether powered by batteries or fuel cells, electric drive vehicles can significantly reduce energy use and emissions.
- GHG emissions from biofuels production and use depend on agricultural inputs, allocation to byproducts, and the level and carbon intensity of process energy inputs.

The GHG emissions from biofuels production and use depend on many other factors. Most important are changes in land use that vary substantially with scenario assumptions. The analysis here provides only the vehicle emissions and WTT process inputs employed. Impacts associated with changes in land use should be carefully quantified and added to these values. Land use issues associated with a modest growth in United States-based energy crops are likely to be somewhat insignificant because energy crops are likely to replace other crops rather than expand the use of additional land for agriculture. These economic impacts are consistent with producing 5 billion gallons of ethanol per year in the United States. To the extent that this assumption holds true, the impact of differing agricultural land uses represents a small portion of the WTW impact.

The issue of deforestation needs to be examined with several biofuel options. In the case of Brazilian ethanol, the sugar cane feedstock is not grown in the Amazon. However, agricultural displacement effects should be documented. A large fraction of the palm oil produced in the world is from areas with extensive tropical deforestation and the sustainable use of this fuel needs to be evaluated further.

Criteria Pollutant and Air Toxics Emissions

The WTW analysis takes into account vehicle and fuel production emissions consistent with vehicle operation in California. Vehicle emissions were based on ARB's EMFAC model for existing and new vehicle stocks. WTT emissions were calculated for California urban areas based on emission limits that apply to California stationary sources and fuel delivery equipment. The key conclusions regarding criteria pollutant and air toxics emissions are:

- California places stringent requirements on vehicle emissions and fuels properties. ARB requires that changes in fuel blends result in no increase in emissions. Therefore, the primary change in criteria pollutant emissions is expected to occur in the WTT portion of the fuel cycle.
- Some fuel blends such as biodiesel and FTD diesel result in a decrease in criteria pollutant emissions in today's vehicles. The effect on future vehicles is being examined by ARB and others. It is not clear whether the new engines will be optimized to reduce emissions below standards or for fuel economy.
- Assumptions regarding the marginal source of gasoline result in the attribution of emissions to refineries and fuel production facilities outside California. New fuel production facilities in California would be subject to stringent emission constraints. In general criteria pollutant emissions in California tend to decrease for fuels that are produced in the state. However, emissions outside of California are generally larger for imported fuels.
- Emissions of NO_x, VOC, and in some cases PM, would need to be offset from new fuel production facilities in California. Obtaining permits and offsets and installing emission control equipment will play an important role in the construction of new fuel production facilities.
- Emissions from marine vessel and rail transport are the dominant source of fuel/feedstock delivery emissions in California. Agricultural equipment is also a significant source of emissions for biofuels. For the assumed transportation distances in California, delivery emissions from fuels transported by rail are comparable to those imported by tanker ship on a WTW basis.
- Diesel PM is the major contributor to weighted toxics emissions in California for the marginal fuel production analyses. Therefore, fuels that are delivered by ship or rail have the highest weighted toxics impact. This point is clearly demonstrated in the difference between the two LPG production cases.
- Criteria pollutant emissions for electric transportation are comparable to, or lower than, those from conventional fuels. The lower emission levels result from efficient new power plants that are required to offset NO_x and VOC emissions combined with very efficient vehicles. Emissions associated with the average statewide generation mix are higher than the marginal mix, but are still below the baseline vehicle.
- Emissions from hydrogen reforming and gasification production facilities are inherently low because the waste gas that is burned to generate process heat consists primarily of CO and hydrogen. However, limited source test data were identified to quantify these emission levels, especially PM.

 Fugitive losses and fuel spills are a source of benzene and 1-3 butadiene emissions associated with gasoline as well as PAHs from diesel. These emissions from fuel transport and delivery are largely eliminated with alternative fuels use. The weighted impact of these fugitive and fuel spill losses is lower than that of diesel PM associated with fuel delivery.

Multimedia Impacts

Fuel production and vehicle operations can result in significant impacts on rivers, oceans, groundwater, and other water media. The significant sources of multimedia impacts from vehicle operation include:

- Engine oil leaks and illegal discharges
- Tanker ship spills
- Fuel spills from delivery trucks and vehicle fueling
- Underground storage tank leaks
- Agricultural runoff
- Oil and gas production

The following multimedia impact conclusions are based on the analyses in this study:

- Multimedia impacts are difficult to compare in a unified manner because of the wide range of release scenarios and impacted environments.
- While agricultural activities are subject to oversight from environmental agencies, the impacts are difficult to quantify in an integrated manner.
- Oil and gas production results in significant potential multimedia impacts. These
 impacts are subject to stringent regulation in the United States.
- The potential for hydrocarbon releases are significantly reduced with the use of non-hydrocarbon alternative fuels.
- Electric drive systems can reduce or eliminate engine oil losses, a significant source of potential multimedia impacts as noted above.

CHAPTER 6 RECOMMENDATIONS

Based on the information found in this study, the following are recommendations to support the requirements of AB 1007 and advance efforts in performing full fuel cycle analyses. The recommendations include those regarding analysis methods, data collection, and system boundary considerations.

Analysis Methods

- 1. The GREET model served as a suitable tool to assess the transportation logistics for conventional and alternative fuels production and distribution in California. The GREET model was well suited for identifying the emissions associated with agricultural, transportation, and electric power generation processes. The version of the GREET model employed in this project should be maintained to support continued investigations of criteria pollutant and GHG emissions impacts. The analysis would be more transparent if emissions from California fuel production facilities are treated as separate inputs to the model.
- 2. One study observation was that the WTT energy inputs and GHG emissions for petroleum fuel use and electric power generation do not depend on the WTT analysis for biofuels production and use (unless large scale economic impacts occur). Recursive second order WTT impacts are not an issue with typical biofuel chains (fuel to make the fuel to make the fuel). The analysis of energy and GHG emissions can be accomplished with simple tools that allow for a more detailed examination of agricultural systems and boundaries. Therefore, static WTT parameters from the GREET model or other fuel cycle models for diesel, electricity, uncompressed natural gas, gasoline, and LPG production and vehicle fuel use, combined with process data for alternative fuel production, agriculture, and chemical inputs, can be incorporated into a simple database. A simple database approach can be used when only energy and GHG emissions are of interest.
- 3. Vehicle N₂O and methane emissions are treated as fixed grams per mile values. This approach is neither convenient in terms of assessing the GHG intensity of a fuel nor strongly supported by emission test data. Future efforts should be devoted to developing GHG analysis metrics that incorporate the benefits of treating these pollutants on a g/MJ basis, thereby enabling an assessment of a fuel's GHG potential directly from WTT estimates.
- 4. Vehicle CO₂ emissions are directly linked to the carbon content of the fuel. For biofuels, this CO₂ was recently removed from the atmosphere. CO₂ emissions from biofuels should not be attributed to vehicle operation unless the analysis procedures demonstrate that the CO₂ capture from the atmosphere is also accounted for. This issue applies to the attribution of emissions for GHG inventory and accounting protocols rather than fuel cycle analyses.

5. The analysis in this study provides information to assess the emission impacts of different fuel production pathways. The emissions inside and outside California, as well as the location of marine vessel emissions should be taken into account when assessing the impacts of criteria pollutant and toxics emissions.

Data Collection

- 6. WTT results should continue to be reported with carbon in fuel as CO₂. This reporting method provides an overview of the potential GHG impact from all fuels and prevents confusion when comparing fuels with varying carbon contents.
- 7. Even though CO₂ is a pollutant, the emissions are often not included in reports on stationary equipment testing. The lack of CO₂ data makes further data analysis challenging when the goal is to develop fuel specific emission factors. (For example, some source test data only show mass emission rates such as lb/hr). Analysts for this project and many others must then estimate the fuel consumption (bsfc) of equipment and the carbon content of the fuel. ARB should require emission testing performed for stationary sources to include reporting of CO₂ emissions.
- 8. More data are needed to confirm natural gas combined cycle combustion tubine PM₁₀ emissions. It is widely recognized that the AP-42 emission factor is very high; the value used in this analysis is from a single source test conducted at a combined cycle plant outside of Sacramento (it is much lower than the AP-42 value). A thorough review of available source test data is needed to better quantify this parameter.
- 9. Data on emissions associated with hydrogen and synthetic fuel production facilities should be further examined to better determine the emissions impact of these facilities. In particular, source test results should be examined rather than using inventory estimates. The values used in this report come from a single source test.

Boundary Considerations

- 10. Displacement effects are a key aspect of a fuel cycle analysis. The assumptions of a marginal analysis, California emission regulations, and offset requirements define the outcome for criteria pollutants. The assumptions on emission boundaries should always be identified.
- 11. Displacement effects also impact the use of energy avoided by using an alternative fuel. In the case of fuels and feedstocks with relatively small volumes in common use as fuels (for example, digester gas, LPG, residential solar power), the attribution of feedstocks to alternative fuels production and use should be carefully examined to understand the best use of fuel feedstocks and displacement effects. Representing the fuel cycle analysis with a well defined system boundary for each feedstock and its significant displacement effects is a favorable approach. The alternative uses of farmland in particular should be identified and evaluated.

12. Changes in agricultural land use have a dominant impact on biofuel pathways. The potential land use impacts should be quantified and shown as a separate component of the WTT and WTW analysis. There is a need to provide measurements to support sustainable agricultural practices and prevent tropical deforestation associated with fuel production.

APPENDIX A. CALCULATION RESULTS

The following tables and figures document the GREET model and other calculation results that are shown in the figures included in Chapter 3 of this report. Figures that detail the energy inputs, GHG emissions, criteria pollutant emissions, and air toxics emissions in year 2012 are included for each conventional and alternative fuel evaluated and discussed in the report: gasoline, ethanol, biodiesel, natural gas, electricity, GTL fuels, hydrogen, synthetic fuels, and LPG. Following the 2012 results figures for each fuel are figures that document the effects of the scenario years on energy inputs and emissions results for the fuel and vehicle combinations discussed in Chapter 4 of the report. Scenario year effects figures are given for gasoline passenger cars, E-85 passenger cars, CNG passenger cars, PHEV passenger cars, diesel buses, and natural gas derived FTD30 buses.

Each figure contains columns of results data for the vehicle/ fuel/ fuel production pathways illustrated in the bar chart figures in the main body of the report. Each vehicle/ fuel/ production pathway given in the results figures is identified by an identifier termed the WTT Case ID. Table A-1 in the following represents the key that associates each WTT Case ID with the vehicle/ fuel/ production pathway description given in the bars comprising the bar charts that summarize analysis results and discussion in Chapters 3 and 4 of the report.

Table A-1. GREET-CA Fuel Cycle Cases

WTT Case	Region Code	Description
BD23	1	BD20, MW SoyBean
C1	3	CNG, NA Natural Gas
C2	4	
D1	4	CNG, LNG, Remote NG
	1 1	Diesel, CA ULSD
D6		E-Diesel, MW EtOH
DM1	4	DME, Remote NG
e1	3 3 3 3 3 3 3	Electricity, NG/RPS
e2	3	Electricity, Renewable, No Combustion
e3	3	Electricity, Renewable Mix
e4] 3	Electricity, H ₂ Pet Coke
E10	3	Electricity, NG/RPS, Night
E11	3	Electricity, CA Average
E12	3	Electricity, CA NG CC
E10	4	E-10, Corn, MW EtOH
E71	1	E-85, Corn, MW mix/BR
E72	1	E-85, Corn, MW Coal
E73	1	E-85, Corn, MW NG
E74	1	E-85, Corn, MW NG, Wet Feed
E75	3	E-85, CA Corn, Wet Feed
E76		E-85, CA Corn, Wet Digester
E78	3	E-85, CA Poplar, Cellulose
E79	3	E-85, CA Forest Residue
E81	3	E-85, CA Switch Grass
E84	3 3 3 3 3	E-85, Brazil Sugar Cane
E98	1	E-90, MW mix/BR
F31	4	FTD30, Remote NG
F33	3	FTD30, CA Poplar
F34	3	FTD30, CA Coal
F35	4	FTD100, Remote NG
G0	4	RFG, 0 Oxygen
G1	4	RFG, CA Marginal
G5	4	RFG, Tar Sands
H1	7 2	H ₂ , NG SR, LH ₂
H2	3 3	H ₂ , NG SR, LH ₂ H ₂ , NG SR, LH2, Ren Power
	1	
H3	3	H ₂ , Coal, Sequestration
H4	ا ،	H ₂ , NG SR, Pipeline
H5	3	H ₂ , Pet Coke, Pipeline
H6	3	H ₂ , Biomass, Pipeline
H7	3 3 3 3 3 3 3 4	H ₂ , Onsite NG SR
H8	3	H₂, Onsite NG SR, 700 bar
H9	3	H ₂ , Onsite NG SR, Ren Power
H10	3	H ₂ , Grid Electrolysis
H11	3	H ₂ , 70% Renewable, Electrolysis
L1	3	LNG, NA NG, Pipeline Liquefier
L3	4	LNG, Remote NG
M1	4	Methanol, Remote NG
M2	3	Methanol, LFG
P1	4	LPG, Petroleum
_ P2	1	LPG, Natural Gas

Region Code: 1=U.S., 2=N.E., 3=CA, 4=ROW (nNA)

Figure A-1. LDA Vehicle Class: All Model Years (Gasoline, E10, Diesel, LPG and CNG)

Scenario Year 2012: LDA Vehicle Class: All	ır 2012	:: LDA Ve	hicle Ck		Model Years (blend)	rs (blenc	.								
) TTW	WTT Case ID	Б	5	5	G1/e2	G15	ଔଽ	8	E10	E10	20	2	P2	ច	ខ
WTT Description	cription	RFG, Marginal	RFG, Marginal	RFG, IsnignsM	Electricity, NG/RPS, Night	RFG, Tar Sands	RFG, Tar Sands	RFG, 0	E10, Com, MW EtOH	E10, Com, MW EtOH	Diesel, CA ULSD	,БЧЈ пиејотач	, DQJ Natural ssĐ	CNG, NA Vatural Gas	CNG, LNG, Remote NG
Vehic	Vehicle Type	G AVICE	GFFV	G HEV	PHEV	G new	GHEV	Gnew	Gnew	GHEV	ULSD	rPG.	LPG	CNG	CNG
Vehicle Technology	nology	ICEV	FFV	HEV	PHEV	ICEV	HEV	ICEV	ICEV	HEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	6.27	6.27	4.65	3.38	7.08	5.25	6.37	6.19	4.59	4.89	5.68	5.49	5.46	6.02
Petroleum	MJ/mi	5.52	5.52	4.09	2.21	5.59	4.14	5.72	5.36	3.97	4.47	5.23	0.08	0.02	0.07
Natural Gas	MJ/mi	0.74	0.74	0.55	1.17	1.25	0.93	0.65	0.80	0.60	0.42	0.45	5.39	5.4	5.96
Coal	MJ/mi	0.05	0.02	0.01	0.01	0.25	0.18	0.00	0.03	0.02	0.00	0.00	0.02	0.00	0.00
Non Fossil	MJ/mi	0.21	0.21	0.16	0.20	0.03	0.02	0.01	0.37	0.27	0.01	0.05	0.00	0.03	0.00
M∏	MJ/mi	1.43	1.43	90:	1.07	5.06	1.52	1.32	1.51	1.12	0.85	0.79	0.59	0.58	1.12
WIL	MJ/mi	5.05	5.05	3.74	2.51	5.05	3.74	5.05	5.05	3.74	4.04	4.91	4.91	4.91	4.91
GHGs (weighted)															
۲M	g/mi	96	8	7	8	166	123	100	83	69	29	63	\$	51	9
ΑL	g/mi	377	377	282	153	377	282	377	377	282	308	326	326	780	580
TOTAL	g/mi	473	473	353	242	543	405	477	470	320	375	389	380	331	380
Criteria, Total															
200	g/mi	0.394	0.351	0.333	0.042	0.341	0.326	0.345	0.356	0.337	0.220	0.621	0.472	0.176	0.183
8	g/mi	3.004	2.750	2.719	0.192	2.716	2.693	2.719	2.774	2.736	0.823	2.700	2.701	2.674	2.714
Ň	g/mi	0.557	0.543	0.460	0.142	0.408	0.360	0.524	0.557	0.471	1.685	0.329	0.411	0.254	0.577
PM10 (x10)	g/mi	0.604	0.603	0.533	0.336	0.835	0.705	0.550	0.644	0.563	1.548	0.397	0.409	0.349	0.450
Criteria, Urban															
200	g/mi	0.349	0.306	0.300	0.019	1	ı	0.306	0.307	0.300	0.191	0.590	0.420	0.143	0.143
8	g/mi	2.885	2.631	2.631	0.138	ı	I	2.631	2.632	2.631	0.758	2.632	2.633	2.632	2.631
Š	g/mj	0.248	0.234	0.231	0.014	Ι	ı	0.233	0.235	0.232	1.467	0.235	0.244	0.226	0.229
PM10 (x10)	g/mi	0.338	0.337	0.336	0.227	1	l	0.337	0.337	0.336	1.388	0.336	0.338	0.334	0.335
Urban Toxics, (weighted	eighted)														
Benzene	g/mj	2.8E-02	2.3E-02	2.3E-02	1.1E-03	ı	ŀ	2.3E-02	2.3E-02	2.3E-02	1.7E-02	3.1E-05	5.4E-05	1.0E-04	1.0E-04
1-3 Butadiene	g/mi	3.1E-02	2.6E-02	2.6E-02	8.4E-04	ı	I	2.6E-02	2.6E-02	2.6E-02	9.5E-03	1.7E-05	1.5E-04	2.5E-04	2.6E-04
Formaldehyde	g/mi	2.9E-03	2.2E-03	2.2E-03	4.5E-04	Ι	ı	2.2E-03	2.2E-03	2.2E-03	2.6E-02	2.2E-03	2.2E-03	2.8E-03	2.8E-03
Acetaldehyde	g/m/g	3.0E-04	2.2E-04	2.2E-04	2.4E-05	ļ	I	2.2E-04	2.2E-04	2.2E-04	5.8E-03	2.2E-04	2.3E-04	2.5E-04	2.5E-04
Diesel PM	g/mi	2.3E-02	2.3E-02	1.7E-02	9.3E-03	1	1	2.0E-02	2.6E-02	1.9E-02	5.7E+00	7.3E-03	5.1E-02	0.0E+00	1.7E-02

Figure A-1. LDA Vehicle Class: All Model Years (continued)

Scenario Year 2017: LDA Vehicle Class: All Model Years (blend)

Particular Par		5	ত	ট	G1/e2	G15	ଔଃ	පි	E10	E10	D2	7	P2	<u>ರ</u>	ខ
Vehicle Type GAVICE GFFV GHEV PHEV Gnew GHEV GNew GHEV GNew GHEV GNew GHEV GNew GHEV GNew GHEV GNew GNew </th <th>WTT Description</th> <th></th> <th></th> <th></th> <th>NG/RPS,</th> <th></th> <th>RFG, Tar Sands</th> <th></th> <th>E10, Com, MW EtOH</th> <th>E10, Com, MW EtOH</th> <th>AD, lessel ULSD</th> <th>,pqJ muəloribaq</th> <th>LPG, Natural Gas</th> <th>CNG, NA Gas</th> <th>CNG, LNG, NG</th>	WTT Description				NG/RPS,		RFG, Tar Sands		E10, Com, MW EtOH	E10, Com, MW EtOH	AD, lessel ULSD	,pqJ muəloribaq	LPG, Natural Gas	CNG, NA Gas	CNG, LNG, NG
MJ/mi 5.68 5.68 4.21 3.02 6.39 4.73 5.77 5.61 1.00	Vehicle Type	G Av ICE	GFFV	GHEV	PHEV	G new	GHEV	Gnew	Gnew	GHEV	ULSD	LPG	LPG	CNG	CNG
I M.J/mi 5.68 5.68 4.21 3.02 6.39 4.73 5.77 5.61 troleum M.J/mi 5.00 5.00 3.70 2.00 5.06 3.75 5.18 4.86 troleum M.J/mi 5.00 5.00 3.70 2.00 5.06 3.75 5.18 4.86 4.86 4.86 1.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03	hicle Technology	ICEV	FFV	HEV	PHEV	ICEV	HEV	ICEV	KEV	HEV	ICEV	ICEV	ICEV	ICEV	ICEV
troleum M.J/mi 5.00 5.00 3.70 2.00 5.06 3.75 5.18 4.86 tural Gas M.J/mi 0.67 0.67 0.49 1.01 1.11 0.82 0.59 0.73 0.73		5.68	5.68	4.21	3.02	6.39	4.73	2.77	5.61	4.15	4.43	5.14	4.98	4.93	5.45
tural Gas MJ/mil 0.67 0.67 0.49 1.01 1.11 0.82 0.59 0.73 MJ/mil 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02		2.00	2.00	3.70	2.00	5.06	3.75	5.18	4.86	3.60	4.05	4.74	0.08	0.02	90:0
MJ/mi 0.01 0.01 0.01 0.01 0.021 0.16 0.00 0.03		0.67	0.67	0.49	1.0	1.1	0.82	0.59	0.73	0.54 4	0.38	0.40	4.89	4.91	5.39
Fossil MJ/mil 0.19 0.19 0.14 0.20 0.02 0.02 0.01 0.33 MJ/mil 1.29 1.29 0.29 0.93 1.83 1.36 1.20 1.36 K Will MJ/mil 4.58 4.58 3.39 2.28 4.58 3.39 4.58 4.58 4.58 IT g/mil 4.58 4.58 3.39 2.28 4.58 3.39 4.58 4.58 IT g/mil 343 243 256 139 343 256 343 342 426 ITAL g/mil 343 343 256 139 343 256 343 342 426 ITAL g/mil 429 429 320 219 490 366 433 426 ITAL g/mil 0.242 0.247 0.042 0.249 0.241 0.255 0.241 0.256 0.261 0.47 0.462 Offici		0.01	0.01	0.01	0.01	0.21	0.16	0.00	0.03	0.02	0.00	0.00	0.02	0.00	0.0
MJ/mil 1.29 1.29 0.96 0.93 1.83 1.36 1.20 1.36 s (weighted) MJ/mil 4.58 4.58 3.39 2.28 4.58 3.39 4.58 4.58 TT g/mil 4.58 4.58 3.39 2.28 4.58 3.39 4.58 4.58 4.58 4.58 TTAL g/mil 343 343 256 139 343 256 343 342 426 ria, Total A 429 429 320 219 490 366 433 426 ria, Total A 429 429 320 219 490 366 433 426 ria, Total B 642 0.247 0.042 0.249 0.214 1.827 1.807 1.831 1.878 ria, Urban B 0.422 0.549 0.128 0.214 0.256 0.254 0.526 0.526 C g/mil		0.19	0.19	0.14	0.20	0.02	0.02	0.01	0.33	0.25	0.01	0.01	0.0	0.03	8.0
MJ/mil g/mil	MJ/mi	1.29	1.29	96:0	0.93	1.83	1.36	1.20	1.36	1.9	0.77	0.70	0.53	0.52	<u>5</u> .
ed) g/mil 86 86 64 80 147 109 90 83 g/mil 343 342 256 139 343 256 343 342 g/mil 429 429 320 219 490 366 433 426 g/mil 0.269 0.263 0.247 0.042 0.255 0.241 0.258 0.267 g/mil 0.424 0.422 0.349 0.128 0.303 0.261 0.407 0.433 g/mil 0.572 0.572 0.511 0.332 0.772 0.659 0.526 0.607 g/mil 0.149 0.145 0.0218 0.021 — 0.155 1.752 1.752 g/mil 0.340 0.340 0.339 0.237 — 0.340 0.340 g/mil 1.6E-02 1.6E-02 1.2E-02 1.2E-02 1.6E-02		4.58	4.58	3.39	2.28	4.58	3.39	4.58	4.58	3.39	3.66	4.45	4.45	4.45	4.45
g/mil 86 86 64 80 147 109 90 83 g/mil 343 256 139 343 256 343 342 g/mil 0.269 0.263 0.247 0.042 0.255 0.241 0.258 0.267 g/mil 0.424 0.422 0.349 0.128 0.303 0.261 0.407 0.433 g/mil 0.572 0.572 0.511 0.332 0.772 0.659 0.526 0.607 g/mil 0.128 0.021 0.772 0.659 0.526 0.607 g/mil 0.176 0.718 0.0772 0.659 0.526 0.607 g/mil 0.149 0.145 0.0146 0.014 0.146 0.148 g/mil 0.149 0.147 0.146 0.014 0.146 0.148 g/mil 0.149 0.145 0.014 0.233 0.237 0.146 0.148 g/mil 0.16	s (weighted)														
g/mi 343 346 139 343 256 349 343 342 g/mi 0.269 0.263 0.247 0.042 0.255 0.241 0.258 0.267 g/mi 0.424 0.422 0.349 0.128 0.303 0.261 0.407 0.433 g/mi 0.572 0.572 0.572 0.514 0.025 0.261 0.407 0.433 g/mi 0.149 0.122 0.349 0.128 0.303 0.261 0.407 0.433 g/mi 0.1752 0.571 0.332 0.772 0.659 0.526 0.607 g/mi 0.149 0.145 0.0146 — — 0.1752 1.752 g/mi 0.149 0.147 0.146 — — 0.146 0.148 g/mi 0.149 0.147 0.146 0.014 — — 0.146 0.148 g/mi 0.149 0.147 0.146 0.014		88	88	ফ	8	147	9	06	8	62	8	27	49	94	8
g/mi 429 429 320 219 490 366 433 426 g/mi 0.269 0.263 0.247 0.042 0.255 0.241 0.258 0.267 g/mi 0.424 0.422 0.349 0.128 0.303 0.261 0.407 0.433 g/mi 0.572 0.572 0.511 0.332 0.772 0.659 0.526 0.607 g/mi 0.229 0.224 0.218 0.021 - - 0.223 0.224 g/mi 1.786 1.752 1.751 0.166 - - 0.175 1.752 g/mi 0.149 0.147 0.146 0.014 - - 0.146 0.148 g/mi 0.149 0.340 0.339 0.237 - - 0.146 0.148 g/mi 1.6E-02 1.6E-02 1.2E-02 1.2E-02 1.2E-02 1.6E-02 1.6E-02 1.6E-02 1.6E-02 1.6E-02 <th< th=""><td></td><td>343</td><td>8</td><td>256</td><td>139</td><td>8</td><td>526</td><td>343</td><td>342</td><td>526</td><td>581</td><td>23₀</td><td>296</td><td>255</td><td>255</td></th<>		343	8	256	139	8	52 6	343	342	526	58 1	23 ₀	296	255	255
g/mi 0.269 0.263 0.247 0.042 0.255 0.241 0.258 0.267 g/mi 1.891 1.867 1.829 0.214 1.827 1.807 1.831 1.878 g/mi 0.424 0.422 0.349 0.128 0.203 0.261 0.407 0.433 g/mi 0.572 0.572 0.511 0.332 0.772 0.659 0.526 0.607 g/mi 0.229 0.224 0.218 0.021 — — 0.223 0.224 g/mi 1.786 1.752 1.751 0.166 — — 0.223 0.224 g/mi 0.149 0.147 0.145 0.014 — — 0.146 0.148 g/mi 0.340 0.340 0.339 0.237 — — 0.340 0.340 g/mi 1.6E-02 1.6E-02 1.2E-02 1.2E-03 — — 0.340 0.340		429	429	320	219	490	986	433	456	318	2	323	345	ĕ	8
g/mi 0.269 0.263 0.247 0.042 0.255 0.241 0.258 0.267 g/mi 1.891 1.867 1.829 0.214 1.827 1.807 1.831 1.878 g/mi 0.424 0.422 0.349 0.128 0.203 0.261 0.407 0.433 g/mi 0.572 0.572 0.511 0.332 0.772 0.659 0.526 0.607 g/mi 0.229 0.224 0.218 0.021 — 0.223 0.224 g/mi 1.786 1.752 1.751 0.166 — — 0.223 0.224 g/mi 0.149 0.147 0.146 0.014 — — 0.146 0.148 g/mi 0.340 0.340 0.339 0.237 — — 0.340 0.340 g/mi 1.6E-02 1.	ia, Total														
g/mi 1.891 1.857 1.829 0.214 1.827 1.807 1.831 1.878 g/mi 0.424 0.422 0.349 0.128 0.303 0.261 0.407 0.433 g/mi 0.572 0.572 0.511 0.332 0.772 0.659 0.526 0.607 g/mi 0.229 0.224 0.218 0.021 — — 0.223 0.224 g/mi 1.786 1.752 1.751 0.186 — — 1.752 1.752 g/mi 0.149 0.147 0.145 0.014 — — 0.146 0.148 g/mi 0.340 0.340 0.339 0.237 — 0.340 0.340 g/mi 1.6E-02 1.6E-02 1.5E-02 1.2E-03 1.6E-02 1.		0.269	0.263	0.247	0.042	0.255	0.241	0.258	0.267	0.250	0.187	0.521	0.386	0.118	0.125
g/mi 0.424 0.422 0.349 0.128 0.303 0.261 0.407 0.433 g/mi 0.572 0.572 0.511 0.332 0.772 0.659 0.526 0.607 g/mi 0.229 0.224 0.218 0.021 — 0.223 0.224 g/mi 0.149 0.147 0.145 0.014 — 0.146 0.148 g/mi 0.340 0.340 0.339 0.237 — 0.340 0.340 g/mi 1.6E-02 1.6E-02 1.5E-02 1.2E-03 1.6E-02		1.891	1.857	1.829	0.214	1.827	1.807	1.831	1.878	1.845	0.777	1.813	1.814	1.790	1.826
g/mi 0.572 0.572 0.511 0.332 0.772 0.659 0.526 0.607 g/mi 0.229 0.224 0.218 0.021 — 0.223 0.224 g/mi 1.786 1.752 1.751 0.166 — — 1.752 1.752 g/mi 0.149 0.147 0.145 0.014 — — 0.146 0.148 g/mi 0.340 0.340 0.339 0.237 — — 0.340 0.340 g/mii 1.6E-02 1.6E-02 1.2E-03 1.2E-03 - 1.6E-02		0.424	0.422	0.349	0.128	0.303	0.261	0.407	0.433	0.357	1.657	0.257	0.305	0.166	0.458
g/mi 0.229 0.224 0.218 0.021 — — 0.223 0.224 g/mi 1.786 1.752 1.751 0.146 — — 1.752 1.752 1.752 g/mi 0.149 0.147 0.145 0.014 — — 0.146 0.148 g/mi 0.340 0.339 0.237 — — 0.340 0.340 weighted) (weighted) — 1.6E-02 1.5E-02 1.2E-03 — 1.6E-02		0.572	0.572	0.511	0.332	0.772	0.659	0.526	0.607	0.537	1.377	0.390	0.402	0.351	0.442
0.229 0.224 0.218 0.021 — 0.223 0.224 1.786 1.752 1.751 0.166 — — 1.752 1.752 0.149 0.147 0.145 0.014 — — 0.146 0.148 0.340 0.339 0.237 — — 0.340 0.340 1.6E-02 1.6E-02 1.5E-02 1.2E-03 — 1.6E-02 1.6E-	ia, Urban														
1.786 1.752 1.751 0.166 — — 1.752 1.752 0.149 0.147 0.145 0.014 — — 0.146 0.148 0.340 0.339 0.237 — — 0.340 0.340 1.6E-02 1.6E-02 1.5E-02 1.2E-03 — 1.6E-02 1.		0.229	0.224	0.218	0.021	ı	ı	0.223	0.224	0.218	0.161	0.494	0.340	0.089	0.089
0.149 0.147 0.145 0.014 — 0.146 0.148 0.340 0.339 0.237 — — 0.340 0.340 1.6E-02 1.6E-02 1.5E-02 1.2E-03 — — 1.6E-02		1.786	1.752	1.751	0.166	I	ı	1.752	1.752	1.751	0.718	1.752	1.753	1.753	1.752
0.340 0.340 0.339 0.237 — — 0.340 0.340 1.6E-02 1.6E-02 1.5E-02 1.2E-03 — — 1.6E-02		0.149	0.147	0.145	0.014	ı	ı	0.146	0.148	0.146	1.461	0.148	0.156	0.143	0.145
1.6E-02 1.6E-02 1.5E-02 1.2E-03 — — 1.6E-02 1.6E-02 1 1.7E-02 1.6E-02 1.6E-02 9.9E-04 — — 1.6E-02 1.6E-02 1		0.340	0.340	0.339	0.237	I	I	0.340	0.340	0.339	1.237	0.339	0.341	0.338	0.339
g/mi 1.6E-02 1.6E-02 1.5E-02 1.2E-03 — — 1.6E-02 1.6E-02 1 g/mi 1.7E-02 1.6E-02 1.6E-02 9.9E-04 — — 1.6E-02 1.6E-02 1	n Toxics, (weighted)														
g/mi 1.7E-02 1.6E-02 1.6E-02 9.9E-04 — — 1.6E-02 1.6E-02 1		1.6E-02	1.6E-02	1.5E-02	1.2E-03	ı	ı	1.6E-02	1.6E-02	1.5E-02	1.4E-02	1.7E-05	3.7E-05	9.2E-05	9.4E-05
		1.7E-02	1.6E-02	1.6E-02	9.9E-04	1	I	1.6E-02	1.6E-02	1.6E-02	8.0E-03	9.5E-06	1.3E-04	2.3E-04	2.4E-04
1.5E-03 1.4E-03 1.4E-03 4.0E-04 — — 1.4E-03 1.4E-03 1		1.5E-03	1.4E-03	1.4E-03	4.0E-04	ı	I	1.4E-03	1.4E-03	1.4E-03	2.2E-02	1.4E-03	1.4E-03	2.0E-03	2.0E-03
1.5E-04 1.3E-04 1.3E-04 2.1E-05 1.3E-04 1.4E-04 1		1.5E-04	1.3E-04	1.3E-04	2.1E-05	ı	ł	1.3E-04	1.4E-04	1.3E-04	4.9E-03	1.3E-04	1.5E-04	1.7E-04	1.7E-04
1.9E-02 1.9E-02 1.4E-02 7.4E-03 1.5E-02 2.1E-02 1		1.9E-02	1.9E-02	1.4E-02	7.4E-03	ŀ	1	1.5E-02	2.1E-02	1.5E-02	5.0E+00	3.5E-03	4.3E-02	0.0E+00	1.5E-02

Figure A-1. LDA Vehicle Class: All Model Years (continued)

Scenario Year 2022: LDA Vehicle Class: All Model Years (blend)

WIT Goe IN R R R R	WTT Case ID	֓֞֞֜֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	5 	- 1	(A/b)	35	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8	1 E	E	2	۶	6	2	5
WTT Description	ription	558	RFG, Marginal	RFG, Marginal	Electricity, NG/RPS, Night	RFG, Tar sbns2	RFG, Tar Sands	KFG, 0	MW EtOH	E10, Com,	Diesel, CA ULSD	LPG, muəloriəq	LPG, Natural Gas	CNG, NA Natural Gas	CNG, LNG,
Vehick	Vehicle Type	G AV ICE	GFFV	GHEV	PHEV	G new	GHEV	Gnew	Gnew	G HEV	OLSD	-F3	LPG	CNG	CNG
Vehicle Technology	nology	ICEV	Ŧ	HEV	PHEV	ICEV	HEV	ICEV	ICEV	HEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	5.10	5.10	3.78	2.67	5.72	4.24	5.18	5.04	3.73	3.98	4.61	4.48	4.43	4.87
Petroleum	MJ/mi	4.49	4.49	3.33	1.80	4.55	3.37	4.66	4.37	3.23	3.64	4.26	0.0	0.05	0.05
Natural Gas	MJ/mi	0.59	0.59	0.4	98.0	0.98	0.73	0.52	0.65	0.48	0.34	0.35	4.39	4.41	4.81
Soa	MJ/mi	0.01	0.01	0.01	0.01	0.19	0.14	0.00	0.05	0.02	0.00	0.00	0.02	0.00	0.00
Fossil	MJ/mi	0.17	0.17	0.13	0.19	0.02	0.01	0.01	0.30	0.22	0.00	0.01	0.00	0.03	0.00
WTF	MJ/mi	1.15	1.15	0.85	0.81	1.63	1.20	1.07	1.22	06:0	0.69	0.62	0.48	0.46	0.87
WI	MJ/mi	4.12	4.12	3.05	2.05	4.12	3.05	4.12	4.12	3.05	3.29	4.00	4.00	4.00	4.00
GHGs (weighted)															
ШM	g/mi	11	4	27	2	131	97	.	74	絽	ጃ	8	4	4	78
ΑE	g/mi	309	309	231	125	309	231	308	309	231	253	267	267	230	230
TOTAL	g/mi	386	98e	788	195	4	328	390	383	286	307	317	311	271	308
Criteria, Total															
200	g/mi	0.202	0.205	0.191	0.042	0.198	0.186	0.200	0.209	0.194	0.138	0.447	0.326	0.085	0.091
8	gmi	1.310	1.309	1.284	0.228	1.282	1.264	1.285	1.327	1.298	0.727	1.269	1.271	1.249	1.281
Š	g/mi	0.342	0.342	0.277	0.115	0.237	0.200	0.330	0.351	0.284	1.628	0.195	0.240	0.115	0.375
PM10 (x10)	g/mi	0.546	0.546	0.492	0.329	0.721	0.622	0.506	0.577	0.515	1.408	0.385	0.397	0.351	0.432
Criteria, Urban															
NOC	g/mi	0.170	0.170	0.165	0.024	I	I	0.170	0.170	0.165	0.115	0.423	0.285	0.029	0.059
8	g/mi	1.215	1.215	1.214	0.186	1	l	1.215	1.215	1.214	0.675	1.215	1.216	1.216	1.215
ŏ	g/mi	0.098	0.098	0.097	0.015	1	ı	0.097	0.099	0.097	1.453	0.099	0.106	0.095	960.0
PM10 (x10)	g/mi	0.342	0.342	0.341	0.246	I	l	0.342	0.342	0.342	1.285	0.341	0.343	0.341	0.342
Urban Toxics, (weighted	eghted)														
Benzene	g/mi	1.1E-02	1.1E-02	1.1E-02	1.4E-03	I	ŀ	1.1E-02	1.1E-02	1.1E-02	1.0E-02	1.0E-05	2.8E-05	8.2E-05	8.4E-05
1-3 Butadiene	g/mi	1.1E-02	1.0E-02	1.0E-02	1.1E-03	I	I	1.0E-02	1.0E-02	1.0E-02	5.8E-03	5.8E-06	1.2E-04	2.0E-04	2.1E-04
Formaldehyde	g/mi	9.2E-04	9.1E-04	9.1E-04	3.7E-04	ì	1	9.1E-04	9.2E-04	9.1E-04	1.5E-02	9.1E-04	9.6E-04	1.5E-03	1.5E-03
Acetaldehyde	g/mi	8.9E-05	8.8E-05	8.7E-05	2.0 E- 05	I	I	8.7E-05	8.9E-05	8.8E-05	3.4E-03	8.7E-05	9.9E-05	1.2E-04	1.2E-04
Diesel PM	g/mi	1.6E-02	1.6E-02	1.2E-02	6.2E-03	ı	ı	1.3E-02	1.8E-02	1.3E-02	5.2E+00	1.9E-03	3.8E-02	0.0E+00	1.4E-02

Figure A-1. LDA Vehicle Class: All Model Years (concluded)

Scenario Year 2030: LDA Vehicle Class: All Model Years (blend)

WTT Description We hicle Type Gev ICE Icle Technology Mu/mi Assil Mu/mi Mu/mi	маrginal Marginal 0.11 0.11 0.11 0.11 0.11 0.12 0.03 0.03 0.03 0.11 0.11 0.11 0.11 0.11	PHEV PHEV Night: Alight Night: Alight Night: Alight Night: Alight Night: Alight: Aligh	G RFG, T8t CEV C C C C C C C C C C C C C C C C C C	RFG, Tar GA HEV 3.02 3.02 0.01 1.08 2.73 87	O O O O O O O O O O O O O O O O O O O	MW EYOH A 20 0.02 0.02 0.02 0.02 0.02 0.02 0.02	С 2 3 3 4 4 2 3 3 4 4 2 3 3 4 4 2 3 3 4 4 2 3 3 4 4 2 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 4	O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LPG, LPG, TGEV TO THE Petroleum	,PGJ Natural seĐ	CNG, NA	NG Kemote CNG' FNG'
Vehicle Type ide Technology GAv. CE Ide Technology ICEV MJ/mi 4.57 oleum MJ/mi 0.53 ral Gas MJ/mi 0.01 ossil MJ/mi 1.03 MJ/mi 3.69 (weighted) 3.69		PHEV PHEV 2.37 1.61 0.75 0.00 0.19 0.73 1.84			Shew ICEV 4.64 4.17 0.47 0.00 0.01 3.69 72 72 278	Gnew ICEV 3.91 0.58 0.02 1.09 3.69	G HEV HEV 3.34 2.90 0.43 0.02 0.20 0.81	ULSD ICEV 3.56 3.26 0.30 0.00	LPG ICEV 4.13		0.10	
ide Technology ICEV Mulmi 4.57 sleum Mulmi 0.53 ral Gas Mulmi 0.01 sssil Mulmi 0.01 Mulmi 1.03 Mulmi 3.69 (weighted)	13.39 2.98 0.39 0.01 0.77 2.73 51	PHEV 2.37 1.61 0.75 0.00 0.19 0.73 1.84	ICEV 5.13 6.13 0.02 1.46 3.69		ICEV 4.64 4.17 0.00 0.00 3.69 72 72 278	ICEV 4.51 3.91 0.58 0.02 1.09 3.69	HEV 3.34 2.90 0.43 0.02 0.20 0.81	3.56 3.26 0.30 0.00 0.00	ICEV 4.13	9d1	CNC	CNG
MJ/mi 4.57 leum MJ/mi 4.03 ral Gas MJ/mi 0.53 MJ/mi 0.01 0.01 MJ/mi 0.15 MJ/mi 1.03 MJ/mi 3.69 (weighted)	3.39 2.98 0.39 0.01 0.11 2.73 51	2.37 1.61 0.75 0.00 0.19 0.73 1.84	5.13 4.08 0.28 0.02 1.46 3.69		4.64 4.17 0.47 0.00 0.01 3.69 7.2 7.2 7.2 7.2 7.2	4.51 3.91 0.58 0.02 1.09 3.69	3.34 2.90 0.43 0.02 0.20 0.81	3.56 3.26 0.30 0.00	4.13	KEV	ICEV	ICEV
tural Gas MJ/mi 0.53 al MJ/mi 0.01 Fossil MJ/mi 0.15 MJ/mi 1.03 MJ/mi 3.69	2.98 0.39 0.01 0.11 2.73 51	1.61 0.75 0.00 0.19 0.73 1.84	4.08 0.88 0.17 0.02 1.46 3.69		4.17 0.47 0.00 0.00 0.96 3.69 7.2 7.2 7.2 278	3.91 0.58 0.02 1.09 3.69	2.90 0.43 0.02 0.20 0.81 2.73	3.26 0.30 0.00		4.01	3.97	4.36
tural Gas MJ/mi 0.53 al MJ/mi 0.01 Fossil MJ/mi 0.15 MJ/mi 1.03 MJ/mi 3.69	0.39 0.01 0.11 0.77 2.73 51	0.75 0.00 0.19 0.73 1.84	0.88 0.17 0.02 1.46 3.69		0.47 0.00 0.01 0.96 3.69 7.7 7.2 7.2 7.8	0.58 0.02 0.27 1.09 3.69	0.43 0.02 0.20 0.81 2.73	0.00 0.00 0.00	3.81	90.0	0.02	0.05
al MJ/mi 0.01 Fossil MJ/mi 0.15 MJ/mi 1.03 MJ/mi 3.69	0.01 0.11 0.77 2.73 51	0.00 0.19 0.73 1.84	0.17 0.02 1.46 3.69		0.00 0.01 0.96 3.69 72 72 278	0.02 0.27 1.09 3.69	0.02 0.20 0.81 2.73	0.00	0.31	3.94	3.95	4.31
Fossil MJ/mi 0.15 MJ/mi 1.03 MJ/mi 3.69	0.11 0.77 2.73 51 50	0.19 0.73 1.84 62	0.02 1.46 3.69		0.06 0.96 3.69 72 278	0.27 1.09 3.69 66	0.20 0.81 2.73	0.00	0.00	0.01	0.00	0.00
M./mi 1.03 M./mi 3.69 s (weighted)	0.77 2.73 51 208	0.73 1.84 62	1.46 3.69 117		3.69 3.69 72 278	1.09 3.69 66	0.81 2.73		0.01	0.00	0.03	0.00
MJ/mi 3.69	2.73 51 208	1.84	3.69		3.69 72 278	3.69 66	2.73	0.62	0.56	0.43	0.41	0.78
:	51 208	29	117	87 208	77 278 278	8		2.95	3.58	3.58	3.58	3.58
	51 208	7 62	117	87 208	72 278 350	98						
	508	()	0	208	278		49	84	45	36	36	2
278		113	2/8		250	278	5 08	778	240	240	207	202
g/mi	528	175	395	295	3	34	257	276	5 82	780	243	277
Criteria, Total												
g/mi 0.151		0.044	0.144	0.133 (0.146	0.154	0.140	0.135	0.383	0.275	0.029	0.064
	0.868	0.243	998.0		98.0	0.907	0.881	0.513	0.855	0.826	0.837	0.866
NOx g/mi 0.282 0.282	0.224	0.106	0.188		0.271	0.290	0.230	1.786	0.150	0.190	0.079	0.311
	0.477	0.328	0.682		0.489	0.553	0.498	1.395	0.381	0.391	0.351	0.423
Criteria, Urban												
VOC g/mi 0.119 0.119	0.115	0.028	ı		0.119	0.120	0.115	0.114	0.362	0.238	0.036	0.035
		0.206	i	1	908.0	908.0	908.0	0.466	908.0	0.807	0.807	0.807
NOx g/mi 0.063 0.063	0.062	0.016	ı	1	0.062	0.064	0.062	1.629	0.064	0.070	0.061	0.063
0.342	0.342	0.253	1	1	0.342	0.343	0.342	1.284	0.341	0.343	0.342	0.343
Urban Toxics, (weighted)												
Benzene g/mi 7.2E-03 7.2E-03	3 7.1E-03	1.7E-03	ı			7.2E-03	7.1E-03	1.0E-02	7.2E-06	2.3E-05	7.3E-05	7.5E-05
1-3 Butadiene g/mi 6.2E-03 6.2E-03	3 6.2E-03	1.3E-03	ı	9	6.2E-03	3.2E-03	6.2E-03	5.6E-03	4.0E-06	1.0E-04	1.8E-04	1.9E-04
	4 5.5E-04	3.4E-04	ı	1		5.6E-04	5.6E-04	1.5E-02	5.5E-04	6.0E-04	1.0E-03	1.1E-03
Acetaldehyde g/mi 5.2E-05 5.2E-05	5 5.1E-05	1.9E-05	ı	ا بې		5.3E-05	5.2E-05	3.4E-03	5.1E-05	6.1E-05	8.0E-05	8.2E-05
	2 1.0E-02	5.4E-03	ı	1		1.5E-02	1.1E-02	5.2E+00	1.2E-03	3.3E-02	0.0E+00	1.2E-02

Figure A-2.LDA Vehicle Class: Model Years 2010 and Newer (Gasoline, E10, Diesel, LPG and CNG)

Scenario Year 2012: LDA Vehicle Class: Model Year Start 2010 (new)

	1	5	চ	ত	G1/e2	95	ભાર	8	E10	E10	20	Σ	P2	ខ	ខ
WTT Description	tion	RFG, Marginal	RFG, Marginal	RFG, Marginal	Electricity, NG/RPS, Night	RFG, Tar Sands	RFG, Tar sbns은	KFG, 0 Oxygen	E10, Com, MW EtOH	E10, Com, MW EtOH	Diesel, CA ULSD	LPG, muəlottəq	LPG, Natural Sas	CNG, NA Natural Gas	NG Kemote CNG, LNG,
Vehicle Type	Type	Gnew	GFFV	GHEV	PHEV	Gnew	GHEV	G ne₩	G new	GHEV	OLSD	LPG	LPG	SNS	CNG
Vehicle Technology	δ	ICEV	Ŧ	HEV	PHEV	ICEV	HEV	ICEV	ICEV	HEV	ICEV	ICEV	ICEV	KEV	ICEV
Fossil M.	MJ/mi	5.70	5.70	4.22	3.08	6.44	4.77	5.79	5.63	4.17	4.44	5.16	4.99	4.96	5.48
Petroleum M.	MJ/mi	5.01	5.01	3.71	2.01	5.08	3.76	5.20	4.87	3.61	4.06	4.75	0.08	0.05	90.0
Natural Gas M.	MJ/mi	0.67	0.67	0.50	1.06	1.14	9. 8.	0.59	0.73	0.54	0.38	0.41	4.90	4. 2.	5.45
	MJ/mi	0.02	0.02	0.01	0.01	0.22	0.17	0.00	0.03	0.02	0.00	0.00	0.02	0.00	0.00
Non Fossil M.	M√mi	0.19	0.19	0.14	0.18	0.03	0.05	0.01	0.33	0.25	0.01	0.01	0.00	0.02	0.00
WTT M.	MJ/mi	1.30	1.30	96.0	0.97	1.87	1.39	1.20	1.37	1.02	0.77	0.72	0.54	0.52	1.02
	MJ/mi	4.59	4.59	3.40	2.29	4.59	3.40	4.59	4.59	3.40	3.68	4.46	4.46	4.46	4.46
GHGs (weighted)															
ω L	j/mj	87	87	92	æ	151	112	9	æ	8	61	22	49	47	9
₩ H	jm/6	3 4	\$	257	139	¥	257	뚕	2 4	257	282	297	297	255	255
TOTAL 94	j/m	431	431	322	223	495	369	435	428	319	342	354	346	305	346
Criteria, Total															
70C	jm/g	0.089	0.089	0.073	0.039	0.080	990.0	0.083	0.09 4	0.076	ı	0.448	0.312	0.0 44	0.050
8	g/mi	0.472	0.472	0.443	0.186	0.441	0.420	0.444	0.493	0.459	ı	0.426	0.427	0.402	0.439
NOX O	jm/g	0.316	0.316	0.241	0.130	0.194	0.150	0.299	0.330	0.251	I	0.149	0.197	0.054	0.347
	g/mi	0.488	0.488	0.424	0.325	0.699	0.581	0.440	0.526	0.452	ı	0.301	0.312	0.257	0.349
Criteria, Urban															
VOC 94	jm/g	0.048	0.048	0.042	0.018	ł	I	0.048	0.048	0.042	ı	0.420	0.266	0.014	0.013
8	jm/g	0.364	0.364	0.363	0.137	I	ļ	0.364	0.364	0.363	i	0.364	0.365	0.364	0.364
NOX	im/g	0.036	0.036	0.033	0.014	I	I	0.035	0.036	0.034	I	0.037	0.045	0.029	0.032
PM10 (x10) g/	g/mi	0.247	0.247	0.245	0.226	1	1	0.246	0.247	0.245	I	0.246	0.247	0.244	0.245
Urban Toxics, (weighted	hted)														
		2.7E-03	2.7E-03	2.6E-03	1.0E-03	ļ	I	2.7E-03	2.7E-03	2.6E-03	ı	2.8E-05	4.9E-05	9.2E-05	9.4E-05
1-3 Butadiene g/		2.2E-03	2.2E-03	2.2E-03	8.4E-04	ì	ı	2.2E-03	2.2E-03	2.2E-03	ı	1.6E-05	1.4E-04	2.3E-04	2.4E-04
_	im/g	2.5E-04	2.5E-04	2.4E-04	4.2E-04	i	l	2.5E-04	2.6E-04	2.4E-04	1	2.5E-04	3.1E-04	8.5E-04	8.6E-04
Acetaldehyde g/		2.7E-05	2.7E-05	2.4E-05	2.2E-05	ļ	!	2.6E-05	2.8E-05	2.5E-05	I	2.6E-05	3.9E-05	5.7E-05	5.8E-05
Diesel PM g/	jm/g	2.1E-02	2.1E-02	1.6E-02	8.5E-03	i	I	1.8E-02	2.4E-02	1.7E-02	i	6.6E-03	4.7E-02	0.0E+00	1.5E-02

Figure A-2. LDA Vehicle Class: Model Years 2010 and Newer (continued)

Scenario Year 2017: LDA Vehicle Class: Model Year Start 2010 (new)

		চ	ত	5	G1/e2	G15	95	8	딦	E10	05	Σ	2	ខ	ខ
WTT Description	ption	RFG, Marginal	RFG, Marginal	RFG, Marginal	Electricity, NG/RPS, Night	RFG, Tar Sands	RFG, Tar Sands	RFG, 0 Oxygen	E10, Com, MW EłOH	E10, Com, MW EfOH	AD, Gesel ULSD	,PGJ muelote9	LPG, Natural Sas	CNG, NA Natural Gas	CNG, LNG,
Vehicle Type	Type	Gnew	GFFV	GHEV	PHEV	Gnew	G HEV	Gnew	Gnew	G HEV	OLSD	LPG	LPG	CNG	CNG
Vehicle Technology	ology	CEV	ΕF	HEV	PHEV	ICEV	HEV	ICEV	ICEV	HEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil N	MJ/mi	5.13	5.13	3.80	2.72	5.77	4.27	5.21	90.9	3.75	4.00	4.64	4.50	4.46	4.92
Petroleum N	MJ/mi	4.51	4.51	3.34	1.81	4.57	3.39	4.68	4.38	3.25	3.65	4.28	0.0	0.02	0.05
S	M.J/mi	0.60	0.60	0.45	0.91	1.00	0.74	0.53	0.65	0.49	0.34	0.36	4.41	4.4	4.87
	MJ/mi	0.01	0.01	0.01	0.01	0.19	0.14	0.00	0.02	0.02	00.0	0.00	0.02	0.00	0.00
Non Fossil N	MJ/mi	0.17	0.17	0.13	0.18	0.02	0.02	0.01	0.30	0.23	0.00	0.01	0.00	0.03	0.00
WTT N	MJ/mi	1.16	1.16	98.0	0.84	1.65	1.22	1.08	1.23	0.91	0.69	0.6 4	0.48	0.47	0.91
A WTT	MJ/mi	4.14	4.14	3.06	2.06	4.14	3.06	4.14	4.14	3.06	3.31	4.02	4.02	4.02	4.02
GHGs (weighted)															
₩	jm/g	82	78	88	73	133	8	82	72	26	22	51	4	4	<u>8</u>
Æ	g/mi	310	310	232	126	311	232	311	310	232	25	768	568	231	231
TOTAL	g/mi	388	388	280	199	444	331	392	385	288	309	319	312	272	312
Criteria, Total															
200	jm/g	0.000	0.00	0.075	0.039	0.082	0.070	0.085	0.094	0.078	I	0.406	0.284	0.042	0.048
8	g/mi	0.539	0.539	0.514	0.208	0.512	0.494	0.515	0.558	0.528	ı	0.499	0.501	0.479	0.512
χŎΝ	g/mi	0.286	0.286	0.220	0.116	0.178	0.140	0.272	0.296	0.227	I	0.137	0.181	0.055	0.319
PM10 (x10)	g/mi	0.487	0.487	0.432	0.322	0.668	0.566	0.446	0.519	0.456	ı	0.323	0.334	0.287	0.370
Criteria, Urban															
000	g/mi	0.054	0.054	0.049	0.020	ı	ı	0.054	0.054	0.049	I	0.381	0.243	0.016	0.016
8	g/mi	0.444	0.444	0.444	0.165	I	1	0.444	0.444	0.444	ı	0.44	0.445	0.445	0.445
XON	g/mi	0.037	0.037	0.036	0.014	I	I	0.037	0.038	0.036	I	0.038	0.046	0.034	0.036
PM10 (x10)	g/mi	0.278	0.278	0.277	0.237	ı	1	0.278	0.278	0.277	ı	0.277	0.279	0.276	0.277
Urban Toxics, (weighted	ghted)														
Benzene	jm/g	3.2E-03	3.2E-03	3.1E-03	1.2E-03	1	ı	3.2E-03	3.2E-03	3.1E-03	ŀ	1.5E-05	3.4E-05	8.3E-05	8.5E-05
1-3 Butadiene	jm/g	2.6E-03	2.6E-03	2.6E-03	9.8E-04	I	I	2.6E-03	2.6E-03	2.6E-03	ı	8.6E-06	1.2E-04	2.0E-04	2.1E-04
Formaldehyde	jm/g	2.7E-04	2.7E-04	2.7E-04	3.7E-04	ł	I	2.7E-04	2.8E-04	2.7E-04	I	2.7E-04	3.2E-04	6.3E-04	8.3E-04
Acetaldehyde	jm/g	2.6E-05	2.6E-05	2.5E-05	2.0E-05	I	I	2.5E-05	2.7E-05	2.5E-05	I	2.5E-05	3.7E-05	5.6E-05	5.7E-05
	g/mi	1.7E-02	1.7E-02	1.2E-02	6.7E-03	ı	I	1.4E-02	1.9E-02	1.4E-02	ı	3.2E-03	3.9E-02	0.0E+00	1.4E-02

Figure A-2. LDA Vehicle Class: Model Years 2010 and Newer (continued)

Scenario Year 2022: LDA Vehicle Class: Model Year Start 2010 (new)

Compactivation Comp	WTT Case ID	ase ID	 ভ	<u>চ</u>	WTT Case ID G1 G1	G162	95	<u>영</u>	8	튑	뎚	20	2	P2	5	ខ
Mulmi 4.84 4.84 3.59 2.53 5.44 4.03 4.92 4.78 3.54 Mulmi 4.84 4.24 3.59 2.53 5.44 4.03 4.92 4.78 3.54 Mulmi 0.56 0.56 0.42 0.82 0.83 0.69 0.50 0.61 0.46 Mulmi 0.56 0.56 0.42 0.82 0.83 0.69 0.50 0.61 0.46 Mulmi 0.56 0.56 0.42 0.82 0.93 0.69 0.50 0.61 0.46 Mulmi 0.16 0.11 0.01 0.01 0.00 0.18 0.13 0.00 0.02 0.02 Mulmi 0.16 0.16 0.12 0.18 0.02 0.01 0.01 0.28 0.21 Mulmi 0.16 0.16 0.12 0.18 0.02 0.01 0.01 0.28 0.21 Mulmi 0.16 0.16 0.12 0.18 0.02 0.01 0.01 0.28 0.21 Mulmi 0.16 0.16 0.12 0.18 0.02 0.01 0.01 0.28 0.21 Mulmi 0.16 0.06 0.21 0.17 1.54 1.14 1.02 1.16 0.38 Jimi 0.27 0.29 0.29 1.95 3.91 2.90 3.91 3.91 2.90 Jimi 0.097 0.097 0.094 0.041 0.090 0.079 0.093 0.101 0.086 Jimi 0.064 0.064 0.069 0.026 0.566 0.560 0.570 0.610 0.580 Jimi 0.064 0.064 0.069 0.026 0.050 0.050 0.050 0.050 Jimi 0.039 0.039 0.039 0.036 0.046 0.064 0.064 0.069 Jimi 0.064 0.064 0.069 0.026 0.050 0.050 0.050 0.050 Jimi 0.064 0.064 0.069 0.026 0.050 0.050 0.050 0.050 Jimi 0.064 0.064 0.069 0.026 0.050 0.050 0.050 0.050 Jimi 0.064 0.064 0.069 0.026 0.050 0.050 0.050 0.050 Jimi 0.064 0.064 0.069 0.026 0.050 0.050 0.050 0.050 Jimi 0.064 0.064 0.069 0.026 0.050 0.050 0.050 0.050 Jimi 0.064 0.064 0.069 0.026 0.050 0.050 0.050 0.050 Jimi 0.064 0.064 0.069 0.026 0.050 0.050 0.050 0.050 0.050 Jimi 0.064 0.064 0.066 0.050 0.050 0.050 0.050 0.050 0.050 Jimi 0.064 0.064 0.066 0.066 0.050 0.050 0.050 0.050 0.050 0.050 Jimi 0.064 0.064 0.060 0.060 0.050 0.050 0.050 0.050 0.050 0.050 0.050	WIT Descr	iption			RFG, Marginal	NG/RPS,			RFG, 0	E10, Com,	E10, Com, MW EtOH	Diesel, CA ULSD	LPG, Petroleum	LPG, Natural Gas	CNG, NA Natural Gas	CNG, LNG,
echnology ICEV FFV HEV PHEV ICEV HEV ICEV ICCV GOOD	Vehicle	Type	G new	GFFV	GHEV	PHEV	G new	GHEV	Gnew	Gnew	GHEV	OLSD	PS PS	LPG	CNG	CNG
Mulmi 4.84 4.84 3.59 2.53 5.44 4.03 4.92 4.78 3.54 Mulmi 4.27 4.27 3.16 1.71 4.32 3.20 4.42 4.15 3.07 Mulmi 0.05 0.05 0.042 0.082 0.031 0.01 0.028 0.021 Mulmi 0.01 0.01 0.01 0.01 0.01 0.028 0.021 Mulmi 0.01 0.01 0.01 0.01 0.028 0.021 0.01 Mulmi 0.01 0.01 0.01 0.01 0.028 0.028 0.021 Mulmi 0.01 0.01 0.01 0.01 0.028 0.028 0.021 Mulmi 0.01 0.01 0.01 0.01 0.028 0.028 0.028 g/mi 0.059 0.059 0.059 0.026 0.059 0.059 0.050 g/mi 0.050 0.050 0.024 0.050 0.050 0.050 0.050 g/mi 0.050 0.050 0.024 0.056 0.056 0.050 0.050 g/mi 0.050 0.050 0.050 0.024 0.050 0.050 0.050 g/mi 0.050 0.039 0.039 0.015 0.050 0.050 0.050 g/mi 0.050 0.039 0.030 0.040 0.050 0.050 g/mi 0.050 0.030 0.030 0.040 0.050 0.050 g/mi 0.050 0.050 0.050 0.040 0.050 g/mi 0.050 0.050 0.040 0.050 0.040 0.050 g/mi 0.050 0.050 0.050 0.040 0.050 0.040 g/mi 0.050 0.050 0.050 0.040 0.050 0.040 0.050 g/mi 0.050 0.050 0.050 0.040 0.050 0.040 0.050 g/mi 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 g/mi 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 g/mi 0.050	Vehicle Techn	tology	ICEV	FFV	HEV	PHEV	ICEV	HEV	ICEV	ICEV	HEV	ICEV	ICEV	ICEV	KCEV	ICEV
MJ/mi 4.27 4.27 3.16 1,71 4.32 3.20 4.42 4.15 3.07 MJ/mi 0.56 0.56 0.42 0.82 0.83 0.69 0.50 0.61 0.46 MJ/mi 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.28 0.20 MJ/mi 1.10 1.10 0.016 0.12 0.18 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.0		MJ/mi	4.84	4.84	3.59	2.53	5.44	4.03	4.92	4.78	3.54	3.78	4.38	4.25	4.20	4.62
s MJ/mi 0.56 0.56 0.42 0.82 0.93 0.69 0.50 0.61 0.46 MJ/mi 0.01 0.01 0.01 0.00 0.18 0.13 0.00 0.02 0.02 0.02 MJ/mi 0.16 0.12 0.01 0.02 0.02 0.02 0.02 0.02 MJ/mi 1.10 1.10 0.01 0.01 0.02 1.14 1.02 1.16 0.86 MJ/mi 3.91 2.90 1.35 3.91 2.90 3.91 2.90 3.91 2.90 g/mi 73 73 54 66 124 92 77 70 52 g/mi 2.94 220 294 220 294 220 294 220 g/mi 2.92 274 185 418 312 371 364 272 g/mi 0.097 0.084 0.041 0.090 0.079 0.093 0.101		MJ/mi	4.27	4.27	3.16	1.71	4.32	3.20	4.42	4.15	3.07	3.46	4.04	90.0	0.02	0.02
MJ/mil 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.02 MJ/mil 0.16 0.16 0.12 0.18 0.02 0.01 0.01 0.28 0.21 MJ/mil 1.10 1.10 0.81 0.77 1.54 1.14 1.02 1.16 0.86 MJ/mil 3.91 3.91 2.90 1.95 3.91 2.90 3.91 2.90 3.91 2.90 g/mil 7.3 7.3 5.4 66 1.24 92 77 70 5.2 g/mil 2.94 2.94 2.20 1.95 3.91 2.90 3.91 3.91 2.90 g/mil 0.097 0.097 0.079 0.097 0.093 0.101 0.086 g/mil 0.271 0.271 0.246 0.226 0.566 0.550 0.570 0.01 0.28 g/mil 0.0592 0.592 0.569 0.024 0.0		MJ/mi	0.56	0.56	0.42	0.82	0.93	0.69	0.50	0.61	0.46	0.32	0.33	4.17	4.19	4.57
MJ/mi 0.16 0.16 0.12 0.18 0.02 0.01 0.01 0.28 0.21 MJ/mi 1.10 1.10 0.81 0.77 1.54 1.14 1.02 1.16 0.86 MJ/mi 1.10 1.10 0.81 0.77 1.54 1.14 1.02 1.16 0.86 MJ/mi 1.391 3.91 2.90 1.95 3.91 2.90 3.91 3.91 2.90 g/mi 294 294 220 119 294 220 294 294 220 g/mi 0.692 0.692 0.569 0.226 0.566 0.550 0.570 0.610 0.582 g/mi 0.592 0.592 0.569 0.226 0.566 0.550 0.570 0.610 0.582 g/mi 0.497 0.497 0.446 0.024 0.063 0.459 0.459 0.039 g/mi 0.503 0.503 0.502 0.186 0.039 0.040 0.038 g/mi 0.303 0.303 0.303 0.245 0.303 0.303 0.303 g/mi 0.303 3.6E-03 1.4E-03 0.303 3.6E-03 g/mi 0.303 3.0E-03 3.0E-03 3.0E-03 3.0E-03 g/mi 0.204 0.205 0.206 0.205 0.303 0.303 0.303 g/mi 0.303 0.303 0.245 0.306 0.303 0.303 g/mi 0.304 0.305 0.245 0.306 0.303 0.303 g/mi 0.305 0.305 0.245 0.306 0.303 0.303 g/mi 0.306 0.307 0.245 0.306 0.303 0.303 g/mi 0.307 0.308 0.306 0.306 0.306 0.300 g/mi 0.308 0.308 0.308 0.308 0.308 0.308 g/mi 0.308 0.308		MJ/mi	0.01	0.01	0.01	0.00	0.18	0.13	0.00	0.02	0.02	0.00	0.00	0.01	0.00	0.00
MJ/min 1.10 1.10 1.10 0.81 0.77 1.54 1.14 1.02 1.16 0.86 MJ/min 3.91 3.91 2.90 3.91 2.90 3.91 2.90 g/min 73 73 54 86 124 92 77 70 52 g/min 294 220 119 294 220 294 220 294 220 g/min 0.097 0.097 0.094 0.041 0.090 0.079 0.093 0.101 0.086 g/min 0.271 0.271 0.271 0.271 0.271 0.079 0.093 0.101 0.086 g/min 0.064 0.069 0.026 0.266 0.566 0.569 0.468 0.064 0.069 g/min 0.064 0.069 0.024 0.663 0.569 0.459 0.503 0.503 g/min 0.503 0.303 0.303 0.245 - -<		MJ/mi	0.16	0.16	0.12	0.18	0.02	0.01	0.01	0.28	0.21	0.00	0.01	0.00	0.03	0.00
Mulfmin 3.91 3.91 2.90 3.91		MJ/mi	1.10	1.10	0.81	0.77	<u>4</u>	1.14	1.02	1.16	98.0	0.65	0.59	0.46	0.43	0.83
g/mi 73 73 54 66 124 92 77 70 52 g/mi 294 220 119 294 220 294 220 g/mi 367 367 274 185 418 312 371 364 272 g/mi 0.097 0.097 0.084 0.041 0.090 0.079 0.093 0.101 0.086 g/mi 0.271 0.271 0.271 0.270 0.049 0.093 0.010 0.010 0.059 0.090 0.079 0.093 0.010 0.056 0.256 0.550 0.079 0.090 0.010 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.026 0.046 0.056 <th></th> <th>MJ/mi</th> <th>3.91</th> <th>3.91</th> <th>2.90</th> <th>1.95</th> <th>3.91</th> <th>2.90</th> <th>3.91</th> <th>3.91</th> <th>2.90</th> <th>3.13</th> <th>3.80</th> <th>3.80</th> <th>3.80</th> <th>3.80</th>		MJ/mi	3.91	3.91	2.90	1.95	3.91	2.90	3.91	3.91	2.90	3.13	3.80	3.80	3.80	3.80
g/mi 73 73 54 66 124 92 77 70 52 g/mi 294 220 119 294 220 294 220 g/mi 0.097 0.087 0.084 0.041 0.090 0.079 0.093 0.101 0.086 g/mi 0.271 0.271 0.271 0.271 0.271 0.271 0.046 0.047 0.049 0.079 0.093 0.101 0.086 g/mi 0.271 0.271 0.210 0.110 0.172 0.136 0.260 0.260 0.050 0.079 0.090 0.010 0.086 0.266 0.050 0.071 0.086 0.050 0.071 0.086 0.050 0.079 0.060 0.079 0.079 0.060 0.050 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079	GHGs (weighted)															
g/mi 294 294 294 294 294 294 290 220 g/mi 367 367 274 185 418 312 371 364 272 g/mi 0.097 0.097 0.084 0.041 0.090 0.079 0.093 0.101 0.086 g/mi 0.271 0.271 0.210 0.110 0.172 0.136 0.280 0.216 g/mi 0.277 0.497 0.497 0.497 0.496 0.026 0.569 0.459 0.610 0.582 g/mi 0.277 0.271 0.210 0.110 0.172 0.136 0.280 0.216 0.166 0.582 0.468 0.216 g/mi 0.064 0.064 0.059 0.024 — — 0.663 0.569 0.459 0.503 0.503 g/mi 0.0503 0.039 0.038 0.015 — — 0.663 0.663 0.663 0.664	MT.	g/mi	23	73	24	98	124	85	1	2	25	51	8	42	39	74
g/mi 367 367 274 185 418 312 371 364 272 g/mi 0.097 0.097 0.084 0.041 0.090 0.079 0.093 0.101 0.086 g/mi 0.592 0.592 0.569 0.226 0.566 0.550 0.570 0.610 0.382 g/mi 0.271 0.210 0.110 0.172 0.136 0.280 0.216 g/mi 0.271 0.246 0.324 0.663 0.569 0.469 0.280 0.216 g/mi 0.064 0.064 0.059 0.024 — — 0.663 0.526 0.468 g/mi 0.039 0.039 0.036 0.046 0.059 0.040 0.039 g/mi 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.303 g/mi 0.303 0.303 0.303 0.460 0.266 0.303 <		jm/g	294	2 8	220	119	2 8	220	294	294	220	241	254	254	219	219
g/mi 0.097 0.097 0.084 0.041 0.090 0.079 0.093 0.101 0.592 0.592 0.569 0.226 0.566 0.550 0.570 0.610 0.271 0.271 0.210 0.110 0.172 0.136 0.260 0.280 0.280 0.290 0.324 0.663 0.569 0.459 0.526 0.569 0.459 0.526 0.569 0.459 0.526 0.569 0.459 0.526 0.569 0.459 0.526 0.569 0.459 0.526 0.569 0.459 0.526 0.569 0.459 0.526 0.503 0.503 0.004 0.039 0.039 0.039 0.039 0.039 0.038 0.015 0.039 0.039 0.039 0.036 0.015 0.039 0.039 0.039 0.040 0.303 0.305 0.303 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.303 0.303 0.305 0.303 0.303 0.305 0.303 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0.303 0.305 0		g/mi	367	367	274	18 5	418	312	371	364	272	. 292	302	596	257	283
g/mi	Criteria, Total															
g/mi 0.592 0.592 0.569 0.226 0.566 0.550 0.570 0.610 g/mi 0.271 0.210 0.110 0.172 0.136 0.260 0.280 g/mi 0.497 0.446 0.324 0.663 0.569 0.459 0.280 g/mi 0.064 0.064 0.059 0.024 — — 0.064 0.064 g/mi 0.503 0.502 0.186 — — 0.503 0.040 g/mi 0.039 0.038 0.015 — — 0.503 0.040 g/mi 0.303 0.303 0.245 — — 0.039 0.040 g/mi 0.303 0.303 0.245 — — 0.303 0.303 weighted) 3.8E-03 3.6E-03 1.4E-03 — — 0.303 0.303 q/mi 3.0E-03 3.0E-03 1.4E-03 — — 0.303 3.0E-03	00 00	g/mi	0.097	0.097	0.084	0.041	0.090	0.079	0.093	0.101	0.086	ı	0.386	0.271	0.043	0.048
g/mi 0.271 0.210 0.110 0.172 0.136 0.260 0.280 g/mi 0.497 0.497 0.446 0.324 0.663 0.569 0.459 0.526 g/mi 0.064 0.064 0.059 0.024 — — 0.064 0.064 g/mi 0.503 0.503 0.038 0.018 — — 0.064 0.064 g/mi 0.303 0.303 0.038 0.015 — — 0.039 0.040 g/mi 0.303 0.303 0.245 — — 0.039 0.040 g/mi 0.303 0.303 0.245 — — 0.303 0.303 weighted) 3.8E-03 3.6E-03 1.4E-03 — — 0.303 0.303 q/mi 3.0E-03 3.0E-03 1.1E-03 — 3.0E-03 3.0E-03 g/mi 3.0E-04 2.7E-05 2.6E-05 1.9E-03 1.9E-03 1.9E-03 <th></th> <th>g/mi</th> <td>0.592</td> <td>0.592</td> <td>0.569</td> <td>0.226</td> <td>0.566</td> <td>0.550</td> <td>0.570</td> <td>0.610</td> <td>0.582</td> <td>Ι</td> <td>0.554</td> <td>0.556</td> <td>0.535</td> <td>0.566</td>		g/mi	0.592	0.592	0.569	0.226	0.566	0.550	0.570	0.610	0.582	Ι	0.554	0.556	0.535	0.566
g/mi 0.497 0.496 0.324 0.663 0.569 0.459 0.526 g/mi 0.064 0.064 0.059 0.024 — — 0.064 0.064 g/mi 0.503 0.503 0.502 0.186 — — 0.503 0.503 g/mi 0.039 0.039 0.038 0.015 — — 0.039 0.040 g/mi 0.303 0.303 0.245 — — 0.039 0.040 g/mi 0.303 0.303 1.4E-03 — — 0.303 0.303 qweighted) 3.8E-03 3.8E-03 1.4E-03 — 3.8E-03 3.8E-03 q/mi 3.0E-03 3.0E-03 1.1E-03 — 3.8E-03 3.0E-03 a g/mi 3.0E-04 3.0E-04 3.5E-04 — 2.7E-05 2.8E-04 3.0E-04 a g/mi 4.5E-05 2.7E-05 2.6E-05 1.9E-05 1.9E-05 1.9E-05		jm/g	0.271	0.271	0.210	0.110	0.172	0.136	0.260	0.280	0.216	I	0.131	0.174	0.056	0.302
g/mi 0.064 0.059 0.024 — 0.064 0.069 g/mi 0.503 0.503 0.502 0.186 — 0.503 0.503 g/mi 0.039 0.039 0.038 0.015 — 0.039 0.040 g/mi 0.303 0.303 0.303 0.245 — 0.039 0.040 g/mi 0.303 0.303 0.146 — 0.039 0.040 g/mi 3.8E-03 3.8E-03 1.4E-03 — 0.303 0.303 q/mi 3.0E-03 3.0E-03 1.1E-03 — 3.8E-03 3.8E-03 de g/mi 3.0E-04 3.0E-04 3.5E-04 — 2.9E-04 3.0E-04 de g/mi 3.0E-04 2.7E-05		g/mi	0.497	0.497	0.446	0.324	0.663	0.569	0.459	0.526	0.468	I	0.34	0.355	0.312	0.389
0.064 0.069 0.024 — 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.069 0.030 0.030 0.003 0.003 0.060 0.0	Criteria, Urban															
0.503 0.503 0.503 0.039 0.039 0.039 0.039 0.040 0.303 0.039 0.036 0.015 — — 0.039 0.040 0.303 0.303 0.245 — — 0.303 0.303 3.8E-03 3.8E-03 3.6E-03 1.4E-03 — 3.8E-03 3.8E-03 3.0E-03 3.0E-03 3.0E-03 1.1E-03 — 3.0E-03 3.0E-03 3.0E-04 3.0E-04 3.5E-04 — 2.9E-04 3.0E-04 2.7E-05 2.7E-05 2.7E-05 1.6E-03 1.6E-03	VOC	g/mj	0.064	0.064	0.029	0.024	Ι	ı	0.064	0.064	0.029	ı	0.364	0.232	0.018	0.018
0.039 0.038 0.015 — 0.039 0.040 0.303 0.303 0.245 — 0.303 0.303 3.8E-03 3.8E-03 3.6E-03 1.4E-03 — 3.8E-03 3.8E-03 3.0E-03 3.0E-03 3.0E-03 1.1E-03 — 3.0E-03 3.0E-03 3.0E-04 3.0E-04 3.5E-04 — 2.9E-04 3.0E-04 2.7E-05 2.7E-05 2.6E-05 1.9E-05 - 2.7E-05 2.8E-05 4.5E-07 4.5E-07 4.5E-07 4.7E-07 4.7E-07 4.7E-07		g/mi	0.503	0.503	0.502	0.186	1	I	0.503	0.503	0.503	I	0.503	0.504	0.504	0.503
0.303 0.303 0.245 — — 0.303 0.303 3.8E-03 3.8E-03 3.6E-03 1.4E-03 — 3.8E-03 3.8E-03 3.0E-03 3.0E-03 3.0E-03 1.1E-03 — 3.0E-03 3.0E-03 3.0E-04 3.0E-04 3.5E-04 — 2.9E-04 3.0E-04 2.7E-05 2.7E-05 2.6E-05 1.9E-05 - 2.7E-05 2.8E-05 4.5E-07 4.5E-07 4.5E-07 4.7E-07 4.7E-07 4.7E-07		g/mi	0.039	0.039	0.038	0.015	!	ı	0.039	0.040	0.038	Ι	0.040	0.047	0.037	0.039
3.8E-03 3.8E-03 3.6E-03 1.4E-03 — — 3.8E-03 3.8E-03 3.0E-03 3.0E-03 3.0E-03 3.0E-03 3.0E-03 3.0E-04 3.		g/mi	0.303	0.303	0.303	0.245	Ι	1	0.303	0.303	0.303	I	0.302	0.304	0.302	0.303
g/mi 3.8E-03 3.8E-03 3.6E-03 1.4E-03 — — 3.8E-03 3.8E-03 3.8E-03 3.0E-03 3.0E-03 3.0E-03 3.0E-03 3.0E-03 3.0E-03 3.0E-04 3.0E-04 3.5E-04 — — 2.9E-04 3.0E-04 3.0E-05	Urban Toxics, (wei	ighted)														
ane g/mi 3.0E-03 3.0E-03 3.0E-03 1.1E-03 — 3.0E-03 3.0E-03 3.0E-03 3.0E-03 3.0E-04 3.0E-05 2.0E-05 1.9E-05 — 2.7E-05 2.8E-05 3.0E-05 3		jm/g	3.8E-03	3.8E-03	3.6E-03	1.4E-03	I	ļ	3.8E-03	3.8E-03	3.6E-03	ı	9.9E-06	2.7E-05	7.8E-05	8.0E-05
yde g/mi 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-05 3		jm/g	3.0E-03	3.0E-03	3.0E-03	1.1E-03	1	I	3.0E-03	3.0E-03	3.0E-03	1	5.5E-06	1.1E-04	1.9E-04	2.0E-04
de g/mi 2.7E-05 2.7E-05 2.6E-05 1.9E-05 2.7E-05 2.8E-05		g/mi	3.0E-04	3.0E-04	2.9E-04	3.5E-04	ı	1	2.9E-04	3.0E-04	3.0E-04	I	2.9E-04	3.5E-04	8.3E-04	8.3E-04
2/mi 1 FE 00 1 FE 00 1 1 E 00 1 7 E 00	de,	g/mi	2.7E-05	2.7 E- 05	2.6E-05	1.9E-05	ı	l	2.7E-05	2.8E-05	2.7E-05	1	2.6E-05	3. 7E -05	5.7E-05	5.8E-05
gilli 1.3E-02 1.3E-02 3.3E-03 1.2E-02 1.7E-02	Diesel PM	g/mi	1.5E-02	1.5E-02	1.1E-02	5.9E-03	I	ı	1.2E-02	1.7E-02	12E-02	1	1.8E-03	3.6E-02	0.0E+00	1.3E-02

Figure A-2. LDA Vehicle Class: Model Years 2010 and Newer (concluded)

_	
3	ı
Ψ	ı
٤	ı
ō	
Ī	
ឧ	
ï	
ă	
×	
~	
₫	
2	
_	
:: Model Year Start 2010 (ne	
×	
š	
Ś	
88	
茓	
LDA Vehicle Class:	
뽔	
.≌	
둤	
š	
4	1
δ	ı
J	ı
r 2030:	ı
ຮ	ı
Ö	
'n	
ā	
◴	
$\overline{}$	
Scenario	
ਕੁ	
둤	I
ၓ	Ì
Ś	ı

CE GI	WTT Case ID	চ	চ	ভ	G1/e2	G15	95	8	E10	E10	D2	£	5 2	ខ	ខ
Vehicle Type Grew GFPV GHEV PHEV Grew GHEV GREV FFV HEV PHEV Grew GHEV GREV HEV CEV	WTT Description				NG/RPS,	RFG, Tar Sands		KFG, 0	E10, Com, MW EtOH	E10, Com, MW EfOH	Diesel, CA ULSD	LPG, Petroleum	LPG, Natural Gas	CNG, NA Natural Gas	CNG, LNG,
M.M.mi 4.55 4.55 3.37 2.36 5.11 3.78 4.62 4.49 Inclem M.M.mi 4.55 4.55 3.37 2.36 5.11 3.78 4.62 4.49 Inclem M.M.mi 4.01 4.01 2.97 1.61 4.06 3.01 4.16 3.89 1.03 0.04 0.04 0.04 0.07 0.01 0.07 0.04 0.07 0.04 0.07 0.07 0.07 0.07 0.07 0.05 0.07	Vehicle Type	Gnew	GFFV	GHEV	PHEV	G new	GHEV	Gnew	G new	GHEV	OLSD	rPG	- LPG	CNG	CNG
I MJ/mi 4.55 4.55 3.37 2.36 5.11 3.78 4.62 4.49 4.49 4.01 4.01 2.97 1.61 4.06 3.01 4.16 3.89 4.49 4.01 4.01 2.97 1.61 4.06 3.01 4.16 3.89 4.49 4.01 4.01 4.01 4.01 4.05 4.49 4.05 4.04 4.05 4.05 4.04 4.05 4.04 4.05 4.05 4.04 4.05 4.05 4.04 4.05 4.05 4.04 4.05 4.05 4.04 4.05 4.05 4.04 4.05 4.05 4.04 4.05 4.05 4.04 4.05 4.05 4.05 4.04 4.05 4.05 4.05 4.04 4.05 4.	fehicle Technology	ICEV	FFV	HEV	PHEV	ICEV	HEV	ICEV	ICEV	HEV	ICEV	ICEV	KEV	ICEV	ICEV
troleum MJ/mi 4.01 4.01 2.97 1.61 4.06 3.01 4.16 3.89 tural Gas MJ/mi 0.53 0.53 0.39 0.75 0.88 0.65 0.47 0.58 tural Gas MJ/mi 0.01 0.01 0.01 0.01 0.00 0.17 0.13 0.00 0.02 NJ/mi 0.15 0.15 0.15 0.11 0.19 0.02 0.01 0.01 0.02 NJ/mi 0.15 0.15 0.15 0.17 0.19 0.02 0.01 0.01 0.02 NJ/mi 0.15 0.15 0.15 0.17 0.19 0.02 0.01 0.01 0.02 NJ/mi 3.67 3.67 2.72 1.83 3.67 2.72 3.67 3.87 NJ/mi 277 277 207 113 277 208 277 277 NJ/mi 277 277 207 113 277 208 277 277 NJ/mi 0.107 0.107 0.094 0.044 0.101 0.090 0.103 0.110 NJ/mi 0.261 0.263 0.629 0.659 0.659 0.559 NJ/mi 0.076 0.076 0.076 0.076 0.076 0.076 NJ/mi 0.076 0.076 0.076 0.076 0.076 0.076 NJ/mi 0.043 0.043 0.042 0.016 −		4.55	4.55	3.37	2.36	5.11	3.78	4.62	4.49	3.33	3.55	4.11	3.99	3.95	4.34
tural Gas MJ/mil 0.53 0.53 0.39 0.75 0.88 0.65 0.47 0.58 al MJ/mil 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.17 0.13 0.00 0.02 Fossil MJ/mil 0.15 0.15 0.11 0.01 0.02 0.01 0.01 0.02 MJ/mil 1.03 1.03 0.76 0.77 1.45 1.07 0.95 1.09 K MJ/mil 3.67 3.67 2.72 1.83 3.67 2.72 3.67 3.87 K g/mil 277 2.77 2.72 1.83 3.67 2.72 3.67 3.87 A g/mil 277 2.77 2.72 1.83 3.67 3.67 3.87 A g/mil 277 2.77 2.08 2.77 2.68 1.07 0.95 1.09 C g/mil 0.107 <th< th=""><th></th><th>4.01</th><th>4.01</th><th>2.97</th><th>1.61</th><th>4.06</th><th>3.01</th><th>4.16</th><th>3.89</th><th>2.89</th><th>3.25</th><th>3.80</th><th>90.0</th><th>0.02</th><th>0.05</th></th<>		4.01	4.01	2.97	1.61	4.06	3.01	4.16	3.89	2.89	3.25	3.80	90.0	0.02	0.05
M.Jimi 0.01 0.01 0.01 0.00 0.17 0.13 0.00 0.02 M.Jimi 0.15 0.15 0.11 0.19 0.02 0.01 0.01 0.27 M.Jimi 1.03 1.03 0.76 0.72 1.45 1.07 0.95 1.09 M.Jimi 1.03 1.03 0.76 0.72 1.45 1.07 0.95 1.09 S. (weighted)		0.53	0.53	0.39	0.75	0.88	0.65	0.47	0.58	0.43	0.30	0.31	3.92	3.93	4.29
Fossil MJ/mil 0.15 0.15 0.11 0.19 0.02 0.01 0.01 0.07 MJ/mil 1.03 1.03 0.76 0.72 1.45 1.07 0.95 1.09 NJ/mil 3.67 3.67 2.72 1.83 3.67 2.72 3.67 <		0.01	0.01	0.01	0.00	0.17	0.13	0.00	0.02	0.05	0.00	0.00	0.01	0.00	0.00
Mul/mil 1.03 1.03 0.76 0.72 1.45 1.07 0.95 1.09 Rul/mil 3.67 3.67 2.72 1.83 3.67 2.72 3.67 3.87 F (weighted) S (weighted) 69 69 51 62 117 86 72 66 N g/mil 277 277 207 113 277 208 277 277 TAL g/mil 277 277 207 113 277 208 277 277 TAL g/mil 0.107 0.107 0.094 0.044 0.101 0.099 0.110 0.090 0.110 O g/mil 0.107 0.107 0.107 0.094 0.044 0.101 0.090 0.103 0.110 O g/mil 0.261 0.203 0.108 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.14		0.15	0.15	0.11	0.19	0.02	0.01	0.01	0.27	0.20	0.00	0.0	0.00	0.03	0.00
Mul/mil 3.67 3.67 2.72 1.83 3.67 2.72 3.67 3.87 g/mil 69 69 51 62 117 86 72 66 g/mil 277 277 208 277 277 277 277 g/mil 277 277 208 277 277 277 277 g/mil 277 277 208 277 277 277 277 g/mil 0.107 0.107 0.094 0.044 0.101 0.090 0.103 0.110 g/mil 0.643 0.643 0.621 0.243 0.619 0.603 0.622 0.659 g/mil 0.261 0.261 0.243 0.168 0.134 0.250 0.269 g/mil 0.508 0.508 0.461 0.327 0.0665 0.577 0.473 0.536 g/mil 0.559 0.559 0.265 0.265 0.275 0.042		1.03	1.03	0.76	0.72	1.45	1.07	0.95	1.09	0.80	0.61	0.56	0.43	0.41	0.78
g/mil 69 69 51 62 117 86 72 66 g/mil 277 277 207 113 277 208 277 277 g/mil 346 258 175 394 294 349 343 g/mil 0.107 0.107 0.094 0.044 0.101 0.090 0.103 0.110 g/mil 0.261 0.261 0.243 0.619 0.603 0.622 0.659 g/mil 0.261 0.263 0.108 0.168 0.134 0.250 0.289 g/mil 0.261 0.263 0.461 0.327 0.665 0.577 0.473 0.536 g/mil 0.076 0.076 0.071 0.028		3.67	3.67	2.72	1.83	3.67	2.72	3.67	3.87	2.72	2.94	3.57	3.57	3.57	3.57
69 69 51 62 117 86 72 66 277 277 207 113 277 208 277 277 346 346 258 175 394 294 349 343 0.107 0.107 0.084 0.044 0.101 0.090 0.103 0.110 0.643 0.643 0.621 0.243 0.619 0.603 0.622 0.659 0.261 0.261 0.243 0.618 0.134 0.250 0.289 0.261 0.261 0.243 0.618 0.134 0.250 0.289 0.508 0.461 0.243 0.618 0.134 0.250 0.289 0.508 0.568 0.461 0.327 0.665 0.577 0.473 0.536 0.076 0.076 0.071 0.028 - - 0.055 0.559 0.042 0.042 0.016 - - - <td< th=""><th>Gs (weighted)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	Gs (weighted)														
277 277 207 113 277 208 277 277 346 346 258 175 394 294 349 343 0.107 0.107 0.0094 0.044 0.101 0.090 0.103 0.110 0.643 0.643 0.621 0.243 0.619 0.603 0.622 0.659 0.261 0.263 0.108 0.168 0.134 0.250 0.289 0.508 0.508 0.461 0.327 0.665 0.577 0.473 0.536 0.076 0.076 0.071 0.028 0.076 0.076 0.043 0.042 0.016 0.0559 0.259 0.559 0.559 0.043 0.042 0.016 0.016 0.042 0.044 0.327 0.327 0.326 0.253 0.0326 0.326 3.6E-03 3.6E-03 3.6E-03 3.6E-03		8	69	5	62	117	98	72	8	49	8	\$	33	36	2
346 346 258 175 394 294 349 343 0.107 0.107 0.0043 0.0243 0.0419 0.0603 0.022 0.0599 0.261 0.263 0.0243 0.049 0.108 0.168 0.134 0.250 0.0599 0.261 0.261 0.203 0.108 0.168 0.134 0.250 0.0599 0.508 0.568 0.461 0.327 0.065 0.577 0.473 0.536 0.076 0.076 0.071 0.028 - - 0.076 0.076 0.059 0.559 0.205 0.205 - - 0.059 0.559 0.043 0.042 0.016 - - - 0.559 0.559 0.043 0.042 0.016 - - 0.056 0.559 0.559 0.043 0.042 0.016 - - 0.042 0.044 0.327 0.327 <td< th=""><th></th><th>277</th><th>277</th><th>207</th><th>113</th><th>277</th><th>508</th><th>277</th><th>277</th><th>207</th><th>227</th><th>239</th><th>239</th><th>206</th><th>506</th></td<>		277	277	207	113	277	5 08	277	277	207	227	239	239	206	506
0.107 0.107 0.094 0.044 0.101 0.090 0.103 0.110 0.643 0.643 0.621 0.243 0.619 0.603 0.622 0.659 0.261 0.261 0.203 0.108 0.168 0.134 0.250 0.269 0.508 0.569 0.461 0.327 0.665 0.577 0.473 0.536 0.076 0.076 0.071 0.026 - - 0.076 0.076 0.059 0.559 0.205 - - 0.059 0.559 0.043 0.042 0.016 - - 0.059 0.559 0.043 0.042 0.016 - - 0.059 0.559 0.043 0.042 0.016 - - 0.042 0.044 0.327 0.326 0.253 - - 0.326 0.326 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-0		346	346	258	175	38	8 8	349	8	256	275	784	278	242	276
0.107 0.107 0.107 0.094 0.044 0.101 0.090 0.103 0.110 0.643 0.643 0.621 0.243 0.619 0.603 0.622 0.659 0.261 0.261 0.203 0.108 0.168 0.134 0.250 0.659 0.508 0.508 0.461 0.327 0.665 0.577 0.473 0.536 0.076 0.076 0.071 0.026 - - 0.076 0.076 0.059 0.559 0.205 - - 0.059 0.559 0.043 0.042 0.016 - - 0.059 0.559 0.043 0.042 0.016 - - 0.059 0.559 0.037 0.327 0.326 0.253 - - 0.042 0.044 0.327 0.327 0.326 0.253 - - 0.326 0.326 3.6E-03 3.6E-03 3.6E-03 3.6E-03	eria, Total														
0.643 0.643 0.621 0.243 0.619 0.603 0.622 0.659 0.261 0.261 0.203 0.108 0.168 0.134 0.250 0.269 0.508 0.508 0.461 0.327 0.665 0.577 0.473 0.536 0.076 0.076 0.071 0.028		0.107	0.107	0.094	0.044	0.101	0.000	0.103	0.110	0.097	i	0.367	0.259	0.045	0.050
0.261 0.264 0.261 0.261 0.261 0.263 0.108 0.168 0.134 0.250 0.289 0.508 0.508 0.461 0.327 0.665 0.577 0.473 0.536 0.076 0.076 0.077 0.028		0.643	0.643	0.621	0.243	0.619	0.603	0.622	0.659	0.633	i	0.607	0.609	0.590	0.618
0.508 0.508 0.461 0.327 0.665 0.577 0.473 0.536 0.076 0.076 0.071 0.028 — — 0.076 0.076 0.043 0.043 0.042 0.205 — — 0.559 0.559 0.043 0.042 0.016 — — 0.042 0.044 0.327 0.327 0.326 0.253 — — 0.326 0.327 4.5E-03 4.5E-03 4.4E-03 1.7E-03 — — 4.5E-03 4.5E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.7E-04 3.5E-04 3.4E-04 — 3.6E-05 3.2E-05 3.1E-05 3.1E-05 3.0E-05 1.9E-05 — — 3.0E-05 3.2E-05		0.261	0.261	0.203	0.108	0.168	0.134	0.250	0.289	0.209	i	0.129	0.169	0.059	0.290
0.076 0.076 0.071 0.028 0.076 0.076 0.076 0.559 0.559 0.559 0.205 0.559 0.559 0.559 0.043 0.042 0.016 0.042 0.044 0.327 0.327 0.326 0.253 0.326 0.327 4.5E-03 4.5E-03 4.4E-03 1.7E-03 4.5E-03 4.5E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.1E-05 3.1E-05 3.1E-05 3.0E-05 1.9E-05 3.0E-05 3.2E-05		0.508	0.508	0.461	0.327	0.665	0.577	0.473	0.536	0.481	ı	0.365	0.375	0.335	0.407
0.076 0.076 0.071 0.028 0.076 0.076 0.559 0.559 0.559 0.205 0.559 0.559 0.043 0.042 0.046 0.042 0.044 0.327 0.327 0.326 0.253 0.326 0.327 4.5E-03 4.5E-03 4.4E-03 1.7E-03 4.5E-03 4.5E-03 3.6E-03 3.6E-03 3.6E-04 3.4E-04 3.4E-04 3.4E-04 3.5E-04 3.1E-05 3.1E-05 3.0E-05 1.9E-05 3.0E-05 3.2E-05	_														
0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.043 0.042 0.016 - 0.042 0.044 0.327 0.327 0.326 0.253 0.326 0.327 4.5E-03 4.5E-03 4.4E-03 1.7E-03 4.5E-03 4.5E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.1E-05 3.1E-05 3.0E-05 1.9E-05 3.0E-05 3.2E-05		0.076	0.076	0.071	0.028	ı	Ι	0.076	0.076	0.071	I	0.346	0.223	0.021	0.021
0.043 0.043 0.042 0.016 0.042 0.044 0.327 0.327 0.326 0.253 - 0.326 0.327 4.5E-03 4.5E-03 4.4E-03 1.7E-03 4.5E-03 4.5E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.7E-04 3.5E-04 3.6E-04 3.6E-04 3.6E-04 3.6E-03 3.1E-05 3.1E-05 3.0E-05 1.9E-05 3.0E-05 3.2E-05		0.559	0.559	0.559	0.205	ı	1	0.559	0.559	0.559	ı	0.559	0.560	0.560	0.560
0.327 0.326 0.253 0.326 0.327 4.5E-03 4.5E-03 4.4E-03 1.7E-03 4.5E-03 4.5E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.5E-04 3.5E-04 3.4E-04 3.4E-04 3.4E-04 3.5E-04 3.1E-05 3.1E-05 3.0E-05 1.9E-05 3.0E-05 3.2E-05		0.043	0.043	0.042	0.016	!	ı	0.042	0.044	0.042	I	0.04	0.050	0.041	0.043
4.5E-03 4.5E-03 4.4E-03 1.7E-03 — 4.5E-03 4.5E-03 4.5E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-03 3.6E-04 3.5E-04 3.4E-04 3.4E-04 3.4E-04 3.5E-04 3.2E-05 3		0.327	0.327	0.326	0.253	l	ı	0.326	0.327	0.326	ı	0.326	0.327	0.326	0.327
g/mi 4.5E-03 4.5E-03 4.4E-03 1.7E-03 — 4.5E-03 4.5E-03 liene g/mi 3.6E-03 3.6E-03 1.3E-03 — 3.6E-03 3.6E-03 hyde g/mi 3.5E-04 3.5E-04 3.4E-04 — 3.4E-04 3.5E-04 nyde g/mi 3.1E-05 3.1E-05 1.9E-05 — 3.0E-05 3.2E-05	an Toxics, (weighted)														
g/mi 3.6E-03 3.6E-03 3.6E-03 1.3E-03 — 3.6E-03 3.6E-03 3.6E-03 6/mi 3.5E-04 3.5E-04 3.6E-05 3.0E-05 3.		4.5E-03	4.5E-03	4.4E-03	1.7E-03	I	ı	4.5E-03	4.5E-03	4.4E-03	ļ	7.1E-06	2.3E-05	7.3E-05	7.4E-05
g/mi 3.5E-04 3.5E-04 3.4E-04 3.4E-04 — 3.4E-04 3.5E-04 g/mi 3.1E-05 3.1E-05 3.0E-05 1.9E-05 — 3.0E-05 3.2E-05		3.6E-03	3.6E-03	3.6E-03	1.3E-03	ı	1	3.6E-03	3.6E-03	3.6E-03	ı	4.0E-06	1.0E-04	1.8E-04	1.9E-04
g/mi 3.1E-05 3.1E-05 3.0E-05 1.9E-05 — — 3.0E-05 3.2E-05		3.5E-04	3.5E-04	3.4E-04	3.4E-04	Ι	l	3.4E-04	3.5E-04	3.5E-04	I	3.4E-04	3.9E-04	8.4E-04	8.4E-04
	cetaldehyde g/mi	3.1E-05	3.1E-05	3.0E-05	1.9E-05	I	ı	3.0E-05	3.2E-05	3.1E-05	I	3.0E-05	4.0E-05	5.9E-05	6.0E-05
Diesel PM g/mi 1.3E-02 1.3E-02 9.9E-03 5.4E-03 — 1.1E-02 1.5E-02 1.1E-02		1.3 E- 02	1.3E-02	9.9E-03	5.4E-03	1	ı	1.1E-02	1.5E-02	1.1E-02	į	1.1E-03	3.3E-02	0.0E+00	1.2E-02

Figure A-3. LDA Vehicle Class: Model Years 2010 and Newer (EVs and PHEVs)

Description e1	Electricity, Night Electricity, Night 1.99 4.1.1 Electricity, O.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Electricity.	92 ¹⁸ ∰.	61/6 .⊘.∜3		G1/e37 > ∪	įį	
WTT Description EV E	Electricity, Night 1.99 4.19 Electricity, CA NG	COSI IGCC, CCS CCS Electricity, Woody	ar ,tyi	·Α;		, v.		
Vehicle Type icle Technology EV <	EV EV 1.99 0.00 0.00		Electric Mucle	NG/RP: Electrici NG/RP: Night	Electricity CA NG TOOS	Electricity Coal IGCC	Electricity Woody Biomass	Electrici Nucles
ircle Technology EV EV MJ/mi 2.00 1.99 bleum MJ/mi 0.01 0.01 ssil MJ/mi 0.26 0.26 MJ/mi 0.26 0.26 MJ/mi 1.14 1.13 MJ/mi 1.14 1.13 MJ/mi 1.14 1.13 MJ/mi 1.14 1.13 AL g/mi 1.24 1.23 g/mi 0.012 0.012 g/mi 0.011 0.011 0 (x10) g/mi 0.026 0.225 g/mi 0.015 0.015 g/mi 0.001 0.000 cx10 g/mi 0.001 0.000 cx10 g/mi 0.001 0.001 0 (x10) g/mi 0.020 0.000 Toxics, (weighted)	1.99 0.01 0.00 0.00		EV PHEV	EV PHEV	PHEV	PHEV	PHEV	PHEV
MJ/mi 2.00 1.99 leum MJ/mi 0.01 0.01 ssil MJ/mi 0.06 0.00 ssil MJ/mi 0.26 0.26 MJ/mi 0.26 0.26 AL MJ/mi 1.14 1.13 AL g/mi 0.01 0.01 b, Total 0.011 0.012 c) (x10) g/mi 0.026 0.225 g/mi 0.012 0.012 g/mi 0.011 0.011 c) (x10) g/mi 0.015 0.015 g/mi 0.016 0.000 c) (x10) g/mi 0.001 c) (x10) g/mi 0.001 c) (x10) g/mi 0.020 Toxics, (weighted)	0.01 0.00 0.00 0.00		EV PHEV	EV PHEV	PHEV	PHEV	PHEV	PHEV
troleum MJ/mi 0.01 0.01 ttural Gas MJ/mi 1.99 1.98 tural Gas MJ/mi 0.00 0.00 Fossil MJ/mi 0.26 0.26 MJ/mi 1.14 1.13 TT MJ/mi 1.12 1.12 Sis (weighted) TT g/mi 0.01 0.01 NV g/mi 0.012 0.012 NV g/mi 0.012 0.015 NV g/mi 0.001 0.001 NV g/mi 0.015 0.015 NV g/mi 0.001 0.001 NV g/mi 0.020 0.000 NV g/mi 0.020 0.225 NV g/mi 0.015 0.015 NV g/mi 0.020 0.220 NV g/mi 0.020 0.220	0.01 0.00 9.5				3.96	3.53	2.33	2.30
trural Gas MJ/mi 1.99 1.98 al MJ/mi 0.00 0.00 Fossil MJ/mi 0.26 0.26 MJ/mi 1.14 1.13 I.14 1.13 I.15 1.12 Is (weighted) IT g/mi 0.01 0.01 O g/mi 0.012 0.012 O g/mi 0.012 0.012 O g/mi 0.026 0.225 ria, Urban 0.000 0.000 O g/mi 0.015 0.015 O g/mi 0.015 0.015 O g/mi 0.015 0.015 O g/mi 0.020 0.000 O g/mi 0.016 O g/mi 0.020 0.000 O g/mi 0.015 0.015 O g/mi 0.001	1.98 0.00 %	0.04 0.10	0.00	п 2.01	2.01	2.02	2.04	2.01
MJ/mi 0.00 0.00 0.00 0.00 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.014 0.001	0.00				1.94	0.27	0.28	0.29
Fossil MJ/mi 0.26 0.26 MJ/mi 1.14 1.13 MJ/mi 1.14 1.13 IX MJ/mi 1.12 1.12 IX MJ/mi 1.12 1.12 IX MJ/mi 1.14 1.13 IX MJ/mi	96.0				0.01	1.24	0.01	0.01
MJ/mi 1.14 1.13	0.20				0.08	0.08	1.60	0.57
ed) g/mi 1.12 1.12 g/mi 124 123 g/mi 0.012 0.012 g/mi 0.031 0.031 g/mi 0.031 0.031 g/mi 0.031 0.031 g/mi 0.001 0.001 g/mi 0.000 0.000 g/mi 0.001 0.001 g/mi 0.001 0.001 g/mi 0.026 0.225 g/mi 0.001	1.13				1.75	1.33	1 .	0.58
ed) g/mi 124 123 g/mi 0 0 0 g/mi 124 123 g/mi 0.012 0.012 g/mi 0.011 0.011 g/mi 0.000 0.000 g/mi 0.015 0.015 g/mi 0.001 0.001 g/mi 0.001 0.001 g/mi 0.001 0.001	1.12				2.29	2.29	2.29	2.29
g/mi 124 123 g/mi 0 0 g/mi 124 123 g/mi 0.012 0.012 g/mi 0.011 0.011 g/mi 0.000 0.000 g/mi 0.015 0.015 g/mi 0.001 0.001 g/mi 0.001 0.001 g/mi 0.001								
g/mi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	123				138	2	45	8
g/mi 0.012 0.012 g/mi 0.031 0.031 g/mi 0.031 0.011 g/mi 0.026 0.225 g/mi 0.000 0.000 g/mi 0.001 0.001 g/mi 0.001 0.001 g/mi 0.020 0.220 (weighted)	0	0	0 139	9 139	139	139	139	139
g/mi 0.012 0.012 g/mi 0.031 0.031 g/mi 0.011 0.011 g/mi 0.226 0.225 g/mi 0.000 0.000 g/mi 0.015 0.015 g/mi 0.001 0.001 g/mi 0.020 0.220 (weighted)	123				278	203	181	175
g/mi 0.012 0.012 g/mi 0.031 0.031 g/mi 0.011 0.011 g/mi 0.026 0.225 g/mi 0.000 0.000 g/mi 0.015 0.015 g/mi 0.001 0.001 g/mi 0.020 0.220 (weighted)								
g/mi 0.031 0.031 g/mi 0.011 0.011 g/mi 0.026 0.225 g/mi 0.000 0.000 g/mi 0.015 0.015 g/mi 0.001 0.001 g/mi 0.220 0.220 (weighted)	0.012 0.026				0.045	0.046	0.038	0.035
g/mi 0.011 0.011 g/mi 0.226 0.225 g/mi 0.000 0.000 g/mi 0.015 0.015 g/mi 0.001 0.001 g/mi 0.220 0.220	0.031 0.089				0.210	0.206	0.288	0.178
g/mi 0.226 0.225 g/mi 0.000 0.000 g/mi 0.015 0.015 g/mi 0.001 0.001 g/mi 0.220 0.220 (weighted)	0.011 0.023	0.074 0.056	0.001 0.130	30 0.130	0.135	0.155	0.148	0.126
g/mi 0.000 0.000 g/mi 0.015 0.015 g/mi 0.001 0.001 g/mi 0.220 0.220 (weighted)	0.225 0.248				0.334	2.317	0.466	0.318
g/mi 0.000 0.000 g/mi 0.015 0.015 g/mi 0.001 0.001 g/mi 0.220 0.220 (weighted)								
0.015 0.015 0.001 0.001 0.220 0.220	0.000 0.001	0.000 0.003	0.000 0.018	18 0.018	0.018	0.018	0.020	0.018
0.001 0.001 0.220 0.220	0.015 0.056				0.154	0.131	0.239	0.131
0.220 0.220	0.001 0.002	0.000 0.026			0.014	0.013	0.024	0.013
100	0.220 0.237		0.205 0.226		0.233	0.220	0.363	0.220
10 LC 0/								
Denzene g/mi 6.3E-00 6.2E-00		i	1.0E-03	-03 1.0E-03	I	!	1	i
1-3 Butadiene g/mi 1.0E-04 1.0E-04		i 1	8.4E-04		l	ı	1	i
8.2E-04		i	4.2E-04		I	ŀ	i	i
/de g/mi 3.1E-05		i	2.2E-05		1	I	I	i
Diesel PM g/mi 0.0E+00 0.0E+00		-	8.5E-03	-03 8.5E-03	-]	I	i

Figure A-3. LDA Vehicle Class: Model Years 2010 and Newer (continued)

EVs and PHEVs

	l
(new)	
t 2010	
ır Star	l
lel Yea	
le Class: Mod <u>el</u> Year Start 2010 (new	
Clas:	
/ehick	
LDA	
r 2017:	l
о Үеа	
Scenario Year 2017: LDA Vehicle C	
٠,	L

Pascription	3 ±LM	WTT Case ID	٩	95	e31	e37	954	692	G/e1	G1/e2	G1/e31	G1/e37	G1/e54	G1/e92
Vehicle Type EV EV EV EV PHEV PHEV <th< th=""><th>WTT Desc</th><th>niption</th><th>Electricity, NG/RPS</th><th>NG/RPS,</th><th>CA NG</th><th>Coal IGCC,</th><th>Woody</th><th>Electricity, Nuclear</th><th>Electricity, NG/RPS</th><th>NG/RPS,</th><th>CA NG</th><th></th><th>Electricity, Woody Biomass</th><th>Electricity, Nuclear</th></th<>	WTT Desc	niption	Electricity, NG/RPS	NG/RPS,	CA NG	Coal IGCC,	Woody	Electricity, Nuclear	Electricity, NG/RPS	NG/RPS,	CA NG		Electricity, Woody Biomass	Electricity, Nuclear
Number Authority 1.69 1.68 3.61 2.79 0.10 0.03 2.73 2.72 3.50	Vehic	e Type	E	E	2	E	E	E	PHEV	PHEV	PHEV	PHEV	PHEV	PHEV
Mulfmi 1.69 1.68 3.61 2.79 0.10 0.03 2.73 2.72 3.50 Inal Gas Mulfmi 0.01 0.01 0.01 0.03 0.09 0.00 1.81 1.81 1.81 Mulfmi 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 Inal Gas Mulfmi 0.027 0.27 0.00 0.00 0.01 0.01 0.01 0.01 Mulfmi 0.027 0.27 0.00 0.00 0.00 0.01 0.01 0.01 0.01 Mulfmi 0.027 0.27 0.00 0.00 0.00 0.01 0.01 0.01 0.01 Mulfmi 0.027 0.27 0.00 0.00 0.00 0.01 0.01 0.01 0.01 Mulfmi 0.027 0.27 0.00 0.00 0.00 0.01 0.01 0.01 0.01 Mulfmi 0.027 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mulfmi 0.027 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mulfmi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mulfmi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mulfmi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mulfmi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mulfmi 0.00	Vehicle Tech	nology	EV	EV	Ē	E	EV	EV	PHEV	PHEV	PHEV	PHEV	PHEV	PHEV
troleum Mulmi 0.01 0.01 0.01 0.03 0.09 0.00 1.81 1.81 1.81 1.81 1.81 1.81 1.81	Fossil	MJ/mi	1.69	1.68	3.61	2.79	0.10	0.03	2.73	2.72	3.50	3.17	2.09	2.06
tural Gas Mul/mil 1.68 1.68 3.60 0.01 0.02 0.03 0.91 0.91 1.68 Fossil Mul/mil 0.00 0.00 0.01 0.01 0.01 0.01 0.01 Fossil Mul/mil 0.27 0.27 0.02 0.00 0.01 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	Petrolenm	MJ/m	0.01	0.01	0.01	0.03	0.09	0.00	1.81	1.81	1.81	1.82	<u>1</u> .	1.81
Multimity 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.001	Natural Gas	MJ/mi	1.68	1.68	3.60	0.01	0.02	0.03	0.91	0.91	1.68	0.24	0.25	0.25
Mul/min 0.27 0.27 0.00 0.00 3.42 1.10 0.18 0.018 0.07	Coal	MJ/mi	0.00	0.00	0.00	2.75	0.00	0.00	0.01	0.01	0.01	1.1	0.01	0.01
Mulfinit 0.95 0.94 2.60 1.79 2.52 0.12 0.85 0.84 1.51 Rulfinited) Mulfinited 1.01 1.01 1.01 1.01 1.01 1.01 2.06 2.06 2.06 2.06 X g/mi 105 104 223 65 16 2 73 73 121 A g/mi 0 0 0 0 0 126	Non Fossil	MJ/mi	0.27	0.27	0.00	0.00	3.42	1.10	0.18	0.18	0.0	0.07	<u>+</u> .	0.51
1.01 1.01 1.01 1.01 1.01 1.01 2.06 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.08 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.07 2.07 2.03 2.07 2.03 2.07 2.03 2.06 <th< th=""><th>WTT</th><th>MJ/mi</th><th>0.95</th><th>0.94</th><th>2.60</th><th>1.79</th><th>2.52</th><th>0.12</th><th>0.85</th><th>0.84</th><th>1.51</th><th>1.18</th><th>1.47</th><th>0.51</th></th<>	WTT	MJ/mi	0.95	0.94	2.60	1.79	2.52	0.12	0.85	0.84	1.51	1.18	1.47	0.51
105 104 223 65 16 2 73 73 121 0 0 0 0 0 126 126 126 105 104 223 65 16 2 199 199 247 0.010 0.026 0.025 0.005 0.001 0.039 0.039 0.043 0.026 0.026 0.076 0.072 0.253 0.009 0.208 0.228 0.009 0.009 0.019 0.066 0.034 0.001 0.116 0.116 0.121 0.223 0.222 0.242 4.661 0.532 0.207 0.322 0.320 0.013 0.049 0.000 0.000 0.000 0.000 0.020 0.000 0.165 0.179 0.018 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.024 0.000 0.000 0.000	WIL	MJ/mi	1.01	1.01	1.01	1.01	1.01	1.01	2.06	2.06	5.06	2.06	2.06	2.06
105 104 223 65 16 2 73 73 121 0 0 0 0 0 126 126 126 105 104 223 65 16 2 199 199 247 0.010 0.026 0.025 0.025 0.005 0.009 0.208 0.028 0.026 0.076 0.076 0.072 0.253 0.009 0.208 0.228 0.009 0.009 0.019 0.066 0.034 0.001 0.116 0.121 0.223 0.222 0.242 0.007 0.207 0.322 0.322 0.320 0.013 0.013 0.049 0.000 0.000 0.000 0.000 0.014 0.014 0.014 0.011 0.001 0.002 0.000 0.014 0.014 0.014 0.013 0.013 0.000 0.000 0.000 0.000 0.000 0.000	GHGs (weighted)	_												
0 0 0 0 126 127 127 127 128 127 127 128	۲×	jm/g	105	\$	223	65	16	2	೮	23	121	24	88	32
105 104 223 65 16 2 199 199 247 0.010 0.010 0.022 0.025 0.005 0.001 0.039 0.039 0.043 0.026 0.026 0.076 0.072 0.253 0.009 0.208 0.208 0.228 0.023 0.026 0.076 0.072 0.253 0.001 0.116 0.116 0.121 0.223 0.222 0.242 4.661 0.532 0.207 0.322 0.322 0.328 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.020 0.032 0.013 0.049 0.000 0.000 0.020 0.000 0.020 0.020 0.020 0.013 0.049 0.000 0.015 0.000 0.165 0.165 0.179 0.014 0.013 0.020 0.000 0.015 0.000 0.014 0.014 0.014 0.0218 0.218	Ě	im/g	0	0	0	0	0	0	126	126	126	126	126	126
0.010 0.010 0.022 0.025 0.005 0.001 0.039 0.039 0.043 0.026 0.076 0.072 0.253 0.009 0.208 0.208 0.228 0.009 0.009 0.019 0.066 0.034 0.001 0.116 0.116 0.121 0.223 0.222 0.242 4.661 0.532 0.207 0.322 0.322 0.332 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.020 0.322 0.013 0.049 0.000 0.002 0.000 0.020 0.020 0.020 0.013 0.049 0.000 0.045 0.000 0.165 0.165 0.179 0.021 0.001 0.002 0.000 0.015 0.000 0.014 0.014 0.014 0.218 0.233 0.206 0.522 0.206 0.237 0.237 0.237 0.056-05 0.650 0.000 <th>TOTAL</th> <th>g/mi</th> <th>105</th> <th>104</th> <th>223</th> <th>65</th> <th>16</th> <th>2</th> <th>199</th> <th>199</th> <th>247</th> <th>183</th> <th>18</th> <th>158</th>	TOTAL	g/mi	105	104	223	65	16	2	199	199	247	183	1 8	158
0.010 0.010 0.010 0.022 0.025 0.005 0.001 0.039 0.039 0.043 0.026 0.026 0.076 0.072 0.253 0.009 0.208 0.208 0.228 0.009 0.009 0.019 0.066 0.034 0.001 0.116 0.116 0.121 0.223 0.222 0.242 4.661 0.532 0.207 0.322 0.322 0.330 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.020 0.322 0.332 0.330 0.013 0.049 0.000 0.000 0.000 0.000 0.000 0.020 0.020 0.020 0.013 0.049 0.000 0.045 0.000 0.165 0.165 0.165 0.179 0.021 0.021 0.020 0.000 0.015 0.000 0.014 0.014 0.014 0.021 0.021 0.020 0.020 0.020 0.020 <th>Criteria, Total</th> <th></th>	Criteria, Total													
0.026 0.026 0.076 0.072 0.253 0.009 0.208 0.228 0.009 0.009 0.019 0.066 0.034 0.001 0.116 0.116 0.121 0.223 0.222 0.242 4.661 0.532 0.207 0.322 0.322 0.330 0.000 0.000 0.000 0.000 0.002 0.000 0.020 0.032 0.013 0.049 0.000 0.002 0.000 0.020 0.020 0.020 0.013 0.049 0.000 0.242 0.000 0.165 0.165 0.179 0.013 0.049 0.000 0.015 0.000 0.014 0.014 0.014 0.018 0.021 0.020 0.020 0.020 0.165 0.165 0.179 0.218 0.233 0.206 0.522 0.206 0.237 0.243 0.218 0.238 0.206 0.522 0.206 0.237 0.237	200	g/mi	0.010	0.010	0.022	0.025	0.005	0.001	0.039	0.039	0.043	0.044	0.037	0.035
0.009 0.009 0.019 0.066 0.034 0.001 0.116 0.121 0.223 0.222 0.242 4.661 0.532 0.207 0.322 0.322 0.330 0.000 0.000 0.000 0.002 0.000 0.020 0.021 0.013 0.049 0.000 0.242 0.000 0.020 0.021 0.013 0.049 0.000 0.242 0.000 0.165 0.179 0.001 0.001 0.002 0.000 0.242 0.000 0.014 0.014 0.018 0.218 0.233 0.206 0.522 0.206 0.237 0.243 7.0E-05 6.9E-05 - - - - 9.8E-04 9.8E-04 6.9E-04 6.9E-04 - - - - - - - 0.6E-05 2.6E-05 - - - - - - - 0.018 0.020 0.0	8	g/mi	0.026	0.026	0.076	0.072	0.253	0.00	0.208	0.208	0.228	0.227	0.299	0.201
0.223 0.222 0.242 4.661 0.532 0.207 0.322 0.322 0.330 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.020 0.021 0.013 0.049 0.000 0.242 0.000 0.165 0.165 0.179 0.001 0.001 0.002 0.000 0.014 0.014 0.014 0.218 0.233 0.206 0.522 0.206 0.237 0.243 7.0E-05 6.9E-05 - - - - - - 8.6E-05 8.5E-05 - - - - - - - 2.6E-05 2.6E-05 - - - - - - - - 0.05-00 0.050 0.000 0.000 0.000 0.001 0.001 0.018 0.021 0.000 0.000 0.000 0.000 0.001 0.021 0.021	Š	g/mi	0.00	0.009	0.019	990.0	0.034	0.001	0.116	0.116	0.121	0.139	0.126	0.113
0.000 0.000 0.000 0.000 0.000 0.020 0.020 0.021 0.013 0.049 0.000 0.242 0.000 0.165 0.179 0.001 0.001 0.002 0.000 0.014 0.014 0.014 0.218 0.233 0.206 0.522 0.206 0.237 0.243 7.0E-05 6.9E-05 - - - - 1.2E-03 1.2E-03 8.6E-05 8.5E-05 - - - - 9.8E-04 9.8E-04 - 6.9E-04 6.9E-04 - - - - 9.8E-04 9.8E-04 - 2.6E-05 2.6E-05 - - - - - 2.0E-05 2.0E-05	PM10 (x10)	g/mi	0.223	0.222	0.242	4.661	0.532	0.207	0.322	0.322	0.330	2.098	0.446	0.316
0.000 0.000 0.000 0.000 0.020 0.020 0.021 0.013 0.049 0.000 0.242 0.000 0.165 0.165 0.179 0.001 0.002 0.000 0.015 0.000 0.014 0.014 0.014 0.218 0.233 0.206 0.522 0.206 0.237 0.243 7.0E-05 6.9E-05 - - - - 1.2E-03 1.2E-03 8.6E-05 8.5E-05 - - - - 9.8E-04 9.8E-04 - 2.6E-05 2.6E-05 -	Criteria, Urban													
0.013 0.013 0.049 0.000 0.242 0.000 0.165 0.179 0.001 0.002 0.000 0.015 0.000 0.014 0.014 0.014 0.218 0.233 0.206 0.522 0.206 0.237 0.237 0.243 7.0E-05 6.9E-05 - - - - 1.2E-03 - 8.6E-05 8.5E-05 - - - - 9.8E-04 9.8E-04 - 6.9E-04 6.9E-04 - - - - 9.8E-04 9.8E-04 - 2.6E-05 2.6E-05 - - - - 2.0E-05 2.0E-05 -	200	g/mi	0.000	0.00	0.000	0.00	0.002	0.00	0.020	0.020	0.021	0.020	0.021	0.020
0.001 0.001 0.002 0.000 0.015 0.000 0.014 0.014 0.014 0.218 0.233 0.206 0.522 0.206 0.237 0.237 0.243 7.0E-05 6.9E-05 - - - - 1.2E-03 1.2E-03 - 8.6E-05 8.5E-05 - - - - 9.8E-04 9.8E-04 - 2.6E-05 2.6E-05 2.6E-05 - - - - 2.0E-05 2.0E-05	8	g/m	0.013	0.013	0.049	0.00	0.242	0.00	0.165	0.165	0.179	0.160	0.257	0.160
0.218 0.218 0.233 0.206 0.522 0.206 0.237 0.243 7.0E-05 6.9E-05 - - - - 1.2E-03 1.2E-03 - 8.6E-05 8.5E-05 - - - - 9.8E-04 9.8E-04 - 6.9E-04 6.9E-04 - - - - 9.8E-04 3.7E-04 - 2.6E-05 2.6E-05 - - - 2.0E-05 2.0E-05 -	ŏ	g/mi	0.001	0.001	0.002	0.000	0.015	0.000	0.014	0.014	0.014	0.014	0.020	0.014
7.0E-05 6.9E-05 — — — 1.2E-03 8.6E-05 8.5E-05 — — 9.8E-04 6.9E-04 6.9E-04 — — — 3.8E-04 2.6E-05 2.6E-05 — — 2.0E-05 0.0E-00 — — 6.7E-03	PM10 (x10)	g/mi	0.218	0.218	0.233	0.206	0.522	0.206	0.237	0.237	0.243	0.232	0.358	0.232
g/mi 7.0E-05 6.9E-05 - - 1.2E-03 liene g/mi 8.6E-05 8.5E-05 - - 9.8E-04 hyde g/mi 6.9E-04 6.9E-04 - - - 3.8E-04 nyde g/mi 2.6E-05 2.6E-05 - - - 2.0E-05	Urban Toxics, (w	eighted)												
ene g/mi 8.6E-05 8.5E-05 — — 9.8E-04 yde g/mi 6.9E-04 — — — 3.8E-04 /de g/mi 2.6E-05 2.6E-05 — — 2.0E-05	Benzene	g/mi	7.0E-05	6.9E-05	I	ı	i	l	1.2E-03	1.2E-03	ı	I	1	
yde g/mil 6.9E-04 6.9E-04 3.8E-04 r/de g/mil 2.6E-05 2.6E-05 2.0E-05	1-3 Butadiene	jm/g	8.6E-05	8.5E-05	i	1	I	I	9.8E-04	9.8E-04	i	l	ı	i
/de g/mi 2.6E-05 2.6E-05 2.0E-05	Formaldehyde	g/mi	6.9E-04	6.9E-04	i	I	ı	I	3.8E-04	3.7E-04	ı	I	1	I
c/mi 0.0E±00 0.0E±00	Acetaldehyde	g/mi	2.6E-05	2.6E-05	ı	1	I	1	2.0E-05	2.0E-05	I	Ι	ı	
g/iiii 0.0E+00 0.0E+00 = = 6.7E-03	Diesel PM	g/mi	0.0E+00	0.0E+00	I	1	I	I	6.7E-03	6.7E-03	!	ŀ	1	

Figure A-3. LDA Vehicle Class: Model Years 2010 and Newer (continued)

EVs and PHEVs

Scenario Year 2022: LDA Vehicle Class: Model Year Start 2010 (new)	r 2022	: LDA Ve	shicle Cla	ass: Mod	lel Year 🕄	Start 2010	(new)						
WTT Case	Sase ID	2	e2	e31	e37	e54	e92	G1/e1	G1/e2	G1/e31	G1/e37	G1/e54	G1/e92
WTT Description	ription	Electricity, NG/RPS	Elechicity, NG/RPS, Night	Elechicity, CA NG SCCT	Electricity, Coal IGCC, CCS	Electricity, Woody Biomass	Electricity, Nuclear	Electricity, NG/RPS	Electricity, NG/RPS, Night	Electricity, CA NG SCCT	Electricity, Coal IGCC, CCS	Electricity, Woody Biomass	Electricity, Nuclear
Vehic	Vehicle Type	E۷	EV	E	EV	ΕΛ	E	PHEV	PHEV	PHEV	PHEV	PHEV	PHEV
Vehicle Technology	nology	EV	E	ΕV	EV	EV	E	PHEV	PHEV	PHEV	PHEV	PHEV	PHEV
Fossil	MJ/mi	1.50	1.49	3.26	2.61	0.10	0.02	2.54	2.53	3.24	2.98	1.98	1.95
Petroleum	MJ/mi	0.01	0.01	0.01	0.03	0.08	0.00	1.71	1.7	1.71	1.72	1.74	1.71
Natural Gas	MJ/mi	1.49	1.48	3.25	0.01	0.02	0.02	0.82	0.82	1.53	0.23	0.23	0.23
Coat	MJ/mi	0.00	0.00	0.00	2.57	0.00	0.00	0.00	0.00	0.00	1.03	0.00	0.00
Non Fossil	MJ/mi	0.29	0.29	0.00	0.00	3.20	1 .04	0.18	0.18	0.07	0.07	1.35	0.48
MTT	MJ/mi	0.83	0.83	2.31	1.66	2.35	0.11	0.77	0.77	1.36	1.10	1.38	0.48
WIL	MJ/mi	0.95	0.95	0.95	0.95	0.95	0.95	1.95	1.95	1.95	1.95	1.95	1.95
GHGs (weighted)													
μM	g/mi	83	92	202	8	15	-	99	99	110	33	33	ထ
ΑE	g/mi	0	0	0	0	0	0	119	119	119	119	119	119
TOTAL	g/mi	83	92	202	8	15	-	186	185	230	173	155	149
Criteria, Total													
VOC	g/mi	0.00	0.009	0.020	0.023	0.004	0.001	0.041	0.041	0.045	0.046	0.039	0.038
8	g/mi	0.023	0.023	0.069	0.067	0.236	0.008	0.226	0.226	0.244	0.244	0.311	0.220
Ň	g/mi	0.008	0.007	0.016	0.062	0.022	0.001	0.110	0.110	0.114	0.132	0.116	0.107
PM10 (x10)	g/mi	0.220	0.220	0.238	4.367	0.505	0.207	0.324	0.324	0.331	1.983	0.438	0.319
Criteria, Urban													
200	g/mi	0.000	0.000	0.000	0.000	0.001	0.00	0.024	0.024	0.024	0.024	0.024	0.024
8	g/mi	0.012	0.011	0.044	0.000	0.226	0.00	0.186	0.186	0.199	0.181	0.271	0.181
×ON	g/mi	0.001	0.001	0.002	0.000	0.00	0.00	0.015	0.015	0.015	0.014	0.018	0.014
PM10 (x10)	g/mi	0.217	0.217	0.230	0.206	0.499	0.206	0.245	0.245	0.251	0.241	0.358	0.241
Urban Toxics, (weighted	eighted)												
Benzene	g/mi	6.2E-05	6.2E-05		!	!	i	1.4E-03	1.4E-03	1	I	!	i
1-3 Butadiene	g/mi	7.6E-05	7.6E-05	ļ	ļ	1	i	1.1E-03	1.1E-03	I	i	!	1
Formaldehyde	g/mi	6.1E-04	6.1E-04	I	1	ı	i	3.5E-04	3.5E-04	i	1	ŀ	i
Acetaldehyde	g/mi	2.3E-05	2.3E-05	I		!	ł	1.9E-05	1.9E-05	i	i	!	i
Diesel PM	g/mi	0.0E+00	0.0E+00	ļ	!	!	i	5.9E-03	5.9E-03	i	į	1	;

Figure A-3. LDA Vehicle Class: Model Years 2010 and Newer (concluded)

EVs and PHEVs

WTT Case ID et	Scenario Yea	r 2030	LDA Ve	ahicle Cla	ss: Mod	lel Year §	Start 2010	(new)						
Variable Variable	S II M	ase ID	6 1	97	e31	637	e54	e92	G/61	G1/e2	G1/e31	G1/e37	G1/e54	G1/e92
Vehicle Type EV EV EV EV EV EV EV PHEV PHEV<	WTT Desc	ription	Еlестісіђ, ИС/RPS		CA NG	Coal IGCC,	Woody		ЕІеспісіу, ИС/RPS	NG/RPS,	CA NG	Coal IGCC,	Woody	Electricity, Muclear
Multiple Technology EV EV EV EV EV EV EV PHEV PHEV	Vehick	e Type	옵	E	E	EV	2	S	PHEV	PHEV	PHEV	PHEV	PHEV	PHEV
I MJ/mi 1.36 1.35 3.07 2.45 0.09 0.02 2.36 2.36 3.05 2.80 1.86 1.	Vehicle Techi	nology	EV	E	ΕV	EV	E	EV	PHEV	PHEV	PHEV	PHEV	PHEV	PHEV
troleum MJmin 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.07 1.61 1.61 1.61 1.62 1.63 rural Gass MJmin 0.00	Fossil	MJ/mi	1.36	1.35	3.07	2.45	0.09	0.02	2.36	2.36	3.05	2.80	1.86	1.83
tural Gase MJ/min 1.35 1.35 3.05 0.01 0.02 0.75 0.75 1.43 0.21 0.22 al al MJ/min MJ/min 0.00 </th <th></th> <th>MJ/mi</th> <th>0.01</th> <th>0.01</th> <th>0.0</th> <th>0.03</th> <th>0.08</th> <th>0.00</th> <th>1.61</th> <th>1.61</th> <th>1.61</th> <th>1.62</th> <th>1.63</th> <th>1.61</th>		MJ/mi	0.01	0.01	0.0	0.03	0.08	0.00	1.61	1.61	1.61	1.62	1.63	1.61
MJMmi 0.00		MJ/mi	1.35	1.35	3.05	0.01	0.02	0.02	0.75	0.75	1.43	0.21	0.22	0.22
MJVmi 0.32 0.32 0.00 0.00 3.01 0.98 0.19 0.19 0.06 0.06 1.27 MJVmi 0.78 0.778 0.78 0.90 0.	Coal	MJ/mi	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00	0.00	0.97	0.00	0.00
MJ/mi 0.78 0.78 2.17 1.56 2.21 0.10 0.72 0.72 1.28 1.03 1.29 NJ/mi 0.90 0.90 0.90 0.90 0.90 0.90 1.83 1.83 1.83 1.83 1.83 1.83 TAL g/mi 0.90 0.90 0.90 0.90 0.90 0.90 1.83 1.83 1.83 1.83 1.83 1.83 TAL g/mi 0.00 0 0 0 0 0 0 0 113 113 113 113 113 113 TAL g/mi 0.008 0.008 0.018 0.022 0.003 0.004 0.044 0.044 0.048 0.042 O	Non Fossil	MJ/mi	0.32	0.32	0.00	0.00	3.01	0.98	0.19	0.19	90.0	90.0	1.27	0.45
Mul/mil 0.90 0.90 0.90 0.90 0.90 0.90 0.90 1.83 1.3		MJ/mi	0.78	0.78	2.17	1.56	2.21	0.10	0.72	0.72	1.28	1.03	1.29	0.45
g/mil 87 86 190 57 14 1 62 62 103 50 33 g/mil 0 0 0 0 0 113 1146 9 0	ΑL	MJ/mi	0.30	0.90	0.30	0.90	06.0	0.90	1.83	1.83	1.83	1.83	1.83	1.83
g/mi 87 86 190 57 14 1 62 62 103 50 33 g/mi 0 0 0 0 0 113 <th>GHGs (weighted)</th> <th></th>	GHGs (weighted)													
g/mil 0 0 0 0 0 113 1146 9 0	۲×	g/mi	87	88	96	24	14	_	62	62	103	ß	æ	78
g/mi g/mi 87 86 190 57 14 1 175 175 216 163 146 g/mi 0.008 0.008 0.018 0.022 0.003 0.001 0.044 0.044 0.046 0.049 0.042 g/mi 0.021 0.025 0.063 0.019 0.001 0.044 0.044 0.046 0.049 0.043 g/mi 0.021 0.025 0.063 0.019 0.001 0.049 0.024 0.243 0.243 0.243 0.046 0.049 0.040 g/mi 0.0219 0.219 0.020 0.019 0.001 0.006 0.020 0.020 0.020 0.020 0.020 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.026 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.	Æ	g/mi	0	0	0	0	0	0	113	113	113	113	113	113
g/mi 0.008 0.008 0.018 0.022 0.003 0.001 0.044 0.044 0.048 0.049 0.042 g/mi 0.021 0.021 0.065 0.063 0.221 0.008 0.243 0.243 0.261 0.260 0.323 g/mi 0.021 0.021 0.065 0.063 0.019 0.001 0.106 0.106 0.126 0.126 0.106 g/mi 0.0219 0.219 0.236 0.115 0.487 0.207 0.327 0.327 0.334 1.885 0.434 g/mi 0.0219 0.209 0.001 0.001 0.000 0.000 0.001 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.029 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	TOTAL	g/mi	87	88	6	22	4	-	175	175	216	163	146	141
g/mi 0.008 0.009 0.018 0.022 0.003 0.001 0.044 0.044 0.049 0.042 0.042 g/mi 0.021 0.021 0.022 0.023 0.021 0.004 0.024 0.243 0.243 0.261 0.049 0.042 g/mi 0.007 0.007 0.005 0.058 0.019 0.001 0.106 0.106 0.109 0.126 0.109 g/mi 0.0219 0.236 4.115 0.487 0.207 0.327 0.327 0.324 1.885 0.434 g/mi 0.0219 0.236 0.019 0.001 0.000 0.001 0.001 0.020 0.028	Criteria, Total													
g/mi 0.021 0.021 0.065 0.063 0.221 0.008 0.243 0.243 0.261 0.260 0.323 g/mi 0.007 0.007 0.015 0.058 0.019 0.001 0.106 0.106 0.109 0.126 0.110 g/mi 0.0219 0.219 0.236 4.115 0.487 0.207 0.327 0.327 0.334 1.885 0.140 g/mi 0.0219 0.200 0.000 0.000 0.001 0.000 0.001 0.002 0.028 0.028 0.028 0.028 0.028 0.028 g/mi 0.011 0.011 0.000	00 0	g/mi	0.008	0.008	0.018	0.022	0.003	0.001	0.044	0.044	0.048	0.049	0.042	0.04
g/mi 0.007 0.007 0.015 0.058 0.019 0.001 0.106 0.106 0.109 0.126 0.110 g/mi 0.219 0.219 0.236 4.115 0.487 0.207 0.327 0.327 0.334 1.885 0.434 g/mi 0.219 0.236 4.115 0.487 0.207 0.327 0.327 0.334 1.885 0.434 g/mi 0.000 0.000 0.000 0.000 0.001 0.002 0.028 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.029 0.019 0.019 0.019 0.019	8	g/mi	0.021	0.021	0.065	0.063	0.221	0.008	0.243	0.243	0.261	0.260	0.323	0.238
g/mi 0.219 0.219 0.236 4.115 0.487 0.207 0.327 0.327 0.334 1.885 0.434 g/mi 0.000 0.000 0.000 0.001 0.000 0.028 0.028 0.028 0.028 g/mi 0.011 0.014 0.000 0.000 0.000 0.006 0.000 0.016 0.016 0.016 0.016 0.016 g/mi 0.011 0.011 0.002 0.000 0.008 0.000 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.019 g/mi 0.216 0.229 0.205 0.481 0.206 0.253 0.253 0.258 0.249 0.359 weighted) 5.4E-05 5.4E-05 -	×ON	g/mi	0.007	0.007	0.015	0.058	0.019	0.001	0.106	0.106	0.109	0.126	0.110	0.103
g/mi 0.000	PM10 (x10)	g/mi	0.219	0.219	0.236	4.115	0.487	0.207	0.327	0.327	0.334	1.885	0.434	0.322
0.000 0.000 0.000 0.028 0.029 0.000 0.000 0.016 0.016 0.016 0.016 0.019 0.019 0.025 0.249 0.029 0.029 0.026 0.253 0.253 0.258 0.249 0.359 5.4E-05 5.4E-05 - - - - 1.7E-03 1.7E-03 1.7E-03 0.258 0.249 0.359 6.6E-05 - - - - - 1.3E-03 1.3E-03 - - - - 5.4E-04 5.3E-04 - - - - - - - - - - - - - - - - - -	Criteria, Urban													
0.011 0.011 0.041 0.040 0.212 0.000 0.206 0.205 0.218 0.201 0.286 0.001 0.001 0.002 0.000 0.008 0.000 0.016 0.016 0.016 0.019 0.216 0.216 0.229 0.205 0.481 0.206 0.253 0.253 0.258 0.249 0.359 5.4E-05 5.4E-05 - - - - 1.7E-03 1.7E-03 1.7E-03 0.258 0.249 0.359 6.6E-05 - - - - 1.7E-03 1.7E-03 - - - - 5.4E-04 5.3E-04 - - - - 1.3E-03 1.3E-03 - - - 2.0E-05 2.0E-05 - - - - 1.9E-05 1.9E-05 - - - - 0.0E+00 0.0E+00 - - - - - - -	VOC	g/mi	0.000	0.00	0.00	0.00	0.001	0.00	0.028	0.028	0.028	0.028	0.028	0.028
0.001 0.001 0.002 0.000 0.008 0.016 0.016 0.016 0.016 0.019 0.216 0.216 0.229 0.205 0.481 0.206 0.253 0.253 0.258 0.249 0.359 5.4E-05 5.4E-05 - - - - 1.7E-03 1.7E-03 - - - 6.6E-05 - - - - 1.3E-03 1.3E-03 - - - - 5.4E-04 5.3E-04 - - - - 1.3E-03 1.3E-04 - - - 2.0E-05 2.0E-05 - - - - 1.3E-04 3.4E-04 - - - 2.0E-05 2.0E-05 - - - - 1.9E-05 1.9E-05 - - - - 0.0E+00 0.0E+00 - - - - - 5.4E-03 5.4E-03 - -	8	g/mi	0.011	0.011	0.0 14	0.000	0.212	0.00	0.206	0.205	0.218	0.201	0.286	0.201
0.216 0.216 0.229 0.205 0.481 0.206 0.253 0.253 0.258 0.249 0.359 5.4E-05 5.4E-05 - - - - 1.7E-03 1.7E-03 - - - 6.6E-05 6.6E-05 - - - - 1.3E-03 1.3E-03 - - - 5.4E-04 5.3E-04 - - - - 3.4E-04 3.4E-04 - - - - 2.0E-05 2.0E-05 - - - - 1.9E-05 1.9E-05 1.9E-05 - - - 0.0E+00 0.0E+00 - - - - 5.4E-03 5.4E-03 - - - -	×ON	g/mi	0.001	0.001	0.002	0.000	900.0	0.00	0.016	0.016	0.016	0.016	0.019	0.016
5.4E-05 5.4E-05 - - 1.7E-03 6.6E-05 6.6E-05 - - - 1.3E-03 5.4E-04 5.3E-04 - - 3.4E-04 2.0E-05 2.0E-05 - - 1.9E-05 0.0E+00 0.0E+00 - - 5.4E-03	PM10 (x10)	g/mi	0.216	0.216	0.229	0.205	0.481	0.206	0.253	0.253	0.258	0.249	0.359	0.249
g/mi 5.4E-05 5.4E-05 5.4E-05	Urban Toxics, (we	eighted)												
g/mi 6.6E-05 6.6E-05 - - - 1.3E-03 g/mi 5.4E-04 5.3E-04 - - - 3.4E-04 g/mi 2.0E-05 2.0E-05 - - - 1.9E-05 g/mi 0.0E+00 0.0E+00 - - 5.4E-03	Benzene	g/mi	5.4E-05	5.4E-05	í	1	ļ	ŀ	1.7E-03	1.7E-03	1	i	1	ı
g/mi 5.4E-04 5.3E-04 3.4E-04 g/mi 2.0E-05 2.0E-05 1.9E-05 g/mi 0.0E+00 0.0E+00 5.4E-03	1-3 Butadiene	g/mi	6.6E-05	6.6E-05	ļ	ı	ı	l	1.3E-03	1.3E-03	i	!	i	ı
g/mi 2.0E-05 2.0E-05 1.9E-05 g/mi 0.0E+00 0.0E+00 5.4E-03	Formaldehyde	g/mi	5.4E-04	5.3E-04	ļ	i	!	I	3.4E-04	3.4E-04	1	I	I	ı
g/mi 0.0E+00 0.0E+00 — 5.4E-03	Acetaldehyde	g/mi	2.0E-05	2.0E-05	I	i	ŀ	ŀ	1.9E-05	1.9E-05	1	i	I	i
,	Diesel PM	g/mi	0.0E+00	0.0E+00	I	i	1	ļ	5.4E-03	5.4E-03	I	Ι	I	1

Figure A-4. LDA Vehicle Class: Model Years 2010 and Newer (Hydrogen)

H2, 70% Renewable, Electrolysis

H2FCV

2:00 0:03 1:97

0.00

2.35 1.91

50 6

0.0E+00 2.0E-03 2.0E-04 2.5E-04 7.4E-05 H2FCV 0.029 0.001 0.003 0.079 0.032 H2, Grid Electrolysis 5 0.00 0.86 0.86 1.91 4.97 0.01 319 319 H2, Onsite NG SR, Ren Power 1.1E-05 2.2E-05 7.6E-05 3.9E-06 0.0E+00 H2FCV 0.018 0.016 0.000 0.002 0.024 0.220 . 오 2.87 0.00 0.28 2.88 0.01 1.25 1.91 5 ° 5 4.1E-05 0.0E+00 2.6E-05 2.2E-04 9.4E-06 HZFCV 0.019 0.000 0.002 0.216 0.032 etianO,2H RS SN 3.34 0.00 0.00 0.06 1.94 1.94 0.021 <u>당</u> 86 0 gt H Pipeline 0.003 H2FCV 0.026 Scenario Year 2012: LDA Vehicle Class: Model Year Start 2010 (new) 0.61 0.09 0.51 0.00 3.75 2.44 0.033 0.031 0.011 5 Biomass, 8 ㅇ 8 П 1 | 1 'ZH 2.6E-05 4.1E-05 2.2E-04 9.4E-06 0.0E+00 H2FCV 0.019 3.24 0.00 0.05 1.39 1.91 0.000 0.004 0.001 0.208 H2, NG SR, Pipeline 3.26 0.01 0.020 ? 800 0.074 5.229 H2FCV 0.032 0.029 0.000 0.004 0.001 0.209 3.74 0.05 0.55 3.13 0.07 5 1.90 H2, Coal, Sequestrati 8 0 8 | | H2, NG SR, LH2, Ren Power 4.8E-05 4.3E-05 1.3E-04 1.7E-05 8.8E-03 H2FCV 0.019 0.023 0.000 0.001 0.002 0.205 2.93 0.02 2.90 0.00 1.29 2.30 1.91 5 0 17 1.2E-04 1.3E-04 7.9E-04 4.1E-05 8.8E-03 H2FCV 0.034 0.017 0.003 0.032 0.062 0.00 H2, NG SR, 5.04 0.03 5.01 0.00 5 0.28 800 88 1.91 1.5E-03 7.6E-05 2.3E-04 2.1E-04 1.6E-02 H2ICE 0.089 0.104 0.031 <u>C</u>€ 90.0 9.25 9.0 6.29 0.062 0.187 0.004 H2, NG SR, LH2 0.51 9.31 8 8 WTT Case ID Vehicle Type MJ/mi MJ/mi MJ/mi MJ/mi MJ/mi WTT Description Vehicle Technology MJ/mi MJ/m Jrban Toxics, (weighted g/mi g/mi g/mi g/mi j/m/g g/mi GHGs (weighted) Formaldehyde 1-3 Butadiene Acetaldehyde Natural Gas Sriteria, Urban PM10 (x10) Criteria, Total PM10 (x10) Petroleum Diesel PM Benzene Non Fossil TOTAL ₹ Æ 8 Š Š Š Fossil 8 8 Ě

0.021

0.058

0.004

0.004

0.0E+00

7.7E-05 9.4E-05 7.6E-04 2.8E-05

Figure A-4. LDA Vehicle Class: Model Years 2010 and Newer (continued)

Hydrogen

	ı
new)	
<u> </u>	۱
t 20	l
Star	I
Year	I
\subseteq	Į
/lodel Y	۱
ž	I
Class	I
<u>ë</u>	I
ξ	
ž	ı
۲	I
٦	ı
2017:	l
8	I
› Year	
enario	

Scenario Year 2017: LDA Vehicle Class: Model Year Start 2010 (new)	r 2017	: LDA Ve	hicle Cl	ass: Mod	lel Year S	Start 2010	(new)				
WTTC	WTT Case ID	겊	오	뫋	H4c	완	ነ	H11	H13	H22	H23
WTT Description	ription	H2, NG SR, LH2	H2, NG SR, LH2	H2, NG SR, LH2, Ren Power	H2, Coal, Sequestati on	H2, NG SR, Pipeline	H2, Biomass, Pipeline	H2, Onsite RS	H2, Onsite NG SR, Ren Power	H2, Grid Electrolysis	H2, 70% Renewable, Electrolysis
Vehicle Type	в Туре	HZICE	H2FCV	H2FCV	H2FCV	H2FCV	HZFCV	H2FCV	H2FCV	H2FCV	H2FCV
Vehicle Technology	nology	ICEV	FCV	S	FCV	FCV	FCV	FCV	FCV	FCV	FCV
Fossil	MJ/mi	7.55	4.09	2.62	3.26	2.89	0.48	2.91	2.58	4.09	1.72
Petroleum	MJ/mi	0.05	0.03	0.02	0.05	0.01	0.08	0.01	0.01	0.0	0.03
Natural Gas	MJ/mi	7.49	4.06	2.60	0. 4	2.88	0.41	2.90	2.57	4.08	. 8
Coal	MJ/mi	0.00	0.00	0.00	2.77	0.00	0.00	0.00	0.00	0.00	0.00
Non Fossil	MJ/mi	0.43	0.24	0.95	0.07	0.05	3.04 24	0.05	0.21	0.87	2.00
WTT	MJ/mi	4.80	2.60	1.85	1.61	1.22	1.80	1.24	1.07	3.24	8.
WIL	MJ/mi	3.18	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72
GHGs (weighted)											
МT	g/mj	429	249	158	8	178	33	172	152	592	141
W.L.	g/mi	œ	0	0	0	0	0	0	0	0	0
TOTAL	g/mi	468	249	158	83	178	83	172	152	265	141
Criteria, Total											
00 N	g/mj	0.050	0.025	0.017	0.028	0.017	0.007	0.018	0.016	0.026	0.018
8	g/mi	0.177	0.048	0.025	0.025	0.028	0.024	0.027	0.022	0.065	0.031
Ň	g/mi	0.077	0.025	0.017	0.065	0.015	0.019	0.015	0.014	0.022	0.050
PM10 (x10)	g/mi	0.281	0.243	0.228	4.655	0.229	0.222	0.222	0.219	0.249	0.259
Criteria, Urban											
200	g/mi	0.0 40	0.001	0.00	0.000	0.00	0.005	0.000	0.00	0.001	0.004
8	g/mj	0.111	0.012	0.001	0.003	0.003	0.011	0.002	0.002	0.033	0.010
XON	g E	0.035	0.002	0.001	0.001	0.001	0.014	0.005	0.001	0.005	0.003
PM10 (x10)	g/mi	0.233	0.217	0.206	0.209	0.208	0.215	0.215	0.212	0.238	0.216
Urban Toxics, (weighted	sighted)										
Вепzепе	g/ii	1.6E-04	8.7E-05	3.0 E -05	!	2.3E-05	ı	2.3E-05	9.8E-06	1.7E-04	6.8E-05
1-3 Butadiene	g/m	1.9E-04	1.0E-04	3.1E-05	ŀ	3.6E-05	ı	3.6E-05	2.0E-05	2.1E-04	8.3E-05
Formaldehyde	g in	1.2E-03	6.6E-04	9.9E-05	i	1.9E-04	ŀ	1.9E-04	6.8E-05	1.7E-03	6.7E-04
Acetaldehyde	g/mi	5.8E-05	3.1E-05	1.0E-05	!	8.2E-06	I	8.2E-06	3.5E-06	6.3E-05	2.5E-05
Diesel PM	g/mi	7.8E-03	4.2E-03	4.2E-03	!	0.0E+00	I	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Figure A-4. LDA Vehicle Class: Model Years 2010 and Newer (continued)

Hydrogen

Scenario Year 2022: LDA Vehicle Class: Model Year Start 2010 (new)

WTT Case ID	ase ID	쥗	모	윋	¥	웊	4 4	H1	#13	H22	H23
WTT Description	iption	HS; NG SR ;	H2, NG SR,	H2, NG SR, LH2, Ren Power	H2, Coal, Sequestrati on	H2, NG SR, Pipeline	H2, Biomass, Pipeline	H2, Onsite AS DN	H2, Onsite NG SR, Ren Powet	H2, Grid Electrolysis	H2, 70% Renewable, Electrolysis
Vehicle 1	Type	HZICE	H2FCV	H2FCV	H2FCV	H2FCV	H2FCV	H2FCV	H2FCV	H2FCV	H2FCV
Vehicle Techno	ology		FCV	FCV	FCV	FCV	FCV	FCV	FCV	FCV	FCV
Fossil	MJ/mi		3.58	2.44	3.00	2.68	0.42	2.64	2.40	3.45	1.54
Petroleum	M.J/mi		0.02	0.02	0. 20.	0.01	0.07	0.01	0.01	0.01	0.03
Natural Gas	MJ/mi		3.55	2.42	0.38	2.67	0.35	2.63	2.39	3.44	1.52
Coal	MJ/mi	0.00	0.00	0.00	2.58	0.00	0.00	0.00	0.00	0.00	0.00
Non Fossil	MJ/mi		0.22	0.79	0.07	0.05	2.74	0.05	0.16	0.89	1.83
₩ TLM	MJ/mi		2.16	1.60	1.45	1.1	1.53	1.06	0.9 26.	2.71	1.74
WIT	MJ/mi		1.63	1.63	1.63	1.63	1.63	1.63	1.63	1.63	.8 8
(weighted)											
WT	g/mi	40	217	147	74	165	78	156	142	225	128
	g/mi	&	0	0	0	0	0	0	0	0	0
TOTAL	g/mi	410	217	147	74	3	78	156	142	225	128
Criteria, Total											
000	g/mi	0.044	0.022	0.015	0.026	0.016	0.005	0.016	0.015	0.022	0.016
8	g/mi	0.175	0.041	0.023	0.022	0.026	0.020	0.024	0.020	0.056	0.028
	g/mi	0.072	0.020	0.014	0.061	0.014	0.013	0.013	0.012	0.018	0.046
	g/mi	0.273	0.237	0.225	4.346	0.227	0.218	0.220	0.217	0.242	0.255
Criteria, Urban											
200	g/mi		0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.003
8	g/mi	0.117	0.00	0.00	0.003	0.003	0.010	0.004	0.002	0.028	0.00
Ň	g/mi		0.005	0.00	0.001	0.001	0.008	0.001	0.001	0.005	0.002
PM10 (x10) g/mi	g/mi	0.231	0.214	0.206	0.208	0.208	0.211	0.213	0.212	0.233	0.215
Urban Toxics, (wei	ighted)										
Benzene	g/mi	1.3E-04	7.2E-05	2.2E-05	I	2.1E-05	I	2.1E-05	9.3E-06	1.5E-04	6.3E-05
1-3 Butadiene	g/mi	•	8.8E-05	2.6E-05	Ι	3.3E-05	I	3.3E-05	1.9E-05	1.9E-04	7.7E-05
Formaldehyde	g/mi		5.8E-04	8.4E-05	I	1.8E-04	ł	1.8E-04	6.4E-05	1.5E-03	6.2E-04
Acetaldehyde	g/mi	4.8E-05	2.6E-05	7.8E-06	ļ	7.4E-06	1	7.4E-06	3.3E-06	5.6E-05	2.3E-05
Diesel PM	g/mi	4.4E-03	2.4E-03	2.4E-03	I	0.0E+00	ı	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Figure A-4. LDA Vehicle Class: Model Years 2010 and Newer (concluded)

Hydrogen

_	
cenario Year 2030: LDA Vehicle Class: Model Year Start 2010 (new)	
\equiv	ı
읟	
ò	
Ñ	
t	Į
ď	
ភ	
Ξ	ı
Ġ	ı
₾	ı
_	ı
ਚ	
ਰ	
<u></u>	
Σ	l
::	
Š	
ä	ı
茓	ı
J	ı
<u>a</u>	ı
<u>ပ</u>	ı
至	ı
Φ	ı
>	ı
⋖	ı
Ω	ı
ı	ı
••	ı
므	ı
ä	ı
ぶ	ı
_	1
ŭ	
چ	I
쏮.	
6	
Ē	
æ	
U	ı

WTT Case ID	38e ID	윋	모	꾿	¥.	웊	左	ž	H13	122	H23
WTT Description	iption	H2, NG SR,	H2, NG SR, LH2	H2, NG SR, LH2, Ren Power	H2, Coal, Sequestati on	H2, NG SR, Pipeline	H2, Biomass, Pipeline	etienO,2H AS	H2, Onsite NG SR, Ren Powet	H2, Grid Electrolysis	H2, 70% Renewable, Electrolysis
Vehicle Type	Type	H2ICE	H2FCV	H2FCV	H2FCV	H2FCV	H2FCV	H2FCV	HZFCV	H2FCV	H2FCV
Vehicle Technology	ology	ICEV	FCV	FCV	FCV	FCV	FCV	FCV	FCV	FCV	FCV
Fossil A	MJ/mi	6.20	3.36	2.29	2.82	2.52	0.40	2.48	2.26	3.16	1.45
	MJ/mi	0.04	0.02	0.02	9.0	0.04	90.0	0.01	0.01	0.01	0.02
2	MJ/mi	6.16	3.33	2.27	0.35	2.51	0.33	2.47	2.25	3.15	1.42
	MJ/mi	0.00	0.00	0.00	2.43	0.00	0.00	0.00	0.00	0.00	0.00
Fossil	MJ/mi	0.38	0.21	0.74	0.07	0.05	2.58	9.0	0.15	0.92	1.72
	MJ/mi	3.75	2.03	1.50	1.36	<u>5</u> .	1 .	0.99	0.88	2.55	1.63
ML WIL	MJ/mi	2.83	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53
GHGs (weighted)											
TTM	g/mi	377	20 <u>4</u>	138	2	155	56	147	133	212	121
	g/mi	œ	0	0	0	0	0	0	0	0	0
TOTAL	g/mi	386	204	138	2	155	56	147	133	212	121
Criteria, Total											
VOC	g/mi	0.042	0.021	0.014	0.024	0.015	0.005	0.015	0.014	0.021	0.015
8	g/mi	0.182	0.038	0.022	0.021	0.024	0.019	0.022	0.019	0.052	0.026
NOx	g/mi	0.073	0.019	0.013	0.057	0.013	0.011	0.013	0.011	0.017	0.043
PM10 (x10)	g/mi	0.271	0.235	0.224	4.095	0.225	0.217	0.219	0.216	0.239	0.251
Criteria, Urban											
	g/mi	0.005	0.00	0.00	0.00	0.000	0.001	0.000	0.000	0.00	0.003
8	g/mi	0.128	0.00	0.001	0.003	0.003	0.00	0.004	0.005	0.026	0.008
Ň	g/mi	0.043	0.002	0.001	0.001	0.001	0.007	0.001	0.001	0.002	0.005
PM10 (x10)	g/mi	0.233	0.214	0.206	0.208	0.208	0.211	0.213	0.211	0.231	0.214
Urban Toxics, (wei	eighted)										
Benzene	g/mi	1.1E-04	6.2E-05	1.8E-05	l	1.9E-05	i	1.9E-05	8.7E-06	1.3E-04	5.9E-05
1-3 Butadiene	g/mi	1.4E-04	7.7E-05	2.3E-05	I	3.0E-05	ı	3.0E-05	1.8E-05	1.6E-04	7.2E-05
Formaldehyde	g/mi	9.3E-04	5.0E-04	7.5E-05	I	1.6E-04	i	1.6E-04	6.0E-05	1.3E-03	5.8E-04
Acetaldehyde	g/mi	4.1E-05	2.2E-05	6.3E-06	ļ	6.7E-06	I	6.7E-06	3.1E-06	4.8E-05	2.2E-05
Diesel PM	g/mi	2.8E-03	1.5E-03	1.5E-03	ļ	0.0E+00	Ι	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Figure A-5. LDA Vehicle Class: All Model Years (E85)

Scenario Year 2012: LDA Vehicle Class: All Model Years (blend)

WTT Case ID	ase ID	20	æ	B3	2	E74	E177	BE21	E73
WTT Description	ription	.moO, Сот, WW Ave	Ethanol, Com, MW Coal	Efranol, Com, WW NG	Ethanol, Com, MW NG, Wet Feed	Ethanol, CA Com, Wet Feed	Ethanol, Brazil Sugar Cane	Ethanol, CA Poplar, Cellulose	Ethanol, CA Switch Grass
Vehicle Type	Type	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV
Vehicle Technology	nology	FFV	FFV	FFV	FFV	FFV	FFV	FFV	FF
Fossil	MJ/mi	4.33	4.59	4.24	3.69	3.48	1.53	1.32	1.74
Petroleum	MJ/mi	1.59	1.63	1.61	1.61	1.49	1.38	1.49	4.
Natural Gas	MJ/mi	2.08	0.62	2.30	1.75	1.98	0.15	-0.17	0.29
Coal	MJ/mi	0.65	2.35	0.34	0.34	0.01	0.00	0.01	0.01
Non Fossil	MJ/mi	3.95	3.95	3.95	3.95	3.92	10.77	10.86	9.58
ТM	MJ/mi	3.37	3.64	3.28	2.73	2.50	7.39	7.28	6.41
WILL	MJ/mi	4.91	4.91	4.91	4.91	4.91	4.91	4.91	4.91
GHGs (weighted)									
μM	g/mi	43	₹	4	-19	-57	-502	-228	1
Æ	g/mi	360	360	360	360	360	360	360	360
TOTAL	g/mi	402	<u>¥</u>	373	8	305	153	132	195
Criteria, Total									
VOC	j/m/g	0.447	0.480	0.474	0.470	0.463	I	0.416	0. 44 44
8	j/m/g	3.277	3.421	3.321	3.304	3.223	1	3.082	3.028
Ň	g/mi	0.920	1.150	0.884	0.863	0.548	ı	0.967	0.926
PM10 (x10)	g/mi	2.369	6.635	1.586	1.567	0.970	ı	1.463	1.353
Criteria, Urban									
00 0	g/mi	0.312	0.312	0.312	0.312	0.312	I	0.317	0.322
8	g/mi	2.633	2.634	2.634	2.634	2.635	I	2.664	2.684
Š	g/mi	0.250	0.251	0.253	0.252	0.234	I	0.308	0.338
PM10 (x10)	g/mi	0.339	0.340	0.340	0.340	0.339	ı	0.372	0.393
Urban Toxics, (weighted	ighted)								
Benzene	g/mj	2.3E-02	2.3E-02	2.3E-02	2.3E-02	I	i	ı	ļ
1-3 Butadiene	j/m/g	2.6E-02	2.6E-02	2.6E-02	2.6E-02	Ι	ı	ļ	ı
Formaldehyde	j/m	2.4E-03	2.4E-03	2.4E-03	2.4E-03	1	I	ı	I
Acetaldehyde	g/mi	2.6E-04	2.6E-04	2.6E-04	2.6E-04	i	ì	I	i
Diesel PM	g/mi	9.7E-02	9.7E-02	9.7E-02	9.7E-02	I	1	i	1

Figure A-5. LDA Vehicle Class: All Model Years (continued)

E85

Scenario Year 2017: LDA Vehicle Class: All Model Years (blend)

WTT Case ID	EF G	1	2	88	25	B74	Et77	B21	B123
WTT Description	-тоЭ ,lonsrtt∃	9vA WM	Ethanol, Com, WW Coal	Ефапоl, Сот, МW NG	Ethanol, Com, MW NG, Wet Feed	AD, Com, Wet Com, Wet Feed	Ethanol, Brazil Sugar Cane	AD, Cathanol, CA Poplar, Cellulose	Ethanol, CA Switch Grass
Vehicle Type		E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV
Vehicle Technology	ogy FFV	ج	Æ	FFV	FFV	FFV	FFV	ΕF	FFV
Fossil MJ	MJ/mi 3.90	8	4.15	3.83	3.33	3.12	1.39	1.18	1.46
Petroleum MJ	MJ/mi 1.4	1.4	1.47	1.46	1.45	1.35	1.25	1.33	1.26
S	MJ/mi 1.6	1.89	0.56	2.08	1.58	1.76	0.13	-0.16	0.20
Coal MJ	MJ/mi 0.57	24	2.11	0.29	0.29	0.01	0.00	0.01	0.01
Fossil	MJ/mi 3.57	22	3.58	3.57	3.57	3.56	9.76	8.93	6.71
LM TTW	MJ/mi 3.03	33	3.28	2.95	2.45	2.23	6.70	5.66	3.73
TIM	MJ/mi 4.45	₹ 3	4.45	4.45	4.45	4.45	4.45	4.45	4.45
GHGs (weighted)	Г								
	g/mi 3	8	162	œ	-52	-57	-188	-210	-168
MLL MLL	g/mi 327	7	327	327	327	327	327	327	327
TOTAL 9/		360	489	335	305	270	139	117	159
Criteria, Total									
O	g/mi 0.3	0.343	0.371	0.366	0.362	0.356	ı	0.313	0.329
8	g/mi 2.3	15	2.443	2.352	2.337	2.265	ı	2.115	2.028
NOX 6	_	0.713	0.870	0.689	0.670	0.386	ı	0.706	0.610
	g/mi 2.0	2.086	5.734	1.416	1.399	0.887	i	1.274	1.123
Criteria, Urban									
O	_	0.229	0.229	0.229	0.229	0.228	ı	0.230	0.231
8	g/mi 1.7	1.754	1.754	1.754	1.754	1.754	ı	1.774	1.785
NOx g/	g/mi 0.1	0.162	0.162	0.163	0.163	0.146	I	0.185	0.194
PM10 (x10) g/	g/mi 0.3	0.342	0.342	0.343	0.342	0.341	i	0.355	0.362
Urban Toxics, (weighted	ted)								
	g/mi 1.5E	.5E-02	1.5E-02	1.5E-02	1.5E-02	l	ı	I	i
1-3 Butadiene g/	_	,6E-02	1.6E-02	1.6E-02	1.6E-02	ļ	ŀ	l	ļ
Formaldehyde g/	_	.5E-03	1.5E-03	1.5E-03	1.5E-03	ı	i	ł	ļ
de/	g/mi 1.6E	1.6E-04	1.6E-04	1.6E-04	1.6E-04	ı	ı	i	i
Diesel PM g/		8.1E-02	8.1E-02	8.1E-02	8.1E-02	ı	ı	ı	ŀ
	1								

Figure A-5. LDA Vehicle Class: All Model Years (continued)

Scenario Year 2022: LDA Vehicle Class: All Model Years (blend)

TOTAL PARTY									
WIT Case ID	ase ID	.	28	£	4	Et74	E 77	E 54	E 53
WTT Description	iption	Ethanol, Com, WW Ave	Ethanol, Com, MW Coal	Ethanol, Com, MW NG	Ethanol, Сот, МW иG, Wet Feed	Ethanol, CA Com, Wet Feed	Ethanol, Brazil Sugar Cane	Ethanol, CA Poplar, Cellulose	Ethanol, CA Switch Grass
Vehicle Type	Type	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV
Vehicle Technology	ology	FFV	FFV	ΕFV	FFV	FFV	Η	Ŧ	FΕV
Fossil	MJ/mi	3.50	3.72	3.43	2.98	2.77	1.24	1.05	1.30
Petroleum	MJ/mi	1.29	1.32	1.31	1.31	1.21	1.12	1.18	1.12
Natural Gas	MJ/mi	1.69	0.50	1.87	1.42	1.55	0.12	0.14	0.17
Coal	MJ/mi	0.51	1.89	0.26	0.25	0.0	0.00	0.01	0.0
Non Fossil	MJ/mi	3.21	3.21	3.21	3.21	3.21	8.78	7.59	5.75
L L	MJ/mi	2.71	2.93	5.64	2.19	1.98	6.02	4.64	3.05
ML.	MJ/mi	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
GHGs (weighted)									
MTT	g/mi	27	143	4	-53	55	-169	-190	-153
	g/mi	295	295	295	292	295	295	295	295
IL.	g/mi	322	437	536	272	240	126	105	141
Total									
200	g/mi	0.277	0.300	0.295	0.292	0.286	I	0.246	0.260
	g/mi	1.719	1.832	1.750	1.736	1.671	I	1.521	1.450
Ň	g/mi	0.577	0.699	0.558	0.541	0.286	I	0.551	0.479
(×10)	g/mi	1.876	5.090	1.285	1.269	0.819	Ι	1.140	1.018
Criteria, Urban									
O	g/mi	0.175	0.175	0.175	0.175	0.174	ı	0.174	0.175
8	g/mi	1.217	1.216	1.217	1.217	1.217	ì	1.232	1.241
Ň	g/mi	0.112	0.112	0.113	0.112	0.097	Ι	0.118	0.124
PM10 (x10)	g/mi	0.344	0.344	0.344	0.344	0.343	I	0.347	0.351
Urban Toxics, (weighted	(ghted)								
	g/mi	1.1E-02	1.1E-02	1.1E-02	1.1E-02	I	i	I	i
	g/mi	1.1E-02	1.1E-02	1.1E-02	1.1E-02	ŀ	i	i	ł
Formaldehyde	g/mi	1.0E-03	1.0E-03	1.0E-03	1.0E-03	ì	Ι	i	1
de vde	g/mi	1.1E-04	1.1E-04	1.1E-04	1.1E-04	I	i	i	ì
Diesel PM	g/mi	7.0E-02	7.0E-02	7.0E-02	7.0E-02	J	I	I	i

Figure A-5. LDA Vehicle Class: All Model Years (concluded)

Scenario Year 2030: LDA Vehicle Class: All Model Years (blend)

3	•	 -	i	í	i	, 1	100	300	
	WII Case ID	9	2	E	ğ	4/4	7	Ę	
		,m,							
		Co			۷,	θM		'ne,	
WTT Description	ription	,loi	ol, V C	,loi W				Ido	
		nsrb⊒ /M	ոեժե VM	nsrti⊒ M	nerbii WM	Etha Cor	nsrti∃ sguS	6413 99 90	
Vehic	Vehicle Type	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	
Vehicle Technology	nology	Ŧ	Ŧ	Ŧ	FFV	FF	FFV	FFV	
Fossil	MJ/mi	3.14	3.33	3.07	2.67	2.48	1.11	0.94	
Petroleum	MJ/mi	1.16	1.19	1.17	1.17	1.09	1.01	1.06	
Natural Gas	MJ/mi	1.52	0.45	1.67	1.27	1.39	0.11	0.13	
Coal	MJ/mi	0.46	1.70	0.23	0.23	0.01	0.00	0.00	
Non Fossil	MJ/mi	2.88	2.88	2.87	2.87	2.87	7.86	6.80	
ШM	MJ/mi	2.43	2.63	2.37	1.96	1.78	5.40	4.15	
×Ε	MJ/mi	3.58	3.58	3.58	3.58	3.58	3.58	3.58	
GHGs (weighted)									
МT	g/mi	24	128	က	۲,	4	-151	-170	
WIT	g/mi	265	265	592	265	265	265	265	
TOTAL	g/mi	588	393	268	244	216	114	92	
Criteria, Total									
00 0	g/mi	0.215	0.235	0.231	0.228	0.223	ı	0.187	
8	g/mi	1.257	1.358	1.285	1.273	1.215	ı	1.079	
Ň	g/mi	0.489	0.599	0.473	0.457	0.229	i	0.465	
PM10 (x10)	g/mi	1.715	4.595	1.186	1.172	0.768	I	1.056	
Criteria, Urban									
70C	g/mi	0.124	0.124	0.124	0.124	0.123	ł	0.123	
8	g/mi	0.808	0.808	0.808	0.808	0.808	1	0.821	
Š	g/mj	0.076	0.075	0.076	0.076	0.062	i	0.080	
PM10 (x10)	g/mi	0.344	0.344	0.344	0.344	0.343	ı	0.347	
Urban Toxics, (weighted	eighted)								
Benzene	g/mi	6.9E-03	6.9E-03	6.9E-03	6.9E-03	I	I	1	
1-3 Butadiene	g/mi	6.4E-03	6.4E-03	6.4E-03	6.4E-03	ļ	ļ	1	
Formaldehyde	g/mi	6.5E-04	6.5E-04	6.5E-04	6.5E-04	I	i	ı	
Acetaldehyde	g/mi	7.3E-05	7,3E-05	7.3E-05	7.3E-05	1	I	i	
Diesel PM	a/mi	6.1E-02	6.1E-02	6.1E-02	6.1E-02	I	I	ı	

Figure A-6. LDA Vehicle Class: Model Years 2010 and Newer (E85)

Description Color	WITT Case In Est Est Est Est Est Est Est Est		֓֞֜֞֜֜֜֜֝֓֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֡֜֜֜֓֓֡֓֓֡֓֜֜֜֡֓֓֓֡֓֡֡֡֓֓֡֓֡֡֡֡֡֡		133. HO	בו ובמי ה	ממון בעון	/ IIIcw/		
WTT Description O		38 50		7	3	ğ	1		173	ECS
WTT Description Ö S S S S S S S S S S S S S S S S S S S						JeW,	J⊖W		,7E	
Vehicle Type E85 FFV	WTT Des	cription				NM NG	Com, /	thanol, Sugar C	lonarti Sopla Sellulo	Ethano Switch C
Indicate Technology FFV	Vehic	e Type	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV		E85 FFV	E85 FFV
troleum MJ/mi 1.93 4.17 3.86 3.35 3.16 troleum MJ/mi 1.45 1.48 1.46 1.46 1.36 tural Gas MJ/mi 1.89 0.56 2.09 1.59 1.80 al MJ/mi 0.59 2.14 0.31 0.30 0.01 Bossil MJ/mi 3.06 3.31 2.98 2.48 2.27 MJ/mi 3.06 3.31 2.98 2.48 2.27 TAL g/mi 328 328 328 328 328 328 TAL g/mi 367 495 3.40 310 276 ita, Intan C g/mi 0.951 1.082 0.991 0.975 0.902 Ita, Urban 0.059 0.868 0.627 0.607 0.321 Ita Urban 0.050 0.052 0.053 0.054 0.053 Ita Urban 0.050 0.052 0.053 0.054 0.052 Ita Urban 0.050 0.052 0.053 0.054 0.054 Ita Urban 0.050 0.052 0.053 0.054 0.055 Ita Urban 0.050 0.052 0.053 0.054 0.055 Ita Urban 0.050 0.052 0.053 0.054 0.055 Ita Urban 0.050 0.052 0.053 0.055 Ita Urban 0.050 0.055 0.055 Ita Urban 0.050 0.050 0.055 0.055 Ita Urban 0.050 0.050 0.050 0.055 Ita Urban 0.050 0.050 0.050 0.055 Ita Urban 0.050	Vehicle Tech	nology	FFV	FF	FF	Æ	FF	FFV	Ŧ	Ę
troleum MJ/mi 1.45 1.48 1.46 1.46 1.36 tural Gas MJ/mi 0.59 2.14 0.31 0.30 0.01 Fossil MJ/mi 3.59 3.59 3.59 3.59 3.57 MJ/mi 3.06 3.31 2.98 2.48 2.27 MJ/mi 3.06 3.31 2.98 2.48 2.27 MJ/mi 3.06 3.31 2.98 2.48 2.27 TAL g/mi 328 328 328 328 328 TAL g/mi 0.176 0.206 0.200 0.197 0.191 C g/mi 0.951 1.082 0.991 0.975 0.902 Ita, Urban 0.053 0.053 0.054 0.054 0.053 C g/mi 0.248 0.249 0.249 0.249 0.249 ITA g/mi 0.248 0.249 0.249 0.249 0.248 ITA g/mi 0.248 0.249 0.249 0.249 0.248 ITA g/mi 0.248 0.246 0.26 0.266 0.366	Fossil	MJ/mi	3.93	4.17	3.86	3.35	3.16	1.39	1.20	1.58
tural Gas MJ/mi	Petroleum	MJ/mi	1.45	1.48	1.46	1.46	1.36	1.25	1.36	1.31
Mul/mi 0.59 2.14 0.31 0.30 0.01 Mul/mi 3.59 3.59 3.59 3.59 3.57 Mul/mi 3.06 3.31 2.98 2.48 2.27 Mul/mi 4.46 4.46 4.46 4.46 4.46 4.46 S (weighted)	Natural Gas	MJ/mi	1.89	0.56	5.09	1.59	1.80	0.13	-0.16	0.27
Fossil MJ/mi 3.59 3.59 3.59 3.59 3.57 MJ/mi 3.06 3.31 2.98 2.48 2.27 MJ/mi 4.46 4.46 4.46 4.46 4.46 4.46 s (weighted) 32 328 328 328 328 328 TA g/mi 328 328 328 328 328 TAL g/mi 367 495 340 310 276 ria, Total g/mi 0.176 0.206 0.200 0.197 0.191 DC g/mi 0.951 1.082 0.991 0.975 0.902 DC g/mi 0.059 0.868 0.627 0.607 0.191 DC g/mi 0.059 0.053 0.054 0.057 0.057 0.052 DC g/mi 0.056 0.056 0.056 0.052 0.052 0.052 DC g/mi 0.050 0.052	Coal	M J/mi	0.59	2.14	0.31	0.30	0.01	0.00	0.01	0.01
MJ/mil 3.06 3.31 2.98 2.48 2.27 MJ/mil 4.46 4.46 4.46 4.46 4.46 4.46 s (weighted) 39 167 12 -17 -52 TAL g/mil 328 328 328 328 TAL g/mil 0.176 0.206 0.200 0.197 0.191 nc g/mil 0.176 0.206 0.200 0.197 0.191 nc g/mil 0.0591 0.868 0.627 0.607 0.321 nc g/mil 0.0594 5.971 1.382 1.364 0.822 nc g/mil 0.059 0.0868 0.627 0.607 0.0321 nc g/mil 0.0594 5.971 1.382 1.364 0.822 nc g/mil 0.053 0.053 0.054 0.054 0.054 nc g/mil 0.050 0.053 0.054 0.054 0.054 <	Non Fossil	MJ/mi	3.59	3.59	3.59	3.59	3.57	9.79	9.87	8.71
Mul/mi 4.46 <	МT	MJ/mi	3.06	3.31	2.98	2.48	2.27	6.72	6.62	5.83
g/mi 39 167 12 -17 -52 g/mi 328 328 328 328 328 g/mi 367 495 340 310 276 g/mi 0.176 0.206 0.200 0.197 0.191 g/mi 0.051 1.082 0.991 0.975 0.902 g/mi 0.059 0.868 0.627 0.607 0.321 g/mi 2.094 5.971 1.382 1.364 0.822 g/mi 0.053 0.053 0.054 0.053 0.053 g/mi 0.056 0.366 0.366 0.366 0.366 0.366 g/mi 0.050 0.052 0.053 0.052 0.053 g/mi 0.248 0.249 0.249 0.248 g/mi 2.3E-03 2.3E-03 2.3E-03 - g/mi 2.2E-03 2.4E-03 2.4E-03 - g/mi 6.2E-05 6.2E-05 <	Æ	MJ/mi	4.46	4.46	4.46	4.46	4.46	4.46	4.46	4.46
g/mi 39 167 12 -17 -52 g/mi 328 328 328 328 328 g/mi 367 495 340 310 276 g/mi 0.176 0.206 0.200 0.197 0.191 g/mi 0.059 0.868 0.627 0.607 0.321 g/mi 0.059 0.868 0.627 0.607 0.321 g/mi 0.059 0.868 0.627 0.607 0.321 g/mi 0.059 0.056 0.057 0.052 0.052 g/mi 0.056 0.366 0.366 0.366 0.366 0.366 g/mi 0.050 0.052 0.053 0.052 0.052 0.036 g/mi 0.050 0.052 0.053 0.054 0.249 0.248 (weighted) 0.249 0.249 0.249 0.249 0.249 0.249 g/mi 2.3E-03 2.4E-03 2.4E-03	GHGs (weighted)									
g/mi 328 376 370 370 370 370 370 376 0.197 0.191 0.192 0.190 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191	TTM	g/mi	33	167	12	-17	-52	-188	-207	-149
g/mi 367 495 340 310 276 g/mi 0.176 0.206 0.200 0.197 0.191 g/mi 0.659 0.868 0.627 0.607 0.321 g/mi 0.053 0.063 0.054 0.054 0.053 g/mi 0.056 0.366 0.366 0.366 0.366 g/mi 0.050 0.052 0.053 0.052 0.053 g/mi 0.248 0.249 0.249 0.249 0.248 weighted) 0.248 0.249 0.249 0.249 0.249 g/mi 2.3E-03 2.3E-03 2.3E-03 2.4E-03 - g/mi 2.4E-03 2.4E-03 2.4E-03 - - g/mi 4.2E-04 4.2E-04 4.2E-04 - - g/mi 6.2E-05 6.2E-05 6.2E-05 - - - g/mi 6.2E-05 6.2E-05 6.2E-05 - - - <th>WLL</th> <th>g/mi</th> <td>328</td> <td>328</td> <td>328</td> <td>328</td> <td>328</td> <td>328</td> <td>328</td> <td>328</td>	WLL	g/mi	328	328	328	328	328	328	328	328
g/mi 0.176 0.206 0.200 0.197 g/mi 0.951 1.082 0.991 0.975 g/mi 0.059 0.868 0.627 0.607 g/mi 2.094 5.971 1.382 1.364 g/mi 0.053 0.053 0.054 0.054 g/mi 0.366 0.366 0.366 0.366 g/mi 0.050 0.052 0.053 0.052 g/mi 0.248 0.249 0.249 0.249 (weighted) g/mi 2.3E-03 2.3E-03 2.3E-03 2.4E-03 de g/mi 2.4E-03 2.4E-03 2.4E-03 2.4E-03 de g/mi 6.2E-05 6.2E-05 6.2E-05 g/mi 6.2E-05 6.2E-05 8.8E-02	TOTAL	g/mi	367	495	340	310	276	140	120	178
g/mi 0.176 0.206 0.200 0.197 g/mi 0.951 1.082 0.991 0.975 g/mi 0.659 0.868 0.627 0.607 g/mi 2.094 5.971 1.382 1.364 g/mi 0.053 0.053 0.054 0.054 g/mi 0.366 0.366 0.366 0.366 g/mi 0.050 0.052 0.053 0.052 g/mi 0.248 0.249 0.249 0.249 g/mi 2.3E-03 2.3E-03 2.3E-03 g/mi 2.4E-03 2.4E-03 2.4E-03 de g/mi 4.2E-04 4.2E-04 4.2E-04 g/mi 6.2E-05 6.2E-05 6.2E-05 g/mi 8.8E-02 88E-02 88E-02	Criteria, Total									
g/mi 0.951 1.082 0.991 0.975 g/mi 0.659 0.868 0.627 0.607 g/mi 2.094 5.971 1.382 1.364 g/mi 0.053 0.053 0.054 0.054 g/mi 0.366 0.366 0.366 0.366 g/mi 0.050 0.052 0.053 0.052 g/mi 0.248 0.249 0.249 0.249 weighted) 2.3E-03 2.3E-03 2.3E-03 g/mi 2.4E-03 2.4E-03 2.4E-03 de g/mi 4.2E-04 4.2E-04 4.2E-04 dmi 6.2E-05 6.2E-05 6.2E-05 g/mi 8.8E-02 8.8E-02	00 ×	g/mi	0.176	0.206	0.200	0.197	0.191	ł	0.147	0.173
g/mi 0.659 0.868 0.627 0.607 g/mi 2.094 5.971 1.382 1.364 g/mi 0.053 0.053 0.054 0.054 g/mi 0.366 0.366 0.366 0.366 g/mi 0.050 0.052 0.053 0.052 g/mi 0.248 0.249 0.249 0.249 g/mi 2.3E-03 2.3E-03 2.3E-03 3.2E-03 g/mi 2.4E-03 2.4E-03 2.4E-03 2.4E-03 g/mi 6.2E-05 6.2E-05 6.2E-05 6.2E-05 g/mi 8.8E-02 8.8E-02 8.8E-02	8	g/mi	0.951	1.082	0.991	0.975	0.902	1	0.773	0.725
g/mi 2.094 5.971 1.382 1.364 g/mi 0.053 0.053 0.054 0.054 g/mi 0.366 0.366 0.366 0.366 g/mi 0.050 0.052 0.053 0.052 g/mi 0.248 0.249 0.249 0.249 g/mi 2.3E-03 2.3E-03 2.3E-03 g/mi 2.4E-03 2.4E-03 2.4E-03 de g/mi 4.2E-04 4.2E-04 4.2E-04 g/mi 6.2E-05 6.2E-05 6.2E-05 g/mi 8.8E-02 8.8E-02	Ň	g/mi	0.659	0.868	0.627	0.607	0.321	ı	0.702	0.665
g/mi 0.053 0.053 0.054 0.054 g/mi 0.366 0.366 0.366 0.366 g/mi 0.050 0.052 0.053 0.052 g/mi 0.248 0.249 0.249 0.249 g/mi 2.3E-03 2.3E-03 2.3E-03 2.3E-03 g/mi 2.4E-03 2.4E-03 2.4E-03 2.4E-03 de g/mi 6.2E-05 6.2E-05 6.2E-05 6.2E-05 g/mi 8.8E-02 8.8E-02 8.8E-02	PM10 (x10)	g/mi	2.094	5.971	1.382	1.364	0.822	ł	1.270	1.170
0.053 0.053 0.054 0.054 0.366 0.366 0.366 0.366 0.050 0.052 0.053 0.052 0.248 0.249 0.249 0.249 2.3E-03 2.3E-03 2.3E-03 2.3E-03 2.4E-03 2.4E-03 2.4E-03 4.2E-04 4.2E-04 4.2E-04 6.2E-05 6.2E-05 6.2E-05 8.8E-02 8.8E-02 8.8E-02	Criteria, Urban									
0.366 0.366 0.366 0.366 0.050 0.052 0.053 0.052 0.248 0.249 0.249 0.249 2.35-03 2.35-03 2.35-03 2.35-03 2.45-03 2.45-03 2.45-03 2.45-03 4.25-04 4.25-04 4.25-04 6.25-05 6.25-05 6.25-05 8.85-02 8.85-02 8.85-02	200	g/mi	0.053	0.053	0.054	0.054	0.053	I	0.058	0.062
0.050 0.052 0.053 0.052 0.248 0.249 0.249 0.249 2.3E-03 2.3E-03 2.3E-03 2.3E-03 2.4E-03 2.4E-03 2.4E-03 2.4E-03 4.2E-04 4.2E-04 4.2E-04 6.2E-05 6.2E-05 6.2E-05 8.8E-02 8.8E-02 8.8E-02	8	g/mi	0.366	0.366	0.366	0.366	0.367	ł	0.393	0.412
0.248 0.249 0.249 0.249 2.3E-03 2.3E-03 2.3E-03 2.3E-03 2.4E-03 2.4E-03 2.4E-03 2.4E-03 4.2E-04 4.2E-04 4.2E-04 4.2E-04 6.2E-05 6.2E-05 6.2E-05 8.8E-02 8.8E-02 8.8E-02 8.8E-02	×ON	g/mi	0.050	0.052	0.053	0.052	0.036	I	0.103	0.130
2.3E-03 2.3E-03 2.3E-03 2.4E-03 2.4E-04 4.2E-04 4.2E-04 4.2E-05 6.2E-05 8.8E-02 8.8E-02	PM10 (x10)	g/mi	0.248	0.249	0.249	0.249	0.248	Ι	0.278	0.297
9/mi 2.3E-03 2.3E-03 2.3E-03 2.3E-03 yde g/mi 2.2E-04 4.2E-04 4.2E-04 4.2E-04 d/mi 8.8E-02 8.8E-02 8.8E-02	Urban Toxics, (w	eighted)								
ane g/mi 2.4E-03 2.4E-03 2.4E-03 2.4C-03 yde g/mi 4.2E-04 4.2E-04 4.2E-04 4.2E-04 d/mi 8.8E-02 8.8E-02 8.8E-02	Benzene	g/mi	2.3E-03	2.3E-03	2.3E-03	2.3E-03	1	i	i	i
yde g/mi 4.2E-04 4.2E-04 4.2E-04 d.2E-04 d.2E-05 d.mi 8.8E-02 8.8E-02 8.8E-02	1-3 Butadiene	g/mi	2.4E-03	2.4E-03	2.4E-03	2.4E-03	I	1	Ι	i
/de g/mi 6.2E-05 6.2E-05 6.2E-05 a/mi 8.8E-02 8.8E-02 8.8E-02	Formaldehyde	g/mi	4.2E-04	4.2E-04	4.2E-04	4.2E-04	1	I	1	I
a/mi 8.8E-02 8.8E-02 8.8E-02	Acetaldehyde	g/mi	6.2E-05	6.2E-05	6.2E-05	6.2E-05	1	ł	I	I
	Diesel PM	g/mi	8.8E-02	8.8E-02	8.8E-02	8.8E-02	I	I	ļ	ı

Figure A-6. LDA Vehicle Class: Model Years 2010 and Newer (continued)

	ı
0 (new)	
2010 (ı
t 2010	I
ar Start	
Model Year	
<u>_</u>	
Š	I
e Class: Mod	I
<u>ق</u>	Ì
울	I
۶	۱
2017: LDA Vehicle	
7:	l
201	ı
Year	
Scenario	
	7

Oceniano Teal 2011, EDA Vellicio Class. model Teal Cantano (104)		7		233. 1910	ובו ופמו (אמון לא וו	(11011)		
WTT Case ID	ase ID	<u> </u>	2	8	7	E 774	Et77	H21	H23
WTT Description	iption	, Сот, V Ave	iol, Com, V Coal	юі, Сот, W ИĞ	lol, Сот, ИС, Wet	nol, CA m, Wet eed:	lizer8 ,loc ar Cane	AD, Consol, CA oplar, llulose	AD, lone
_				nsd3 /M	MM	Etha Cor F	nsrta Suga	ertha Pq le:O	Eths Switz
Vehicle Type	Type	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FF\
Vehicle Technology	ology	FF	FFV	FFV	FFV	FFV	FFV	Æ	FF
Fossil	MJ/mi	3.52	3.74	3.46	3.00	2.81	1.25	1.06	1.32
Petrolenm	MJ/mi	1.30	1.33	1.31	1.31	1.22	1.13	1.20	1.13
Natural Gas	MJ/mi	1.70	0.51	1.88	1.43	1.59	0.12	-0.14	0.18
Coal	MJ/mi	0.52	1.91	0.26	0.26	0.01	0.00	0.04	0.01
Non Fossil	MJ/mi	3.23	3.23	3.23	3.23	3.22	8.84	8.06	90.9
_ ⊥w	MJ/mi	2.74	2.96	2.67	2.21	2.02	6.05	5.11	3.36
ΜL	MJ/mi	4.02	4.02	4.02	4.02	4.02	4.02	4.02	4.02
GHGs (weighted)									
ΗM	g/mi	ස	146	7	-50	ठ्	-170	-189	-151
ΑL	g/mi	596	596	596	536	536	536	296	296
TOTAL	g/mi	326	442	303	276	245	126	107	145
Criteria, Total									
00 00	g/mi	0.162	0.188	0.183	0.179	0.174	I	0.135	0.149
8	g/mi	0.952	1.069	0.987	0.973	0.907	ı	0.772	0.694
ŏ	g/mi	0.549	0.691	0.527	0.510	0.253	i	0.542	0.456
PM10 (x10)	g/mi	1.855	5.149	1.250	1.234	0.772	ı	1.121	0.985
Criteria, Urban									
VOC	g/mi	0.029	0.029	0.02	0.02	0.029	I	0.060	0.061
8	g/mi	0.446	0.446	0.446	0.446	0.446	ı	0.464	0.474
Ň	g/mi	0.051	0.051	0.052	0.052	0.037	ı	0.072	0.080
PM10 (x10)	g/mi	0.280	0.280	0.280	0.280	0.279	ı	0.291	0.298
Urban Toxics, (weighted	ighted)								
Benzene	g/mi	2.8E-03	2.8E-03	2.8E-03	2.8E-03	1	ł	i	!
1-3 Butadiene	g/mi	2.8E-03	2.8E-03	2.8E-03	2.8E-03	1	ı	i	ŀ
Formaldehyde	g/mi	4.0E-04	4.0E-04	4.0E-04	4.0E-04	1	1	I	I
Acetaldehyde	g/mi	5.3E-05	5.3E-05	5.3E-05	5.3E-05	ı	i	i	i
Diesel PM	g/mi	7.3E-02	7.3E-02	7.3E-02	7.3E-02	1	ı	١	I

Figure A-6. LDA Vehicle Class: Model Years 2010 and Newer (continued)

Scenario Year 2022:	ar 2022	: LDA Ve	shicle Ck	ass: Mod	lel Year \$	LDA Vehicle Class: Model Year Start 2010 (new)	(new)		
MTT (WTT Case ID	<u>#</u>	EFZ	88	25	B74	E77	B 21	B23
WTT Description	cription	Ethanol, Com,	Ethanol, Сот, МW Соаі	Ефanol, Сот, МW ИG	Ethanol, Com, MW NG, Wet Feed	Ethanol, CA Com, Wet Feed	Ethanol, Brazil Sugar Cane	AD, lonstila Poplar, Cellulose	Ethanol, CA Switch Grass
Vehic	Vehicle Type	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV
Vehicle Technology	nology	FFV	FFV	FFV	FFV	FFV	FFV	FFV	FFV
Fossil	M J/mi	3.32	3.53	3.26	2.83	2.63	1.18	1.00	1.23
Petroleum	MJ/mi	1.23	1.26	1.24	1.24	1.15	1.07	1.12	1.07
Natural Gas	MJ/mi	1.61	0.48	1.77	1.35	1.48	0.11	-0.13	0.16
Coal	MJ/mi	0.49	1.80	0.24	0.24	0.01	0.00	0.00	0.00
Non Fossil	MJ/mi	3.05	3.05	3.05	3.05	3.05	8.34	7.21	5.46
WTT	MJ/mi	2.58	2.79	2.51	2.08	1.88	5.72	4.40	2.90
WILL	MJ/mi	3.80	3.80	3.80	3.80	3.80	3.80	3.80	3.80
GHGs (weighted)									
ΗM	g/mi	92	135	4	-72	25	-160	-180	-146
ΑL	g/mi	780	280	280	280	780	280	280	280
TOTAL	g/mi	306	416	584	259	228	120	5	135
Criteria, Total									
00 ×	g/mi	0.165	0.187	0.182	0.179	0.174	1	0.136	0.149
8	g/mi	0.982	1.089	1.01	0.998	0.937	ı	0.793	0.726
Ň	g/mi	0.494	0.610	0.476	0.460	0.218	I	0.469	0.401
PM10 (x10)	g/mi	1.760	4.813	1.199	1.18 <u>4</u>	0.756	1	1.061	0.945
Criteria, Urban									
200	g/mi	0.068	0.068	0.069	0.069	0.068	ı	0.067	0.068
8	g/mi	0.505	0.504	0.505	0.505	0.505	I	0.519	0.528
ŏ	g/mi	0.053	0.052	0.053	0.053	0.039	I	0.058	0.064
PM10 (x10)	g/mi	0.305	0.305	0.305	0.305	0.304	ł	0.308	0.312
Urban Toxics, (weighted	eighted)								
Benzene	g/mi	3.4E-03	3.4E-03	3.4E-03	3.4E-03	i	i	i	ŀ
1-3 Butadiene	g/m	3.2E-03	3.2E-03	3.2E-03	3.2E-03	ł	i	1	ŀ
Formaldehyde	g/mi	4.1E-04	4.1E-04	4.1E-04	4.1E-04	i	i	I	}
Acetaldehyde	g/mi	5.0E-05	5.0E-05	5.0E-05	5.0E-05	i	i	i	i
Diesel PM	g/mi	6.6E-02	6.6E-02	6.6E-02	6.6E-02	ı	i	1	1

Figure A-6. LDA Vehicle Class: Model Years 2010 and Newer (concluded)

Scenario Year 2030: LDA Vehicle Class: Model Year Start 2010 (new)	2030	: LDA Ve	shicle Cl₂	SS: Moc	lel Year \$	Start 201	0 (new)		
WTT Case ID	Q #8	8	BF2	EE	E14	Et74	Et77	Et21	B123
WTT Description	ption	Ethanol, Com, WW Ave	Ethanol, Com, Mw Coal	Ethanol, Сот, МW ИG	Ethanol, Com, MW NG, Wet Feed	Ethanol, CA Com, Wet Feed	Ethanol, Brazil Sugar Cane	Ethanol, CA Poplar, Cellulose	Ethanol, CA Switch Grass
Vehicle Type	Type	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV	E85 FFV
Vehicle Technology	ology	FFV	FFV	FFV	FFV	FFV	FFV	FFV	FFV
Fossil	MJ/mi	3.12	3.32	3.06	2.66	2.47	1.11	0.94	1.16
Petroleum M	MJ/mi	1.15	1.18	1.17	1.16	1.08	1.00	1.06	1.00
Natural Gas M	MJ/mi	1.51	0.45	1.67	1.27	1.39	0.11	-0.12	0.15
Coal	MJ/mi	0.46	1.69	0.23	0.23	0.01	0.00	0.0	0.00
Non Fossil M	MJ/mi	2.86	2.87	2.86	2.86	2.86	7.83	6.77	5.13
WTT	MJ/mi	2.45	2.62	2.36	1.95	1.77	5.37	4.14	2.72
MIT WIT	MJ/mi	3.57	3.57	3.57	3.57	3.57	3.57	3.57	3.57
GHGs (weighted)									
	g/mi	54	127	က	-50	4	-151	-169	-137
MLT 6	g/mi	7 8	26 26	5 64	7 8	564	7 8	7 8	7 9
TOTAL	g/mi	288	391	267	244	215	113	88	127
Criteria, Total									
O	g/mi	0.171	0.191	0.187	0.184	0.179	1	0.143	0.156
	g/mi	1.008	1.108	1.036	1.023	0.965	i	0.831	0.768
NOX	j/mj	0.468	0.577	0.451	0.436	0.208	ı	0.444	0.381
PM10 (x10) g	g/mì	1.694	4.562	1.167	1.153	0.751	ı	1.037	0.929
Criteria, Urban									
o	j/m/g	0.080	0.080	0.080	0.080	0.080	ł	0.079	0.080
	g/mi	0.560	0.560	0.561	0.561	0.561	ı	0.574	0.582
NOX 6	g/mi	0.056	0.055	0.056	0.056	0.042	ı	0.02	0.065
PM10 (x10) g	g/mi	0.328	0.328	0.329	0.328	0.327	I	0.331	0.334
Urban Toxics, (weighted	thted)								
Benzene	g/mi	4.2E-03	4.2E-03	4.2E-03	4.2E-03	I	i	ı	ı
	g/mi	3.8E-03	3.8E-03	3.8E-03	3.8E-03	ł	I	ŀ	1
Formaldehyde g	g/mi	4.4E-04	4.4E-04	4.4E-04	4.4E-04	i	1	ı	i
/de	g/mi	5.2E-05	5.2E-05	5.2E-05	5.2E-05	I	1	ļ	i
Diesel PM g	g/mi	6.1E-02	6.1E-02	6.1E-02	6.1E-02	1	i	I	1

Figure A-7. LDA Vehicle Class: All Model Years (Biodiesel Blends, Renewable Diesel Blends and XTL Blends)

Scenario Year 2012: LDA Vehicle Class: All Model Years (blend)

I WITT COM	(1) W	l		אם נוס אם אם א	٤	200	ž	P.W.2	٥	6	K
	B 5	,	3 MV	. El	Wi ns		(je	i le	. ete	A3	2 1
WTT Description	ription	Diese	E-Dies Ave. N HOJE	,GB OnsO	BD, M SoyBe	BD, C Busta	Ren Diese Oano	Ren Diese Palm (GTL Memo NG), JT8 Sigo9	JTO 8₀0 800
Vehic	e Type	1)	ULSD	BD20	BD20	BD20	FTD 30	FTD 30	FTD 30	FTD 30	FTD 30
Vehicle Tech	nology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	4.89	4.82	4.31	4.37	4.48	3.64	3.64	5.48	3.53	5.88
Petroleum	MJ/mi		4.29	3.71	3.76	3.79	3.17	3.17	3.19	3.21	3.20
Natural Gas	MJ/mi		0.42	0.60	0.62	0.69	0.46	0.46	2.30	0.31	0.42
Coal	MJ/mi		0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.26
Non Fossil	MJ/mi	0.01	0.22	92.0	0.77	0.77	1.22	1.22	0.00	2.05	0.02
WTT	MJ/mi		1.00	1.03	1.10	1.20	0.81	0.81	1 .	4 .	1.86
WILL	MJ/mi		4.8	4. 2	4.04	4. 20.	4.04	4.04	4. 2	4.04	4.04
GHGs (weighted)											
MΤ	g/mi	29	72	16	21	22	φ	-5	87	<u>ج</u>	87
ΑL	g/mi	306	308	310	310	310	302	305	305	302	302
TOTAL	g/mi	375	381	326	331	337	536	303	392	274	392
Criteria, Total											
200	g/mi	0.220	0.227	0.286	0.297	0.362	I	I	0.178	0.168	0.181
8	g/mi	0.823	0.861	0.856	1.056	1.139	1	ı	0.705	0.700	0.693
Ň	g/mi	1.685	1.751	1.711	1.739	1.748	I	i	1.618	1.587	1.600
PM10 (x10)	g/mi	1.548	1.789	1.438	1.461	1.463	I	I	1.444	1.441	5.027
Criteria, Urban											
00 00	g/mi	0.191	0.191	0.153	0.153	0.154	I	i	0.145	0.147	0.145
8	g/mi	0.758	0.758	0.679	0.679	0.681	I	ł	0.637	0.643	0.638
Ň	g/mi	1.467	1.468	1.509	1.509	1.516	I	I	1.395	1.408	1394
PM10 (x10)	g/mi	`	1.388	1.279	1.279	1.282	ł	ı	1.298	1.305	1.298
Urban Toxics, (weighted)	eighted)										
Benzene	g/mi	1.7E-02	I	!	I	!	!	I	1.3E-02	!	I
1-3 Butadiene	g/mi	9.5E-03	ļ	1	i	I	l	ŀ	7.1E-03	ł	i
Formaldehyde	g/mi	2.6E-02	1	1	i	l	l	ı	2.0E-02	ł	I
Acetaldehyde	g/mi	5.8E-03	I	1	i	l	ł	i	4.4E-03	!	i
Diesel PM	g/mi	5.7E+00	1	ı	I	!	1	I	5.2E+00	I	I

Figure A-7. LDA Vehicle Class: All Model Years (continued)

Biodiesel Blends, Renewable Diesel Blends and XTL Blends

Scenario Year 2017: LDA Vehicle Class: All Model Years (blend)

SCRIIGIIO 160	1 77	. LUA .	ellicie vic	130. All I	DI IONOL	dis iniei	,				
WTT Case ID D2 D6 BD1 BD3 BD4	Sase ID	2	2	8	B	쯢	80	BD23	Σ	ខ	Ę
WTT Description	ription	Diesel, CA ULSD	E-Diesel, Ave. MW EtOH	BD, Canola	BD, MW SoyBean	BD, CA	Ren. Diesel Canola	Ren. Diesel Palm Oil	,ДТЭ ВтопэЯ ВИ	BTL, CA Poplar	CTL, leoO SOO
Vehicle Typ	e Type	astn	ULSD	BD20	BD20	BD20	FTD 30	FTD 30	FTD 30	FTD 30	FTD 30
Vehicle Technology	nology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi		4.37	3.90	3.95	4.05	3.29	3.29	4.94	3.19	5.32
Petroleum	MJ/mi	4.05	3.89	3.36	3.40	3.43	2.88	2.88	2.89	2.91	2.90
Natural Gas	MJ/mi	0.38	0.39	0.54	0.55	0.62	0.45	0.42	2.05	0.28	0.38
Coal	MJ/mi	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.04
Non Fossil	MJ/mi	0.01	0.20	0.69	69.0	0.70	1.1	1.1	0.00	1.86	0.02
WTT	MJ/mi	0.77	0.90	0.93	0.98	1.08	0.73	0.73	1.28	1.39	1.67
WILL	MJ/mi	3.66	3.66	3.66	3.66	3.66	3.66	3.66	3.66	3.66	3.66
GHGs (weighted)										-	
ΗM	g/mi	8	65	14	19	24	φ	-5	9/	-58	78
MI.	g/mi	281	281	282	282	282	277	277	277	277	277
TOTAL	g/mi	¥	346	296	30	302	272	275	353	249	326
Criteria, Total											
00 N	g/mi	0.187	0. 191	0.247	0.254	0.311	Ι	Ι	0.152	0.142	0.155
8	g/mi	0.777	0.810	0.796	0.968	1.038	I	I	0.664	0.658	0.653
Š	g/mi	1.657	1.714	1.676	1.695	1.699	I	I	1.589	1.553	1.573
PM10 (x10)	g/mi	1.377	1.587	1.278	1.295	1.295	Ι	I	1.287	1.279	4.534
Criteria, Urban											
200	g/mi	0.161	0.161	0.129	0.129	0.130	i	I	0.123	0.124	0.123
8	g/mi	0.718	0.718	0.642	0.642	0.643	Ι	!	0.603	0.608	0.604
Š	g/mi	1.461	1.462	1.497	1.497	1.501	I	I	1.389	1.397	1.388
PM10 (x10)	g/mi	1.237	1.237	1.140	1.140	1.141	I	I	1.158	1.162	1.159
Urban Toxics, (weighted	eighted)										
Benzene	g/mi	1.4E-02	l	1	i	i	ŀ	I	1.1E-02	i	I
1-3 Butadiene	g/mi	8.0E-03	1	I	ļ	i	l	i	6.0E-03	ŀ	i
Formaldehyde	g/mi	2.2E-02	i	I	Ι	i	I	ı	1.6E-02	1	ı
Acetaldehyde	g/mi	4.9E-03	ŀ	I	i	í	i	ı	3.7 E -03	I	I
Diesel PM	g/mi	5.0E+00	!	I	Ι	I	1	I	4.6E+00	I	ļ

Figure A-7. LDA Vehicle Class: All Model Years (continued)

Scenario Year 2022: LDA Vehicle Class: All Model Years (blend)

WIT Com IN The Bra Bra Bra Bra			2012			200		520		E	ŀ
, = =	386	7 '	S .	2	3	Š	8	BU23	Σ	2	£
WTT Description	ription	Diesel,	E-Diesel, Ave. MW EtOH	BD, Canola	BD, MW SoyBean	BD, CA	Ren. Diesel Canola	Ren. Diesel Palm Oil	GTL, etomeЯ NG	BTL, CA Poplar	CT.) IsoO SOO
Vehicle Type	e Type	OLSD	OLSD	BD20	BD20	BD20	FTD 30	FTD 30	FTD 30	FTD 30	FTD 30
Vehicle Techr	nology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	ı	3.93	3.50	3.55	3.63	2.96	2.96	4.41	2.87	4.77
Petroleum	MJ/mi		3.50	3.02	3.06	3.08	2.59	2.59	2.60	2.62	2.61
Natural Gas	MJ/mi		0.35	0.48	0.49	0.55	0.37	0.37	1.82	0.25	0.33
Coal MJ/mi	MJ/mi		0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4 8.
Non Fossil	MJ/mi		0.18	0.62	0.62	0.63	0.99	0.99	0.00	1.67	0.02
MTT	MJ/mi	0.69	0.81	0.83	0.88	0.97	99.0	99.0	1.12	1.25	1.50
WIL	MJ/mi		3.29	3.29	3.29	3.29	3.29	3.29	3.29	3.29	3.29
GHGs (weighted)											
MT	g/mi	\$	28	12	17	73	ιç	-5	29	-52	20
MΠ	g/mi	253	253	25 4	5 5	254	250	250	250	220	220
TOTAL	g/mi	307	312	267	271	275	245	248	317	225	320
Criteria, Total											
VOC	g/mi	0.138	0. 14	0.198	0.203	0.254	I	I	0.114	0.104	0.117
8	g/mi	0.727	0.757	0.740	0.893	0.955	I	I	0.621	0.615	0.612
×ON	g/mi	1.628	1.678	1.6 <u>4</u>	1.657	1.658	I	í	1.559	1.522	1.546
PM10 (x10)	g/mi	1.408	1.594	1.303	1.316	1.314	I	Ι	1.316	1.306	4.235
Criteria, Urban											
00 NOC	g/mi	0.115	0.115	0.092	0.092	0.093	I	I	0.088	0.089	0.088
8	g/mi	0.675	0.675	0.602	0.602	0.603	I	Ι	0.567	0.571	0.567
×ON	g/mi	1.453	1.454	1.486	1.487	1.489	l	ı	1.381	1.385	1.381
PM10 (x10)	g/mi	1.285	1.285	1.181	1.181	1.182	1	Ι	1.202	1.204	1.202
Urban Toxics, (weighted)	eighted)										
Benzene	g/mj	1.0E-02	!	ŀ	1	ì	ı	ì	7.5E-03	Ι	ļ
1-3 Butadiene	g/mi	5.6E-03	ł	I	i	l	I	i	4.2E-03	ı	
Formaldehyde	g/mi	1.5E-02	1	ł	1	Ι	1	ı	1.1E-02	ı	i
Acetaldehyde	g/mi	3.4E-03	!	I	i	ŀ	l	ı	2.6E-03	I	
Diesel PM	g/mi	5.2E+00	1	i	1	ı	i	I	4.8E+00	ı	ı

Figure A-7. LDA Vehicle Class: All Model Years (concluded)

Scenario Year 2030: LDA Vehicle Class: All Model Years (blend)

Scenario Year	2030	: LDA V	enicie us	ISS: All I	nodel rea	ars (pien	(D)				
WTT Case ID D2 D6 BD1 BD3 BD4	ase ID	05	26	B	BD 3	8 0	BDS	BD23	Σ	E	Æ
WTT Description	iption	Diesel, CA ULSD	E-Diesel, Ave. MW EtOH	BD, Canola	BD, MW SoyBean	BD, CA Mustard	Ren. Diesel Canola	Ren. Diesel Palm Oil	, ПЭ атотная ЭN	BTL, CA Poplar	CT., So3 CCS
Vehicle Typ	Type	OLSD	OFTO	BD20	BD20	BD20	FTD 30	FTD 30	FTD 30	FTD 30	FTD 30
icle Tech	ology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	3.56	3.52	3.13	3.18	3.26	2.65	2.65	3.95	2.57	4.28
Petroleum	MJ/mi	3.26	3.13	2.71	2.74	2.76	2.32	2.32	2.33	2.35	2.33
Natural Gas N	MJ/mi	0.30	0.31	0.43	0.44	0.49	0.33	0.33	1.63	0.22	0.30
	MJ/mi	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.65
Non Fossil	MJ/mi	0.00	0.16	0.56	0.56	0.56	0.89	0.89	0.00	1.50	0.02
¥ LM	MJ/mi	0.62	0.73	0.74	0.79	98.0	0.59	0.59	1.00	1.12	<u>4</u> .
	MJ/mi	2.95	2.95	2.95	2.95	2.95	2.95	2.95	2.95	2.95	2.95
GHGs (weighted)											
	g/mi	84	52	£	15	19	ιĊ	-5	8	-53	æ
	g/mi	228	228	229	229	529	225	225	225	225	225
TOTAL	g/mi	276	780	240	244	247	220	223	282	202	288
Criteria, Total											
0	j/m	0.135	0.140	0.185	0.190	0.236	ŀ	I	0.110	0.101	0.113
8	g/mi	0.513	0.539	0.539	0.677	0.732	I	ì	0.440	0.435	0.431
ŇON	g/mi	1.786	1.831	1.807	1.818	1.819	1	ţ	1.708	1.674	1.696
	g/mi	1.395	1.562	1.289	1.301	1.299	I	I	1.304	1.294	3.919
Criteria, Urban											
	g/mi	0.114	0.114	0.091	0.091	0.092	ì	ı	0.087	0.088	0.087
8	g/mi	0.466	0.466	0.416	0.416	0.417	l	1	0.391	0.395	0.392
Ň	g/mi	1.629	1.630	1.665	1.665	1.667	I	I	1.549	1.552	1.548
PM10 (x10)	g/mi	1.284	1.285	1.181	1.181	1.181	ı	i	1.202	1.203	1.202
Urban Toxics, (weighted)	ighted)										
	g/mi	1.0E-02	1	i	ļ	i	I	1	7.5E-03	I	I
1-3 Butadiene	g/mi	5.6E-03	l	I	I	l	1	!	4.2E-03	l	1
Formaldehyde	g/mi	1.5E-02	I	ļ	I	I	i	ı	1.1E-02	I	ı
Acetaldehyde	g/mi	3.4E-03	İ		ŀ	i	l	I	2.6E-03	I	ı
Diesel PM	g/mi	5.2E+00	l	I	I	ł	!	ı	4.8E+00	1	!

(Diesel, Biodiesel Blends, Renewable Diesel Blends and XTL Blends) Figure A-8. Urban Buses: All Model Years

Scenario Year 2012: UB Vehicle Class: All Model Years (blend)

Ĭ	WTT Case ID	2	D 2	2	8	<u>8</u>	200	8	5	BD23	Œ	Œ	Ľ	æ	Æ	Æ
WTT Description	cription	C∀ NF2D	Dlesel, CA ULSD	E-Diesel, WW. Ave. MW EtOH	E-Diesel, WW.evA HOj3	BD, Canola	BD, MW SoyBean	BD, CA Mustard	Ren. Diesel Canola	Ren. Diesel Palm Oil	GTL, Remote NG	СТС, Ветоњ В	BTL, CA Poplar	BJL, CA Poplar	CTL, Coal CCS	CTL, Coal CCS
Vehic	Vehicle Type	ash	ULSD HEV	OLSD	ULSD HEV	BD20	BD20	BD20	FTD 30	FED 30	FTD 30	F100	FTD 30	FT100	FTD 30	FT100
Vehicle Technology	ygolout	ICEV	ICEV	ICEV	KEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	43.67	34.93	43.05	34.44	38.50	39.07	40.01	32.49	32.49	48.98	60.04 40.04	31.49	1.97	52.52	71.80
Petroleum	MJ/mi	39.89	31.92	38.34	30.67	33.13	33.55	33.82	28.35	28.35	28.47	0.78	28.72	1.62	28.57	1.11
Natural Gas	M.J/mi	3.77	3.02	3.79	3.03	5.36	5.51	6.18	4.14	4.14	20.52	59.27	2.77	0.35	3.80	3.74
Coal	MJ/mi	0.0	0.00	0.93	0.74	0.00	0.0	0.01	0.00	0.0	0.0	0.0	0.0	0.0	20.16	86.94
Non Fossil	MJ/mi	0.05	0.04	1.97	1.58	6.83	6.84	6.85	10.90	10.90	0.0	0.01	18.34	60.80	0.18	0.48
WTT	MJ/mi	7.60	6.08	8.30	7.12	9.21	9.79	10.74	7.26	7.26	12.90	24.99	13.72	27.70	16.58	37.21
WIT	MJ/mi	36.12	28.90	36.12	28.90	36.12	36.12	36.12	36.12	36.12	36.12	35.07	36.12	35.07	36.12	35.07
GHGs (weighted)																
MT	jm/g	595	476	848	518	143	96	239	şş	7	9//	1178	-276	-2313	778	1184
MΠ	jm/g	2692	2157	2692	2157	2704	2704	2704	2659	2659	2658	2501	2658	2501	2658	2501
TOTAL	g/mi	3287	2633	3340	2675	2846	2894	2842	2603	2638	3434	3678	2382	188	3436	3685
Criteria, Total																
200	jm/g	1.199	1.121	1.264	1.172	1.952	2.043	2.626	ı	i	1.016	1.248	0.923	0.94	1.042	1.335
8	Ę,	4.257	4.137	4.596	4.408	4.889	6.682	7.417	I	ı	3.697	4.323	3.649	4.163	3.587	3.959
Š	jm/g	20.889	20.489	21.479	20.961	21.239	21.491	21.570	ı	I	20.000	21.016	19.722	20.094	19.838	20.477
PM10 (x10)	g/mi	4.861	4.571	7.013	6.293	4.577	4.783	4.798	ı	ı	4.488	4.435	4.455	4.326	36.490	110.716
Criteria, Urban																
200	im/g	0.934	0.909	0.938	0.912	0.760	0.761	0.770	1	ı	0.723	0.898	0.738	0.947	0.722	0.896
8	jm/g	3.672	3.669	3.674	3.670	3.308	3.309	3.330	I	ı	3.089	3.877	3.146	3.868	3.096	3.700
Ŏ	jm/g	18.942	18.932	18.952	18.940	19.435	19.436	19.499	ı	ļ	18.007	18.970	18.123	19.357	17.999	18.944
PM10 (x10)	g/mi	3.433	3.429	3.435	3.431	3.156	3.156	3.181	I	ı	3.181	3.448	3.241	3.650	3.184	3.461
Urban Toxics, (weighted	eighted)															
Benzene	jm/g	7.8E-02	7.8E-02	I	I	ı	I	ı	ŀ	I	5.9E-02	7.8E-02	I	I	I	F
1-3 Butadiene	Ę,	4.4E-02	4.4E-02	I	I	I	1	i	!	I	3.3E-02	4.4E-02	ı	!	I	ł
Formaldehyde		1.2E-01	1.2E-01	i	I	i	ı	i	I	i	8.9E-02	1.2E-01	1	ı	1	I
Acetaldehyde	Ē/ð	2.7E-02	2.7E-02	ł	I	i	i	ı	ł	I	2.0E-02	2.7E-02	ı	ŀ	I	i
Diesel PM	g/mi	1.6E+01	1.6E+01	I	I	i	I	i	!	i	1.5 E +01	1.6E+01	1	!	ì	ı

Figure A-8. Urban Buses: All Model Years (continued)

Scenario Year 2017: UB Vehicle Class: All Mo	ar 2017	: UB Ve	hicle Clas	s: All Mc	odel Years (blend)	(plend)										
T/M	WTT Case ID		D2	90	90	BD1	803	804	808	BD23	Œ	Œ	æ	æ	뫈	æ
WTT Description	cription	Diesel, CA ULSD	Diesel, CA ULSD	E-Diesel, Ave. MW EtOH	E-Diesel, WW. Ave. WW EtOH	BD, Canola	8D, MW	BD, CA Mustard	Ren. Diesel Canola	Ren. Diesel Palm Oil	GTL, Remote NG	GTL, Remote NG	BTL, CA	BTL, CA Poplar	CTL, Coal CCS	CTL, Coal CCS
Vehic	Vehicle Type	OLSD	ULSD HEV	OLSD	ULSD HEV	BD20	BD20	BD20	FTD 30	FTD 30	F133	FT100	FTD 30	FT100	FTD 30	FT100
Vehicle Technology	nology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	42.99	34.39	42.42	33.93	37.85	38.40	39.31	31.99	31.99	47.96	58.24	31.01	1.93	51.66	70.52
Petroleum	MJ/mi	39.31	31.45	37.77	30.22	32.64	33.05	33.31	27.93	27.93	28.05	9.76	28.30	9.	26.15	1.10
Natural Gas	MJ/mi	3.68	2.95	3.77	3.01	5.21	5.35	8.00	4.06	4.06	19.91	57.48	2.71	0.33	3.65	3.46
Coal	MJ/mj	0.00	0.00	0.88	0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.86	65.96
Non Fossil	MJ/mi	0.05	0.04	1.93	1.55	6.74	6.74	9.76	10.74	10.74	0.0	0.01	18.07	59.91	0.20	0.55
ΗM	MJ/mi	7.45	5.96	8.76	7.01	9.00	9.26	10.48	7.13	7.13	12.41	23.70	13.49	27.29	16.27	36.51
WIT	MJ/mi	35.59	28.47	35.59	28.47	35.59	35.59	35.59	35.59	35.59	35.59	34.55	35.59	34.55	35.59	34.55
GHGs (weighted	-															
E _A	g/mi	%	467	634	202	136	8	528	፠	-22	735	1068	-273	-2280	761	1153
ΣŁ	g/iii	2653	2125	2653	2125	2004	5 9	5 964	2620	2620	2619	2464	2619	2464	2619	2464
TOTAL	g/mi	3237	2593	3287	2633	2801	2847	2893	2564	2598	3354	3532	2346	\$	3380	3617
Criteria, Total																
000	g/mi	1.138	1.062	1.198	1.110	1.861	1.926	2.483	ı	1	0.965	1.161	0.865	0.852	0.993	1.275
8	jm/g	3.857	3.741	4.180	4.000	4.452	6.122	6.804	1	ı	3.355	3.915	3.297	3.720	3.250	3.565
ŏ	jm/g	18.935	18.550	19.494	18.997	19.181	19.363	19.400	l	i	18.134	19.044	17.783	17.678	17.984	18.545
PM10 (x10)	g/mi	4.497	4.223	6.530	5.849	4.210	4.376	4.367	ı	i	4.156	4.102	4.076	3.837	35.692	108.837
Criteria, Urban																
8	jm/g	0.882	0.857	0.886	0.860	0.714	0.715	0.722	I	I	0.683	0.846	0.692	0.877	0.682	0.844
8	g/mi	3.287	3.285	3.289	3.286	2.953	2.953	2.967	ł	I	2.764	3.292	2.613	3.455	2.771	3.313
ğ	g/mi	17.037	17.032	17.047	17.039	17.444	17.445	17.481	ı	I	16.196	17.065	16.266	17.299	16.188	17.039
PM10 (x10)	g/mi	3.134	3,132	3.136	3.134	2.865	2.865	2.879	1	1	2.904	3.150	2.938	3.260	2.908	3.160
Urban Toxics, (weighted	veighted)															
Benzene	g/mi	7.3E-02	7.3E-02	I	I	I	ı	ı	I	I	5.5E-02	7.4E-02	I	I	I	ı
1-3 Butadiene		4.1E-02	4.1E-02	I	I	I	I	I	I	I	3.1E-02	4.1E-02	I	!	ı	I
Formaldehyde		1.1E-01	1.1E-01	1	1	i	ı	1	i	i	8.4E-02	1.1E-01	1	i	1	ı
Acetaldehyde	g/mi	2.5E-02	2.5E-02	I	1	ł	1	I	!	i	1.9E-02	2.5E-02	1	1	I	ı
Diesel PM	g/mi	1.5E+01	1.5E+01	Ι	Ι	i	I	I	1	1	1.4E+01	1.5E+01	1	I	ı	ı

Figure A-8. Urban Buses: All Model Years (continued)

Scenario fear 2022: UB Venicie Class: All Model fears (Dieng	3ar 2022	: UB VE	enicie Clas	S: AII M	odei rears	(Diena)					
HM	WTT Case ID		20	20	90	BD4	BD3	854	809	BD23	ľ
WTT Description	scription	Diesel,	Diesel, CA ULSD	E-Diesel, Ave. MW EtOH	E-Diesel, Ave. MW EtOH	BD, Canola	SoyBean BD, MW	BD, CA Mustard	Ren. Diesel Canola	Ren. Diesel Palm Oil	,лэ
Vehi	Vehicle Type	OLSD	ULSD HEV	OLSD	ULSD HEV	BD20	BD20	BD20	FTD 30	FTD 30	Æ
Vehicle Tec	chnology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	Ö
Fossil	MJ/mi	42.43	33.94	41.90	33.52	37.33	37.88	38.77	31.57	31.57	47
Petroleum	MJ/mi	38.83	31.06	37.31	29.85	32.24	32.64	32.90	27.59	27.59	23
Natural Gas	M.Vmi	3.60	2.88	3.73	2.98	5.09	5.23	2.86	3.98	3.98	13
Coal	MJ/mi	0.00	0.00	98.0	0.69	0.00	0.00	0.0	0.0	0.00	O
Non Fossil	MJ/mi	0.05	0.0	1.90	1.52	99.9	6.67	6.68	10.60	10.60	0
Ę	M 1/mi	4 22	30 3	900	8	0 0	00.0	40.00	4 00	4	Ť

MLL	WTT Case ID	DZ	D2	2	92	B D4	BD3	B	808	BD23	E	Ε	æ	æ	Æ	ኤ
WTT Description	cription	Diesel,	Diesel, CA ULSD	E-Diesel, WW. Ave. MW EtOH	E-Diesel, Ave. MW EtOH	BD, Canola	SoyBean BD, MW	BD, CA Mustard	Ren. Diesel Canola	Ren. Diesel Palm Oil	стг, Кетоъ ИС	GTL, Remote NG	BTL, CA Poplar	BTL, CA Poplar	COSI COSI CCS	CTL, Coal CCS
Vehic	Vehicle Type	OLSD	ULSD HEV	OLSD	ULSD HEV	BD20	BD20	BD20	FTD 30	FTD 30	FTD 30	FT100	FTD 30	FT100	FI 30	FT100
Vehicle Technology	nology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	42.43	33.94	41.90	33.52	37.33	37.88	38.77	31.57	31.57	47.08	56.64	30.60	1.90	50.94	69.44
Petroleum	M.J/mi	38.83	31.06	37.31	29.85	32.24	32.64	32.90	27.59	27.59	27.70	0.75	27.85	1.58	27.80	1.08
Natural Gas	M.J/mi	3.60	2.88	3.73	2.98	5.09	5.23	5.86	3.98	3.98	19.38	55.89	2.85	0.32	3.52	3.21
Coal	MJ/mi	0.0	0.00	98.0	0.69	0.00	0.0	0.01	0.00	0.00	0.00	0.0	0.00	0.00	19.62	65.15
Non Fossil	MJ/mi	0.02	0.0	1.90	1.52	99.9	6.67	6.68	10.60	10.60	0.0	0.01	17.85	59.18	0.22	0.61
WIT	MJ/mi	7.33	5.86	8.65	6.92	8. 84	9.39	10.30	7.02	7.02	11.97	22.52	13.30	26.95	16.00	35.92
МП	MJ/mi	35.15	28.12	35.15	28.12	35.15	35.15	35.15	35.15	35.15	35.15	34.13	35.15	34.13 E	35.15	34.13
GHGs (weighted)																
ШM	jm/g	574	459	624	499	131	176	222	-57	-24	715	1025	-272	-2252	745	1126
ΜL	jm/g	2620	2099	5 620	2099	2632	2632	2632	2588	2588	2587	2434	2587	2434	2587	2434
TOTAL	g/mi	3194	2559	3244	2598	2763	2808	2854	2530	2564	3302	3459	2315	182	3332	3560
Criteria, Total																_
, 00	jm/g	1.075	1.001	1.135	1.049	1.792	1.846	2.391	ŀ	i	0.914	1.114	0.812	0.775	0.9 4	1.213
8	g/mi	3.572	3.459	3.891	3.714	4.171	5.804	6.469	I	ı	3.111	3.622	3.049	3.417	3.009	3.284
Ň	jm/g	17.376	17.001	17.917	17.433	17.554	17.688	17.700	ı	i	16.646	17.470	16.253	16.164	16.505	17.002
PM10 (x10)	g/mi	4.235	3.969	6.216	5.554	3.949	4.087	4.065	I	Ι	3.915	3.856	3.806	3.496	35.065	107.309
Criteria, Urban																
VOC	jE/6	0.826	0.802	0.830	0.805	0.668	0.669	0.675	I	I	0.640	0.790	0.646	0.810	0.640	0.789
8	g/mi	3.013	3.011	3.014	3.013	2.702	2.703	2.713	ł	ı	2.534	3.016	2.578	3.167	2.539	3.037
Š	g/mi	15.515	15.512	15.525	15.520	15.871	15.871	15.896	I	I	14.749	15.543	14.791	15.684	14.741	15.517
PM10 (x10)	g/mi	2.913	2.911	2.915	2.913	2.655	2.655	2.664	1	ı	2.700	2.928	2.716	2.982	2.702	2.937
Urban Toxics, (weighted	eighted)															
Benzene	jm/g	6.8E-02	6.8E-02	Ι	ŀ	i	I	i	!	i	5.1E-02	6.8E-02	I	ı	1	ı
1-3 Butadiene	jm/g	3.8E-02	3.8E-02	I	I	I	ı	I	1	I	2.9E-02	3.8E-02	1	I	ı	ı
Formaldehyde		1.0E-01	1.0E-01	I	ı	i	I	1	1	I	7.8E-02	1.0E-01	I	!	i	!
Acetaldehyde	jm/g	2.3E-02	2.3E-02	I	I	i	i	I	1	Ι	1.8E-02	2.3E-02	1	I	ı	ı
Diesel PM	g/mi	1.4E+01	1.4E+01	I	ı	1	I	1	I	I	1.3E+01	1.4E+01	I	!	i	i

Figure A-8. Urban Buses: All Model Years (concluded)

Scenario Year 2030: UB Vehicle Class: All Model Years (blend)

) IIM	WTT Case ID	05	22	8	8	ā	B	쳞	803	BD23	E	E	 æ	E E	25	Æ
WTT Description	cription	Diesel, CA ULSD	Diesel, CA ULSD	E-Diesel, Ave. MW EtOH	E-Diesel, Ave. MW EtOH	BD, Canola	ВD, МW SoyBean	BD, CA	Ren. Diesel Canola	Ren. Diesel Palm Oll	СТС, Ветпоћа В	GTC, etomofa NG	BTL, CA Poplar	BTL, CA Poplar	C7T.) Coal SOO	CTL, Coal CCS
Vehici	Vehicle Type	OLSD	ULSD HEV	OLSD	ULSD HEV	BD20	BD20	BD20	FTD 30	FTD 30	FTD 30	FT100	FTD 30	FT100	FTD 30	FT100
Vehicle Technology	nology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	41.96	33.57	41.43	33.15	36.92	37.46	38.34	31.22	31.22	46.56	56.01	30.26	1.88	50.37	68.67
Petroleum	MJ/mi	38.39	30.72	38.89	29.51	31.88	32.28	32.54	27.28	27.28	27.39	0.74	27.64	.58 8:	27.49	1.07
Natural Gas	MJ/mi	3.56	2.85	3.69	2.95	5.03	5.17	5.80	3.94	3.94	19.16	55.27	2.62	0.32	3.48	3.17
Soal	MJ/mi	0.00	0.00	0.85	0.68	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	19.40	64.43
Non Fossil	MJ/mi	0.05	0.04	1.88	1.50	6.59	6.59	6.61	10.49	10.49	0.0	0.01	17.65	58.52	0.21	0.60
±w.	MJ/mi	7.24	5.80	8.55	6.84	8.74	9.29	10.19	6.9 19.	9. 9.	11.83	22.27	13.15	26.65	15.62	35.52
WIT	MJ/mi	34.76	27.81	34.76	27.81	34.76	34.76	34.76	34.76	34.76	34.76	33.75	34.76	33.75	34.76	33.75
GHGs (weighted)	_															
ШM	g/mi	288	4 54	617	493	2	174	219	-57	-53	707	1013	-269	-2227	737	1113
ΑE	jm/6	2591	2076	2591	2076	2603	2603	2603	2559	2559	2559	2407	2559	2407	2559	2407
TOTAL	g/mi	3159	2530	3208	2570	2732	2777	2822	2502	2536	3265	3420	2290	98	3295	3520
Criteria, Total																
00 00	g/mi	0.970	0.897	1.029	0.944	1.698	1.752	2.290	1	ı	0.834	1.009	0.732	0.671	0.863	1.106
8	g/mi	2.935	2.823	3.250	3.075	3.592	5.206	5.863	I	1	2.575	2.984	2.512	2.774	2.474	2.650
Š	g/mi	14.215	13.844	14.748	14.270	14.326	14.458	14.467	I	I	13.641	14.307	13.245	12.992	13.502	13,845
PM10 (x10)	g/mi	3.800	3.538	5.759	5.105	3.554	3.691	3.667	ļ	I	3.514	3.426	3.404	3.059	34.318	105.728
Criteria, Urban																
00 00	g/mi	0.724	0.700	0.728	0.703	0.586	0.587	0.593	ı	i	0.563	0.688	0.569	0.707	0.562	0.687
8	j/mj	2.382	2.381	2.384	2.382	2.138	2.138	2.147	ı	I	2.004	2.387	2.047	2.531	5.009	2.406
Š	g/mi	12.375	12.372	12.384	12.380	12.657	12.658	12.678	I	1	11.765	12.402	11.803	12.529	11.757	12.377
PM10 (x10)	g/mi	2.493	2.492	2.495	2.494	2.272	2.273	2.279	ł	I	2.313	2.508	2.327	2.556	2.315	2.517
Urban Toxics, (weighted	eighted)															
Benzene	jm/g	5.9E-02	5.9E-02	1	ı	ļ	ŀ	i	i	I	4.4E-02	5.9E-02	I	ı	ı	1
1-3 Butadiene	g/m	3.3E-02	3.3E-02	i	ı	i	ı	ļ	١	ı	2.5E-02	3.3E-02	l	ı	ı	ı
Formaldehyde	g/mi	8.9E-02	8.9E-02	I	I	I	I	I	Ι	1	6.7E-02	8.9E-02	I	1	ı	ı
Acetaldehyde	g/mi	2.0E-02	2.0E-02	I	I	Ι	Ι	ı	ļ	I	1.5E-02	2.0E-02	I	ı	1	1
Diesel PM	g/mi	1.2E+01	1.2E+01	ł	1	1	1	1	1	i	1.1E+01	1.2E+01	ł	ι	I	ı

Figure A-9. Urban Buses: Model Years 2010 and Newer (Diesel, Biodiesel Blends, Renewable Diesel Blends and XTL Blends)

Scenario Year 2012: UB Vehicle Class: Model	r 2012	: UB Ve	hicle Clas	s: Mode	ا≍	t 2010 (I	new)									
¥ ¥	WTT Case ID	2	2	2	2	6 0	B 03	충	B D2	BD23	Σ	E	E.	œ	ድ	Æ
WTT Description	ription	Diesel, CA ULSD	Diesel,	E-Diesel, Ave. MW EtOH	E-Diesel, Ave. MW EtOH	BD, Canola	SoyBean SoyBean	BD, CA	Ren. Diesel Canola	Ren. Diesel Palm Oil	етг, Ветоњя Ви	GTL, Remote NG	BTL, CA Popiar	BTL, CA Poplar	CTL, Cosi CCS	CTL, Coal CCS
Vehic	Vehicle Type	OLSD	ULSD HEV	OFTO	ULSD HEV	BD20	BD20	BD20	FTD 30	FTD 30	FTD 30	FT100	FTD 30	FT100	FFD 30	FT100
Vehicle Technology	nology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	43.23	34.59	42.63	34.10	38.12	38.68	39.61	32.16	32.16	48.50	59.45	31.18	1.95	52.00	71.09
Petroleum	M.Vmi	39.50	31.60	37.96	30.37	32.61	33.22	33.48	28.06	28.06	28.18	0.77	28.44	1.61	28.28	1.10
Natural Gas	MJ/mi	3.73	2.99	3.75	3.00	5.31	5.46	6.12	4.10	4.10	20.31	58.68	2.75	0.34	3.76	3.70
Coal	M.J/mi	0.0	0.00	0.92	0.74	0.0	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	19.96	66.28
Non Fossi!	MJ/mi	0.05	9.0	1.95	1.56	92.9	6.77	6.78	10.79	10.79	0.0	0.01	18.16	60.20	0.18	0.47
±w.	M-J/mi	7.52	6.02	8.81	7.05	9.12	69.6	10.63	7.19	7.19	12.77	24.74	13.58	27.43	16.42	36.84
Ě	MJ/mi	35.76	28.61	35.76	28.61	35.76	35.76	35.76	35.76	35.76	35.76	34.72	35.76	34.72	35.76	34.72
GHGs (weighted)																
E.M	g/mi	286	471	22	513	141	88	236	-55	-50	268	1166	-273	-2290	24	1172
ΜL	g/mi	2666	2136	2665	2135	2677	2677	2677	2632	2632	2632	2476	2632	2476	2632	2476
TOTAL	g/mi	3255	2607	3307	2648	2818	2865	2913	2578	2612	3400	3642	2359	186	3402	3648
Criteria, Total																
200	g/mi	0.430	0.353	0.494	0.404	1.336	1.426	2.002	I	ı	0.438	0.479	0.346	0.175	0.464	0.565
8	g/mi	1.479	1.361	1.815	1.629	2.406	4.181	4.910	I	1	1.363	1.545	1.315	1.386	1.254	1.185
ŏ	g/mi	2.641	2.245	3.225	2.712	2.626	2.876	2.954	I	ı	2.663	2.766	2.388	1.854	2.502	2.233
PM10 (x10)	g/mi	2.090	1.803	4.221	3.509	2.088	2.292	2.307	I	i	1.942	1.668	1.909	1.561	33.627	106.897
Criteria, Urban																
200	g/mj	0.168	0.143	0.172	0.146	0.155	0.156	0.166	I	ı	0.148	0.132	0.162	0.181	0.147	0.130
8	g/mj	0.901	0.898	0.902	0.899	0.841	0.842	0.862	ı	I	0.761	906.0	0.818	1.094	0.768	0.928
ŏ	jm/g	0.714	0.704	0.723	0.711	0.840	0.841	0.903	1	ı	0.689	0.741	0.804	1.124	0.681	0.715
PM10 (x10)	g/mi	0.677	0.673	0.679	0.674	0.681	0.682	902.0	1	1	0.648	0.692	0.708	0.891	0.651	0.704
Urban Toxics, (weighted	eighted)															
Benzene	g/mi	4.3E-03	4.3E-03	ı	1	I	I	ı	I	1	3.3E-03	4.3E-03	I	ļ	I	ı
1-3 Butadiene	g/mj	2.5E-03	2.4E-03	I	ł	i	I	I	!	i	1.9E-03	2.5E-03	1	I	I	ı
Formaldehyde	g/mi	6.6E-03	6.5E-03	ı	Ι	i	I	J	ı	i	5.0E-03	6.6E-03	I	I	J	J
Acetaldehyde	g/m	1.5E-03	1.5E-03	I	!	i	I	ı	l	i	1.1E-03	1.5E-03	I	I	ı	ı
Diesel PM	g/mi	2.3E+00	2.2E+00	ŀ		i		1	1		2.1E+00	2.3E+00		!	1	1

Figure A-9. Urban Buses: Model Years 2010 and Newer (continued)

Diesel, Biodiesel Blends, Renewable Diesel Blends and XTL Blends

Scenario Year 2017: UB Vehicle Class: Model Year Start 2010 (new)

CTL, Coal CCS

СТ., 1603 203

BTL, CA Poplar

BTL, CA Poplar

GTL, Remote NG

СТГ, Ветоте Ви

æ

MT	Case ID	D 5	DZ	8	8	B	BD3	8	BDS	BD23
WTT Deg	scription	Diesel, CA ULSD	CY NT2D	E-Diesel, Ave. MW EtOH	E-Diesel, Ave. MW EtOH	BD, Canola	BD, MW SoyBean	BD, CA Mustard	Ren. Diesel Canola	Ren. Diesel Palm Oil
Vehicle	cle Type	asta	ULSD HEV	OLSD	ULSD HEV	BD20	BD20	BD20	FTD 30	FTD 30
Vehicle Tec	hnology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	42.35	33.88	41.79	33.43	37.29	37.83	38.73	31.51	31.51
Petroleum	MJ/mi	38.73	30.98	37.21	29.77	32.16	32.56	32.82	27.51	27.51
Natural Gas	MJ/mi	3.63	2.90	3.71	2.97	5.13	5.27	5.91	9.7	4.00
Coal	MJ/mi	0.00	0.0	0.87	0.69	0.00	0.00	0.00	0.00	0.00
Non Fossil	MJ/mi	0.05	9.0	1.90	1.52	6.64	6.64	99.9	10.58	10.58
MT	MJ/mi	7.34	5.87	8.63	6.90	8.87	9.45	10.32	7.03	7.03
MΙ	MJ/mi	35.06	28.05	32.06	28.05	35.06	35.06	35.06	35.06	35.06
GHGs (weighted	Ê									
MT	jm/g	929	461	625	200	\$	8	228	-55	-21

))				5			1						
Vehic	Vehicle Type	OLSD	ULSD HEV	OSTO	ULSD HEV	BD20	BD20	BD20	FTD 30	FTD 30	FTD 30	FT100	FTD 30	FT100	FED 30	FT100
Vehicle Technology	hnology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	42.35	33.88	41.79	33.43	37.29	37.83	38.73	31.51	31.51	47.25	57.38	30.55	1.91	50.89	69.47
Petroleum	MJ/mi	38.73	30.98	37.21	29.77	32.16	32.56	32.82	27.51	27.51	27.63	0.75	27.88	1.58	27.73	1.08
Natural Gas	MJ/mi	3.63	2.90		2.97	5.13	5.27	5.91	4.00	4.00	19.82	56.63	2.67	0.33	3.59	3.41
Sal	MJ/mi	0.00	0.00		0.69	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0	19.57	86.49
Non Fossil	MJ/mi	0.05	0.0		1.52	6.64	6.64	99.9	10.58	10.58	9.0	0.01	17.81	59.02	0.20	0.54
MTT	MJ/mi	7.34	5.87		6.90	8.87	9.45	10.32	7.03	7.03	12.22	23.35	13.29	26.88	16.03	35.97
MΠ	MJ/mi	35.06	28.05	35.06	28.05	35.06	35.06	35.06	35.06	35.06	35.06	8	35.06	8.8	35.06	8
GHGs (weighted)	Ê															•
MT	g/mi	929	461	625	200	2	180	228	-55	-51	724	1052	-269	-2246	749	1136
ΑE	g/in	2614	2094	2614	2094	2625	2625	2625	2581	2581	2581	2428	2581	2428	2581	2428
TOTAL	g/mi	3189	2555	3238	2594	2759	2805	2850	2526	2560	3305	3488	2312	182	3330	3564
Criteria, Total																
VOC	g/m/g	0.416	0.341	0.475	0.389	1.277	1.341	1.890	I	1	0.422	0.459	0.324	0.134	0.449	0.551
8	je je	1.538	1.424	1.857	1.679	2.373	4.018	4.690	ŀ	I	1.406	1.595	1.348	1.403	1.302	1.251
Ň	jm/g	2.492	2.113	3.043	2.553	2.411	2.590	2.627	I	I	2.511	2.600	2.165	1.451	2.363	2.108
PM10 (x10)	g/mi	2.010	1.740	4.013	3.342	1.976	2.139	2.131	1	i	1.871	1.820	1.792	1.360	32.938	104.798
Criteria, Urban																
, 000	g/mi	0.164	0.140	0.168	0.143	0.147	0.149	0.156	ı	ı	0.144	0.126	0.153	0.159	0.143	0.127
8	jm/g	0.977	0.975	0.978	9.976	968.0	0.897	0.910	ı	ı	0.824	0.982	0.872	1.142	0.830	1.002
ŏ	jm/g	0.623	0.617	0.632	0.625	0.700	0.701	0.737	ı	I	0.601	0.650	0.671	0.881	0.594	0.824
PM10 (x10)	g/mi	0.667	0.665	0.669	0.667	0.651	0.652	0.665	i	l	0.638	0.682	0.671	0.792	0.641	0.693
Jrban Toxics, (weighted	veighted)															
Benzene	jm/g	4.2E-03	4.2E-03	1	1	ı	í	i	ŀ	ı	3.2E-03	4.2E-03	I	1	!	ı
1-3 Butadiene	im/g	2.4E-03	2.4E-03	I	I	1	ı	i	ı	i	1.9E-03	2.4E-03	ı	!	ı	!
Formaldehyde	-	6.4E-03	6.4E-03	ı	ı	I	I	I	I	I	4.9E-03	6.5E-03	1	i	ι	ı
Acetaldehyde	jm/g	1.4E-03	1.4E-03	ı	!	ŀ	ı	ı	ļ	Ι	1.1E-03	1.5E-03	1	1	ı	ı
Diesel PM	g/mi	2.2E+00	2.2E+00	ı	1	I	1	1	1	i	2.1E+00	2.3E+00	I	I	ı	1

Figure A-9. Urban Buses: Model Years 2010 and Newer (continued)

(new)	ı
Start 2010 (n	ı
ar Star	
: Model Year Sta	
lass: M	
shicle C	
ır 2022: UB Vehicle	
ar 2022	
ario Ye	
Scen	

WTT Case ID	Case ID	D2	D2	8	8	<u>8</u>	803	쳞	803	BD23	Ε	Ε	E	E	E	F
WTT Description	ription	Diesel,	Diesel,	E-Diesel, Ave. MW EtOH	E-Diesel, WW.evA HOta	BD, Canola	SoyBean BD, MW	BD, CA Mustard	Ren. Diesel Canola	Ren. Diesel Palm Oil	GTL, Remote NG	GTL, Remote NG	BTL, CA Poplar	BTL, CA Poplar	CTL, Coal CCS	CTL, Coal CCS
Vehicle Type	Type	ULSD	ULSD HEV	ULSD	ULSD HEV	BD20	BD20	BD20	FTD 30	FTD 30	FTD 30	FT100	FTD 30	FT100	FTD 30	FT100
Vehicle Technology	rology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	CEV	ICEV	ICEV	ICEV	ICEV
Fossil	MJ/mi	41.90	33.52	41.38	33.10	36.87	37.40	38.28	31.18	31.18	46.49	55.94	30.22	1.88	50.30	68.58
Petroleum	M-√mi	38.34	30.67	36.84	29.47	31.84	32.24	32.49	27.24	27.24	27.36	0.74	27.60	1.56	27.45	1.07
Natural Gas	MJ/mi	3.56	2.85	3.68	2.95	5.03	5.16	5.79	3.93	3.93	19.14	55.20	2.61	0.32	3.47	3.17
Soal	MJ/mi	0.00	0.00	0.85	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.37	8
Fossil	MJ/mi	0.05	0.04	1.88	1.50	6.58	6.58	9.60	.10.47	10.47	0.04	0.01	17.63	58.44	0.21	0.60
L LLM	MJ/mi	7.23	5.79	8.54	6.83	8.73	9.28	10.17	6.93	6.93	11.82	22.24	13.13	28.61	15.80	35.47
WII	M.//mi	34.7	27.77	34.7	27.77	¥.7	34.71	34.7	34.71	34.7	8.7	33.70	34.7	33.70	34.7	33.70
GHGs (weighted)																
ΜT	j/m/g	295	453	919	493	129	174	219	-57	-23	902	1012	-269	-2224	736	1112
Ě	jm/6	2588	2073	2588	2073	2599	2599	2599	2556	2556	2555	24 24 24	2555	2404	2555	2404
TOTAL	g/mi	3155	2527	3204	2566	2728	2773	2818	2499	2532	3261	3416	2286	180	3291	3516
Criteria, Total																
00 00	jm/g	0.408	0.335	0.467	0.382	1.254	1.307	1.846	1	I	0.412	0.446	0.311	0.111	0.442	0.544
8	jm/g	1.535	1.423	1.849	1.675	2.346	3.957	4.614	I	I	1.398	1.584	1.337	1.381	1.298	1.250
Š	jm/g	2.407	2.036	2.941	2.463	2.288	2.419	2.431	I	1	2.423	2.499	2.035	1.210	2.284	2.037
PM10 (x10)	g/mi	1.969	1.707	3.925	3.272	1.915	2.052	2.029	ı	ı	1.834	1.595	1.727	1.239	32.596	103.757
Criteria, Urban																
200	j/m/g	0.162	0.138	0.166	0.141	0.14	0.145	0.151	1	1	0.142	0.127	0.148	0.146	0.141	0.125
8	Ē	0.982	0.981	0.984	0.982	0.895	0.895	0.905	ı	I	0.828	0.987	0.872	1.1 \$	0.834	1.006
Š	jm/g	0.569	0.566	0.579	0.573	0.625	0.626	0.650	1	I	0.550	0.597	0.592	0.736	0.542	0.571
PM10 (x10)	g/mi	0.663	0.662	0.665	0.664	0.637	0.638	0.646	ı	1	0.634	0.678	0.650	0.732	0.636	0.687
Urban Toxics, (weighted	ighted)															
Benzene	g/mi	4.2E-03	4.2E-03	I	I	i	I	I	I	ı	3.2E-03	4.2E-03	I	!	ı	ı
1-3 Butadiene	jm/g	2.4E-03	2.4E-03	I	I	ı	ŀ	I	I	1	1.8E-03	2.4E-03	I	!	I	ı
Formaldehyde	jm/g	6.4E-03	6.4E-03	I	I	i	I	I	1	i	4.8E-03	6.4E-03	I	I	I	ı
Acetaldehyde	jm/g	1.4E-03	1.4E-03	I	I	i	I	I	I	i	1.1E-03	1.4E-03	I	ı	I	ı
Diesel PM	g/mi	2.2E+00	2.2E+00	I	1	i	I	1	1	i	2.1E+00	2.2E+00	I	!	1	1

Figure A-9. Urban Buses: Model Years 2010 and Newer (concluded)

Diesel, Biodiesel Blends, Renewable Diesel Blends and XTL Blends

Scenario Year 2030; UB Vehicle Class: Model Year Start 2010 (new)

) HM	WTT Case ID	20	DZ	2	90	8	쫉	쳟	802	BD23	Σ	 =	 E2	E	 E	Æ
WTT Description	cription	CY NF2D	Diesel,	E-Diesel, Ave. MW EtOH	E-Diesel, Ave. MW EtOH	BD, Canola	SoyBean BD, MW	BD, CA	Ren. Diesel Canola	Ren. Diesel Palm Oil	GTL, Bemote NG	GTL, stemots NG	BTL, CA Poplar	BTL, CA Popiar	CTL, Coal CCS	CTC, Coal SOO
Vehic	Vehicle Type	OLSD	ULSD HEV	ULSD	ULSD HEV	BD20	BD20	BD20	FTD 30	FTD 30	FTD 30	FT100	FTD 30	FT100	FTD 30	FT100
Vehicle Technology	nology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	CEV	ICEV
ossil	MJ/mi	41.49	33.19	40.97	32.77	36.50	37.03	37.91	30.87	30.87	46.03	55.38	29.62	- 88.	49.80	67.90
Petroleum	MJ/mi	37.96	30.37	36.48	29.18	31.53	31.92	32.17	26.97	26.97	27.08	0.73	27.33	1.55	27.18	90:1
Natural Gas	MJ/mi	3.52	2.82	3.65	2.92	4.98 86.1	5.11	5.73	3.89	3.89	18.95	54.65	2.59	0.31	3.44	3.14
Coal	MJ/mi	0.0	0.00	9. 28.	0.67	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	19.18	63.70
lon Fossil	MJ/mi	0.05	0.0	1.86	1.49	6.51	6.52	6.54	10.37	10.37	0.04	0.01	17.45	27.86	0.21	0.60
T,	MJ/mi	7.16	5.73	8.45	9.76	8.65	9.18	10.07	6.87	6.87	11.70	22.02	13.00	26.35	15.64	35.12
M.	MJ/mi	34.37	27.50	34.37	27.50	34.37	34.37	34.37	34.37	34.37	34.37	33.37	34.37	33.37	34.37	33.37
HGs (weighted)	_															
MT		561	44	610	488	128	172	217	9 5	-53	669	1002	-266	-2202	729	1101
χE	g/mi	2562	2053	2562	2053	2573	2573	2573	2531	2531	2530	2380	2530	2380	2530	2380
TOTAL	g/mi	3124	2502	3172	2541	2701	2746	2790	2474	2508	3229	3382	2284	178	3259	3481
riteria, Total																
×00	jm/g	0.385	0.313	0. 44	0.360	1.226	1.279	1.612	I	ı	0.394	0.423	0.293	0.089	0.423	0.520
8	g/mj	1.556	1.445	1.867	1.694	2.353	3.949	4.598	ŀ	I	1.415	1.604	1.352	1.396	1.315	1.274
XON	jm/g	2.393	2.026	2.920	2.448	2.270	2.400	2.410	I	ı	2.409	2.485	2.017	1.184	2.271	2.027
PM10 (x10)	g/mi	1.997	1.737	3.933	3.286	1.936	2.072	2.048	1	ı	1.859	1.626	1.750	1.263	32.317	102.777
iteria, Urban																
VOC	jm/g	0.141	0.118	0.145	0.121	0.126	0.127	0.133	ı	ı	0.126	0.106	0.131	0.125	0.125	0.105
8	jĒ/g	1.009	1.008	1.010	1.009	0.915	0.916	0.924	I	i	0.820	1.014	0.893	1.156	0.856	1.032
Ŏ	g/mi	0.573	0.571	0.583	0.578	0.620	0.621	0.640	I	I	0.554	0.601	0.592	0.727	0.546	0.575
PM10 (x10)	g/mi	0.704	0.703	0.706	0.705	0.669	0.670	9.676	i	1	0.671	0.719	0.685	0.766	0.674	0.727
Irban Toxics, (weighted	eighted)															
Bertzene	jE/g	2.3E-03	2.3E-03	I	I	1	1	ı	ı	I	1.8E-03	2.3E-03	i	I	ı	i
1-3 Butadiene	g/m/g	1.4E-03	1.3E-03	i	I	I	I	1	ı	i	1.1E-03	1.4E-03	ı	ŀ	I	ı
Formaldehyde	g/mi	3.6E-03	3.5E-03	I	1	í	ŀ	ı	ı	ł	2.7E-03	3.6E-03	I	I	ı	ı
Acetaldehyde	Ē/6	8.0E-04	7.9E-04	I	I	i	I	í	Ι	I	6.1E-04	8.0E-04	ı	I	1	i
Diesel PM	g/mi	2.4E+00	2.4E+00	ı	I	ı	1	ı	ı	l	2.3E+00	2.5E+00	ì	-	1	ı

Figure A-10. Urban Buses: All Model Years (Natural Gas, DME, Methanol, and Hydrogen)

Scenario Year 2012: UB Vehicle Class: All Mo	ar 2012	: UB Vel	hicle Clas	SS: All Mo	odel Year	del Years (blend)										
H _A	WTT Case ID	ខ	ខ	ៗ	5	EM.	DM3	DMS	Ē	M3	#2	Ŧ	至	¥	Ŧ	H23
WTT Description	scription	CNG, NA Natural Gas	Кешор ИС СИС! ГИС!	Кетор ИС ГИС,	LNG, Pipeline Liquefier	рме, Ретоте и <i>G</i>	DME, CA	DME, Coal	,lonsthaM Remora NG	Methanol, CA Poplar	Methanol, Coal CCS	H2, NG SR, LH2	H2, NG SR, LH2, Ren Power	H2, Coal, Sequestrati on	H2, Onsite NG SR	H2, 70% Renewable, Electrolysis
Vehíc	Vehicle Type	CNG	CNG	LNG	LNG	DIME	DAE	DME	Methanol	Methanol	Methanol	HZFCV	H2FCV	H2FCV	H2FCV	HZFCV
Vehicle Technology	hnology	CEV	CEV	ICEV	ICEV	ICEV	CEV	ICEV	<u>5</u>	5	Σ	Ρζ	FCV	FC	Ş.	5
Fossil	MJ/mi	42.73	47.17	46.90	44.95	56.21	2.23	70.80	45.01	29.44	51.51	63.46	36.85	47.02	41.98	25.21
Petroleum	MJ/mi	0.17	0.52	0.52	0.18	1.10	1.85	1.20	1.10	1.38	0.90	0.41	0.31	0.68	0.16	0.40
Natural Gas	MJ/mi	42.57	46.66	46.38	44.78	55.10	0.38	3.69	43.91	28.07	30.47	63.05	36.54	6.94	41.82	24.81
Coal	MJ/mi	0.00	0.00	0.0	0.00	0.00	0.00	65.91	0.00	0.00	20.13	0.00	0.0	39.40	0.00	0.00
Non Fossil	MJ/mi	0.21	0.03	0.05	0.03	0.01	65.92	0.47	0.01	20.14	0.34 34	3.46	16.22	0.91	0.75	28.49
WT	MJ/mi	4.52	8.78	8.89	96.9	20.10	32.03	35.15	17.24	21.80	24.07	42.85	28.99	23.85	18.65	29.62
ΜĘ	MJ/mi	38.43	38.43	38.02	38.02	36.12	36.12	36.12	27.78	27.78	27.78	24.08	24.08	24.08	24.08	24.08
GHGs (weighted)	(F															
ΕM	g/mi	403	782	750	611	8 8	-2198	1082	88	-1759	838	3869	2222	1210	2492	2027
ΜL	g/mi	2136	2136	2166	2166	2409	2409	2409	1902	1902	1902	0	0	0	0	0
TOTAL	g/mi	2540	2919	2916	2776	3373	211	3482	2710	143	2739	3869	2222	1210	2492	2027
Criteria, Total																
VOC	g/mi	1.071	1.128	1.157	1.073	3.205	0.957	1.332	0.615	0.272	0.544	0.403	0.239	0.401	0.259	0.265
8	g/mi	4.007	4.322	4.366	4.046	4.500	4.219	3.813	1.430	1.091	0.964	0.778	0.369	0.359	0.396	0.458
Ň	g/mi	19.130	21.659	22.114	19.133	21.527	20.445	19.806	6.728	4.567	4.961	0.432	0.284	0.937	0.234	0.726
PM10 (x10)	g/mi	3.547	4.336	4.346	3.567	3.282	3.143	59.816	1.973	0.610	77.025	0.809	0.533	63.395	0.448	0.968
Criteria, Urban																
VOC	g/mj	0.813	0.812	0.814	0.810	2.857	2.911	0.809	0.311	0.350	0.309	0.008	0.005	0.001	0.005	0.052
8	g/mi	3.678	3.676	3.668	3.662	3.692	3.898	3.685	0.762	0.912	0.778	0.214	0.00	0.054	0.074	0.151
Ň	g/mi	18.916	18.939	18.972	18.907	19.025	19.437	18.897	3.899	4.189	3.863	0.036	0.021	0.011	0.023	0.049
PM10 (x10)	g/mi	3.429	3.440	3.427	3.416	1.867	2.078	1.833	0.256	0.401	0.250	0.402	0.200	0.250	0.332	0.355
Urban Toxics, (weighted	weighted)															
Benzene		7.9E-04	8.1E-04	2.0E-04	1.0E-03	3.3E-04	I	!	3.3E-04	I	ł	1.4E-03	6.1E-04	i	3.3E-04	9.7E-04
1-3 Butadiene		2.0E-03	2.1E-03	2.0E-04	2.0E-03	3.0E-04	I	ŀ	2.9E-04	I	ł	1.6E-03	5.4E-04	i	5.1E-04	1.2E-03
Formaldehyde		1.2E-01	1.2E-01	1.2E-01	1.3E-01	1.2E-01	I	ŧ	2.4E-02	i	i	1.0E-02	1.7E-03	I	2.8E-03	9.5E-03
Acetaldehyde		2.7 E -02	2.7E-02	2.7E-02	2.7 E -02	2.7E-02	i	ŀ	5.5E-03	i	i	5.2E-04	2.1E-04	ŀ	1.2E-04	3.6E-04
Diesel PM	g/mi	1.6E+01	1.6E+01	1.6E+01	1.6E+01	8.3E+00	;	I	2.2E-01	i	!	1.1E-01	1.1E-01	i	0.0E+00	0.0E+00

Figure A-10. Urban Buses: All Model Years (continued)

(plend)
I Years (blend
All Model
Class: All
JB Vehicle CI
: UB Ve
Year 2017: UB V
enario Ye
Scen

Vehicle Type Veh	WTT Case ID	5	23	ដ	נו	DM1	DW3	DM5	Ξ	M3	MS	도	윋	Ŧ	ž	H23
Vehicle Type CNG CNG LNG LNG <t< th=""><th>WTT Descriptiv</th><th>CNG, NA</th><th>СИС, LИС,</th><th></th><th>Pipeline</th><th></th><th></th><th></th><th>Methanol, Remote NG</th><th>Methanol, CA Poplar</th><th>Methanol, Coal CCS</th><th>ГН5 Н5' ИG SB'</th><th>H2, NG SR, Power</th><th>Sequestrati</th><th>etienO ,SH AS ƏN</th><th>H2, 70% Renewable, Electrolysis</th></t<>	WTT Descriptiv	CNG, NA	СИС, LИС,		Pipeline				Methanol, Remote NG	Methanol, CA Poplar	Methanol, Coal CCS	ГН5 Н5' ИG SB'	H2, NG SR, Power	Sequestrati	etienO ,SH AS ƏN	H2, 70% Renewable, Electrolysis
Intellet Cell CEV Vehicle Typ		CNG	LNG	LNG	DME	DME	DME	Methanol	Methanol	Methanol	H2FCV	HZFCV	HZFCV	HZFCV	H2FCV	
Main Main 42.01 46.40 46.20 44.28 54.99 219 66.54 42.79 29.01 50.59 56.27 36.05 Litral Gas Main 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas Main 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas Main 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas Main 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas Main 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas Main 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas Main 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas Main 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas Main 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas Main 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Litral Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Vehicle Technolog		ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	FCV	FCV	FCV	FCV	FCV	FCV	FCV	FCV
tural clasm Multini 0.16 0.51 0.51 0.17 1.09 1.82 1.18 1.08 1.38 0.89 0.38 0.30 tural clasm Multini 0.16 0.51 0.51 0.17 1.09 1.82 1.18 1.08 1.38 0.89 0.38 0.30 Fossil Multini 0.24 0.04 0.02 0.00 0.			46.40	46.20	44.28	54.99	2.19	69.54	42.79	29.01	50.59	56.27	36.05	44.92	40.03	23.65
with classing both both both both both both both both			0.51	0.51	0.17	69.	1.82	1.18	1.08	1.36	0.89	0.38	0.30	99.0	0.15	0.39
MJMI 0.00			45.89	45.69	4 .1	53.90	0.37	3.42	41.71	27.65	29.86	55.89	35.75	90.9	39.88	23.26
Number N			0.00	0.00	0.00	0.00	0.00	64.95	0.00	0.00	19.84	0.00	0.00	38.20	0.00	0.00
MJ/min 4.39 8.58 8.75 6.85 19.41 31.56 34.49 15.42 21.47 23.60 35.78 25.46 s (weighted) MJ/min 37.86 37.86 37.46 37.46 35.59 35.59 35.59 27.38 27.38 27.38 23.73 23.73 s (weighted) WILL g/min 2105 2104 739 601 926 -2167 1054 770 -1734 816 3425 2174 NA g/min 2106 2105 2134 2134 2374 2374 2374 1874 1874 1874 1874 1874 0 0 NA g/min 1014 1070 1.083 1.014 3.110 0.882 1.270 0.583 0.228 0.271 3.428 2.174 0 N g/min 17.229 19.718 1.0170 1.083 1.014 3.110 0.882 1.270 0.583 0.228 0.256	Fossil	_	0.04	0.02	0.03	0.01	64.95	0.54	0.01	19.65	0.39	3.24	13.13	0.98	0.73	27.53
MJMmi 37.86 37.86 37.46 37.46 35.59 35.59 27.38 27.38 27.38 23.73 23.73 Symi 2105 2105 2134 2134 2374 2374 2374 1874			8.58	8.75	6.85	19.41	31.56	34.49	15.42	21.47	23.60	35.78	25.46	22.17	17.03	27.45
Signature Sign			37.86	37.46	37.46	35.59	35.59	35.59	27.38	27.38	27.38	23.73	23.73	23.73	23.73	23.73
g/mi 391 764 739 601 926 -2167 1054 770 -1734 816 3425 2174 g/mi 2105 2134 2134 2374 2374 1874 1874 1874 0 g/mi 2105 2134 2134 2374 2374 1874 1874 1874 0 g/mi 2496 2869 2873 1.014 3.101 0.362 1.270 0.583 0.228 0.525 0.351 0.228 g/mi 17.229 19.718 19.863 17.196 19.539 18.179 0.583 0.228 0.525 0.321 0.340 0.234 0.340 0.228 0.320 0.344 75.873 0.340 0.234 g/mi 17.229 19.718 49.063 3.261 3.078 2.766 58.798 1.900 0.444 75.873 0.701 0.496 g/mi 17.032 17.046 17.702 17.346 17.013	GHGs (weighted)															
g/mi 2105 2105 2134 2134 2374 2374 2374 1874 1874 1874 1874 0 0 g/mi 2496 2869 2873 2735 3300 207 3428 2644 140 2689 3425 2174 g/mi 1.014 1.070 1.083 1.014 3.110 0.862 1.270 0.583 0.228 0.525 0.351 0.228 g/mi 17.229 19.718 19.963 17.196 19.539 18.179 17.869 6.215 3.911 4.529 0.340 0.234 g/mi 3.243 4.018 4.020 3.261 3.076 58.798 1.300 0.444 75.873 0.701 0.498 g/mi 3.243 3.286 3.282 3.302 3.478 3.303 0.677 0.804 0.691 0.164 0.005 g/mi 7.620 17.020 17.100 17.346 17.013 3.485 3.65		_	764	739	601	976	-2167	1054 4	022	-1734	816	3425	2174	1132	2374	1942
g/mi 2496 2869 2873 2735 3300 207 3428 2644 140 2689 3425 2174 g/mi 1.014 1.070 1.083 1.014 3.110 0.862 1.270 0.583 0.228 0.525 0.351 0.228 g/mi 3.617 3.946 3.652 4.079 3.766 3.421 1.312 0.961 0.873 0.659 0.350 g/mi 17.229 19.718 19.863 17.196 19.539 18.179 17.869 6.215 3.911 4.529 0.340 0.234 0.234 0.324 <td< th=""><th></th><th></th><th>2105</th><th>2134</th><th>2134</th><th>2374</th><th>2374</th><th>2374</th><th>1874</th><th>1874</th><th>1874</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></td<>			2105	2134	2134	2374	2374	2374	1874	1874	1874	0	0	0	0	0
g/mi 1.014 1.070 1.083 1.014 3.110 0.862 1.270 0.583 0.228 0.525 0.351 0.228 g/mi 3.617 3.927 3.946 3.652 4.079 3.766 3.421 1.312 0.961 0.873 0.659 0.350 g/mi 17.229 19.718 19.963 17.196 19.539 18.179 17.869 6.215 3.911 4.529 0.340 0.234 g/mi 17.229 19.718 4.020 3.261 3.078 2.766 58.738 1.900 0.444 75.873 0.701 0.436 g/mi 17.229 13.764 0.761 2.776 2.808 0.760 0.296 0.320 0.029 0.007 0.005 g/mi 17.032 17.066 17.100 17.346 17.013 3.485 3.655 3.450 0.037 0.034 g/mi 7.8E-04 1.3E-04 2.1E-04 2.1E-04 2.1E-04 2.1E-04			2869	2873	2735	3300	202	3428	2644	4	2689	3425	2174	1132	2374	1942
g/mi 1.014 1.070 1.083 1.014 3.110 0.862 1.270 0.583 0.228 0.525 0.351 0.228 g/mi 3.617 3.927 3.946 3.652 4.079 3.766 3.421 1.312 0.961 0.873 0.659 0.350 g/mi 17.229 19.718 19.963 17.196 19.539 18.179 17.869 6.215 3.911 4.529 0.340 0.234 g/mi 17.229 19.718 4.020 3.261 3.766 58.798 1.900 0.444 75.873 0.701 0.496 g/mi 0.764 0.764 0.761 2.775 2.808 0.760 0.296 0.320 0.294 0.005 0.029 g/mi 17.032 17.068 17.100 17.346 17.013 3.485 3.655 3.450 0.027 0.032 0.029 g/mi 17.020 17.068 17.100 17.346 17.013 3.485 3.653 <th>Criteria, Total</th> <th>_</th> <th></th>	Criteria, Total	_														
g/mi 3.617 3.927 3.946 3.652 4.079 3.766 3.421 1.312 0.961 0.873 0.659 0.350 g/mi 17.229 19.718 19.963 17.196 19.539 18.179 17.869 6.215 3.911 4.529 0.340 0.234 g/mi 3.243 4.018 4.020 3.261 3.078 2.766 58.798 1.900 0.444 75.873 0.701 0.496 g/mi 0.764 0.763 0.764 0.761 2.775 2.808 0.760 0.296 0.320 0.294 0.007 0.098 g/mi 3.296 3.286 3.282 3.302 3.478 3.303 0.677 0.804 0.691 0.164 0.008 g/mi 17.032 17.056 17.100 17.346 17.013 3.485 3.655 3.450 0.027 0.032 0.029 g/mi 17.8E-04 1.3E-04 1.702 1.814 1.683 0.234		_		1.083	1.014	3.110	0.862	1.270	0.583	0.228	0.525	0.351	0.228	0.385	0.244	0.249
g/mil 17.229 19.718 19.963 17.196 19.539 18.179 17.869 6.215 3.911 4.529 0.340 0.234 0.234 g/mil 3.243 4.018 4.020 3.261 3.078 2.766 58.798 1.900 0.444 75.873 0.701 0.496 0.234 g/mil 3.243 0.764 0.764 0.764 0.764 0.761 2.775 2.808 0.760 0.296 0.320 0.294 0.007 0.005 g/mil 3.296 3.286 3.282 3.302 3.478 3.303 0.677 0.804 0.691 0.164 0.005 g/mil 17.032 17.056 17.100 17.346 17.013 3.485 3.655 3.450 0.027 0.005 g/mil 17.032 17.068 17.100 17.346 17.013 3.485 3.655 3.450 0.032 0.027 0.034 0.104 g/mil 1.8E-04 1.3E-04				3.946	3.652	4.079	3.766	3.421	1.312	0.961	0.873	0.659	0.350	0.338	0.368	0.429
g/mi 3.243 4.018 4.020 3.261 3.078 2.766 58.798 1.900 0.444 75.873 0.701 0.496 4.986 4.986 4.986 4.986 4.986 4.986 4.986 6.8798 0.894 0.007 0.005 g/mi 3.296 3.286 3.286 3.386 3.282 3.302 3.478 3.303 0.677 0.894 0.007 0.005 g/mi 17.032 17.056 17.020 17.100 17.346 17.013 3.485 3.450 0.029 0.029 0.029 0.005 0.006 g/mi 17.032 17.068 17.100 17.346 17.013 3.485 3.655 3.450 0.022 0.022 g/mi 17.032 17.068 17.102 1.814 1.683 0.234 0.308 0.227 0.347 0.194 g/mi 7.8E-04 1.3E-04 2.1E-04 2.1E-04 2.1E-04 2.1E-03 4.2E-04 g/mi <td< th=""><th></th><th></th><th></th><th>19.963</th><th>17.196</th><th>19.539</th><th>18.179</th><th>17.869</th><th>6.215</th><th>3.911</th><th>4.529</th><th>0.340</th><th>0.234</th><th>0.901</th><th>0.210</th><th>0.687</th></td<>				19.963	17.196	19.539	18.179	17.869	6.215	3.911	4.529	0.340	0.234	0.901	0.210	0.687
n g/mi 0.764 0.763 0.764 0.764 0.761 2.775 2.808 0.760 0.296 0.320 0.294 0.007 0.005 g/mi 3.298 3.296 3.286 3.282 3.302 3.478 3.303 0.677 0.804 0.691 0.164 0.008 g/mi 17.032 17.055 17.066 17.100 17.346 17.013 3.485 3.655 3.450 0.632 0.022 0.022 g/mi 17.032 17.068 17.020 17.100 17.346 17.013 3.485 3.655 3.450 0.032 0.020 g/mi 17.032 17.068 17.102 17.346 17.013 3.485 3.655 3.450 0.032 0.020 g/mi 1.86-04 0.36-04 1.760 1.760 1.814 1.683 0.234 0.308 0.227 0.347 0.194 g/mi 1.86-04 1.36-04 1.76-04 1.7603 1.7604	_	_		4.020	3.261	3.078	2.766	58.798	1.900	0. 44	75.873	0.701	0.496	61.451	0.416	0.925
0.764 0.763 0.764 0.764 0.764 0.764 0.764 0.764 0.764 0.764 0.764 0.764 0.764 0.764 0.764 0.065 0.226 0.226 0.226 0.029 0.007 0.005 3.286 3.286 3.286 3.302 3.478 3.303 0.677 0.804 0.691 0.164 0.008 17.032 17.055 17.020 17.100 17.346 17.013 3.485 3.655 3.450 0.032 0.020 3.136 3.127 1.702 1.814 1.683 0.234 0.308 0.227 0.347 0.194 7.8E-04 3.149 3.120 1.702 1.814 1.683 0.234 0.308 0.227 0.347 0.194 7.8E-04 1.3E-04 1.3E-04 1.1E-04 1.1E-04 1.1E-04 1.1E-03 1.4E-03 1.4E-03 1.4E-03 1.5E-01 1.5E+01 1.5E+01 1.5E-02 2.5E-02 2.5E-02 1.4E-0	Criteria, Urban															
3.296 3.286 3.286 3.282 3.478 3.303 0.677 0.804 0.691 0.164 0.008 17.032 17.055 17.066 17.020 17.346 17.013 3.485 3.655 3.450 0.032 0.020 3.136 3.149 3.136 17.020 17.100 17.346 17.013 3.485 3.650 0.032 0.020 7.8E-04 3.149 3.136 1.7702 1.814 1.683 0.234 0.308 0.227 0.347 0.194 7.8E-04 8.0E-04 1.3E-04 2.1E-04 - 2.1E-04 - 1.4E-03 4.2E-04 1.9E-03 1.6E-04 1.9E-03 2.3E-04 - - 2.2E-04 - 1.4E-03 4.3E-04 1.2E-01 1.2E-01 1.2E-01 1.1E-01 - 2.3E-02 - 9.0E-03 1.4E-03 2.5E-02 2.5E-02 2.5E-02 2.5E-02 - - 2.3E-03 - - 4.3E-0		_		0.764	0.761	2.775	2.808	0.760	0.296	0.320	0.294	0.007	0.005	0.001	0.005	0.050
17.032 17.055 17.066 17.020 17.346 17.013 3.485 3.655 3.450 0.032 0.020 3.136 3.149 3.136 3.127 1.702 1.814 1.683 0.234 0.308 0.227 0.347 0.194 7.8E-04 8.0E-04 1.3E-04 9.3E-04 2.1E-04 - 2.1E-04 - 1.1E-03 4.2E-04 1.9E-03 1.6E-04 1.3E-04 1.3E-04 - 2.3E-04 - 1.4E-03 4.3E-04 1.2E-01 1.1E-01 1.2E-01 1.1E-01 - 2.3E-02 - 9.0E-03 1.4E-03 2.5E-02 2.5E-02 2.5E-02 2.5E-02 - 0.3E-03 1.4E-03 1.4E-03 1.5E+01 1.5E+01 1.5E+01 1.5E+00 - 0.3E-02 - 0.3E-02 0.5E-02 0.5E-02 0.5E-02 0.5E-03 0.5E-03 0.5E-03 0.5E-03 0.5E-03 0.5E-04 - 0.5E-04 - 0.0E-04 1.4E-04				3.286	3.282	3.302	3.478	3.303	0.677	0.804	0.691	0.164	0.008	0.047	0.064	0.140
3.136 3.149 3.126 3.127 1.702 1.814 1.683 0.234 0.308 0.227 0.347 0.194 7.8E-04 8.0E-04 1.3E-04 9.3E-04 2.1E-04 — 2.1E-04 — 1.2E-03 4.2E-04 1.9E-03 2.0E-03 1.6E-04 1.9E-03 2.3E-04 — 1.4E-03 4.3E-04 1.2E-01 1.1E-01 1.2E-01 1.1E-01 — 2.3E-02 — 9.0E-03 1.4E-03 2.5E-02 2.5E-02 2.5E-02 2.5E-02 2.5E-02 — 4.3E-04 1.4E-03 1.5E+01 1.5E+01 1.5E+01 1.5E+01 1.5E+01 — 5.8E-02 5.8E-02				17.068	17.020	17.100	17.346	17.013	3.485	3.655	3.450	0.032	0.020	0.010	0.022	0.036
7.8E-04 8.0E-04 1.3E-04 9.3E-04 2.1E-04 — 2.1E-04 — 1.2E-03 4.4E-03 1.9E-03 2.0E-04 1.6E-04 1.9E-03 2.3E-04 — 1.4E-03 4.4E-03 1.2E-01 1.1E-01 1.2E-01 1.1E-01 1.1E-01 1.1E-01 — 9.0E-03 2.5E-02 2.5E-02 2.5E-02 2.5E-02 2.5E-02 — 4.3E-04 1.5E+01 1.5E+01 1.5E+01 7.5E+00 — 1.8E-01 — 5.8E-02	PM10 (x10) g/m			3.136	3.127	1.702	1.814	1.683	0.234	0.308	0.227	0.347	0.194	0.238	0.315	0.336
7.8E-04 8.0E-04 1.3E-04 9.3E-04 2.1E-04 — 2.1E-04 — 1.2E-03 4 1.9E-03 2.0E-03 1.6E-04 1.9E-03 2.3E-04 — 1.4E-03 4 1.2E-01 1.2E-01 1.1E-01 1.2E-01 1.1E-01 1.1E-01 1.1E-03 — 9.0E-03 2.5E-02 2.5E-02 2.5E-02 2.5E-02 2.5E-02 — 4.3E-04 — 1.5E+01 1.5E+01 1.5E+01 1.5E+01 7.5E+00 — 1.8E-01 — 5.8E-02	Urban Toxics, (weighte	द्ध														
g/mi 1.9E-03 2.0E-03 1.6E-04 1.9E-03 2.3E-04 — 2.2E-04 — 1.4E-03 4.9E-03 2.3E-04 — — 1.4E-03 4.9E-03 4.9E-03 4.9E-03 4.9E-03 4.9E-03 4.9E-03 4.9E-03 4.9E-04 4.3E-04	Benzene g/m	,		1.3E-04	9.3E-04	2.1E-04	I	I	2.1E-04	Ι	I	1.2E-03	4.2E-04	I	3.1E-04	9.3E-04
g/mi 1.2E-01 1.2E-01 1.1E-01 1.2E-01 1.1E-01		_		1.6E-04	1.9E-03	2.3E-04	I	I	2.2E-04	Ι	I	1.4E-03	4.3E-04	1	4.9E-04	1.1E-03
g/mi 2.5E-02 2.5E-02 2.5E-02 2.5E-02 2.5E-02 5.1E-03 4.3E-04 3 g/mi 1.5E+01 1.5E+01 1.5E+01 1.5E+01 7.5E+00 1.8E-01 5.8E-02 8		_		1.1E-01	1.2E-01	1.1E-01	I	1	2.3E-02	1	1	9.0E-03	1.4E-03	i	2.7E-03	9.2E-03
g/mi 1.5E+01 1.5E+01 1.5E+01 1.5E+01 7.5E+00 1.8E-01 5.8E-02 (•	2.5E-02	2.5E-02	2.5E-02	i	i	5.1 E- 03	i	ļ	4.3E-04	1.4E-04	ŀ	1.1E-04	3.4E-04
		_	,	1.5E+01	1.5E+01	7.5E+00	i	ı	1.8E-01	ı	I	5.8E-02	5.8E-02	1	0.0E+00	0.0E+00

Figure A-10. Urban Buses: All Model Years (continued)

Scenario Year 2022: UB Vehicle Class: All Model Years (blend)

Maintail	WTT Case ID C	ase ID		ខ	១	2	¥	DM3	DMS	¥	M3	¥2	돧	물	¥	Ē	H23
Vehicle Type CNG CNG LNG LNG DNE DNE DNE PNE Methanol AGC CNCY CCPV CCPV FCV	WTT Descr	ription	CNG, NA Natural Gas	СИС, LИС,		Pipeline		DME, CA	DME, Coal	Methanol, Remote NG	Methanol, CA Poplar		H2, NG SR, LH2	LH2, Ren		etienO ,2H AS ƏN	H2, 70% Renewable, Electrolysis
Malfine Technology CEV	Vehicle	Type	CNG	CNG	LNG	FING	DIME	DIME	DIME	Methanol	Methanol	Methanol	HZFCV	H2FCV	HZFCV	H2FCV	H2FCV
Multini 4140 45.51 45.53 43.48 53.19 2.16 68.48 41.67 28.64 48.82 51.41 35.11 43.18 odown Multini 0.16 0.50 0.50 0.17 1.07 1.80 1.16 1.06 1.33 0.83 51.05 3.42 5.41 35.11 43.93 0.00 0.0	Vehicle Techn	nology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	FCV	FCV	FCV	FCV	FCV	FCV	FCV	FCV
Numinarial Numinaria		MJ/mi	41.40	45.51	45.36	43.48	53.18	2.16	68.48	41.67	28.64	49.82	51.41	35.11	43.18	37.97	22.17
Multina 4124 45.00 44.66 43.31 52.12 0.38 3.17 40.61 27.30 29.35 51.05 34.82 5.41 Fossil		MJ/mj	0.16	0.50	0.50	0.17	1.07	1.80	1.16	90.1	2 .	0.88	0.36	0.30	0.63	0.15	0.38
MJMM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0		MJ/mj	41.24	45.00	44.66	43.31	52.12	0.36	3.17	40.61	27.30	29.35	51.05	34.82	5.41	37.83	21.79
Number N		MJ/mi	0.0	0.00	0.0	0.0	0.0	0.00	64.15	0.00	0.0	19.59	0.00	0.00	37.13	0.00	0.00
MJ/mil 4.27 8.15 8.37 6.51 18.05 31.16 33.93 14.64 21.20 23.21 31.12 22.97 20.80 NJ/mil 37.40 37.40 37.00 37.00 35.15 35.15 35.15 37.04 27.04		MJ/mi	0.27	0.0	0.02	8	0.01	64.16	0.60	0.0	19.60	0. 44.	3.15	11.30	1.05	99.0	26.26
37.40 37.40 37.00 37.10 35.15 35.15 27.04 27.04 27.04 23.43 23.43 23.43 23.45 23.45 23.45 147.1 1030 750 -17.13 766 3127 21.18 1071 2080 2080 2108 2345 2345 2345 1851 1851 1851 0		MJ/mi	4.27	8.15	8.37	6.51	18.05	31.16	33.93	14.64	21.20	23.21	31.12	22.97	20.80	15.20	24.99
381 733 713 578 848 -2141 1030 750 -1713 796 3127 2118 1071 2080 2080 2080 2108 2245 2345 2345 1851 1851 1851 1851 1951 0 0 2460 2813 2821 2686 3193 204 3375 2601 136 2647 3127 2118 1071 0.955 1.007 1.013 0.952 3.017 0.783 1.207 0.560 0.188 0.507 0.317 2118 1071 15.706 18.132 18.282 15.659 17.946 16.337 1.285 0.340 74.95 0.289 0.289 0.289 0.209 0.000 3.077 3.772 3.771 3.022 2.928 2.512 57.973 1.855 0.290 0.289 0.289 0.209 0.000 3.025 3.023 3.013 3.010 3.025 2.		MJ/mi	37.40	37.40	37.00	37.00	35.15	35.15	35.15	27.04	27.04	27.04	23.43	23.43	23.43	23.43	23.43
381 733 713 578 848 -2141 1030 750 -1713 796 3127 2118 1071 2080 2080 2108 2345 2345 1851 1851 1851 0 0 0 2460 2813 2821 2866 3193 204 3375 2601 138 2647 3127 2118 1071 0.955 1.007 1.013 0.952 3.017 0.783 1.207 0.560 0.198 0.507 0.317 2118 1071 3.38 3.636 3.643 3.367 3.775 3.445 1.237 6.880 0.589 0.589 0.209 0.372 3.077 3.863 3.643 3.663 2.718 3.743 4.195 0.289 0.209 0.372 3.071 3.772 3.771 3.785 2.517 5.797 3.489 0.289 0.289 0.209 0.209 0.209 0.007 0.005	GHGs (weighted)																
2080 2080 2108 2345 2345 2345 1851 1851 1851 0 0 0 2460 2813 2821 2686 3193 204 3375 2601 138 2647 3127 2118 1071 2460 2813 2821 2686 3193 204 3375 2601 138 2647 3127 2118 1071 3.338 3.636 3.643 3.367 3.775 3.458 3.142 1.236 0.880 0.589 0.584 0.337 0.218 0.375 0.289 0.589 0.208 0.589 0.208 0.589 0.208 0.872 0.208 0.872 0.208 0.872 0.208 0.872 0.208 0.872 0.208 0.872 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		g/mj	381	33	713	278	848	-2141	1030	750	-1713	96	3127	2118	1071	2249	1848
2460 2813 2821 2686 3193 204 3375 2601 138 2647 3127 2118 1071 0.955 1.007 1.013 0.952 3.017 0.783 1.207 0.560 0.198 0.507 0.317 0.219 0.372 3.38 3.636 3.643 3.367 3.775 3.458 3.142 1.236 0.880 0.808 0.584 0.335 0.323 15.706 18.132 18.282 15.659 17.946 16.438 16.327 5.837 3.443 4.195 0.289 0.208 0.328 3.017 3.025 2.928 2.512 57.973 1.855 0.340 74.924 0.633 0.471 59.726 0.710 0.709 0.709 2.902 2.512 57.973 1.865 0.240 74.924 0.633 0.471 59.726 3.025 3.023 3.013 3.014 3.025 2.716 0.706 0.282 0.2		je je	2080	2080	2108	2108	2345	2345	2345	1851	1851	1851	0	0	0	0	0
0.955 1.007 1.013 0.952 3.017 0.783 1.207 0.560 0.198 0.507 0.317 0.219 0.372 3.338 3.636 3.643 3.367 3.775 3.458 3.142 1.236 0.880 0.684 0.356 0.325 0.323 15,706 18.132 18.282 15.659 17.946 16.438 16.327 5.837 3.443 4.195 0.289 0.289 0.289 0.289 0.289 0.289 0.080 0.875 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.007 0.005 0.007 0.007 0.005 0.007 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005		g/mi	2460	2813	2821	2686	3193	75 75	3375	2601	8	2647	3127	2118	1071	2249	1848
0.955 1.007 1.013 0.952 3.017 0.783 1.207 0.560 0.198 0.507 0.317 0.219 0.372 3.338 3.636 3.643 3.367 3.775 3.458 3.142 1.236 0.880 0.689 0.584 0.325 0.323 15.706 18.132 18.282 15.659 17.946 16.438 16.327 5.837 3.443 4.195 0.289 0.208 0.872 3.017 3.772 3.771 3.032 2.928 2.512 57.973 1.855 0.340 74.924 0.633 0.471 59.726 3.017 3.032 2.928 2.512 57.973 1.855 0.289 0.209 0.005 0.001 0.710 0.709 0.709 0.707 2.928 2.716 0.706 0.282 0.237 0.631 0.042 15.520 15.543 15.569 15.714 15.501 3.166 3.262 3.131 0.029 0.029 </th <th>Criteria, Total</th> <th></th>	Criteria, Total																
3.338 3.636 3.643 3.357 3.775 3.458 3.142 1.236 0.809 0.584 0.335 0.323 15.706 18.132 18.282 15.659 17.946 16.438 16.327 5.837 3.443 4.195 0.289 0.208 0.872 3.017 3.772 3.771 3.032 2.928 2.512 57.973 1.855 0.340 74.924 0.633 0.471 59.726 0.710 0.709 0.709 0.707 2.928 2.716 0.706 0.282 0.297 0.289 0.007 0.005 0.001 3.025 3.023 3.013 3.010 3.025 3.186 3.030 0.618 0.735 0.631 0.029 0.005 0.001 2.920 2.918 2.909 1.569 15.714 15.501 3.466 3.262 3.131 0.029 0.029 0.021 2.920 2.918 2.909 1.569 15.714 15.501 3.4604 <th>000</th> <th>g/mi</th> <th>0.955</th> <th>1.007</th> <th>1.013</th> <th>0.952</th> <th>3.017</th> <th>0.783</th> <th>1.207</th> <th>0.560</th> <th>0.198</th> <th>0.507</th> <th>0.317</th> <th>0.219</th> <th>0.372</th> <th>0.229</th> <th>0.237</th>	000	g/mi	0.955	1.007	1.013	0.952	3.017	0.783	1.207	0.560	0.198	0.507	0.317	0.219	0.372	0.229	0.237
15.706 18.132 18.282 15.659 17.946 16.327 5.837 3.443 4.195 0.289 0.208 0.872 3.017 3.772 3.771 3.032 2.928 2.512 57.973 1.855 0.340 74.924 0.633 0.471 59.726 3.017 3.025 3.032 2.928 2.512 57.973 1.855 0.287 0.280 0.007 0.005 0.007 3.025 3.023 3.013 3.010 3.025 3.186 3.030 0.618 0.735 0.631 0.134 0.006 0.042 15.520 15.543 15.569 15.714 15.501 3.166 3.262 3.131 0.029 0.020 0.010 2.920 2.918 2.909 1.562 1.570 0.221 0.250 0.213 0.312 0.188 0.227 2.920 2.918 2.909 1.562 1.633 1.570 0.221 0.250 0.213 0.312 0.188 <th></th> <th>je je</th> <th>3.338</th> <th>3.636</th> <th>3.643</th> <th>3.367</th> <th>3.775</th> <th>3.458</th> <th>3.142</th> <th>1.236</th> <th>0.880</th> <th>0.808</th> <th>0.584</th> <th>0.335</th> <th>0.323</th> <th>0.341</th> <th>0.403</th>		je je	3.338	3.636	3.643	3.367	3.775	3.458	3.142	1.236	0.880	0.808	0.584	0.335	0.323	0.341	0.403
3.017 3.772 3.771 3.032 2.928 2.512 57.973 1.855 0.340 74.924 0.633 0.471 59.726 0.710 0.709 0.709 0.707 2.695 2.716 0.706 0.282 0.297 0.280 0.007 0.006 0.004 3.025 3.023 3.013 3.010 3.025 3.186 3.030 0.618 0.735 0.631 0.134 0.006 0.042 15.520 15.543 15.546 15.507 15.699 15.714 15.501 3.466 3.262 3.131 0.029 0.020 0.010 2.920 2.930 2.918 2.909 1.582 1.633 1.570 0.221 0.250 0.213 0.312 0.188 0.227 2.920 2.918 2.909 1.562 1.633 1.570 0.221 0.250 0.213 0.312 0.188 7.7E-04 7.8E-04 1.9E-03 1.9E-04		je/mi	15.706	18.132	18.282	15.659	17.946	16.438	16.327	5.837	3.443	4.195	0.289	0.208	0.872	0.191	0.661
0.710 0.709 0.709 0.709 0.707 2.695 2.716 0.706 0.282 0.297 0.280 0.007 0.006 0.0042 3.025 3.023 3.013 3.010 3.025 3.186 3.030 0.618 0.735 0.631 0.134 0.006 0.042 15.520 15.543 15.546 15.507 15.669 15.714 15.501 3.166 3.262 3.131 0.029 0.020 0.010 2.920 2.930 2.918 2.909 1.582 1.633 1.570 0.221 0.250 0.213 0.188 0.227 7.7E-04 7.8E-04 8.9E-05 8.8E-04 1.4E-04 - 1.4E-04 - 1.9E-04 - 1.9E-04 - 1.3E-03 3.2E-04 - 1.1E-01 1.1E-01 1.1E-01 1.0E-01 - 1.9E-04 - - 1.3E-03 3.2E-04 - 2.4E-02 2.3E-02 2.3E-02 2.3E-02 -	PM10 (x10)	g/mi	3.017	3.772	3.771	3.032	2.928	2.512	57.973	1.855	0.340	74.924	0.633	0.471	59.726	0.388	0.891
0.710 0.709 0.709 0.709 0.707 2.695 2.716 0.706 0.282 0.297 0.280 0.007 0.005 0.001 3.025 3.023 3.013 3.010 3.025 3.186 3.030 0.618 0.735 0.631 0.134 0.006 0.042 15.520 15.543 15.546 15.507 15.669 15.714 15.501 3.166 3.262 3.131 0.029 0.020 0.010 2.920 2.930 2.918 2.909 1.582 1.633 1.570 0.221 0.250 0.213 0.188 0.227 2.920 2.918 2.909 1.582 1.633 1.570 0.221 0.250 0.213 0.188 0.227 2.920 2.918 2.909 1.4E-04 - - 1.4E-04 - 1.3E-03 3.2E-04 - 1.9E-03 2.0E-03 1.4E-04 - - 1.9E-04 - - 1.3E-03 3.2E-04	Criteria, Urban																
3.025 3.023 3.013 3.014 3.025 3.186 3.030 0.618 0.735 0.631 0.134 0.008 0.042 15.520 15.543 15.546 15.507 15.699 15.714 15.501 3.166 3.262 3.131 0.029 0.020 0.010 2.920 2.930 2.918 2.909 1.582 1.633 1.570 0.221 0.250 0.213 0.188 0.227 7.7E-04 7.8E-04 8.9E-05 8.8E-04 1.4E-04 - 1.4E-04 - 1.3E-03 3.2E-04 - 1.9E-03 2.4E-02 2.3E-02 2.3E-02 - 1.3E-03 3.8E-04 - 2.4E-02 2.3E-02 2.4E-02 2.3E-02 - 4.7E-03 - 8.3E-04 - 1.4E+01 1.4E+01 1.4E+01 1.6E-01 - 2.1E-02 - 8.3E-04 - 1.4E+02 2.3E-02 2.3E-02 2.3E-02 - 4.7E-03 -		g im/g	0.710	0.709	0.709	0.707	2.695	2.716	0.706	0.282	0.297	0.280	0.007	0.005	0.001	0.005	0.049
15.520 15.543 15.546 15.507 15.69 15.714 15.501 3.166 3.262 3.131 0.029 0.020 0.010 2.920 2.930 2.918 2.909 1.562 1.633 1.570 0.221 0.250 0.213 0.312 0.188 0.227 7.7E-04 7.8E-04 8.9E-05 8.8E-04 1.4E-04 - 1.4E-04 - 1.3E-03 3.2E-04 - 1.9E-03 2.0E-03 1.4E-04 1.9E-04 - 1.9E-04 - 1.3E-03 3.8E-04 - 1.1E-01 1.1E-01 1.0E-01 - 2.1E-02 - 8.3E-04 - 2.4E-02 2.3E-02 2.4E-02 2.3E-02 - 4.7E-03 - 3.8E-04 - 1.4E+01 1.4E+01 1.6E+01 - - 4.7E-02 - 3.4E-02 3.4E-02 -		g E	3.025	3.023	3.013	3.010	3.025	3.186	3.030	0.618	0.735	0.631	0.134	0.008	0.042	0.055	0.129
2.920 2.930 2.918 2.909 1.582 1.633 1.570 0.221 0.250 0.213 0.188 0.227 7.7E-04 7.8E-04 8.9E-05 8.8E-04 1.4E-04 — 1.4E-04 — 1.0E-03 3.2E-04 — 1.9E-03 2.0E-03 1.4E-04 1.9E-04 — 1.9E-04 — 1.3E-03 3.8E-04 — 1.1E-01 1.1E-01 1.1E-01 1.0E-01 — 2.1E-02 — 8.3E-03 1.2E-03 — 2.4E-02 2.3E-02 2.4E-02 2.3E-02 — 4.7E-03 — 3.4E-02 — 1.4E+01 1.4E+01 1.4E+01 1.4E+01 1.4E-01 — 3.4E-02 —		g in	15.520	15.543	15.546	15.507	15.569	15.714	15.501	3.166	3.262	3.131	0.029	0.020	0.010	0.021	0.030
7.7E-04 7.8E-04 8.9E-05 8.8E-04 1.4E-04 — 1.4E-04 — 1.4E-04 — 1.0E-03 3.2E-04 — 1.9E-03 2.0E-03 1.4E-04 1.9E-04 — — 1.3E-03 3.8E-04 — 1.1E-01 1.1E-01 1.1E-01 1.0E-01 1.0E-01 1.0E-03 1.2E-03 — 2.4E-02 2.3E-02 2.3E-02 2.3E-02 2.3E-02 2.3E-04 — 4.7E-03 — 8.3E-04 — 1.4E+01 1.4E+01 1.4E+01 7.0E+00 — 1.7E-01 — 3.4E-02 3.4E-02 —		g/mi	2.920	2.930	2.918	2.909	1.582	1.633	1.570	0.221	0.250	0.213	0.312	0.188	0.227	0.299	0.318
g/ml 7.7E-04 7.8E-04 8.9E-05 8.8E-04 1.4E-04 — 1.4E-04 — 1.4E-04 — 1.0E-03 3.2E-04 — g/ml 1.9E-03 2.0E-03 1.4E-04 1.9E-04 — 1.9E-04 — 1.3E-03 3.8E-04 — g/ml 1.1E-01 1.0E-01 1.0E-01 1.0E-01 1.0E-01 — 2.1E-02 — 8.3E-04 — g/ml 2.4E-02 2.3E-02 2.3E-02 2.3E-02 2.3E-03 — 4.7E-03 — 3.8E-04 1.1E-04 g/ml 1.4E+01 1.4E+01 7.0E+00 — 1.7E-01 — 3.4E-02 3.4E-02	Urban Toxics, (wei	ighted)															
g/mi 1.9E-03 2.0E-03 1.4E-04 1.9E-03 1.9E-04 — 1.9E-04 — 1.3E-04 — 1.3E-03 3.8E-04 — g/mi 1.1E-01 1.1E-01 1.0E-01 1.1E-01 1.0E-01 — 2.1E-02 — 8.3E-04 1.1E-03 — g/mi 2.4E-02 2.4E-02 2.4E-02 2.3E-02 2.4E-02 2.3E-02 — 4.7E-03 — 3.8E-04 1.1E-04 — g/mi 1.4E+01 1.4E+01 1.4E+01 7.0E+00 — 1.7E-01 — 3.4E-02 3.4E-02 —		jm/g	7.7E-04	7.8E-04	8.9E-05	8.8E-04	1.4E-04	1	I	1.4E-04	i	i	1.0E-03	3.2E-04	ı	3.0E-04	9.0E-04
g/mi 1.1E-01 1.1E-01 1.0E-01 1.1E-01 1.0E-01 — 2.1E-02 — 8.3E-03 1.2E-03 — g/mi 2.4E-02 2.4E-02 2.4E-02 2.4E-02 2.3E-02 — 4.7E-03 — 3.8E-04 1.1E-04 — g/mi 1.4E+01 1.4E+01 1.4E+01 7.0E+00 — 1.7E-01 — 3.4E-02 3.4E-02 —		g/mi	1.9E-03	2.0E-03	1.4E-04	1.9E-03	1.9E-04	Ι	1	1.9E-04	ı	i	1.3E-03	3.8E-04	i	4.7E-04	1.1E-03
g/mi 2.4E-02 2.4E-02 2.3E-02 2.4E-02 2.3E-02 - 4,7E-03 - 3.8E-04 1.1E-04 g/mi 1.4E+01 1.4E+01 1.4E+01 1.0E+00 1.7E-01 - 3.4E-02 3.4E-02 - (jm/g	1.1E-01	1.1E-01	1.0E-01	1.1E-01	1.0E-01	I	ł	2.1E-02	I	ŀ	8.3E-03	1.2E-03	i	2.5E-03	8.9E-03
g/mi 1,4E+01 1,4E+01 1,4E+01 1,4E+01 7.0E+00 1,7E-01 3,4E-02 3,4E-02 - (g/mi	2.4E-02	2.4E-02	2.3E-02	2.4E-02	2.3E-02	i	i	4.7E-03	1	I	3.8E-04	1.1E-04	i	1.1E-04	3.3E-04
	Diesel PM	g/mi	1.4E+01	1.4E+01	1.4E+01	1.4E+01	7.0E+00	i	I	1.7E-01	I	!	3.4E-02	3.4E-02	I	0.0E+00	0.0E+00

Figure A-10. Urban Buses: All Model Years (concluded)

Tr Case C	Scellailo Teal 2030, OD Vellicie Class. All mo	2007	5			add today											
Main control Main	MIT	Sase ID	ភ	ឌ	ដ	5	DIM1	DM3	DM5	M	M3	W2	걒	완	H4c	H	H23
Vehicle Type CNG LNG LNG DME DME DME Methaniol Meth	WTT Desc	ription	CNG, NA Natural Gas	CNG, LNG,		Pipeline	Кето!в ИС	DME, CA Poplar	DME, Coal	Methanol, Remote NG	Methanol, CA Poplar	Methanol, Coal CCS	H2, NG SR, LH2	H2, NG SR, LH2, Ren Power	Sequestrati	H2, Onsite NG SR	H2, 70% Renewable, Electrolysis
Halflet Technology CEV CEV CEV CEV CEV CEV CEV CEV FCV	Vehic	e Type	CNG	CNG	FING	LNG	DIME	DIME	DME	Methanol	Methanol	Methanol	H2FCV	H2FCV	H2FCV	H2FCV	H2FCV
MJMIN 40.94 45.00 44.85 43.00 52.59 2.13 67.72 41.21 28.32 48.26 60.04 34.72 42.70 Introlearm MJMIN 40.14 40.04 45.00 0.01 41.85 41.80 0.15 0	Vehicle Tech	nology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	PC V	5	FCV	FCV	∑	5	FCV	Ρζ
windless M.Jimi 0.16 0.49 0.50 0.17 1.06 1.78 1.15 1.05 1.33 0.87 0.38 0.29 0.63 vural Gas M.Jimi 40.78 44.50 44.50 0.00 <th>Fossil</th> <th>MJ/mi</th> <th>40.94</th> <th>45.00</th> <th>44.85</th> <th>43.00</th> <th>52.59</th> <th>2.13</th> <th>67.72</th> <th>41.21</th> <th>28.32</th> <th>49.26</th> <th>50.84</th> <th>34.72</th> <th>42.70</th> <th>37.55</th> <th>21.92</th>	Fossil	MJ/mi	40.94	45.00	44.85	43.00	52.59	2.13	67.72	41.21	28.32	49.26	50.84	34.72	42.70	37.55	21.92
tural Gas Mulmin 40.78 44.50 44.36 42.83 51.54 0.35 3.13 40.16 27.00 29.02 50.48 34.43 5.35 cosil Mulmin 0.27 0.04 0.00 0.00 0.00 6.00 0.00	Petroleum	MJ/mi	0.16	0.49	0.50	0.17	1.06	1.78	1.15	1.05	1.33	0.87	96.0	0.29	0.63	0.15	0.37
MJMIN 0.00	Natural Gas	MJ/mi	40.78	4.50	44.36	42.83	51.54	0.35	3.13	40.16	27.00	29.02	50.48	34.43	5.35	37.40	21.55
National	Coal	MJ/mi	0.00	0.0	0.00	0.00	0.00	0.00	63.43	0.00	0.00	19.38	0.00	0.00	36.72	0.0	0.0
MJ/mi 36.98 36.98 36.59 36.59 34.76 34.76 34.76 34.76 20.97 22.95 30.78 22.72 20.57 S (weighted) 376 725 705 571 838 -2117 1018 742 -1694 787 3092 2095 1059 A	Non Fossil	MJ/mi	0.27	9.0 Z	0.02	9.0	0.01	63.44	0.59	0.01	19.38	0.43	3.11	11.17	4	0.65	25.97
36.96 36.59 36.59 36.59 36.59 36.59 36.76 34.76 34.76 26.74 <th< th=""><th>L≫</th><th>MJ/mi</th><th>4.23</th><th>8.06</th><th>8.28</th><th>6.44</th><th>17.84</th><th>30.82</th><th>33.55</th><th>14.48</th><th>20.97</th><th>22.95</th><th>30.78</th><th>22.72</th><th>20.57</th><th>15.03</th><th>24.72</th></th<>	L≫	MJ/mi	4.23	8.06	8.28	6.44	17.84	30.82	33.55	14.48	20.97	22.95	30.78	22.72	20.57	15.03	24.72
376 725 705 571 838 -2117 1018 742 -1694 787 3092 2095 1059 2057 2057 2057 2057 137 2617 3092 2095 1059 2433 2782 2790 2656 3158 202 3337 2572 137 2617 3092 2095 1059 0.861 0.904 0.905 0.848 2.890 0.678 1.100 0.534 0.175 0.482 0.313 0.216 0.307 2.705 2.999 3.001 2.733 3.132 2.813 2.509 1.101 0.743 0.678 0.319 0.576 0.390 0.319 2.705 12.999 3.001 2.733 3.132 2.813 2.509 1.101 0.743 0.678 0.396 0.396 0.396 0.396 0.396 0.396 0.396 0.396 0.396 0.396 0.396 0.396 0.396 0.396	ΑL	MJ/mi	36.98	36.98	36.59	36.59	34.76	34.76	34.76	26.74	26.74	26.74	23.17	23.17	23.17	23.17	23.17
376 725 705 571 838 -2117 1018 742 -1694 787 3092 2095 1059 2057 2057 2065 2086 2319 2319 2319 1830 1830 1830 0<	GHGs (weighted)																
2057 2065 2086 2319 2319 2319 1830 1830 1830 0 0 0 2433 2782 2782 2782 2782 2782 2790 2666 3158 202 3337 2572 137 2617 3092 2095 1059 0.851 0.904 0.905 0.848 2.890 0.678 1.100 0.534 0.472 0.313 0.216 0.307 2.705 1.2963 3.001 2.733 3.132 2.813 2.509 1.101 0.743 0.678 0.319 0.319 0.219 0.309 0.319 2.706 1.267 12.515 14.774 13.257 13.174 5.173 2.786 0.349 0.209 0.39	MT	g/in	376	725	705	571	83	-2117	1018	742	-1694	787	3062	2002	1059	2224	1827
2433 2782 2790 2656 3158 202 3337 2572 137 2617 3092 2095 1059 0.851 0.904 0.905 0.848 2.890 0.678 1.100 0.534 0.175 0.482 0.313 0.216 0.367 2.705 2.999 3.001 2.733 3.132 2.813 2.509 1.101 0.743 0.678 0.319 0.319 12.567 14.966 15.075 12.515 14.774 13.257 13.174 5.173 2.786 3.548 0.280 0.199 0.862 2.598 3.345 2.613 2.697 2.773 57.130 1.825 0.319 74.082 0.618 0.459 0.867 0.610 0.668 0.668 2.660 2.571 2.591 0.660 0.280 0.618 0.489 0.905 1.238 1.2406 1.2424 12.554 12.364 2.531 2.617 2.496 0.678 0.	ΑL	g im/g	2027	202	2085	2085	2319	2319	2319	1830	1830	1830	0	0	0	0	0
0.851 0.904 0.905 0.848 2.890 0.678 1.100 0.534 0.175 0.482 0.313 0.216 0.367 2.705 2.989 3.001 2.733 3.132 2.813 2.509 1.101 0.743 0.678 0.576 0.330 0.319 12.567 14.966 15.075 12.515 14.774 13.257 13.174 5.173 2.786 3.548 0.280 0.199 0.862 2.598 3.345 3.342 2.613 2.697 2.273 57.130 1.825 0.319 74.082 0.618 0.458 59.056 2.596 2.394 2.382 2.697 2.273 57.130 1.825 0.319 74.082 0.618 0.648 0.608 2.394 2.384 2.599 12.440 12.549 12.369 0.274 0.258 0.007 0.005 0.001 2.394 2.384 12.369 12.444 12.554 12.364 2.549 0.00	TOTAL	g/mi	2433	2782	2790	5 626	3158	202	3337	2572	137	2617	3082	2095	1059	2224	1827
0.851 0.904 0.905 0.848 2.890 0.678 1.100 0.534 0.175 0.482 0.313 0.216 0.367 2.705 2.999 3.001 2.733 3.132 2.813 2.509 1.101 0.743 0.678 0.576 0.330 0.319 12.567 14.966 15.075 12.515 14.774 13.257 13.174 5.173 2.786 3.548 0.576 0.390 0.319 0.678 0.678 0.678 0.676 0.690 0.678 0.678 0.678 0.676 0.676 0.678 0.678 0.678 0.696 0.666 0.678 1.719 1.825 0.319 74.082 0.618 0.696 0.606 0.606 2.571 2.591 0.665 0.260 0.274 0.258 0.007 0.006 0.042 0.610 0.608 0.606 2.571 2.591 0.605 0.260 0.502 0.612 0.612 0.612 0.606 0.606 0.6	Criteria, Total																
2.705 2.989 3.001 2.733 3.132 2.813 2.509 1.101 0.743 0.678 0.576 0.330 0.319 12.567 14,966 15,075 12.515 14,774 13.257 13.174 5.173 2.786 3.548 0.280 0.199 0.862 2.598 3.345 3.342 2.613 2.697 2.273 57.130 1.825 0.319 74,082 0.618 0.459 0.862 2.598 3.345 3.342 2.613 2.697 2.273 57.130 1.825 0.319 74,082 0.618 0.459 0.862 0.610 0.608 0.606 2.571 2.591 0.605 0.260 0.574 0.258 0.007 0.005 0.005 2.396 2.394 2.381 2.393 2.549 2.400 0.490 0.602 0.502 0.122 0.006 0.006 12.389 12.424 12.554 12.364 2.531 2.617 2.496 <th>8</th> <th>g/mi</th> <th>0.851</th> <th>0.904</th> <th>0.905</th> <th>0.848</th> <th>2.890</th> <th>0.678</th> <th>1.100</th> <th>0.534</th> <th>0.175</th> <th>0.482</th> <th>0.313</th> <th>0.216</th> <th>0.367</th> <th>0.227</th> <th>0.234</th>	8	g/mi	0.851	0.904	0.905	0.848	2.890	0.678	1.100	0.534	0.175	0.482	0.313	0.216	0.367	0.227	0.234
12.567 14,966 15,075 12,515 14,774 13,257 13,174 5,173 2,786 3,548 0,280 0,199 0,862 2.598 3,345 3,342 2,613 2,697 2,273 57,130 1,825 0,319 74,082 0,618 0,458 59,056 0.610 0.608 0.606 2,571 2,591 0,605 0,260 0,274 0,258 0,007 0,005 0,007 2.396 2,394 2,383 2,381 2,393 2,549 2,400 0,490 0,602 0,502 0,132 0,006 0,042 12,383 12,406 12,369 12,424 12,554 12,384 2,531 2,617 2,496 0,002 0,002 0,122 0,003 0,000 <td< th=""><th>8</th><th>g/mi</th><th>2.705</th><th>2.999</th><th>3.001</th><th>2.733</th><th>3.132</th><th>2.813</th><th>2.509</th><th>1.101</th><th>0.743</th><th>0.678</th><th>0.576</th><th>0.330</th><th>0.319</th><th>0.337</th><th>0.398</th></td<>	8	g/mi	2.705	2.999	3.001	2.733	3.132	2.813	2.509	1.101	0.743	0.678	0.576	0.330	0.319	0.337	0.398
2.598 3.345 3.342 2.613 2.697 2.273 57.130 1.825 0.319 74,082 0.618 0.458 59.056 0.610 0.608 0.606 2.571 2.591 0.605 0.260 0.274 0.258 0.007 0.005 0.001 2.396 2.384 2.383 2.549 2.400 0.490 0.602 0.502 0.132 0.008 0.042 12.383 12.406 12.369 12.424 12.554 12.364 2.531 2.617 2.496 0.028 0.002 0.010 2.502 2.512 2.500 2.491 1.365 1.410 1.357 0.210 0.235 0.202 0.180 0.219 2.502 2.512 2.500 2.491 1.564 1.367 0.210 0.235 0.202 0.180 0.219 7.5E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-03 7.7E-04	Š	g/mi	12.567	14.966	15.075	12.515	14.774	13.257	13.174	5.173	2.786	3.548	0.280	0.199	0.862	0.189	0.651
0.610 0.608 0.606 2.571 2.591 0.605 0.260 0.274 0.258 0.007 0.005 0.004 2.396 2.384 2.383 2.549 2.400 0.490 0.602 0.502 0.132 0.008 0.042 12.383 12.406 12.369 12.424 12.554 12.384 2.531 2.617 2.496 0.028 0.020 0.010 2.502 2.512 2.500 2.491 1.365 1.410 1.357 0.210 0.235 0.202 0.180 0.219 7.5E-04 7.7E-04 7.1E-04 7.1E-04 7.7E-04 7.7E-04 <th>PM10 (x10)</th> <th>g/mi</th> <th>2.598</th> <th>3.345</th> <th>3.342</th> <th>2.613</th> <th>2.697</th> <th>2.273</th> <th>57.130</th> <th>1.825</th> <th>0.319</th> <th>74.082</th> <th>0.618</th> <th>0.458</th> <th>59.056</th> <th>0.378</th> <th>0.875</th>	PM10 (x10)	g/mi	2.598	3.345	3.342	2.613	2.697	2.273	57.130	1.825	0.319	74.082	0.618	0.458	59.056	0.378	0.875
0.610 0.608 0.608 0.606 2.571 2.591 0.605 0.260 0.274 0.258 0.007 0.005 0.001 2.396 2.394 2.383 2.381 2.393 2.549 2.400 0.490 0.602 0.502 0.132 0.008 0.042 12.383 12.406 12.369 12.424 12.554 12.384 2.531 2.617 2.496 0.028 0.020 0.010 2.502 2.512 2.500 2.491 1.365 1.410 1.357 0.210 0.235 0.202 0.180 0.219 7.5E-04 7.7E-04 7.1E-04 7.1E-04 7.7E-04	Criteria, Urban																
2.396 2.394 2.383 2.381 2.349 2.400 0.490 0.602 0.502 0.132 0.008 0.042 12.383 12.406 12.405 12.424 12.554 12.364 2.531 2.617 2.496 0.028 0.020 0.010 2.502 2.512 2.500 2.491 1.365 1.410 1.357 0.210 0.235 0.202 0.020 0.010 7.5E-04 7.7E-04 7.1E-04 - 1.1E-04 - 9.3E-04 - 1.9E-03 2.0E-02 2.0E-02 2.0E-02 2.0E-02 2.0E-03 1.1E-04 - - 9.3E-04 - 2.0E-02 2.0E-02 2.0E-02 2.0E-02 2.0E-02 - 1.2E-04 - - 1.2E-04 - 2.0E-02 2.0E-02 2.0E-02 2.0E-02 2.0E-03 - 4.0E-03 - 7.6E-03 1.1E-03 - 1.2E+01 1.2E+01 1.2E+01 1.2E+01 -	voc	jm/6	0.610	0.608	0.608	909.0	2.571	2.591	0.605	0.260	0.274	0.258	0.007	0.005	0.00	0.005	0.048
12.383 12.406 12.405 12.424 12.554 12.384 2.531 2.617 2.496 0.020 0.010 0.010 2.502 2.512 2.500 2.491 1.365 1.410 1.357 0.210 0.235 0.202 0.302 0.180 0.219 7.5E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-03 2.7E-04 7.7E-03 7.7E-03 7.7E-03 7.7E-04 7.7E-03 7.7E-03 7.7E-03 7.7E-03 7.7E-04 7.7E-03 7.7E-0	8	g in/o	2.396	2.394	2.383	2.381	2.393	2.549	2.400	0.490	0.602	0.502	0.132	0.008	0.042	0.054	0.127
2.502 2.512 2.500 2.491 1.365 1.410 1.357 0.210 0.235 0.202 0.302 0.180 0.219 7.5E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-04 7.7E-03 7.7E-03 7.7E-04 7.7E-03 7.7E-03 7.7E-03 7.7E-04 7.7E-03 7.7	Š	g/m/	12.383	12.406	12.405	12.369	12.424	12.554	12.364	2.531	2.617	2.496	0.028	0.020	0.010	0.021	0.027
7.5E-04 7.7E-04 7.7E-04 - 9.3E-04 2.7E-04 - 1.9E-03 2.0E-03 1.3E-04 1.1E-04 - - 9.3E-04 2.7E-04 - 1.9E-03 2.0E-03 1.3E-04 - - 1.2E-03 3.5E-04 - 9.4E-02 9.4E-02 9.5E-02 8.9E-02 - - 7.6E-03 1.1E-03 - 2.0E-02 2.0E-02 2.0E-02 2.0E-02 - 4.0E-03 - 3.4E-04 9.6E-05 - 1.2E+01 1.2E+01 1.2E+01 5.9E+00 - 1.6E-01 - 2.3E-02 2.3E-02 -	PM10 (x10)	g/mi	2.502	2.512	2.500	2.491	1.365	1.410	1.357	0.210	0.235	0.202	0.302	0.180	0.219	0.290	0.308
g/mi 7.5E-04 7.7E-04 7.1E-05 8.5E-04 1.1E-04 — 1.1E-04 — 9.3E-04 2.7E-04 — 1.2E-03 3.5E-04 — 1.2E-02 9.4E-02 9.4E-02 9.4E-02 9.5E-02 8.9E-02 — 1.8E-02 — 7.6E-03 1.1E-03 — 1.2E-04 1.2	Urban Toxics, (w	eighted)															
g/mi 1.9E-03 2.0E-03 1.3E-04 1.8E-03 1.7E-04 1.7E-04 1.2E-03 3.5E-04 0.0mi 1.2E-01 2.0E-02 2.0E-02 2.0E-02 2.0E-02 2.0E-02 2.0E-02 2.0E-02 2.0E-02 2.0E-03 1.2E-01 1.2E+01 1.2E+0	Benzene	g/m/	7.5E-04	7.7E-04	7.1E-05	8.5E-04	1.1E-04	I	I	1.1E-04	ì	ı	9.3E-04	2.7E-04	I	2.8E-04	8.9E-04
g/mi 9.4E-02 9.4E-02 8.9E-02 9.5E-02 8.9E-02 — — 1.8E-02 — — 7.6E-03 1.1E-03 — 9.mi 2.0E-02 2.0E-02 2.0E-02 2.0E-02 2.0E-02 2.0E-02 2.0E-02 — — 4.0E-03 — — 3.4E-04 9.6E-05 — 9.4E-01 1.2E+01 1.2E+01 1.2E+01 1.2E+01 1.2E+01 1.2E+01 1.2E+01 0.0E-02 — — 1.6E-01 — — 2.3E-02 2.3E-02 —	1-3 Butadiene	g/mi	1.9E-03	2.0E-03	1.3E-04	1.8E-03	1.7E-04	I	1	1.7E-04	ı	ı	1.2E-03	3.5E-04	ł	4.5E-04	1.1E-03
g/mi 2.0E-02 2.0E-02 2.0E-02 2.0E-02 4.0E-03 3.4E-04 9.6E-05 o/mi 1.2E+01 1.2E+01 1.2E+01 1.2E+01 5.9E+00 1.6E-01 2.3E-02 2.3E-02	Formaldehyde	g/m/	9.4E-02	9.4E-02	8.9E-02	9.5E-02	8.9E-02	1	ı	1.8E-02	ı	I	7.6E-03	1.1E-03	í	2.4E-03	8.8E-03
g/mi 1.2E+01 1.2E+01 1.2E+01 1.2E+01 1.2E+01 5.9E+00 1.6E-01 2.3E-02 2.3E-02	Acetaldehyde	m/g	2.0E-02	2.0E-02	2.0E-02	2.0€-02	2.0E-02	i	l	4.0E-03	I	1	3.4E-04	9.6E-05	ı	1.0E-04	3.3E-04
	Diesel PM	g/mi	1.2E+01	1.2E+01	1.2E+01	1.2E+01	5.9E+00	I	1	1.6E-01	1	ı	2.3E-02	2.3E-02	i	0.0E+00	0.0E+00

Figure A-11. Urban Buses: Model Years 2010 and Newer (Natural Gas, DME, Methanol, and Hydrogen)

Scenario Year 2012: UB Vehicle Class: Model	21 V2 12															
M M	WTT Case ID	ច	ខ	ៗ	5	DM1	DW3	DMS	ž	£	H 2	오	£	¥	Ξ	F23
WTT Description	cription	CNG, NA	CNG, LNG, Remote NG	Гив, Кетоте ИС	LNG, Pipeline Liquefier	DME, Кетоtе ИС	DME, CA	DME, Coal	Nethanol, Ветоtе ИС	Methanol, CA Poplar	Methanol, Coal CCS	гнз нз' ие гв'	HZ, NG SR, LHZ, Ren Power	H2, Coal, Sequestati on	H2, Onsite RS ƏM	H2, 70% Renewable, Electrolysis
Vehic	Vehicle Type	CNG	CNG	LNG	FNG	DME	DATE:	DME	Methanol	Methanol	Methanol	HZFCV	H2FCV	H2FCV	H2FCV	H2FCV
Vehicle Technology	nology	ICEV	CEV	ICEV	ICEV	ICEV	ICEV	KEV	Ρζ	FCV	FCV	FCV	FCV	Ρζ	FCV	FCV
Fossil	MJ/mi	42.31	46.71	46.43	44.51	55.65	2.21	70.10	44.57	29.15	51.00	62.83	36.48	46.55	41.57	24.96
Petroleum	MJ/mi	0.16	0.51	0.51	0.17	1.09	3.	1.19	1.09	. 38	0.89	0.41	0.30	0.67	0.16	0.39
Natural Gas	MJ/mi	42.15	46.19	45.92	4 .33	54.55	0.38	3.65	43.47	27.79	30.17	62.43	36.18	6.87	41.41	24.56
Coal	MJ/mj	0.0	0.0	0.00	0.0	0.0	0.00	65.26	0.0	0.0	19.93	0.00	0.00	39.01	0.00	0.00
Non Fossil	MJ/mi	0.21	0.03	0.05	0.03	0.01	65.27	0.47	0.01	19.94	0.3 34	3.43	16.06	0.30	0.74	28.20
ΗM	MJ/mi	4.48	8.70	8.80	6.83	19.90	31.72	8.8	17.07	21.58	23.83	42.42	28.70	23.81	18.47	28.33
WIL	MJ/mi	38.04	38.0g	37.84	37.64	35.76	35.76	35.76	27.51	27.51	27.51	23.84	23.84	23.84	23.84	23.84
GHGs (weighted	(
ΗM	g/mi	386	774	743	909	954	-2177	1072	800	-1741	828	3831	2200	1198	2468	2007
ΑF	g E	2115	2115	2144	2144	2386	2386	2386	1883	1883	1883	0	0	0	0	0
TOTAL	g/mi	2515	2890	2887	2749	3340	508	3457	2683	14	2712	3831	2200	1198	2468	2002
Criteria, Total																
200	g/mi	0.304	0.360	0.389	0.306	2.416	0.190	0.562	0.457	0.117	0.387	0.399	0.236	0.397	0.257	0.262
8	g/mi	1.232	1.544	1.587	1.270	1.720	1.442	1.041	0.868	0.533	0.408	0.771	0.365	0.355	0.393	0.453
Ň	jm/g	0.900	3.404	3.854	0.902	3.272	2.201	1.569	3.053	0.913	1.304	0.428	0.281	0.928	0.232	0.718
PM10 (x10)	g/mi	0.790	1.571	1.581	0.809	1.907	1.770	57.881	1.992	0.642	76.301	0.839	0.566	62.805	0.482	966.0
Criteria, Urban																
VOC	g/mi	0.048	0.047	0.049	0.045	2.071	2.125	0.044	0.156	0.195	0.154	0.008	0.005	0.00	0.005	0.051
8	Ę,	0.907	0.905	0.897	0.891	0.920	1.125	0.913	0.208	0.356	0.223	0.212	0.008	0.054	0.073	0.150
Ň	g im	0.687	0.710	0.743	0.679	0.795	1.203	0.668	0.252	0.539	0.216	0.035	0.021	0.011	0.023	0.049
PM10 (x10)	g/mi	0.672	0.683	0.670	0.660	0.506	0.715	0.473	0.291	0.435	0.286	0.436	0.236	0.286	0.367	0.390
Urban Toxics, (weighted	reighted)															
Benzene	é E	7.9E-04	8.1E-04	2.0E-04	1.0E-03	3.3E-04	i	!	3.3E-04	I	ŀ	1.4E-03	6.0E-04	i	3.2E-04	9.6E-04
1-3 Butadiene	g/mj	1.9E-03	2.0E-03	2.0E-04	2.0E-03	3.0E-04	ı	ı	2.9E-04	I	ī	1.6E-03	5.4E-04	I	5.1E-04	1.2E-03
Formaldehyde	jm/g	1.2E-02	1.2E-02	6.6E-03	1.3E-02	6.8E-03	i	1	1.8E-03	1	i	9.9E-03	1.7E-03	I	2.8E-03	9.5E-03
Acetaldehyde	g/mi	1.7E-03	1.8E-03	1.5E-03	1.8E-03	1.5E-03	ı	1	4.0E-04	i	ļ	5.1E-04	2.1E-04	I	1.2E-04	3.5E-04
Diesel PM	g/mi	2.1E+00	2.2E+00	2.3E+00	2.2E+00	1.3E+00	ı	1	2.2E-01	ı	!	1.1E-01	1.1E-01	f	0.0E+00	0.0E+00

Figure A-11. Urban Buses: Model Years 2010 and Newer (continued)

TT Case ID C1 C2 A 8 8 G G G G G G G G G G G G G G G G G	Scenario Year 2017: UB Vehicle Class: Mod	r 2017	: UB Vel	icle Clas	s: Mode	lei Year Start 2010 (new	art 2010 (new)									
Variety Vari	Σ Τ <u>W</u>	ase ID	ភ	ឌ	ยา	2	-MG	DM43	DM5	¥	M3	MS	모	꿈	H _c	Ŧ	H23
Vehicle Type CNG LNG LNG DNE DNE DNE Mehranol Mehranol Mehranol Mehranol Mehranol Mehranol Mehranol Mehranol HZECV HZE	WTT Desc	ription	CNG, NA Natural Gas	СИС, LИС, Remote ИС	ĻиG, Rетотв ИС	Pipeline			DME, Coal CCS	,lonsriteM SM etomeЯ	Methanol, CA Poplar	Methanol, Coal CCS	H2, NG SR, LH2	LH2, Ren	Sequestati	etisnO ,SH R2	HS, 70% Renewable, Electrolysis
Multimark 1.38 45.71 45.51 4	Vehick	e Type	CNG	CNG	LNG	LNG	DME	DME	DME	Methanoi	Methanol	Methanol	HZFCV	H2FCV	H2FCV	H2FCV	HZFCV
Milmin 1138 45771 4551 4382 5417 216 6851 4215 2857 4934 5543 3551 John Milmin 0.16 0.50 0.50 0.17 1.10 1.10 1.10 1.05 1.05 0.37 0.30 John Milmin 0.16 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 John Milmin 0.24 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Milmin 0.24 0.04 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Milmin 0.24 0.04 0.04 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Milmin 0.24 0.04 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 John 0.074 2.074 2.003 2.094 3.5.06 3.5.06 26.97 23.37 23.37 23.37 Juhan 0.09m 0.032 0.322 0.294 2.359 0.145 0.040 0.494 0.407 0.649 0.344 Juhan 0.075 1.538 1.540 0.732 1.049 1.109 0.840 0.494 0.407 0.649 0.234 Juhan 0.048 0.047 0.047 0.047 0.049 0.747 0.049 0.494 0.407 0.649 0.244 Juhan 0.048 0.047 0.047 0.047 0.049 0.049 0.407 0.494 0.407 0.049 0.234 Juhan 0.048 0.047 0.047 0.049 0.567 0.051 0.244 0.007 0.005 Juhan 0.061 0.062 0.060 0.060 0.069 0.050 0.214 0.250 0.345 0.235 0.234 0.236 Juhan 0.048 0.047 0.047 0.049 0.049 0.049 0.049 0.049 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0	Vehicle Techi	nology	ICEV	CEV	ICEV	ICEV	ICEV	ICEV	ICEV	FCV	FCV	FCV	FC	FCV	FCV	FCV	FCV
troleum Mulmi 0.16 0.50 0.57 1.07 1.80 1.16 1.06 1.34 0.88 0.37 0.30 trunal Gas Mulmi 0.12 45.21 45.21 45.21 45.21 45.29 5.06 35.22 tural Gas Mulmi 0.02 0.04 0.02 0.00	Fossil	MJ/mi	41.38	45.71	45.51	43.62	54.17	2.16	68.51	42.15	28.57	49.84	55.43	35.51	44.25	39.44	23.30
Milking 0.00		M.J/mi	0.16	0.50	0.50	0.17	1.07	1.80	1.16	1.06	2	0.88	0.37	0.30	0.65	0.15	0.38
Harming 0.00		MJ/mi	41.22	45.21	45.01	43.45	53.10	96.0	3.37	41.09	27.24	29.45	92.06	35.22	2.97	39.28	22.91
Multimary 0.24 0.04 0.02 0.03 0.01 63.399 0.53 0.01 19.55 0.38 3.19 12.94 Multimary 4.32 8.45 8.62 6.75 19.12 31.09 33.98 15.20 21.15 23.25 35.25 25.08 Multimary 37.30 37.30 36.91 36.91 35.06 35.06 35.06 26.97 26.97 26.97 26.37 23.37 Tital		M.J/mi	0.00	0.00	0.00	0.00	0.00	0.00	63.98	0.00	0.00	19.54	0.0	0.00	37.63	0.0	0.00
MJ/mi 4.32 8.45 8.62 6.75 19.12 31.09 33.98 15.20 21.15 23.25 35.25 25.08 MJ/mi 37.30 37.30 36.91 36.91 35.06 35.06 35.06 26.97 26.97 26.97 23.37 23.37 MJ/mi 37.30 37.30 36.91 36.91 35.06 35.06 35.06 26.97 26.97 26.97 25.37 23.37 W g/mi 2074 2074 2103 2103 2339 2339 1946 1946 1946 0 0 0 C		MJ/mi	0.24	0.0 2	0.02	0.03	0.01	63.99	0.53	0.01	19.55	0.38	3.19	12.94	96.0	0.72	27.12
37.30 37.30 37.30 36.91 35.06 35.06 36.97 26.97 23.37 23.37 23.37 385 753 728 592 912 -2135 1039 759 -1708 803 3374 2142 2074 2074 2103 2339 2339 2339 1846 1846 0 0 0 2460 2827 2830 2694 3251 204 3378 2695 138 2649 0 0 2460 2827 2830 2694 2359 0.145 0.546 0.433 0.084 0 0 0 2460 2827 2890 2.36 0.145 0.546 0.433 0.084 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.344 0.346 0.346 0.345 0.345 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.346 0.346 0.345		MJ/mi	4.32	8.45	8.62	6.75	19.12	31.09	33.98	15.20	21.15	23.25	35.25	25.08	21.84	16.78	27.04
385 753 728 592 912 -2135 1039 759 -1708 803 3374 2142 2074 2074 2103 2339 2339 1846 1846 1946 0 0 2460 2827 2830 2694 3251 204 3378 2665 138 2649 3374 2142 0.294 2.890 0.782 2.359 0.145 0.546 0.433 0.084 0.376 0.345 0.224 1.302 1.607 1.626 1.336 1.757 1.449 1.109 0.840 0.439 0.376 0.345 0.224 0.812 2.804 0.782 1.845 1.549 1.742 2.890 0.621 1.229 0.335 0.234 0.775 1.538 1.540 0.792 1.845 1.547 0.482 74.789 0.735 0.544 0.947 0.047 0.044 2.028 2.061 0.043 0.21	MLI.	MJ/mi	37.30	37.30	36.91	36.91	35.06	35.06	35.06	26.97	26.97	26.97	23.37	23.37	23.37	23.37	23.37
385 753 728 592 912 -2135 1039 759 -1708 803 3374 2142 2074 2074 2074 2103 2239 2339 1846 1846 0 0 2460 2827 2830 2694 3251 204 3378 2605 138 2649 3374 2142 0.294 0.349 2.694 3.251 2.04 3378 2.605 0.840 0.376 0.345 0.224 1.302 1.607 1.626 1.336 1.757 1.449 1.109 0.840 0.494 0.407 0.649 0.344 0.342 1.534 1.757 1.449 1.109 0.840 0.621 1.229 0.335 0.231 0.775 1.584 1.537 56.736 1.917 0.482 74.789 0.735 0.536 0.987 0.985 0.976 0.991 1.165 0.993 0.215 0.346 0.762	GHGs (weighted)																
2074 2074 2103 2103 2339 2339 1846 1846 1846 1846 1846 0 0 2460 2827 2830 2694 3251 204 3378 2605 138 2649 3374 2142 0.294 0.382 0.294 2.359 0.145 0.546 0.433 0.084 0.376 0.345 0.224 1.302 1.626 1.336 1.757 1.449 1.109 0.840 0.494 0.407 0.649 0.344 0.812 3.264 3.504 0.781 1.748 1.442 2.890 0.621 1.229 0.335 0.231 0.048 0.047 0.048 1.537 56.736 1.917 0.482 74.789 0.735 0.534 0.048 0.047 0.044 2.028 2.061 0.943 0.151 0.144 0.005 0.048 0.040 0.044 2.028 2.061 0.943 0.246	₩	jm/g	382	753	728	592	912	-2135	1039	759	-1708	8 63	3374	2142	1115	2338	1913
2460 2827 2830 2694 3251 204 3378 2605 138 2649 3374 2142 0.294 0.349 0.264 0.246 0.433 0.084 0.376 0.345 0.224 1.302 1.607 1.626 1.336 1.757 1.449 1.109 0.840 0.494 0.407 0.649 0.344 0.812 3.264 3.504 0.781 3.087 1.748 1.442 2.890 0.621 1.229 0.345 0.231 0.775 1.538 1.540 0.792 1.845 1.537 56.736 1.917 0.482 74.789 0.735 0.534 0.048 0.047 0.044 2.028 2.061 0.043 0.151 0.174 0.149 0.005 0.048 0.947 0.048 0.959 0.215 0.346 0.166 0.037 0.006 0.671 0.682 0.660 0.489 0.599 0.471 0.275	Æ	jm/g	2074	2074	2103	2103	2339	2339	2339	1846	1846	1846	0	0	0	0	0
0.294 0.349 0.362 0.294 2.359 0.145 0.546 0.433 0.084 0.376 0.345 0.224 1.302 1.626 1.336 1.757 1.449 1.109 0.840 0.494 0.407 0.649 0.344 0.812 3.264 3.504 0.781 3.087 1.748 1.442 2.890 0.621 1.229 0.335 0.231 0.775 1.538 1.540 0.792 1.845 1.537 56.736 1.917 0.482 74.789 0.735 0.534 0.048 0.047 0.047 1.745 1.537 56.736 1.917 0.482 74.789 0.735 0.534 0.048 0.047 0.043 0.151 0.142 0.407 0.649 0.735 0.534 0.048 0.047 0.044 2.028 2.061 0.043 0.151 0.1489 0.759 0.215 0.048 0.927 0.599 0.201 0.348 0.166	TOTAL	g/mi	2460	2827	2830	5 69 7	3251	204	3378	2605	38	2649	3374	2142	1115	2338	1913
0.294 0.349 0.362 0.294 2.359 0.145 0.546 0.433 0.084 0.376 0.345 0.224 1.302 1.626 1.336 1.757 1.449 1.109 0.840 0.494 0.407 0.649 0.344 0.812 3.264 3.504 0.781 3.087 1.748 1.442 2.890 0.621 1.229 0.335 0.231 0.775 1.538 1.540 0.792 1.845 1.537 56.736 1.917 0.482 74.789 0.735 0.534 0.775 1.538 0.792 1.845 1.537 56.736 1.917 0.482 74.789 0.735 0.534 0.048 0.047 0.043 0.151 0.747 0.749 0.735 0.534 0.048 0.972 0.991 1.165 0.993 0.215 0.346 0.755 0.748 0.756 0.748 0.756 0.749 0.756 0.006 0.684 0.927	Criteria, Total																
1.302 1.626 1.336 1.757 1.449 1.109 0.840 0.494 0.407 0.649 0.344 0.812 3.264 3.504 0.781 3.087 1.748 1.442 2.890 0.621 1.229 0.335 0.231 0.775 1.538 1.540 0.792 1.845 1.537 56.736 1.917 0.482 74.789 0.735 0.534 0.048 0.047 0.044 2.028 2.061 0.043 0.151 0.174 0.149 0.735 0.534 0.048 0.097 0.991 1.165 0.993 0.215 0.340 0.228 0.162 0.005 0.641 0.652 0.997 0.991 1.165 0.993 0.215 0.340 0.228 0.162 0.005 0.641 0.660 0.684 0.927 0.599 0.271 0.276 0.348 0.266 0.066 0.684 0.927 0.599 0.271 0.275 0.248 <t< th=""><th>NOC</th><th>jm/g</th><th>0.294</th><th>0.349</th><th>0.362</th><th>0.294</th><th>2.359</th><th>0.145</th><th>0.546</th><th>0.433</th><th>0.084</th><th>0.376</th><th>0.345</th><th>0.224</th><th>0.379</th><th>0.240</th><th>0.246</th></t<>	NOC	jm/g	0.294	0.349	0.362	0.294	2.359	0.145	0.546	0.433	0.084	0.376	0.345	0.224	0.379	0.240	0.246
0.812 3.264 3.504 0.781 3.087 1.748 1.442 2.890 0.621 1.229 0.335 0.231 0.775 1.538 1.540 0.792 1.845 1.537 56.736 1.917 0.482 74.789 0.735 0.534 6 0.048 0.047 0.044 2.028 2.061 0.043 0.151 0.174 0.149 0.705 0.534 0.987 0.997 0.991 1.165 0.993 0.215 0.340 0.228 0.162 0.006 0.618 0.640 0.653 0.660 0.684 0.927 0.599 0.201 0.348 0.166 0.031 0.020 0.671 0.682 0.660 0.489 0.599 0.471 0.275 0.348 0.269 0.348 0.269 0.348 0.269 0.348 0.269 0.349 0.275 0.348 0.269 0.348 0.269 0.348 0.269 0.348 0.269 0.348 <t< th=""><th>8</th><th>jm/g</th><th>1.302</th><th>1.607</th><th>1.626</th><th>1.336</th><th>1.757</th><th>1.449</th><th>1.109</th><th>0.840</th><th>0.494</th><th>0.407</th><th>0.649</th><th>0.344</th><th>0.333</th><th>0.363</th><th>0.423</th></t<>	8	jm/g	1.302	1.607	1.626	1.336	1.757	1.449	1.109	0.840	0.494	0.407	0.649	0.344	0.333	0.363	0.423
0.775 1.538 1.540 0.792 1.845 1.537 56.736 1.917 0.482 74.789 0.735 0.534 4 0.048 0.047 0.044 2.028 2.061 0.043 0.151 0.174 0.149 0.007 0.005 0.987 0.997 0.991 1.165 0.993 0.215 0.340 0.228 0.162 0.006 0.618 0.650 0.660 0.684 0.927 0.599 0.201 0.368 0.166 0.031 0.020 0.671 0.682 0.660 0.489 0.599 0.471 0.275 0.348 0.269 0.471 0.275 0.348 0.269 0.378 0.266 0.008 0.671 0.682 0.660 0.489 0.599 0.471 0.275 0.348 0.269 0.387 0.236 0.671 0.682 0.660 0.489 0.599 0.471 0.275 0.348 0.269 0.387 0.296	Ň	jm/6	0.812	3.264	3.504	0.781	3.087	1.748	1.442	2.890	0.621	1.229	0.335	0.231	0.888	0.207	0.677
0.048 0.047 0.044 2.028 2.061 0.043 0.151 0.174 0.149 0.007 0.005 0.987 0.986 0.976 0.997 0.991 1.165 0.993 0.215 0.340 0.228 0.162 0.006 0.618 0.640 0.653 0.606 0.684 0.927 0.599 0.201 0.368 0.166 0.031 0.020 0.671 0.682 0.660 0.489 0.599 0.471 0.275 0.348 0.269 0.371 0.020 0.671 0.682 0.660 0.489 0.599 0.471 0.275 0.348 0.269 0.378 0.269 0.387 0.236 0.671 0.662 0.660 0.489 0.599 0.471 0.275 0.348 0.269 0.387 0.236 0.775 0.786 0.660 0.489 0.599 0.471 0.275 0.348 0.269 0.387 0.269 0.776 0.78	PM10 (x10)	g/mi	0.775	1.538	1.540	0.792	1.845	1.537	56.736	1.917	0.482	74.789	0.735	0.534	60.581	0.454	0.956
0.048 0.047 0.044 2.028 2.061 0.043 0.151 0.174 0.149 0.007 0.005 0.987 0.986 0.976 0.997 1.165 0.993 0.215 0.340 0.228 0.162 0.008 0.618 0.640 0.653 0.606 0.684 0.927 0.599 0.201 0.368 0.166 0.031 0.020 0.671 0.682 0.660 0.489 0.599 0.471 0.275 0.348 0.269 0.387 0.236 0.671 0.682 0.660 0.489 0.599 0.471 0.275 0.348 0.269 0.387 0.236 7.7E-04 7.9E-04 1.2E-04 2.0E-04 1.2E-04 1.2E-04 1.9E-03 1.6E-04 1.9E-03 1.2E-04 2.2E-04 1.4E-03 1.3E-04 1.7E-03 1.7E-03 1.4E-03 1.5E-04 2.2E-04 1.4E-	Criteria, Urban																
0.987 0.985 0.976 0.972 0.991 1.165 0.993 0.215 0.340 0.228 0.162 0.008 0.618 0.640 0.653 0.606 0.684 0.927 0.599 0.201 0.368 0.166 0.031 0.020 0.671 0.682 0.660 0.489 0.599 0.471 0.275 0.348 0.269 0.387 0.236 7.7E-04 7.9E-04 1.2E-04 2.0E-04	00 0	jm/6	0.048	0.047	0.047	0.04	2.028	2.061	0.043	0.151	0.174	0.149	0.007	0.005	0.00	0.002	0.049
0.618 0.640 0.653 0.606 0.684 0.927 0.599 0.201 0.368 0.166 0.031 0.020 0.671 0.682 0.660 0.489 0.599 0.471 0.275 0.348 0.269 0.387 0.236 7.7E-04 7.9E-04 1.2E-04 9.1E-04 2.0E-04	8	E E	0.987	0.985	9.60	0.972	0.991	1.165	0.993	0.215	0.340	0.228	0.162	0.008	0.047	0.063	0.138
0.671 0.682 0.669 0.489 0.599 0.471 0.275 0.348 0.269 0.347 0.236 7.7E-04 7.9E-04 1.2E-04 9.1E-04 2.0E-04 2.0E-04 1.2E-03 4.1E-04 1.9E-03 2.0E-04 1.2E-04 2.2E-04 1.4E-03 4.3E-04 1.2E-02 1.2E-02 6.6E-03 1.2E-04 2.2E-04 1.4E-03 4.3E-04 1.7E-03 1.7E-03 1.4E-03 1.5E-03 1.5E-03 1.6E-03 4.2E-04 1.4E-04 2.1E+00 2.2E+00 2.3E+00 2.1E+00 2.1E+00 2.1E-01 6.5E-02 1.5E-02 5.7E-02 5.7E-02	Ň	jm/6	0.618	0.640	0.653	909.0	0.684	0.927	0.599	0.201	0.368	0.166	0.031	0.020	0.010	0.022	0.036
7.7E-04 7.9E-04 1.2E-04 9.1E-04 2.0E-04 — 2.0E-04 — 1.2E-03 1.9E-03 2.0E-04 1.3E-04 — 2.2E-04 — 1.4E-03 1.2E-02 1.2E-02 6.6E-03 — 1.6E-03 — 8.9E-03 1.7E-03 1.7E-03 1.4E-03 1.8E-03 — 8.9E-04 2.1E+00 2.2E+00 2.3E+00 2.1E+00 1.2E-00 — 5.7E-02	PM10 (x10)	g/mi	0.671	0.682	0.669	0.660	0.489	0.599	0.471	0.275	0.348	0.269	0.387	0.236	0.279	0.355	0.376
g/mi 7.7E-04 7.9E-04 1.2E-04 9.1E-04 2.0E-04 — 2.0E-04 — 1.2E-03 g/mi 1.9E-03 2.0E-04 — — 2.2E-04 — 1.4E-03 g/mi 1.2E-02 1.2E-02 6.5E-03 1.2E-02 6.6E-03 — 1.6E-03 — 8.9E-03 g/mi 1.7E-03 1.7E-03 1.4E-03 1.5E-03 — 4.2E-04 a/mi 2.1E-00 2.2E+00 2.3E+00 2.1E+00 1.2E+00 — 4.2E-04	Urban Toxics, (w€	eighted)															
g/mi 1.9E-03 2.0E-04 1.9E-03 2.2E-04 1.4E-03 g/mi 1.2E-02 1.2E-02 6.5E-03 1.2E-02 6.6E-03 1.6E-03 1.6E-03 1.6E-03 1.6E-03 1.6E-03 1.6E-03 1.6E-03 1.6E-03 1.6E-04 1.6E-04 <th>Benzene</th> <th>je je</th> <th>7.7E-04</th> <th>7.9E-04</th> <th>1.2E-04</th> <th>9.1E-04</th> <th>2.0E-04</th> <th>i</th> <th>l</th> <th>2.0E-04</th> <th>1</th> <th>ŀ</th> <th>1.2E-03</th> <th>4.1E-04</th> <th>í</th> <th>3.1E-04</th> <th>9.2E-04</th>	Benzene	je je	7.7E-04	7.9E-04	1.2E-04	9.1E-04	2.0E-04	i	l	2.0E-04	1	ŀ	1.2E-03	4.1E-04	í	3.1E-04	9.2E-04
g/mi 1.2E-02 1.2E-02 6.5E-03 1.2E-02 6.6E-03 1.6E-03 8.9E-03 g/mi 1.7E-03 1.7E-03 1.4E-03 1.8E-03 1.5E-03 3.6E-04 4.2E-04 d/mi 2.1E-00 2.2E+00 2.3E+00 2.1E+00 1.2E+00 1.8E-01 5.7E-02	1-3 Butadiene	jm/g	1.9E-03	2.0E-03	1.6E-04	1.9E-03	2.2E-04	ı	I	2.2E-04	1	ı	1.4E-03	4.3E-04	I	4.8E-04	1.1E-03
g/mi 1.7E-03 1.7E-03 1.4E-03 1.8E-03 1.5E-03 3.6E-04 - 4.2E-04 o/mi 2.1E+00 2.2E+00 2.3E+00 2.1E+00 1.2E+00 1.8E-01 5.7E-02	Formaldehyde	jE/6	1.2E-02	1.2E-02	6.5E-03	1.2E-02	6.6E-03	ı	I	1.6E-03	ŀ	I	8.9E-03	1.3E-03	I	2.6E-03	9.1E-03
g/mi 2.1E+00 2.2E+00 2.3E+00 2.1E+00 1.2E+00 1.8E-01 5.7E-02	Acetaldehyde	g/mi	1.7E-03	1.7E-03	1.4E-03	1.8E-03	1.5E-03	I	i	3.6E-04	I	1	4.2E-04	1.4E-04	I	1.1E-04	3.4E-04
	Diesel PM	g/mi	2.1E+00	2.2E+00	2.3E+00	2.1E+00	1.2E+00	i	1	1.8E-01	,		5.7E-02	5.7E-02	ı	0.0E+00	0.0E+00

Figure A-11. Urban Buses: Model Years 2010 and Newer (continued)

Scenario Year 2022; UB Venicle Class: Mode	IF 2022	OD VEI	iicie cias	SS. MOUE	ai rear Start 2010 (new)	01.07 Ju	(new)									
) ILM	WTT Case ID	ភ	ឌ	ឌ	2	DW1	DM3	DMS	M1	M3	W2	오	£	H4c	H11	H23
WTT Description	ription	CNG, NA Natural Gas	CNG, LNG,	Кетоф ИС	LNG, Pipeline Liquefier	DME, Рето т е ИС	DME, CA Poplar	DME, Coal	Methanol, Remote NG	Methanol, CA Poplar	Methanol, Coal CCS	H2, NG SR, LH2	H2, NG SR, LH2, Ren Power	H2, Coal, Sequestati on	H2, Onsite RS SN	H2, 70% Renewable, Electrolysis
Vehic	Vehicle Type	CNG	CNG	-PAG	LNG	DIME	DIME	JWG	Methanol	Methanol	Methanol	HZFCV	H2FCV	HZFCV	H2FCV	H2FCV
Vehicle Technology	nology	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	FCV	FCV	FCV	FCV	FCV	ΡÇ	FC	ΡÇ
Fossil	MJ/mi	40.88	44.94	44.79	42.94	52.52	2.13	67.62	41.15	28.28	49.20	50.77	34.67	45.64	37.50	21.89
Petroleum	MJ/mi	0.16	0.49	0.49	0.17	1.05	1.78	1.15	1.05	1.32	0.87	0.35	0.29	0.63	0.15	0.37
Natural Gas	MJ/mi	40.72	4.4	4 .3	42.77	51.47	0.35	3.13	40.10	56.96	28.98	50.41	34.38	5.35	37.35	21.52
Soal	MJ/mi	0.00	0.00	0.00	0.00	0.00	0.00	63.35	0.00	0.00	19.35	0.00	0.0	36.67	0.00	0.00
Non Fossil	MJ/mi	0.27	0. 20.	0.05	0.0 Z	0.01	63.36	0.59	0.01	19.36	0.43	3.11	11.16	<u>4</u> .	0.65	25.93
M∏	MJ/mi	4.22	8.05	8.27	6.43	17.82	30.77	33.50	14.46	20.94	22.92	30.74	22.69	20.54	15.01	24.68
×Ε	MJ/mi	36.93	36.93	36.54	36.54	34.71	34.71	34.71	26.70	26.70	26.70	23.14	23.14	23.14	23.14	23.14
GHGs (weighted)																
ΗM	g/m	376	724	\$	571	837	-2114	1017	741	-1691	982	3088	2092	1057	222	1825
WLL	g/mi	2054	2054	2082	2082	2316	2316	2316	1828	1828	1828	0	0	0	0	0
TOTAL	g/mi	2430	2778	2786	2653	3153	202	3333	2569	136	2614	3088	2002	1057	2221	1825
Criteria, Total																
00 0	g/m	0.289	0.341	0.347	0.287	2.326	0.119	0.539	0.422	0.065	0.370	0.313	0.216	0.367	0.226	0.234
8	jm/g	1.303	1.597	1.605	1.332	1.735	1.422	1.110	0.822	0.470	0.400	0.577	0.331	0.319	0.337	0.398
Š	g/mi	0.757	3.153	3.302	0.711	2.969	1.480	1.371	2.814	0.450	1.192	0.286	0.205	0.861	0.189	0.653
PM10 (x10)	g/mi	0.766	1.512	1.511	0.781	1.810	1.399	56.169	1.881	0.386	74.040	0.675	0.515	59.032	0.433	0.930
Criteria, Urban																
70C	g/mi	0.048	0.046	0.046	0.04	2.007	2.028	0.043	0.148	0.163	0.146	0.007	0.005	0.001	0.005	0.048
8	g/m	0.994	0.993	0.983	0.980	0.994	<u>7.</u>	0.999	0.212	0.327	0.224	0.132	0.008	0.042	0.054	0.127
Š	je je	0.574	0.596	0.599	0.561	0.622	0.766	0.555	0.176	0.271	0.141	0.028	0.020	0.010	0.021	0.030
PM10 (x10)	g/mi	0.670	0.681	0.668	0.660	0.480	0.531	0.469	0.268	0.297	0.260	0.358	0.236	0.274	0.345	0.364
Urban Toxics, (weighted	eighted)															
Benzene	g/mi	7.6E-04	7.7E-04	8.8E-05	8.7E-04	1.4E-04	ŀ	ı	1.4E-04	I	!	1.0E-03	3.2E-04	I	2.9E-04	8.9E-04
1-3 Butadiene	g/mi	1.9E-03	2.0E-03	1.4E-04	1.8E-03	1.9E-04	i	I	1.8E-04	i	!	1.2E-03	3.7E-04	i	4.7E-04	1.1E-03
Formaldehyde	g/mi	1.2E-02	1.2E-02	6.4E-03	1.2E-02	6.5E-03	i	I	1.5E-03	I	i	8.2E-03	1.2E-03	I	2.5E-03	8.8E-03
Acetaldehyde	g/mi	1.7E-03	1.7E-03	1.4E-03	1.8E-03	1.5E-03	ŀ	I	3.3E-04	I	i	3.7E-04	1.1E-04	I	1.1E-04	3.3E-04
Diesel PM	g/mi	2.1E+00	2.2E+00	2.3E+00	2.1E+00	1.2E+00	i	ı	1.6E-01	i	!	3.4E-02	3.4E-02	i	0.0E+00	0.0E+00

Figure A-11. Urban Buses: Model Years 2010 and Newer (concluded)

Scenario Year 2030: UB Vehicle Class: Mod	r 2030.	: UB Veh	icle Clas	s: Mode	el Year Start 2010 (new)) ULOZ 111	new)									
WTT Case ID	ase ID	ច	ឌ	ខា	17	DM1	DM3	DMS	₩	M3	M2	꾸	至	H4c	Ŧ	H23
WTT Description	ription	CNG, NA Natural Gas	CNG, LNG,	ГИС, Кетоње ИС	LNG, Pipeline Liquefier	кешо те ис	DME, CA	DME, Coal	Methanol, Remote NG	Methanol, CA Poplat	Methanol, Coal CCS	H2, NG SR,	H2, NG SR, LH2, Ren Power	H2, Coal, Sequestati on	H2, Onsite RS 5N	H2, 70% Renewable, Electrolysis
Vehicle Type	3 Type	CNG	CNG	FING	FNG	DIME	E DIME	DME	Methanol	Methanol	Methanol	HZFCV	H2FCV	H2FCV	H2FCV	H2FCV
Vehicle Technology	ygolor	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	ICEV	FCV	FCV	FCV	ΡĈ	FCV	ΣĊ	FC	FCV
Fossil	MJ/mi	40.48	44.49	44.35	42.51	52.00	2.11	66.95	40.75	28.00	48.71	50.27	34.33	42.22	37.13	21.68
Petroleum	MJ/mi	0.16	0.49	0.49	0.17	2	1.76	1,14	4.	1.31	98.0	0.35	0.29	0.62	0.14	0.37
Natural Gas	MJ/mi	40.32	44.00	43.86	42.35	20.96	0.35	3.10	39.70	26.69	28.69	49.91	8.8	5.29	36.98	21.31
Soal	MJ/mi	0.0	0.00	0.00	0.0	0.00	0.00	62.72	0.00	0.00	19.16	0.00	0.00	36.31	0.00	0.00
Non Fossil	MJ/mi	97.0	9.0	0.02	9. 8	0.01	62.73	0.59	0.01	19.17	0.43	3.08	1 .	1.03	0.64	25.67
±м	MJ/mi	4.18	76.7	8.19	6.37	17.64	30.47	33.17	14.32	20.73	22.70	30.43	22.46	20.34	14.86	24.44
WIL	MJ/mi	36.56	36.56	36.18	36.18	34.37	34.37	34.37	26.44	26.44	26.44	22.91	22.91	22.91	22.91	22.91
GHGs (weighted)																
ШM	g/mi	372	717	269	299	829	-2083	1001	734	-1675	877	3057	2071	1047	2199	1807
WIL	g/mi	2034	2034	2061	2061	2283	2293	2293	1810	1810	1810	0	.0	0	0	0
TOTAL	g/mi	2406	2751	2759	5626	3122	200	3300	2543	135	2588	3057	2071	1047	2199	1807
Criteria, Total																
200	g/mi	0.268	0.319	0.321	0.264	2.284	960'0	0.514	0.414	0.058	0.362	0.309	0.213	0.363	0.224	0.231
8	g/mi	1.328	1.619	1.620	1.355	1.750	1.435	1.134	0.819	0.466	0.401	0.569	0.326	0.316	0.334	0.393
Š	j/m	0.764	3.136	3.244	0.712	2.946	1.446	1.364	2.782	0.423	1.176	0.277	0.197	0.852	0.187	0.644
PM10 (x10)	g/mi	908.0	1.546	1.544	0.822	1.815	1.396	55.635	1.862	0.373	73.306	0.668	0.510	58.450	0.431	0.922
Criteria, Urban																
200	g/mi	0.029	0.027	0.027	0.025	1.968	1.988	0.024	0.142	0.156	0.140	0.007	0.005	0.00	0.00	0.048
8	g in	1.022	1.020	1.010	1.007	1.019	1.173	1.027	0.215	0.326	0.227	0.131	0.00	0.04	0.053	0.125
Š	g E	0.582	0.604	0.603	0.568	0.622	0.751	0.563	0.170	0.255	0.136	0.028	0.019	0.00	0.020	0.027
PM10 (x10)	g/mi	0.713	0.723	0.711	0.702	0.498	0.542	0.490	0.265	0.289	0.257	0.356	0.236	0.274	0.344	0.362
Urban Toxics, (weighted	ighted)															
Benzene	je je	7.4E-04	7.6E-04	7.1E-05	8.4E-04	1.1E-04	1	1	1.1E-04	1	I	9.2E-04	2.7E-04	I	2.8E-04	8.8E-04
1-3 Butadiene	g/mi	1.8E-03	1.9E-03	1.3E-04	1.8 E- 03	1.7E-04	ı	i	1.7E-04	ı	ı	1.1E-03	3.5E-04	1	4.5E-04	1.1E-03
Formaldehyde	g/mj	8.6E-03	8.7E-03	3.6E-03	9.4E-03	3.6E-03	i	ı	8.9E-04	i	i	7.6E-03	1.1E-03	i	2.4E-03	8.7E-03
Acetaldehyde	g/mi	1.1E-03	1.1E-03	8.0E-04	1.1E-03	6.2E-04	I	I	2.0E-04	I	ı	3.3E-04	9.5E-05	I	1.0E-04	3.2E-04
Diesel PM	g/mi	2.3E+00	2.5E+00	2.5E+00	2.3E+00	1.3E+00	i	ł	1.6E-01	i	1	2.3E-02	2.3E-02	Ι	0.0E+00	0.0E+00

APPENDIX B. GENERAL RESPONSE TO COMMENTS ON THE DRAFT FULL FUEL CYCLE ASSESSMENT REPORTS

Many alternative fuels technologies stakeholders, environmental groups, industry organizations, university representatives, and regulatory agencies offered in-depth comments on the drafts of the three major reports that were the products of the full fuel cycle assessment (FFCA) of alternative fuels production, distribution, and use. The depth of these comments reflects the importance of this topic to California's energy future. We thank all those who provided such detailed review of the reports and provided comments. All comments received were carefully considered and appropriately addressed in the revised reports issued. Comments received can be generally grouped into three categories. These categories and our responses are summarized as follows:

- Report errors. In documenting the results of an effort of the magnitude captured in the draft reports, the occurrence of typographical errors, the unintentional use of outdated data, inconsistencies, and inadvertent factual errors are unavoidable. We attempted to correct all these, resolve inconsistencies, and include clarification where possible.
- Questions regarding the validity of many of the assumptions made in coming to assessment results. Again, in completing an analysis as detailed and comprehensive as that undertaken in the FFCA, a large number of assumptions regarding analysis parameter values and the details of the evaluation cases considered were required. Many reviewers noted that alternate assumptions and approach details could have been considered. We took all these comments and suggestions into careful consideration, but elected to remain with our original approach. In many of these instances, we attempted to offer clarifying discussion regarding why our approach was selected, acknowledging that alternate assumptions are possible, but that those adopted were reasonable.
- Assessment omissions. Many reviewers noted that several aspects of the assessment attempted were omitted or insufficiently discussed. For example:
 - The sensitivity of assessment results to the choice of assumptions made was not carefully considered nor explained
 - The importance of land use considerations as they affect assessment results was not carefully considered nor explained
 - Many alternative fuel production, distribution, and use pathways that may be of critical importance to the ultimate use of assessment findings were not evaluated

We attempted to address these omissions to the best of our ability within the intended scope of the effort. For example:

- Sensitivity analyses were performed and discussed where possible, again within the intended scope of the analysis
- Land use impacts were indeed not considered in the assessment; clarifying discussion to emphasize this point has been added
- Many additional alternative fuel pathways were evaluated in preparing this revised set of reports, and appropriate discussion of these and their evaluation results incorporated

Again, we thank all those who offered careful review and comment on the draft assessment reports. Attempts have been made to both consider and address all comments received. We hope that these reviewers will continue to offer their support to the AB 1007 Alternative Fuels Plan Proceeding as it progresses.

APPENDIX C. RESPONSES TO SPECIFIC COMMENTS ON THE DRAFT FULL FUEL CYCLE ASSESSMENT REPORTS

	,	