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 DISCLAIMER 
 This report was prepared as the result of work sponsored by the 

California Energy Commission. It does not necessarily represent the 
views of the Energy Commission, its employees or the State of 
California. The Energy Commission, the State of California, its 
employees, contractors and subcontractors make no warrant, express 
or implied, and assume no legal liability for the information in this 
report; nor does any party represent that the uses of this information 
will not infringe upon privately owned rights. This report has not been 
approved or disapproved by the California Energy Commission nor has 
the California Energy Commission passed upon the accuracy or 
adequacy of the information in this report.  

 



 
 

ABSTRACT 
Keystones of California’s energy policy include strategies to ensure adequate energy 
resources, reduce energy demand, develop alternative energy sources, keep 
ratepayer costs reasonble, and improve the state’s infrastructure.  With the passage 
in 2006 of the California’s Global Warming Solutions Act, reducing California’s 
greenhouse gas emissions has become a critical policy driver. Increasing the use of 
renewable energy to 33 percent in 2020 is a significant step toward reducing 
emissions. Although California’s electric utility resource planning guidelines 
incorporate risk assessment and scenario analyses, they do not capture important 
cost/risk inter-relationships that dramatically affect estimated overall costs and risks 
associated with alternate portfolios of generating resources.  To remedy this 
limitation, a apply mean-variance portfolio theory is applied to create low risk, high 
return portfolios under various economic conditions.  The results of the analysis 
indicate that compared to the projected 2020 California “business as usual” 
generating portfolio, there are other potential portfolios that have lower expected 
costs, less cost risk, and substantially reduced CO2 emissions and energy import 
dependency. The analysis suggests that an optimal generating portfolio for 
California includes greater shares of renewable resource technologies, which may 
cost more on a stand-alone basis but reduce overall portfolio costs and risks 
because of their diversification effects. 
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Portfolio analysis, generation mix, renewable energy, electricity planning, fuel prices, 
energy risks 
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EXECUTIVE SUMMARY 
Keystones of California’s energy policy include strategies to ensure adequate energy 
resources, reduce energy demand, develop alternative energy sources, keep 
ratepayer costs reasonable, and improve the state’s infrastructure.  With the 
passage in 2006 of the Global Warming Solutions Act1, reducing California’s 
greenhouse gas emissions has become a critical policy driver. Increasing the use of 
renewable energy to 33 percent in 2020 is a significant step toward reducing 
emissions. There is little debate on the use of renewable generating technologies as 
an effective means for climate change mitigation. Policy makers, consumers, and 
companies, however, are wary because of the widespread perception that these 
technologies cost more than conventional alternatives so that increasing their 
deployment will raise overall electricity generating costs.  

Although California’s electric utility resource planning guidelines incorporate risk 
assessment and scenario analyses, they do not incorporate portfolio risk. Sensitivity 
analysis cannot replicate the important cost/risk inter-relationships that dramatically 
affect estimated portfolio costs and risks, and thus it is no substitute for portfolio-
based approaches described in this report. For example, despite significant fuel 
price volatility, gas-fired resources continue to be added at levels that do not 
meaningfully reduce California's reliance on natural gas. This results in greater 
exposure to future electricity price risk and CO2 risk for California electricity 
consumers. Renewable resources represent lower risk alternatives to gas-fired 
resources. However, because portfolio risk has not been incorporated into electricity 
generation long-term resource planning, the value of this risk reduction is not being 
fully considered in either the state’s procurement or long-term planning processes. 

Given this uncertain environment, it makes sense to shift electricity planning from its 
current emphasis on evaluating alternative technologies to evaluating alternative 
electricity generating portfolios and strategies. The techniques for doing this are 
rooted in modern finance theory – in particular mean-variance portfolio theory.  
Portfolio analysis is widely used by financial investors to create low risk, high return 
portfolios under various economic conditions. In essence, investors have learned 
that an efficient portfolio takes no unnecessary risk to its expected return. In short, 
these investors define efficient portfolios as those that maximize the expected return 
for any given level of risk, while minimizing risk for every level of expected return. 

By applying these concepts, the expected cost and, more importantly, the potential 
cost risk of California’s projected 2020 “business-as-usual” electric generating mix 2, 
can be evaluated in an environment of uncertain CO2 prices. These concepts are 
also applied to identify additional generation portfolios that had lower expected costs 
and less cost risk than the business-as-usual mix.  The resulting optimal portfolios 
represent various least-cost and risk combinations that can be used as a benchmark 
to evaluate other alternative generating strategies that will achieve the state’s 
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renewable energy goal of 33 percent in 2020 while simultaneously reducing CO2 
emissions. 

Findings 
A key finding of this report is that, compared to the projected 2020 California 
business-as-ususal electricity generating portfolio, there exist portfolios that are less 
risky, less expensive, and that substantially reduce CO2 emissions and energy 
import dependency. The analysis suggests that an optimal generating portfolio for 
California includes greater shares of renewables technologies that may cost more on 
a stand-alone basis, but overall portfolio costs and risks are reduced because of the 
effect of portfolio diversification. Though counter-intuitive, the idea that adding more 
costly renewables can actually reduce portfolio-generating cost is consistent with the 
basic finance theory. Optimal generating portfolio mixes also enhance California’s 
energy security. The analysis further suggests that the optimal 2020 generating 
portfolios not only achieve California’s 33 percent Renewable Portfolio Standard 
(RPS) goal but also reduce overall electricity generating cost, market risks and CO2 
emissions relative to the projected 2020 California BAU mix. 

Perhaps the single most important lesson of the portfolio optimization analysis is that 
adding a non-fossil fuel, fixed-cost technology (such as wind energy) to a risky 
generating portfolio lowers expected costs at any level of risk, even if the non-fossil 
technology costs more when assessed on a stand-alone basis. This underscores the 
importance of policy-making approaches grounded in portfolio concepts as opposed 
to stand-alone engineering concepts. In addition, adding “too much” renewables 
counter-intuitively increases (not decreases) resulting portfolio risk because it 
replaces less risky existing technology with more risky new technology and it 
reduces overall portfolio diversification.  

It is important, however, to recognize that the mean-variance portfolio approach has 
several important limitations with respect to generation planning. The portfolio 
optimization presented in this paper does not define any specific capacity-expansion 
plan. Such a plan would require far more detailed modelling and analysis. The 
results presented here are largely expositional, but demonstrate the value of 
portfolio optimization approaches and suggest that capacity planning made on the 
basis of stand-alone technology costs will likely lead to economically inefficient 
outcomes. 
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CHAPTER 1: INTRODUCTION 
Objective 
This report applies portfolio-theory concepts from the field of finance to long-term 
electric generation planning.  By applying these concepts, it is possible to evaluate 
the expected cost and, more importantly, the potential cost risk of a “business-as-
usual” (BAU) electric generating mix, in an environment of uncertain CO2 prices. For 
this report, BAU is defined as a mix that incorporates 20 percent renewable energy, 
with the expectation of achieving all predicted energy efficiency from currently 
funded programs.  

These concepts also allow identification of additional generation portfolios with lower 
expected costs and less cost risk than the BAU mix.  The resulting optimal portfolios 
represent various least-cost and risk combinations that can be used as a benchmark 
to evaluate other alternative generating strategies that will achieve the state’s 33 
percent RPS goal in 2020 while simultaneously reducing CO2 emissions.  

Although California’s electric utility resource planning incorporate risk assessment 
and scenario analyses, they do not incorporate portfolio risk. Sensitivity analysis 
cannot replicate the important cost/risk inter-relationships that dramatically affect 
estimated portfolio costs and risks, and thus is no substitute for portfolio-based 
approaches described in this report. For example, despite significant fuel price 
volatility, gas-fired resources continue to be added at levels that do not meaningfully 
reduce California's reliance on natural gas. This results in greater exposure to future 
electricity price and CO2 risk for California electricity consumers. Renewable 
resources represent lower risk alternatives to gas-fired resources. The value of this 
risk reduction is not captured in the state’s current procurement or long-term 
planning processes. 

Another potential problem is a failure to fully account for the benefits of generation 
portfolio diversification and renewables technology deployment. In deregulated 
markets, individual power producers evaluate only their own direct costs and risks in 
making investment decisions. These decisions do not reflect the overall market 
impacts of the individual generation technology investment decisions. Renewables 
investors, for example, may be unable to fully capture the risk-mitigation benefits 
they produce for the overall portfolio, which leads to under-investment in renewables 
technology relative to levels that are optimal from society’s perspective. By contrast, 
some investors may prefer the risk menu offered by fuel-intensive technologies such 
as combined-cycle gas turbines (CCGT), which have low initial costs. Regulated 
utilities are able to transfer fuel risks onto customers using fuel adjustment clauses. 
Thus, these investors do not bear the full risk effects they impose onto the 
generating mix, which may lead to over-investment in gas relative to what is optimal 
from a total portfolio perspective. All this suggests a rationale for economic policies, 
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such as California’s 33 percent RPS goal,3 that favor technologies that bring 
diversification benefits  

The mean-variance portfolio analysis proposed in this report exemplifies how cost 
risk can be examined and incorporated into state policy decisions about future 
generating resources. Portfolio analysis may also enable California decision makers 
to assess potential changes to a portfolio's risks and costs brought about by adding 
specific renewable resources that have their own individual risk and cost profiles. 
The resulting risks and costs of alternative combinations of assets can then be 
quantified, allowing those portfolios that provide the best combinations of costs and 
risk to be identified along a curve. That curve is called the "efficient frontier." It 
represents portfolios that, for any given level of risk, are the least expensive. 
Conversely, for any given level of cost, there is an associated least-risk portfolio. 
Portfolio analysis allows for considering risk preferences in choosing among 
portfolios, as well as for examining different tradeoffs among various risks and costs. 

Background 
The Energy Commission’s 2005 Integrated Energy Policy Report (2005 IEPR),4 and 
other state energy policy documents reinforce policies to ensure adequate energy 
resources, reduce energy demand, development of alternative energy sources, and 
improve the state’s infrastructure.  An essential component of California’s energy 
policy is to reduce greenhouse gas emissions in part by increasing renewable 
generation to 33 percent of retail sales in 2020.  

There is little debate on the use of renewable generating technologies as an 
effective means for climate change mitigation. Policy makers, consumers, and 
companies, however, are wary because of the widespread perception that these 
technologies cost more than conventional alternatives so that increasing their 
deployment will raise overall electricity generating costs. However, since the 
beginning of the Renewables Portfolio Standard Program, nearly all new renewable 
contracts have been below market prices for natural gas generation. And their 
relatively low risk makes it essential to increase the proportions of renewables in 
California’s portfolio.  

The 2006 Integrated Energy Policy Report Update (2006 IEPR Update)5 shows that 
California does not appear to be on course to achieve the short-term goal of 20 
percent renewable generation by 2010.  The 2006 IEPR Update identifies five 
primary barriers to achieving this policy that include a common theme, risk and 
costs: 

1. Inadequate transmission infrastructure to connect remotely located renewable 
resources. 

2. Uncertainty regarding whether projects with supplemental energy payment 
awards will be able to obtain project financing. 
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3. Complexity and lack of transparency in the Renewable Portfolio Standard 
program implementation for investor owned utilities (IOUs). 

4. Insufficient attention to the possibility for contract failure and delay. 

5. Lack of progress in re-powering aging wind facilities. 

From the utility’s perspective, managing portfolio risk is of strategic importance. But 
when utilities pass-through fuel costs, there is a potential conflict between 
minimizing shareholder risk and minimizing ratepayer risk. 

The role of renewable energy resources in utility portfolio risk reduction has been 
cited to support the claim that the fixed cost nature of renewable energy resources, 
as opposed to fuel or variable cost, should earn these projects a premium over 
traditional resources such as natural gas fired power plants. In order to install a 
renewable generation power plant, the power generator must outlay a significant 
capital expenditure in the short-term to launch the facility; the fixed costs are front-
loaded and constitute a significant capital outlay in the current period.6   

In the longer term, however, the cost to operate the facility is considerably less than 
the that of a fossil fuel facility. The renewable power generator must only concern 
themselves with the operations and maintenance of the facility, because the fuel is 
“free.” 

Although there has been a substantial amount of economic analyses on the cost 
side, little has been done to incorporate risk into analysis. California regulators and 
utilities, however, face numerous challenges to achieve renewable energy targets 
Some of these issues include: 

 Will renewable technologies continue to develop? 

 How will politics, pressure from the insurance industry, and fuel prices affect 
climate change regulation? How will "early credit" programs be treated? 

 Will consumer interest in “clean power” increase or wane? 

 Will the United States continue to be bifurcated into regional markets and 
territorial markets? 

 Will capacity expansion be driven regionally and, if so, by what mechanisms? 

 Will renewable energy development satisfy state targets? 

 Will fuel prices and environmental constraints strand some assets and speed 
development of new technologies? 
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This report builds on the previous and ongoing research by treating energy planning 
as an investment-decision problem. Investors commonly evaluate such problems 
using portfolio theory to manage risk and maximize portfolio performance under a 
variety of unpredictable economic outcomes. Treating energy planning as an 
investment-decision problem, this report uses mean-variance portfolio theory to 
examine the risk and cost effects of achieving the California’s renewable energy 
goals as discussed in the 2005 IEPR and 2006 IEPR Update. 

Use of portfolio theory involves quantifying risk. In this case, construction, 
investment, operations and maintenance, and fuel risks are quantified using data 
provided by the California Energy Commission, Energy Information Administration 
(EIA), Federal Energy Regulatory Commission (FERC), and if necessary, European 
data from TECHPOLE, an energy database operated and maintained at LEPII, 
University of Grenoble. 

This report applies portfolio-theory optimization to produce an expository evaluation 
of the 2020 projected California BAU electricity generating mix with the following 
objectives: 

 Highlight the benefits of applying portfolio optimization to assessing the costs and 
risks of future generating portfolios by measuring the risk of achieving the 
penetration of preferred resources; 

 Demonstrate a new rationale for renewable energy technologies that goes 
beyond the least-cost planning arguments that have dominated the debate on 
this subject to date; and 

 Create a vehicle for constructive dialogue among the state’s energy agencies 
and electric utilities. 

Summary 
A key finding of this report is that, compared to the projected 2020 CA-BAU 
electricity generating portfolio, there exist portfolios that are less risky, less 
expensive, and that substantially reduce CO2 emissions and energy import 
dependency. This analysis suggests that an optimal generating portfolio for 
California includes greater shares of renewables technologies that may cost more on 
a stand-alone basis, but overall portfolio costs and risks are reduced because of the 
effect of portfolio diversification. Though counter-intuitive, the idea that adding more 
costly renewables can actually reduce portfolio-generating cost is consistent with 
basic finance theory. Optimal generating portfolio mixes also enhance California’s 
energy security. This analysis further suggests that the optimal 2020 generating 
portfolios not only achieve California’s 33 percent RPS goal but also reduce overall 
electricity generating costs and market risks as well as CO2 emissions relative to the 
projected 2020 CA-BAU mix. 
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Organization 
The remainder of the report is organized as follows: Chapter 2 sets out the main 
principles of a portfolio-based approach to electricity resource planning. Chapter 3 
describes the data needed for such an approach and specifies the data sources 
used in this report. Using these data, Chapter 4 identifies optimal CA electricity 
generating portfolios for 2020 and it presents key features of these expository 
portfolios. Chapter 5 provides a preliminary assessment of nuclear acceleration and 
promotion policies, and the effects of carbon pricing on generating portfolio mixes 
and CO2 emissions for optimal mixes. Chapter 6 summarizes, concludes, and 
recommends future steps to further support California electricity planners’ decision 
making processes. 
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CHAPTER 2: PORTFOLIO-BASED APPROACH TO 
ELECTRICITY RESOURCE PLANNING 
Least-Cost Versus Portfolio Based Approach 
Financial investors commonly apply portfolio theory to manage risk and maximize 
portfolio performance under a variety of unpredictable economic outcomes. By 
contrast, traditional energy planning focuses on finding the least-cost generating 
alternative. This approach worked sufficiently well in a technological era marked by 
relative cost certainty, low rates of technological progress, and technologically 
homogenous generating alternatives and stable energy prices. However, today’s 
electricity planner faces a diverse range of resource options and a dynamic, 
complex, and uncertain future. Attempting to identify least-cost alternatives in this 
uncertain environment is virtually impossible. As a result, more appropriate 
techniques are required to find strategies that remain economical under a variety of 
uncertain future outcomes. 

Given this uncertain environment, it makes sense to shift electricity planning from its 
current emphasis on evaluating alternative technologies to evaluating alternative 
electricity generating portfolios and strategies. The techniques for doing this are 
rooted in modern finance theory – in particular mean-variance portfolio theory.  
Portfolio analysis is widely used by financial investors to create low risk, high return 
portfolios under various economic conditions. In essence, investors have learned 
that an efficient portfolio takes no unnecessary risk to its expected return. In short, 
these investors define efficient portfolios as those that maximise the expected return 
for any given level of risk, while minimizing risk for every level of expected return. 

Portfolio theory is highly suited to the problem of planning and evaluating electricity 
portfolios and strategies because energy planning is not unlike investing in financial 
securities. Similarly, it is important to conceive of electricity generation not in terms 
of the cost of a particular technology today, but in terms of its expected portfolio 
cost. At any given time, some alternatives in the portfolio may have high costs while 
others have lower costs, yet over time, an astute combination of alternatives can 
serve to minimize overall generation cost relative to the risk. In sum, when portfolio 
theory is applied to electricity generation planning, conventional and renewable 
alternatives are not evaluated on the basis of their stand-alone cost, but on the basis 
of their contribution to overall portfolio generating cost relative to their contribution to 
overall portfolio risk. Portfolio-based electricity planning techniques thus suggest 
ways to develop diversified generating portfolios with known risk levels that are 
commensurate with their overall electricity generating costs. Simply put, these 
techniques help identify generating portfolios that can minimize California’s energy 
price cost and risk.  
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This also has important implications for energy security. Although energy security 
considerations are generally focused on the threat of abrupt supply disruptions, a 
case can also be made for the inclusion of a second aspect: the risk of unexpected 
electricity cost increases. This is a subtler, but equally crucial, aspect of energy 
security. Energy security is reduced when ratepayers hold inefficient portfolios that 
are needlessly exposed to the volatile fossil fuel cost risk. Displacing California’s 
coal and gas dependency by adding renewables technologies enhances California’s 
energy security. The reason is that renewables costs are generally uncorrelated to 
fossil prices; this enables these technologies to diversify California’s generating mix 
and enhance its cost-risk performance while simultaneously reducing CO2 
emissions.  

Portfolio Optimization Basics 
Portfolio theory was developed for financial analysis, where it locates portfolios with 
maximum expected return at every level of expected portfolio risk. In the case of 
electricity generating portfolios, it is more convenient to optimize portfolio generating 
cost as opposed to return. This choice does not affect results and conclusions 
presented in this report. 

How Adding More Costly Renewable Resources Reduces 
Overall Cost 
Efficient generating portfolios are defined by twin properties: they minimize expected 
cost for any given level of risk while minimizing expected risk for every level of 
expected cost.  The idea that adding a more costly technology raises average 
generating cost seems obvious and compelling. Nonetheless, it is flawed.   
Estimating overall generating costs for a given mix involves assessments of long-
term future cost expectations for highly uncertain fossil fuel and other outlays that 
have fluctuated significantly and unpredictably in the past. In other words, generating 
cost estimates reflect an assessment of how cost will behave in the distant future, 10 
or 20 years from now. Highly uncertain long-term generation costs cannot be directly 
observed or calculated in a manner that – for example – fruit salad costs for dinner 
can be calculated at the market. Here the arithmetic is simple and intuitive: adding 
expensive strawberries to the mix, for example, raises the cost of making fruit salad. 

The simple salad making cost formula does not work for fuel and operating outlays 
or any other uncertain future cost stream. Nonetheless, this is more or less how 
electricity planning models estimate costs for given generating mixes. According to 
traditional electricity planning models, when you add (say) 10¢/kWh geothermal 
energy to a 8¢/kWh fossil-fuel generating mix, overall costs must increase. However, 
contrary to what these models say, adding an appropriate share of renewable-based 
electricity, even if it costs more on a stand-alone basis, does not raise expected 
generating costs. The key for understanding this counter-intuitive result is “risk.” 
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Box 1.  Portfolio optimization basics  
Portfolio theory was initially conceived in the context of financial portfolios, where it relates 
expected portfolio return to expected portfolio risk, defined as the year-to-year variation of 
portfolio returns. This box illustrates portfolio theory as it applies to a two-asset generating 
portfolio, where the generating cost is the relevant measure. Generating cost (cent/kWh) is 
the inverse of a return (kWh/cent), that is, a return in terms of physical output per unit of 
monetary input. 
 
Expected portfolio cost  
 
Expected portfolio cost is the weighted average of the individual expected generating costs 
for the two technologies: 
 
(1) Expected Portfolio Cost = ( ) ( )2211 CEXCEX + , 
 
Where X1 and X2 are the fractional shares of the two technologies in the mix, and E(C1) and 
E(C2) are their expected levelized generating costs per kWh.  
 
Expected portfolio risk 
 
Expected Portfolio risk, E(σp), is the expected year-to-year variation in generating cost. It is 
also a weighted average of the individual technology cost variances, as tempered by their 
covariances: 
 

(2) Expected Portfolio risk = E( pσ ) = 211221
2

2
2

2
2

1
2

1 2 σσρσσ XXXX ++ , 
 
Where: X1 and X2 are the fractional shares of the two technologies in the mix; σ1 and σ2 are 
the standard deviations of the holding period returns of the annual costs of technologies 1 
and 2 as further discussed below; and ρ12 is their correlation coefficient. 
 
Portfolio risk is always estimated as the standard deviation of the holding period returns 
(HPRs) of future generating cost streams. The HPR is defined as: HPR = (EV–BV)/BV, 
where EV is the ending value and BV the beginning value (see Brealey and Myers 2004 for 
a discussion on HPRs). For fuel and other cost streams with annual reported values, EV can 
be taken as the cost in year t+1 and BV as the cost in year t. HPRs measure the rate of 
change in the cost stream from one year to the next. A detailed discussion of its relevance 
to portfolios is given in Awerbuch and Yang (2007). 
  
Each individual technology actually consists of a portfolio of cost streams (capital, operating 
and maintenance, fuel, CO2 costs, and so on). Total risk for an individual technology – that 
is, the portfolio risk for those cost streams – is σT. In this case, the weights, X1, X2, and so 
on, are the fractional share of total levelized cost represented by each individual cost 
stream. For example, total levelized generating costs for a coal plant might consist of ¼ 
capital, ¼ fuel, ¼ operating costs, and ¼ CO2 costs, in which case each weight Xj = 0.25. 
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Correlation, diversity, and risk 
The correlation coefficient, ρ, is a measure of diversity. Lower ρ among portfolio 
components creates greater diversity, which reduces portfolio risk σp. More generally, 
portfolio risk falls with increasing diversity, as measured by an absence of correlation 
between portfolio components. Adding renewables to a risky fossil fuel generating mix 
lowers expected portfolio cost at any level of risk, even if the renewable technologies have 
higher direct costs. A pure fuel-less, fixed-cost technology, has σi = 0 or nearly so. This 
lowers, σp, since two of the three terms in equation (2) reduce to zero. This, in turn, allows 
higher-risk/lower-cost technologies into the optimal mix. Finally, it is easy to see that σp 
declines as ρi,j  falls below 1.0. In the case of fuel-less renewable technologies, fuel risk is 
zero and its correlation with fossil fuel costs is zero too. 

When the element of risk is included, the portfolio equation produces important 
results that are part of the so-called portfolio effect discussed in any finance 
textbook.  The portfolio effect of adding a fixed-cost asset, such as wind, to the risky 
fossil generation mix is powerful and counter-intuitive. Modern finance theory tells us 
that a fixed-cost asset can have the remarkable effect of lowering expected portfolio 
cost, adjusted for risk, even if its stand-alone cost is higher than the remaining 
portfolio components.  For example, adding riskless government bonds yielding 5 
percent to an existing stock portfolio producing 10 percent raises (not reduces) the 
expected return of the resulting portfolio that contains both risky stocks and riskless 
government bonds. This outcome is based on statistics: by definition, a fixed-cost 
asset is uncorrelated with the costs of all of the other assets.  Statistical correlation 
affects the degree of diversification and hence overall portfolio risk. 

This idea applies directly to generating portfolios. Passive, capital-intensive, and 
fuel-less renewables technologies such as wind and solar photovoltaic (PV) have 
cost structures that are nearly fixed or riskless over time, once construction is 
complete. Viewed over a sufficiently diversified geographic area, for example, the 
“production” costs of a generating portfolio with 20 percent wind varies a lot less 
than one with no wind. 

Figure 1 illustrates how adding a more costly renewable generating resource 
reduces overall portfolio costs. Beginning with a 100 percent fossil portfolio (circle 1), 
when wind generation is added, portfolio costs increase, but portfolio risk decreases.  
This is shown as a move up and to the left to circle 2.  Next, suppose that after 
adding wind generation, the overall resource portfolio is adjusted to increase 
portfolio risk back to the initial level before the wind generation was added. The 
result is that the wind generation lowers the expected or average cost of the portfolio 
at the original level of risk (circle 3). This is how portfolio optimization minimizes 
portfolio costs and risk when higher cost, but less risky, renewable resources are 
added to a lower cost, but higher risk, portfolio of fossil-fuel resources. Without 
considering “risk” this counter-intuitive result is not possible. Thus, traditional 
generation planning efforts that fail to incorporate portfolio risk are incomplete: they 
focus on overall cost and ignore useful information about risk.  
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Figure 1: How adding a more costly renewables can reduce overall cost 
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Risk from a Portfolio Perspective 
Having sketched the gist of the portfolio approach to electricity generation planning, 
it is useful to comment on the distinction between unsystematic (or firm-specific) risk, 
systematic (or market) risk, and risks usually considered in engineering approaches 
to analysing the pros and cons of alternative generation technologies.    

Finance theory divides total risk into two components: unsystematic risk that affects 
primarily the prices of an asset (these risks can be reduced through diversification) 
and systematic risk that affects the prices of all assets. Systematic risk refers to the 
risk common to all securities and cannot be diversified away (within one market). 
Within an efficient portfolio, unsystematic risk will be diversified away to the extent 
possible. Systematic risk is therefore equated with the risk (standard deviation) of 
the market portfolio. 

In the case of generating technologies and other real assets, diversification and 
portfolio risk are frequently misunderstood. Some analysts adopt an engineering 
approach that strives to enumerate all conceivable risks, include those risks that do 
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not affect overall portfolio risk by virtue of diversification. Ignoring diversification 
effects in this manner, however, yields a portfolio risk estimate that is systematically 
biased upwards. 

For example, year-to-year fluctuations in electric output from a wind farm is an 
unsystematic risk that is likely irrelevant for portfolio purposes.  The reasons it that 
wind output is uncorrelated to the risk of other portfolio cost streams – though this 
unsystematic risk presents a potential risk to the owner of the wind farm and could 
potentially increased system integration costs. Certainly in the case of a large, 
geographically dispersed mix, year-to-year wind resource variability can be 
considered random and uncorrelated to fossil fuel prices or other generating cost 
components. While it is possible to measure the standard deviation of the yearly 
wind resource at a given location, its correlation to the output of other distant wind 
farms, or to many other generating cost components, is arguably zero (that is,  ρ12 = 
0 in equation (2) of Box 1). Thus, wind variability at a particular location does not 
contribute significantly to portfolio risk. Figure 2 shows how wind speed correlations 
rapidly decrease as distance between wind farms increase. 

Figure 2: Onshore wind speed correlation by distance – United Kingdom 
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From a portfolio perspective, there is another important point to consider. Operating 
costs for wind, solar, and other passive, capital-intensive renewables are essentially 
fixed, or riskless, over time.7 Perhaps more important is that these costs are 
uncorrelated to fossil fuel prices. This enables these technologies to diversify the 
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generating mix and enhance its cost-risk performance. Given sufficient geographic 
dispersion in the wind resources, the operating cost of a generating system with 20 
percent wind will fluctuate less from year-to-year than a system with no wind. 

The idea that enumerating all conceivable unsystematic risks is misleading for 
purposes of a generating portfolio study holds for other engineering variances such 
as annual variations in attained fuel conversion efficiency for a particular gas plant. 
Some analysts choose to include this risk. Although such yearly efficiency 
fluctuations might change the accountant’s estimate of kWh generating costs at a 
given site,8 it is reasonable to assume that risk is uncorrelated, making only small 
contributions to overall portfolio risk. 

Summary: How Portfolio Theory Improves Decision-
making  
As noted above, current least-cost approaches for evaluating and planning electricity 
generating mixes consistently bias in favor of risky fossil alternatives while 
understating the value of wind, PV, geothermal, and similar fuel-less fixed-cost, low-
risk, passive, capital-intensive technologies. The evidence indicates that such 
renewables technologies offer a unique cost-risk menu along with other valuable 
attributes that traditional least-cost utility resource planning models cannot “see.” For 
example, Bolinger, Wiser, and Golove (2004)9 show that compared to standard 
financial hedging mechanisms, accelerating and promoting wind technology cost-
effectively hedges fossil price risk.  

By contrast, portfolio optimization exploits the interrelationships (i.e. correlations) 
among the various technology generating cost components. For example, because 
fossil prices are generally correlated with each other, a fossil-dominated portfolio is 
undiversified and exposed to fuel price risk. Conversely, renewables such as wind 
and geothermal, along with other non-fossil options, diversify the generation portfolio 
and reduce its risk because their costs are not correlated with fossil prices.10 This 
portfolio effect is illustrated in Figure 3, which shows the costs and risks for various 
possible two-technology portfolios. Technology A is representative of a generating 
alternative with higher cost and lower risk such as geothermal. It has an expected 
(illustrative) cost around $0.10 per kWh with an expected year-to-year risk of 
approximately 8 percent. Technology B is a lower-cost/higher-risk alternative such 
as gas-fired generation. Its expected cost is about $0.08 per kWh with an expected 
risk of 12 percent. The correlation factor between the total cost streams of the two 
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Box 2:  Risk Measurement 

There are many ways to measure risk besides variance.  All of them rely on the existence of 
probability distributions that are used to develop analytical estimates of risk.  Thus, how such 
probability distributions are estimated is crucial.  Some of the more common measures include: 

1. Coefficient of Variation (CV). This measure is the ratio of the distribution's standard deviation 
to its mean. It is one way to measure risk relative to return, or in this case, variation in price 
relative to mean price, measured over a defined period. Tolerance bands can be established 
around CV. 

2. Beta.  Beta is a measure of the systematic risk of a single instrument or an entire portfolio 
and describes the sensitivity of an instrument or portfolio to broad market movements. A 
portfolio with a large beta will tend to benefit or suffer from broad market moves more 
strongly than the market overall, while one with a small beta will swing less violently than the 
broad market. It is defined as the ratio of the portfolio's covariance with the market divided by 
the market's variance or Covariance (portfolio, market) / Variance (market). Beta is used to 
measure volatility of stock returns relative to an index like S&P 500 returns, and one could 
consider measuring volatility of a resource portfolio's cost relative to volatility of spot market 
prices. However, it must be remembered that beta does not capture specific risk (the 
riskiness of the portfolio itself, irrespective of market risk). A portfolio can have a low beta but 
still be very volatile if its variations are simply not correlated with those of the market.11 

3. Extreme Value Measures - This term is used here as a catch-all for a variety of conceptually 
straightforward measures of portfolio riskiness. In general, this type of measure is the 
difference in cost between a portfolio's expected cost and some estimate of 

4. Value-at-Risk (VaR) - A traditional approach for quantifying risk of investment portfolios.101 
VaR measures the downside risk of a portfolio. It is always calculated in the context of a risk 
level and a planning horizon. In the case of an electricity resource portfolio, VaR would be a 
measure of the dollar cost increase that has a certain probability (the selected risk level) of 
occurring over a certain time period (the selected planning horizon). For example, a regulator 
might be interested in the VaR of a proposed resource portfolio over a one year planning 
horizon at the 99 percent risk level. That VaR would tell us the amount of extra cost that 
would have a 1 percent chance of occurring over the next year. Or, a VaR at the 90 percent 
risk level for a ten year planning horizon would tell us the amount of extra cost that portfolio 
has a 10 percent chance of incurring over the next ten years.  

5. Cash-flow-at-Risk (CFaR), Earnings-at-Risk (EaR).  CFaR and EaR are similar to VaR, 
except they define “value” in specific terms.   

The benefits and drawbacks of using specific risk measurements are application-specific.  For 
example, where risks are asymmetric, especially downside risks, variance alone will not provide 
an accurate risk measure.  Detailed estimates of CFaR or EaR, on the other hand, may be 
especially sensitive to changes in underlying assumptions. 
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technologies is assumed to be zero. This is a simplification since in reality the capital 
and operating cost risks of geothermal will exhibit some non-zero correlation with the 
capital and operating costs of gas-fired generation.  

Figure 3: Portfolio effect for illustrative two-technology portfolio 
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As a consequence of the portfolio effect, total portfolio risk decreases when the 
riskier Technology B is added to a portfolio consisting of 100 percent A. For 
example, Portfolio J, which comprises 90 percent of Technology A plus 10 percent 
B, exhibits a lower expected risk than a portfolio comprising 100 percent A. This is 
counter-intuitive since Technology B is riskier than A. Portfolio V, the minimum 
variance portfolio, has a risk of 4 percent, which is one-half the risk of A and one-
third the risk of B. This illustrates the concept of portfolio diversification.  

Investors would not hold any mix above Portfolio V, since mixes exhibiting the 
equivalent risk can be obtained at lower cost on the solid portion of the line, below 
portfolio V. Portfolio K is therefore superior to 100 percent A. It has the same risk, 
but lower expected cost. Investors would not hold a portfolio consisting only of 
Technology A, but rather would hold the mix represented by K. Taken on a stand-
alone basis, technology A is more costly, yet properly combined with B, as in 
Portfolio K, it has attractive cost and risk properties. Not only is Mix K superior to 100 
percent A, most investors would also consider it superior to 100 percent Technology 
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B. Compared to B, Mix K reduces risk by one-third while increasing cost by 
approximately 10 percent, which gives it a favorable Sharpe ratio.12  

To summarize, Mix K illustrates that astute portfolio combinations of diversified 
alternatives produce efficient results, which cannot be measured using stand-alone 
cost concepts: portfolio optimization locates minimum-cost generating portfolios at 
every level of portfolio risk, represented by the solid part of the line in Figure 3, that 
is, the stretch between V and B. 
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CHAPTER 3: CALIFORNIA PORTFOLIO COST, RISK, 
AND CORRELATIONS  
Applying portfolio optimization to the CA generating mix requires the following 
inputs:  

 Capital, fuel, operating, and CO2 costs per unit of output for each technology;  

 The risk (standard deviation) of each cost component; and 

 The correlation factors between all cost components. 

The following sub-sections will address each input and how they are used to 
determine optimal portfolios. Detailed presentations are provided in the Appendix.  

Technology Generating Cost 
Figure 4 shows the levelized 2020 generating cost for various technologies based on 
the CEC Staff’s Cost of Generation (COG) Report.13 All costs are taken on a post-
tax/credit basis. Existing coal and nuclear technology costs are estimated using the 
TECHPOLE database,14 because the COG report did not estimate them. New coal 
and nuclear technology costs are assumed to be equal to the COG estimation of 
IGCC and advanced nuclear costs, respectively. New solar PV technology costs are 
assumed to decrease by 50 percent by 2020. The 50 percent decrease for solar PV 
technology is based on expectations of the California Solar Initiative and is 
consistent with other Energy Commission analysis.15 The rest of the technology 
costs are assumed to be the same as the corresponding levelized 2006 generating 
costs.16  
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Figure 4: CA 2020 Generating Costs for Various Technologies  
(CO2 = $20/tonne) 
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As for the cost of CO2, a value of $20/tonne of CO2 has been used. This can be 
interpreted as an expected market price of CO2, assuming that economic policies 
aimed at internalising the economic cost of CO2 emissions yield a market price of 
CO2 – for example, under the California’s proposed ETS (Emissions Trading 
Scheme).17 Alternatively, in the absence of such policies, the cost of CO2 can be 
interpreted as the shadow price of CO2, estimated on the basis of the economic cost 
of CO2 emissions and of CO2 abatement cost. For example, recent Synapse study 
estimates the future cost of CO2 in 2020 to be between $10/ton and $33/ton and EIA 
analysis of proposed CO2 legislation assumes a CO2 cost of between $14/ton and 
$36/ ton in 2020.18  

System integration is a complex issue.  As renewable resources continue to 
increase, it is anticipated that there may be additional integration costs to 
accommodate renewables, specifically intermittent resources like wind.  Typically, an 
integration cost is added to wind generation to compensate for additional regulation 
or load following needed to “firm up” wind resources. On top of these costs, the 
existing electricity network organization and protocols require capacity reserves to 
ensure system reliability, such as spinning and non-spinning reserves. 

This portfolio analysis uses the results of the California Intermittency Analysis Report 
(IAP), which estimates the aggregate intermittency costs in the range of $0.69 per 
MWh for a 33% percent total renewable penetration rate.19 Accounting for these 
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costs as well as other integration costs results in an average system operating cost 
adder of $4.50/MWh. However, neither possible associated systematic risks that 
may become more significant for wind penetrations in excess of 20-30 percent nor 
any additional wind-related transmission infrastructure costs are not included.20    

Technology Risk Estimates 
One of the major benefits of renewables technologies over traditional fossil-fuel 
technologies is that they are relatively unaffected by upheavals in fossil-fuel prices.  
However, renewables technologies are not risk-free. There are a number of market 
and non-market risks that can affect the value of renewables as part of an overall 
portfolio of resources to meet electricity demand in California. Thus, in determining 
future generation portfolios having the lowest expected costs, it is crucial to 
incorporate the key risks that affect those costs and to understand the unique risks 
associated with for both renewables and fossil-fuel technologies. The following sub-
sections will address each risk components. 

Investment Cost Risk 

Investment cost risks vary by technology types and are generally related to the 
complexity and length of the construction period. A World Bank analysis covering a 
large number of projects estimates the standard deviation of construction period 
outlays for thermal plants and for large hydro plants (Bacon et al. 1996).21 
Investment cost risk estimates for wind, gas, geothermal, and solar risk were 
determined from developer interviews as reported in Awerbuch et al. (Sandia 
Report). Investment cost risks of existing technologies were assumed to be zero 
percent. This means that ‘new’ assets are riskier than old ones – for example, the 
investment cost risks for a new, not yet constructed coal plant are greater than those 
for an existing coal plant.  

Fuel Cost Risk 

Fuel cost risks have been estimated on the basis of historical (1980-2005) California 
(biomass and natural gas), NUEXCO (uranium), and EIA (coal) prices. Annual price 
observations were used because they eliminate seasonal variations that could 
potentially bias the results. Since renewable technologies require no fuel costs and 
thus there is no fuel cost risk, with the exception of biomass. 

O&M Cost Risk 

The EIA (Energy Information Agency) and FERC (Federal Energy Regulatory 
Commission) databases maintain O&M costs of units operated by regulated utilities. 
This data was used to estimate the holding-period-return (HPR) standard deviations 
(SD) for O&M costs (along with the correlations between these costs discussed in 
the next subsection).22 
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CO2 Risk 

The last risk cost category is the cost of CO2 emissions. The future cost of CO2 
emissions is relevant for fossil fuel technologies. The HPR standard deviation for 
CO2 has been estimated at 0.26. This estimation was obtained using two principal 
methodologies – an analytical approach and a Monte Carlo simulation. Various 
sensitivity analyses were also performed to test the reasonableness and robustness 
of the estimated CO2 HPR standard deviation value of 0.26. A more comprehensive 
presentation of the CO2 risk can be found in the Appendix. 

Summary of Risk Estimates 

Table 1 summarizes the technology risk estimates. Investment cost risks of new 
technologies range from 0.10 for new solar technologies to 0.40 for new nuclear 
technology.  Fuel cost risks for both existing and new technologies range from 0.05 
for coal to 0.35 for nuclear. Natural gas fuel cost risk is estimated to be 0.30. For 
O&M risks, different technologies show different year-to-year fluctuations – ranging 
from 0.034 percent for solar photovoltaic to 0.153 for hydro technology.23 This takes 
us to the risk associated with last cost category, that is, the cost of CO2 emissions, 
which is relevant for fossil fuel technologies. As Table 1 indicates, the HPR standard 
deviation for CO2 has been estimated at 0.26. The approach that underlies this 
estimate will be presented next in the context of discussing the correlation between 
fossil fuel costs, O&M costs for different technologies, and CO2 costs. 

Table 1: Technology Risk Estimates 

Generating Resource  Investment  Fuel  Total  
O&M  CO2 

Coal  0.35  0.049  0.054  0.260 
Biomass  0.20  0.133  0.108  - 
Natural Gas  0.20  0.291  0.105  0.260 
Nuclear  0.40  0.346  0.055  - 
Hydro - Large  0.35  0.000  0.153  - 
Hydro - Small  0.20  0.000  0.153  - 
Wind  0.20  0.000  0.080  - 
Solar Thermal  0.10  0.000  0.080  - 
Biogas  0.20  0.133  0.108  - 
Solar PV  0.10  0.000  0.034  - 
Geothermal  0.20  0.000  0.153  - 
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Correlation Coefficients 
The correlation coefficient, ρ, is a measure of diversity. Lower (or negative) 
correlation among portfolio components creates greater resource diversity, which 
serves to reduce overall portfolio risk. More generally, portfolio risk falls with 
increasing diversity, as measured by an absence of correlation (covariance) 
between portfolio components. Adding a fixed-cost technology to a risky generating 
mix serves to lower expected portfolio cost at any level of risk, even if the fixed-cost 
technology costs more. A pure fixed-cost technology has a cost variance (σi) of 0.0. 
This lowers portfolio risk (since two of the terms in Equation (2) of Box 1 reduce to 
zero), which in turn allows other higher-risk/lower-cost technologies into the optimal 
mix.24 In the case of fuel-less renewable technologies, fuel risk is zero, and its 
correlation with fossil fuel costs is also taken as zero.  

In the context of an electric generating portfolio, the expected risk of future CO2 cost 
is further affected by the correlation (covariance) of CO2 prices against future fossil 
fuel costs and other important generating cost streams. The estimates of the 
standard deviations and correlations of CO2 prices are derived using both analytic 
techniques and Monte Carlo simulation. The analytical approach to estimating CO2 
risk and correlation follows the spirit of Green (2006),25 who expresses CO2 price in 
terms of gas and coal prices. This relationship is used to derive the HPR standard 
deviation of CO2 as well as its correlation with fossil fuels. The Monte Carlo 
approach uses a series of simulations that provide a second set of CO2 risk and 
fossil fuel correlation estimates. The Monte Carlo analyses use the volatility and 
other trends from 18 months of actual European Union Emissions Trading Scheme 
(EU-ETS)26 historical data to simulate 20 years of trading. This and its correlation to 
coal and gas provide an estimate of annual risk factors for CO2.    

The two methods provide a range of estimates of CO2 risk and correlations. The 
analytical and Monte Carlo results were compared and subjected to various 
sensitivity analyses to test the reasonableness and robustness of these estimates. 
The HPR standard deviation for CO2 used in the portfolio optimization model (0.26) 
is shown in the last column of Table 1 above. The CO2 cost/fuel cost correlation 
coefficient used in the portfolio optimization is shown in the last column (or row) of 
Table 2 below. 

Table 2: Fuel and CO2 HPR Correlation Factors 

Generating Resource Coal Biomass Natural Gas Uranium  CO2 

Coal 1.00 0.39 0.53 -0.25 -0.49 
Biomass 0.39 1.00 0.30 -0.27 0.00 
Natural Gas 0.53 0.30 1.00 -0.16 0.68 
Uranium  -0.25 -0.27 -0.16 1.00 0.00 
CO2 -0.49 0.00 0.68 0.00 1.00 
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As can be seen from these correlation coefficients, there is a negative correlation 
between CO2 and coal prices and a positive correlation between CO2 and gas. This 
is the expected result. Intuitively, as gas becomes more expensive, electricity 
generation shifts to coal, putting upward pressure on CO2 prices – be they market 
determined or shadow prices. Conversely, rising coal prices shift generation to gas, 
which emits about half as much CO2. As a result, the price of CO2 falls with rising 
coal prices. 

Table 2 above also shows the correlation coefficients among the various fuels.  In 
most cases, there is positive correlation between fuels – reflecting the fact that most 
fuels are substitutes for one another – with the notable exception of nuclear.  A 
number of researchers (e.g., Awerbuch and Berger 2003; Roques, et al. 2006)27 
have found a negative correlation between nuclear and fossil fuels.  This suggests a 
greater diversification potential of nuclear technologies depending on the level of 
risks for nuclear technologies. The impact of potential nuclear acceleration and 
promotion policies for California is described in Section 5 of the report.28  

In addition, O&M correlation coefficients are estimated based upon the historical 
maintenance costs reported in the EIA and the FERC databases.   These are shown 
in Table 3. 

Table 3: O&M Correlation Coefficients 

Generating Resource Coal Gas Nuclear Hydro Wind Geo Solar Bio 
Coal 1.00 0.25 0.00 0.03 -0.22 0.14 -0.39 0.18 
Gas 0.25 1.00 0.24 -0.04 0.00 -0.18 0.05 0.32 
Nuclear 0.00 0.24 1.00 -0.41 -0.07 0.12 0.35 0.65 
Hydro 0.03 -0.04 -0.41 1.00 0.29 -0.08 0.30 -0.18
Wind -0.22 0.00 -0.07 0.29 1.00 -0.28 0.05 -0.18
Geo 0.14 -0.18 0.12 -0.08 -0.28 1.00 -0.48 -0.70
Solar -0.39 0.05 0.35 0.30 0.05 -0.48 1.00 0.25 
Bio 0.18 0.32 0.65 -0.18 -0.18 -0.70 0.25 1.00 

 

Total Portfolio Cost and Risk  
The previous sub-sections described the cost and risk inputs for the various 
generating technologies. These are combined using equation (2) in Box 1 to produce 
a total HPR standard deviation for each technology, where the weights (X1, X2, … 
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etc.) are given by the proportional values of the levelized cost components, that is, 
capital, fuel, O&M, and CO2 costs. 

Figure 5 shows the costs per kWh for each of the generating technologies in 2020 
along with its risk, with the added assumption that CO2 costs $20 per tonne. For 
comparison, Figure 5 also shows the cost-risk combination of the projected CA 2020 
BAU mix and historical CA 2006 mix.29 The analysis indicates that there exist 
optimal and efficient portfolios that are less risky, less expensive, and that 
substantially reduce California’s CO2 emissions and energy import dependency. This 
optimal generating portfolio mixes include greater shares of renewables 
technologies: the optimal 2020 generating portfolios not only achieve California’s 33 
percent RPS goal, but also reduce overall electricity generating costs and market 
risks as well as CO2 emissions relative to the projected 2020 CA-BAU mix. 

Figure 5: Cost and Risk of Existing and New Generating Alternatives in 2020 
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CHAPTER 4: PORTFOLIO OPTIMIZATION OF CA 
GENERATING MIX 
Portfolio Optimization and the Efficient Frontier: an 
Illustration 
As previously stated, the aim in this study is to evaluate whether there exists feasible 
2020 generating mixes that are ‘superior’ to the 2020 CA-BAU mix by virtue of 
reducing risk or CO2 emissions or by producing lower-cost electricity. To interpret the 
results of the portfolio optimization results, it is useful to offer a general illustration of 
possible results. 

Figure 6 illustrates an infinite number of different generating mixes that could meet 
the 2020 electricity needs with a unique mix of the various technology options. The 
different portfolios all have different cost-risk as represented by the blue dots. 
Interestingly, technology shares do not change monotonically in any direction in 
Figure 6 so that two mixes with virtually identical cost-risk (i.e. two mixes located 
close to each other in cost-risk space) can have radically different technology 
generating shares (Awerbuch-Yang 2007). Likewise, radically different mixes can 
have nearly identical cost-risk, i.e. they could be virtually co-located in risk-cost 
space. The intuition for this is straightforward: there are many ways to combine 
ingredients in order to produce a given quantity of salad at a given price.  
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Figure 6: Feasible region and efficient frontier for multi-technology electricity 
portfolios 
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risk can reduce cost. The Blue-dot mixes in Figure 6 are sub-optimal or inefficient 
because it is still possible to reduce both cost and risk by finding mixes on the EF by 
moving below or to the left. As shown below, the 2020 CA-BAU mix lies above the 
efficient frontier.  

Although an infinite number of possible generating portfolios lie along the EF, this 
analysis focuses on four ‘typical’ optimal mixes P, N, S, Q. Taking the 2020 CA-BAU 
mix as the benchmark, they are defined as follows:  

 Mix P is a high-cost/low-risk portfolio. It is usually the most diverse mix. 

 Mix N is an equal-cost/low-risk portfolio, that is, it is the mix with the lowest risk 
for costs equal to that of the 2020 CA-BAU mix. 

 Mix S is an equal-risk/low-cost portfolio, that is, it is the mix with the lowest costs 
for a risk equal to that of the 2020 CA-BAU mix. 

 Mix Q is a low-cost/high-risk portfolio. It is usually the least diverse portfolio. 

 
2020 

CA-BAU 
Mix 

Efficient 
Frontier 

Mix S

Mix N 

Mix P 

Mix Q

Portfolio Risk (Year -To-Year Variability) 

Portfolio Generating Cost



 
 

 25

The portfolio analyses do not advocate for any particular generating mixes, but 
rather displays the risk-cost trade-offs across many mixes, with a focus on mixes 
that lie along the efficient frontier (EF). All solutions along the EF are conceded 
efficient. Although it may turn out that solutions in the region of the 2020 CA-BAU 
mix, e.g. solutions between portfolios N and S, may be the most practical, the 
optimization results cannot provide a roadmap or set of 2020 technology targets. 
Such results would require considerably more detailed models. The results 
presented here are largely expositional. The results demonstrate the value of 
portfolio optimization approaches and suggest quite clearly that capacity planning 
made on the basis of stand-alone technology costs likely leads to highly inefficient 
mixes (from California customer’s perspective). Stand-alone cost approaches ignore 
important portfolio risk and cost interactions (correlations) among various 
technologies.  

Efficient Electricity Portfolios for 2020 Generation Mix  
This portfolio optimization study evaluates the 2020 CA-BAU mix shown in Figure 7 
below against the expository realizable case. Its purpose is to help explore practical 
policy limits and identify policies that may be worth pursuing. For each set of 
constraints, efficient electricity generation mixes are computed and the level of 
associated CO2 emissions are analyzed. The following assumptions were used to 
develop the expository realizable case lower and upper bounds shown in Table 4:30 

 The expository realizable case assumes that there will be no new investment in 
coal, nuclear, and large hydro technologies.31  

 Many realistic constraints on new resources are not included at this time. Proxy 
assumption include: 10 percent upper bound for new biomass, biogas, small 
hydro, solar thermal and solar PV technologies; 25 percent upper bound for new 
geothermal technology; and 30 percent upper bound for new wind and natural 
gas technologies.  

 Lower bounds for new technologies are assumed to be zero. 

 Upper bounds for existing technologies are capped by CA-BAU generation 
share. 

 Lower bounds for existing technologies are limited by 50 percent of the CA-BAU 
generation share except for the following exceptions: 

o Lower bounds for Coal and Gas technologies are 5 percent. 

o Lower bounds for Nuclear and Large Hydro technologies are 80 
percent of the CA-BAU generation share. 
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Figure 7: CA 2006 and 2020 CA-BAU Generation Mix (in TWh) 
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Table 4: Expository realizable case lower and upper limits 
  Realizable 

Technology Lower 
bound 

Upper 
bound 

Coal 5.0% 14.9% 
Biomass 0.8% 1.7% 
Natural Gas 5.0% 34.2% 
Nuclear 9.8% 12.3% 
Hydro - Large 14.5% 18.1% 
Hydro - Small 1.0% 2.0% 
Wind 0.9% 1.7% 
Geothermal 2.2% 4.4% 
Solar Thermal 0.1% 0.2% 
Biogas 0.2% 0.4% 
Solar PV 0.0% 0.1% 
   
New Coal 0.0% 0.0% 
New Biomass  0.0% 10.0% 
New Natural Gas 0.0% 30.0% 
New Nuclear 0.0% 0.0% 
New Hydro-Large 0.0% 0.0% 
New Hydro-Small 0.0% 10.0% 
New Wind 0.0% 30.0% 
New Solar Thermal 0.0% 10.0% 
New Biogas 0.0% 10.0% 
New Solar PV 0.0% 10.0% 
New Geothermal 0.0% 25.0% 
   

 

Efficient Portfolios: Results  
This section discusses the 2020 expository realizable case optimization results and 
compares their risk-return characteristics and CO2 emissions to those of the 
projected 2020 CA-BAU mix. The results indicate that the optimal realizable 
portfolios minimize cost and risk and reduce CO2 emissions. This is shown in Figure 
8, which illustrates the risk and return for the projected 2020 CA-BAU and for several 
optimized mixes under the realizable case. The efficient frontier PNSQ illustrates the 
location of all optimal portfolios.  In other words, the efficient frontier represents 
portfolios with optimized combinations of risk and cost. 
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Figure 8: Efficient Frontier for 2020 Electricity Generation Mix –  
Realizable Case 
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As Figure 8 shows, the 2020 CA-BAU portfolio lies above and to the right of the 
efficient frontier, meaning that alternative portfolios can be selected that have both 
lower expected costs and less risk.  The CA-BAU portfolio has an overall generating 
cost of 9.9 cents per kWh and a risk of 7.7 percent. By comparison, mix N, the 
equal-cost/low-risk portfolio, reduces risk nearly in 42 percent, to 4.5 percent. 
Alternatively, mix S, has the same risk as the 2020 CA-BAU but reduces generating 
costs by 2.2 cents per kWh, which equates to an CA-wide reduction in annual 
electricity costs of approximately $6.8 billion.32  

Mix P, is the minimum-risk portfolio, reduces risk slightly relative to mix N, but comes 
with a significant increase in cost: this indicates an unattractive cost-risk trade-off 
over mix N. Similarly, mix Q, the minimum-cost portfolio, virtually did not reduce cost 
relative to mix S, but comes with a noticeable increase in risk. Thus, it appears that 
in cost-risk terms, the practical range of policy interest may be in the range between 
mix N and mix S. 

Table 5 summarizes the generation components of portfolios P, N, S, Q, with 
respect to CA-BAU portfolio. 
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Table 5: Portfolio Mix Details – Realizable Case 

  CA-2020 
BAU Portfolio P Portfolio N Portfolio S Portfolio Q 

RISK 7.7% 4.2% 4.5% 7.7% 8.0% 
COST: cents/KWh 9.9  11.1  9.9  7.7  7.7  
CO2: Mil-tonnes/Yr 78  47  47  19  19  

  
Generating Resource  Generating Shares 

Coal 15% 15% 15% 5% 5% 
Natural Gas 34% 5% 5% 5% 5% 
Nuclear 12% 12% 12% 12% 11% 
Hydro 20% 20% 20% 15% 15% 
Wind  4% 2% 5% 22% 23% 
Geothermal 7% 5% 11% 29% 29% 
Biomass 3% 12% 12% 1% 1% 
Biogas 1% 10% 10% 10% 10% 
Solar Thermal 3% 10% 6% 0% 0% 
Solar PV 0% 8% 4% 0% 0% 

Renewables Share 20% 41% 45% 64% 64% 

One finding of the analysis is that the share of renewables could be increased from 
20 percent to 45 percent without an increase in expected portfolio costs (i.e., 
transition from the CA-BAU portfolio to portfolio N). In addition, Mix N reduces CO2 
emissions by 31 million tonnes per year relative to projected 2020 BAU portfolio 
without increasing expected costs.  

Perhaps more importantly, another finding of the analysis shows that the share of 
renewables could be increased from 20 percent to 64 percent with a decrease in 
expected portfolio costs of 2.2 cents per kWh (i.e., transition from the CA-BAU 
portfolio to portfolio S). In addition, Mix S reduces CO2 emissions by 59 million 
tonnes per year relative to projected 2020 BAU portfolio without increasing expected 
portfolio risks.  

In addition, Policy makers tend to view climate change mitigation as an objective that 
necessarily competes with cost.  Indeed, it is widely believed that low-carbon 
electricity generation will increase overall costs relative to higher-carbon portfolios. 
However, such beliefs are typically based on stand-alone cost concepts. The 
expository portfolio results show that, in addition to reducing cost and/or risk relative 
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to the CA-BAU portfolio, the portfolios identified along the efficient frontier can also 
reduce CO2 emissions relative to the CA-BAU portfolio.33 This is shown in Figure 9.  

Figure 9: Technology Shares and CO2 emissions – Realizable Case 
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Figure 9 above shows technology shares on the left vertical axis, and CO2 emissions 
on the right axis. The lower-risk and more diversified portfolios, P and N, reduce 
annual CO2 to approximately 47 million tonnes, which is about 40 percent lower than 
emissions in the CA-BAU portfolio (78 million tonnes of CO2). They accomplish this 
primarily by displacing natural gas-fired generation with renewables, including wind, 
biomass, and solar. Portfolio P, which is the most diverse resource portfolio, 
includes about 8 percent of solar PV.34 The portfolios S and Q, the higher-risk and 
less diversified portfolios further reduce CO2 emissions to 19 million tonnes, because 
they incorporate smaller shares of coal compared to CA-BAU mix. Figure 10 shows 
how shares of optimal generation mix changes as portfolio risk increases. As noted 
above, mixes are less diversified as portfolio risk increases. 
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Figure 10: Efficient Frontier Generation Mix Vs. Portfolio Risk: Realizable Case 
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To summarize, the preliminary results suggest that larger shares of renewables can 
help reduce both the expected cost and risk of the CA generating portfolio as well as 
its CO2 emissions. Against this background, 33 percent RPS policies designed to 
accelerate the deployment of renewables technologies appear to be highly cost-
effective. Perhaps the single most important lesson of the portfolio optimization 
analysis is that combining renewables having no fuel risk, with fossil-fuel generating 
technologies (such as gas and coal) may reduce expected portfolio costs for any 
level of risk, even if the renewables cost more when assessed on a stand-alone, 
levelized cost basis. In addition, the analysis also indicates that adding “too much” 
renewables would increase the resulting portfolio risk (see Mixes S and Q).   

Specifically, the principal conclusions of the analysis are:  

1. Generating-technology costs provide highly misleading signals when taken on a 
stand-alone basis, especially without reference to their market risks. The 
correlation of costs and risks among technologies yields portfolio outcomes that 
are generally not easy to predict.  

2. Compared to the projected 2020 CA-BAU portfolio, and given a CO2 price of $20 
per tonne, there exist optimal generating portfolios that reduce generating cost by 
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as much as 22 percent without increasing risk (CA-BAU to Mix S transition). 
These cost improvements represent approximately $6.8 billion annual electricity 
cost savings. 

3. Policies designed to accelerate the deployment of renewables technologies 
appear to be cost-effective, subject to the reliability issues mentioned previously. 
As a matter of policy, current investments to achieve California’s 33 percent RPS 
goal, cost, risk and benefits are best estimated using portfolio-based approaches, 
rather than stand-alone methods.  

4. Adding “too much” renewables increases (not decreases) resulting portfolio risk. 

5. The imposition of CO2 charges raises both the cost and the risk of the optimal 
2020 generating portfolios.  

6. High CO2 prices increase the cost of fossil-fuel generating resources, although 
their effects on risk are more complex. High CO2 prices substantially increase the 
market risk of existing fossil assets, whose risk is dominated by fossil-fuel 
volatility and other operating risks. Chapter 5 provides more detailed analysis of 
the effect of CO2 prices on California optimal generating portfolios. 

7. Except in the general terms presented, the precise relationship between 
technology shares, CO2 emissions, and cost-risk seems complex and non-linear.  

8. The single-most overriding lesson of the portfolio optimization analysis is that 
stand-alone technology costs and other characteristics interact within portfolios of 
generating resources in ways that are not always easily predictable.  This 
underscores the importance of policy-based approaches grounded in portfolio 
concepts as opposed to stand-alone engineering concepts. 
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CHAPTER 5: NUCLEAR POLICY AND CO2 PRICE 
IMPACT OF CA EFFICIENT FRONTIER 
The Effects of a Nuclear Acceleration and Promotion 
Policy 
The nuclear cost estimates used for identifying efficient electricity portfolios do not 
account for the costs and risks of storing nuclear waste. CORWM (2006) 
recommends a lengthy, potentially decades-long process, involving interim waste 
storage in preparation for ultimate geological disposal.35  For example, Germany will 
not consider new nuclear capacity to meet future electric demand. California has had 
a similar policy since 1976.36  Against this background, a policy of a nuclear 
acceleration and promotion was tested – that is, a generating portfolio that contains 
10 percent new nuclear by 2020 – to evaluate its effects on cost and risk of 
generating resource portfolios.  

Figure 11 compares the nuclear promotion policy to the baseline realizable scenario 
at the CO2 price of $20 per tonne. (The parenthetical numbers next to the typical 
portfolios represent annual CO2 emission levels.) 

Figure 11: Comparison of realizable and nuclear promotion policy 
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As Figure 11 shows, the nuclear promotion scenario shifts California’s optimal 
efficient frontier to the right (i.e., higher risk) without commensurate cost reductions. 
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In addition, a nuclear promotion policy does not reduce the CO2 emission levels in a 
material way compared to the no nuclear promotion policy. In fact, it increases the 
CO2 emission levels in Mix S. Therefore, the analysis indicates that nuclear 
promotion policy for California is not an efficient move. Specifically, for portfolio N, 
cost stays the same, but risk significantly increases, that is from 4.5 percent to 5.3 
percent. For portfolio S, risk stays the same, but cost slightly increases, i.e., from 7.7 
cents/kWh to 7.8 cents/kWh. 

Table 6 summarizes the details of portfolios P, N, S, Q, with respect to CA-BAU 
portfolio. 

Table 6: Portfolio Mix Details – Nuclear Promotion Policy Case 

 CA-2020 
BAU Portfolio P Portfolio N Portfolio S Portfolio Q

RISK 7.7% 5.1% 5.3% 7.7% 8.8% 
COST: $-cents/KWh 9.9  11.1  9.9  7.8  7.8  
CO2: Mil-tonnes/Yr 78  47  47  34  19  

  
Generating Resource  Generating Shares 

Coal 15% 15% 15% 10% 5% 
Natural Gas 34% 5% 5% 5% 5% 
Nuclear 12% 22% 22% 22% 20% 
Hydro 20% 20% 20% 15% 15% 
Wind 4% 2% 2% 6% 16% 
Geothermal 7% 4% 4% 29% 28% 
Biomass 3% 12% 12% 1% 1% 
Biogas 1% 3% 10% 10% 10% 
Solar Thermal 3% 10% 9% 0% 0% 
Solar PV 0% 7% 1% 0% 0% 

Renewable Share 20% 33% 39% 48% 56% 

Compared to the expository realizable case, the nuclear case is characterized by 
significantly lower shares of wind and geothermal in portfolio N. This is primarily 
driven by the requirement to build 10 percent new nuclear by 2020. 

Figure 12 shows technology shares on the left vertical axis, and the CO2 emissions 
on the right axis for the nuclear case. 
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Figure 12: Technology Shares and CO2 Emissions – Nuclear Case 
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Figure 13 shows how shares of optimal generation portfolio changes as risk 
increases for the nuclear case. Similar to expository realizable case, the portfolios in 
the nuclear case are less diversified as portfolio risk increases. Also, Adding “too 
much” renewables counter-intuitively increases (not decreases) resulting portfolio 
risk because (a) it reduces portfolio diversification; and (b) it replaces less risky 
existing technology with more risky new technology. 
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Figure 13: Efficient Frontier Generation Mix Vs. Portfolio Risk –  
Nuclear Case 
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The Effect of CO2 Pricing 
So far, the analysis assumed a charge of $20 per tonne of CO2 emitted, interpreted 
here as either a market price or a marginal abatement cost for carbon emissions. 
We will now investigate the effect of pricing CO2 emissions on the cost-risk 
characteristics of the 2020 CA-BAU mix and of efficient generating portfolios. 

As Figure 14 illustrates for expository realizable case, portfolio risks and costs rise 
with rising CO2 prices. This is true for the BAU portfolio and the efficient electricity 
generating portfolios. The parenthetical numbers next to the typical mixes represent 
annual CO2 emission levels. 
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Figure 14: Efficient Frontier as a Function of CO2 price – Realizable Case 

N(47)

S(28)

P(47)

N(47)

S(19)
Q(19)

P(47)

Q(19)

CA BAU 2020  (Carbon = $30)

CA BAU 2020  (Carbon = $11)

$0.065

$0.070

$0.075

$0.080

$0.085

$0.090

$0.095

$0.100

$0.105

$0.110

$0.115

$0.120

3.5% 4.5% 5.5% 6.5% 7.5% 8.5%
Risk: Year-to-Year Standard Deviation

C
os

t p
er

 k
W

h

CARBON $11

CARBON $30

 
 

As an illustration, the cost of the BAU portfolio increases by nine percent or 0.5 
cents per kWh (from 9.6 cents to 10.1 cents per kWh) as CO2 price increase from 
$11 to $20 per tonne. The risk of that portfolio correspondingly rises from 7.4 
percent to 7.9 percent, illustrating its sensitivity to changing CO2 prices. By definition, 
the share of each technology in the BAU portfolio and, thus, CO2 emissions do not 
change with a rise in CO2 prices. Clearly, it makes little sense to keep technology 
shares constant when CO2 prices rise. 

By contrast, with rising CO2 prices it is optimal to reduce the share of fossil fuels in 
electricity generation – as indicated by the amount of CO2 emissions, which is shown 
by parenthetical values next to the portfolios in Figure 14. For example, at CO2 price 
of $11 per tonne, the portfolio S emits 28 million tonnes of CO2 per year. As the CO2 
price increases, optimal portfolios are re-shuffled to minimize portfolios costs and 
risks. For a carbon price of $30/tonne CO2, emissions fall by almost 32 percent to 19 
million tonnes per year. 

Figures 15 and 16 shows technology shares on the left vertical axis, and the CO2 
emissions on the right axis for a $11/tonne and a $30/tonne CO2 price case, 
respectively. 
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Figure 15: Technology Shares and CO2 Emissions – CO2 = $11/tonne case 
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Figure 16: Technology Shares and CO2 Emissions – CO2 = $30/tonne case 
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CHAPTER 6: SUMMARY, CONCLUSIONS, AND 
FUTURE IMPROVEMENTS 
This report has presented a mean-variance portfolio optimization analysis that 
develops and evaluates optimal (that is, efficient) CA electricity generating mixes for 
2020. The results suggest that greater shares of non-fossil technologies can help 
reduce the cost and risk of the CA generating portfolio as well as its CO2 emissions. 
To illustrate, an efficient generating mix that may be achievable by 2020 is estimated 
to cut annual CA electricity generating cost by $6.8 billion and achieves 33 percent 
RPS requirements. This portfolio thus produces perpetual annual benefits sufficient 
to justify current investments in renewable technologies. Against this background, 
policies designed to accelerate the deployment of key non-fossil technologies 
appear to be cost-effective.  

Our analysis also indicates that nuclear acceleration and promotion policies may not 
be efficient and optimal portfolios re-shuffles to lower CO2 emissions in response to 
increase in CO2 prices.  

Perhaps the single most important lesson of the portfolio optimization analysis is that 
adding a non-fossil fuel, fixed-cost technologies (such as wind energy) to a risky 
generating portfolio lowers expected costs at any level of risk, even if the non-fossil 
technology costs more when assessed on a stand-alone basis. This underscores the 
importance of policy-making approaches grounded in portfolio concepts as opposed 
to stand-alone engineering concepts. In addition, adding “too much” renewables 
counter-intuitively increases (not decreases) resulting portfolio risk because (a) it 
replaces less risky existing technology with more risky new technology; and (b) it 
reduces overall portfolio diversification.  

Today’s dynamic and uncertain energy environment requires portfolio-based 
planning procedures that reflect market risk and de-emphasize stand-alone 
generating costs. Portfolio theory is well tested and ideally suited to evaluating 
electricity expansion strategies.37 It identifies solutions that enhance energy diversity 
and security and are therefore considerably more robust than arbitrarily mixing 
technology alternatives. Portfolio analysis reflects the cost-risk relationship 
(covariances) among generating alternatives. Though crucial for correctly estimating 
overall cost, electricity-planning models universally ignore this fundamental statistical 
relationship and instead resort to sensitivity analysis and other ill-suited techniques 
to deal with risk. Sensitivity analysis cannot replicate the important cost inter-
relationships that dramatically affect estimated portfolio costs and risks, and it is no 
substitute for portfolio-based approaches. The mean-variance portfolio framework 
offers solutions that enhance energy diversity and security and are therefore 
considerably more robust than arbitrarily mixing technology alternatives. 

That said, it is important to recognize that the mean-variance portfolio approach has 
several important limitations with respect to generation planning. The portfolio 
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optimization presented in this paper does not define any specific capacity-expansion 
plan. Such a plan would require far more detailed modelling and analysis. The 
results presented here are largely expositional, but they demonstrate the value of 
portfolio optimization approaches and suggest that capacity planning made on the 
basis of stand-alone technology costs will likely lead to economically inefficient 
outcomes. 

Moreover, in deregulated markets, individual power producers evaluate only their 
own direct costs and risks when making investment decisions. These decisions do 
not reflect the effects the producers’ technologies may have on overall generating 
portfolio performance. Wind investors, for example, cannot capture the risk-
mitigation benefits they produce for the overall portfolio, which leads to under-
investment in wind relative to levels that are optimal from society’s perspective. 
Similarly, some investors may prefer the risk menu offered by fuel-intensive 
technologies such as combined-cycle gas turbines, which have low initial costs. 
Through existing regulatory mechanisms and strong correlation between electricity 
market price and gas price, gas generators may be able to transfer fuel risks onto 
customers. In effect, these investors may not bear the full risk effects they impose 
onto the generating mix, which may lead to over-investment in gas relative to what is 
optimal from a total portfolio perspective. All this suggests a rationale for economic 
policies in favor of technologies that capture diversification benefits. 

Lastly, there are many assumptions and limitations affecting the application of mean-
variance portfolio analysis techniques to generating assets. For instance, this 
analysis used exogenously prescribed fossil and nuclear fuel prices that do not vary 
with demand. As a result, generating mixes containing 35 percent gas-fired 
generation use the same natural gas price as mixes with 5 percent gas share. In 
reality, it is likely that gas prices across California would decline with reduced gas 
demand. For example, Sieminski (2007)38 estimates that the current 10 percent 
warmer US winter is causing 17 percent drop in natural gas prices and a 21 percent 
drop in oil prices. If such feedback between price and demand were included in the 
analysis, it might make gas more attractive as their portfolio share move toward their 
lower limits, and less attractive as they move towards their upper bounds.  In 
addition, assuming normal distribution of holding period returns and using past 
volatility as a guide to the future need to be refined and tested. Future improvement 
of the portfolio analysis will address such issues to provide better decision-making 
tools for California’s energy planners. 
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ENDNOTES 
                                                 
1 Assembly Bill 32, (Nuñez), Chapter 488, Statutes of 2006. 
2 For purposes of this report, “business-as-usual” includes 20 percent renewable energy (the 2010 
goal) and predicted results from all funded energy efficiency. 
3 It is interesting to note that In California, over 90% of the RPS contracted energy so far is below 
MPR (market price reference). 
4 2005 Integrated Energy Policy Report. Publication # CEC-100-2005-007-CMF. 
5 2006 Integrated Energy Policy Report Update. Publication # CEC-100-2006-001-CMF. 
6 The one renewable generation exception is biomass, whose cost structure is similar to gas-fired 
generation. 
7 Strictly speaking, in the case of capital costs, this statement holds only ex post, although, given the 
short lead times of renewables projects and the large proportion of manufactured components, 
construction-period risks for these technologies is low even ex ante. O&M costs for renewables 
arguably have the same portfolio risks as O&M costs of conventional technologies. However, 
because they represent a small share of total cost of renewable generation, their risk contribution is 
also small.  
8 On an accounting basis, kWh generating cost is calculated by dividing annual capital charges plus 
operating costs by the year’s kWh output. Given a fixed capital charge and relatively fixed 
maintenance costs, therefore, annual wind output variability would cause year-to-year kWh costs to 
vary. Sunk capital costs are irrelevant in an economic sense, but fluctuations in periodic wind output 
might change the economic kWh cost estimate on the basis of avoided costs: i.e. to the extent that 
periodic wind shortfalls will require replacement purchases from alternative sources which may have 
to be kept in reserve for such purposes. 
9 Bolinger, M., R. Wiser, and W. Golove, (2006) “Accounting for Fuel Price Risk 

When Comparing Renewable to Gas-Fired Generation: The Role of Forward Natural Gas 

Prices,” Energy Policy 34(6), pp. 706-720. 
10 One notable exception is biomass fuel costs. They are correlated to diesel oil and thus to other 
fuels, because biomass fuel costs are highly dependent on transportation. 
11 There are also different “flavors” of betas, based on a firm’s leverage. 
12 Developed by Nobel Laureate William F. Sharpe, this ratio relates changes in risk to changes in 
reward. 
13 Comparative Costs of California Central Station Electricity Generation Technologies. Draft Staff 
Report. June 2007. CEC-200-2007-011-SD.  
14 TECHPOLE database, LEPII, University of Grenoble, CNRS. 

15 This assumption is also consistent with Energy Commission’s Scenario Analysis Project (CEC-200-
2007-010-SD-AP). In this analysis, as in the Scenario Analysis Project, costs born by customers are 
included for solar PV. 
16 The same levelized cost for large and small hydro is assumed. In California, only small hydro less 
than 30MW is eligible for the RPS. 
17 The draft policy setting out California’s proposed cap-and-trade system can be found at: 
http://www.climatechnage.ca.gov/events/2007-06-12_mac_meeting/2007-06-
01_MAC_DRAFT_REPORT.PDF. 
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18 Synapse Energy Economics, Inc, “Climate Change and Power: Carbon Dioxide Emissions Costs 
and Electricity Resource Planning,” prepared by Lucy Johnston, Ezra Hausman, Anna Sommer, 
Bruce Biewald, Tim Woolf, David Schlissel, Amy Rocshelle, and David White, June 8, 2006.  
Available at: http://www.synapse-energy.com/Downloads/SynapsePaper.2006-06.0.Climate-Change-
and-Power.A0009.pdf.    
19 The IAP developed a component of the costs that can be attributed to wind by netting out 
imbalance costs, specifically those costs for regulation and load following.  In the IAP study, based on 
an extreme penetration scenario aimed at 33%, these costs were estimated at $0.21/MWh for 
regulation and $0.07/MWh to $0.48/MWh for load following resulting in a $0.69/MWh cost for 
integrating the wind resource.  This is consistent with a previous study called the Cost of Integrating 
Renewables (available at: http://www.abcsolar.com/pdf/500-04-054.pdf), which clearly defines the 
total costs and the costs associated with “integrating” a generator per market participation rules. 

20 The analysis also excludes the impacts of local interconnection costs and resource saturation.  
Specifically, only so much wind resource capacity can be interconnected to the transmission system 
grid at the local level.  This issue can be addressed by creating multiple wind resources, each 
reflecting a specific local area, and performing the portfolio analysis with additional constraints.   
21 Awerbuch, S, J. Jansen, L. Buerskens, and T. Drennen, “The Cost of Geothermal Energy in the 
Western US Region: A Portfolio-Based Approach,” Sandia National Laboratories, March 2005. 
22 HPR is defined as: HPR = (P2 – P1) / P1 where Pt is the price/cost at time t. All SD and correlation 
estimates refer to the HPRs, not the actual price/cost levels themselves.  
23 In principle, the O&M cost category should include outlays for property taxes, insurance, and other 
non-maintenance categories. These would most likely exhibit lower risk and potentially dampen the 
results of Table 1. 
24 Note that for a fixed-cost technology σj = 0 or nearly so. This reduces σp, since two of the three 
terms in Equation 2 are reduced to zero. It is also easy to see that σp declines as ρi,j falls below 1.0. 
25 Green, R. (2006). “Carbon tax or carbon permits: the impact on generators’ risks,” Institute for 
Energy Research and Policy, University of Birmingham, September. Available at: 
http://ideas.repec.org/p/bir/birmec/07-02.html 
26 EU-ETS is the Carbon Trading Scheme within the European Union. The first compliance phase is 
from 2005 to 2007, while the second compliance phase continues from 2008 to 2012. 
27 Awerbuch, S., and M. Berger, “Energy Security and Diversity in the EU: A Mean-Variance Portfolio 
Approach,” IEA Report Number EET/2003/03, Paris: February.  Available at: 
http://library.iea.org/dbtw-wpd/textbase/papers/2003/port.pdf; Roques, F., W. Nuttall, D. Newberry, R. 
de Neuville, and S. Connors, “Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices?” 
The Energy Journal 27 (4), pp. 1-24. 
28 Current California policy, as described in the 2005 IEPR, has prohibited development of new 
nuclear facilities since 1976 because of a continuing lack of a permanent waste-storage facility.  See 
2005 IEPR, p. 84. 
29 This study uses the 2006 CA electricity generation shares that were published in the California 
Energy Commission’s 2006 Net System Power Report, CEC-300-1007-007, April 2007.  Available at: 
http://www.energy.ca.gov/2007publications/CEC-300-2007-007/CEC-300-2007-007.PDF. These 
values were then used as the basis to develop the projected 2020 business as usual (BAU) electricity 
generation shares. Specifically, the generation growth was held constant for Coal, Nuclear, Hydro 
(Large and Small), and Solar PV technologies, and the CA-BAU assumes that renewable energy 
account for 20 percent of the total generation in 2020. 
30 These expository bounds will be refined in the final report. 
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31 For nuclear, the 2005 IEPR reaffirmed California’s policy that suspended construction of new 
nuclear power plants beginning in 1976. No growth in new coal technology due to Senate Bill 1368 
which limits GHG emissions to below CCGT emissions and also because we assume that carbon 
sequestration will not be sufficiently mature to play a part in California generation mix through 2020. 
No growth in new large hydro is assumed although small increases in small hydro or increased 
efficiency in large hydro are possible. We leave the variability of hydro output for future consideration 
in the final report.   
32 This estimate is based on an annual electric consumption in 2020 of 310.2 TWh ($0.022/kWh × 
310.2 × 109kWh = $6.8 billion). 
33 This is true only to the extent that the underlying generating costs shown in the Figure reflect all 
economic cost. However, since the costs shown in the Figure do not fully incorporate some economic 
costs such as investment grants that benefited some of these technologies (e.g., wind and nuclear), 
the resulting climate change mitigation may cost more than what in the Figure suggests. 
34 Renewables share does not include solar PV. 
35 CORWM, Committee On Radioactive Waste Management. (2006). “Managing our Radioactive 
Waste Safely.” Available at: http://www.corwm.org.uk/pdf/Chapter09.pdf. 
36 See 2005 IEPR, p 84. 
37 Other techniques have also been applied. For instance, Stirling (1996, 1994) develops maximum-
diversity portfolios based on a considerably broader uncertainty spectrum. Though radically different 
in its approach, his diversity model yields qualitatively similar results.  See, Stirling, A. 1994 “Diversity 
and ignorance in electricity supply – Addressing the solution rather than the problem”. Energy Policy 
(22:3), pp. 195-216; Stirling, A. 1996 On the Economics and Analysis of Diversity, Paper No. 28 
Science Policy Research Unit (SPRU) University of Sussex, Available at: 
http://www.sussex.ac.uk/spru. 
38 Sieminski, A., “Varying Views on the Future of the Natural Gas Market Secrets of Energy Price 
Forecasting, 2007 EIA Energy Outlook, Modeling, and Data Conference Washington DC, March 28, 
2007.  Available at: http://www.eia.doe.gov/oiaf/aeo/conf/sieminski/sieminski.ppt. 
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APPENDIX: ESTIMATING EXPECTED CO2 
EMISSIONS RISK 
Our aim is to estimate the risk or standard deviation (SD) of annual CO2 prices 
and their correlation with fossil fuel prices. These estimates represent required 
inputs to our CA generating portfolio optimization model. In a portfolio context, 
the relevant risk measure is the SD of the holding-period-returns (HPRs) of 
annual prices. HPR is defined as: 

HPR = (P2 – P1) / P1  

where, Pt is the price of CO2 (or fossil fuel) at time t. All our SD and correlation 
estimates refer to the HPRs, not the actual price levels themselves.  

CO2 Prices/Returns 
Because CO2 is not traded in CA we must use EU prices. However, EU data is 
limited because CO2 has only been trading for about 18 months. Given this short 
history, we lack essential information on the behaviour of annual CO2 HPRs from 
which we might estimate the CO2 price (HPR) SD and its correlation with (the 
HPR of) fuels prices. Although we have 18 months of daily CO2 HPRs, the daily 
frequency is not comparable to our other portfolio risk estimates, which are 
annual. This analysis therefore represents a first attempt to infer the behaviour of 
annual CO2 HPRs from the limited historical data. While in a sense, we have built 
a significant analytic superstructure on top of a fairly limited foundation of historic 
data, others may find our procedures useful and applicable as the body of 
historic data expands and the derived estimates thereby become more reliable.  

We infer the annual statistics we need using two principal methodologies (1) an 
analytical approach and (2) a Monte Carlo simulation. The reasonableness and 
robustness of the results are determined using various sensitivity analyses. Table 
A-1 summarizes the final set of CO2 SD and correlation estimates we used in 
portfolio optimization. The remainder of this annex describes the procedures we 
used to obtain these results. 

Table A-1. Summary of CO2 SD and correlation estimates  

CO2 SD CO2-Gas ρ CO2-Coal ρ 

0.26 0.68 -0.49 

 

1.1 Method I: Analytical Approach  
Green (2006) develops a relationship for the price CO2 expressed as a function 
of the price of gas and coal:  
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CO2 = 3. 15×G – 4.77×C,  

where CO2, G and C represent the price of CO2, gas and coal, respectively.  

One potentially feasible approach to estimate annual CO2 HPR SD from the 
historical CO2 and fuel price data can be written as follows:  

CO2 HPR = (X2 – X1) / X1, where X = G – C.  

Applying this approach yields a CO2 HPR SD in excess of 0.7, a value that 
seems unacceptably high because it far exceeds the annual HPR SD of fossil 
fuels.i Thus, direct application of Green’s (2006) formula to the historical data, 
which relies on the price level relationship between CO2, gas and coal, does not 
seem to provide realistic estimates of annual CO2 SD.  

As opposed to relying on the price level relationship, however, it seems 
conceptually equally appropriate to extend Green’s (2006) approach and begin 
directly with an expression for the CO2 HPR level relationship. Specifically, as a 
starting point, we assume a linear and unitary relationship (i.e. all coefficients = 
1.0) for the annual HPR level relationship as follows:  

[CO2 price HPR] = [gas price HPR] – [coal price HPR] (Eq. 1)  

Equation 1 extends Green’s (2006) CO2 price-level formula to an annual HPR 
level relationship. To test the robustness of the unitary aspects of this HPR level 
relationship (and the resulting CO2 SD and correlation estimates), we perform 
sensitivity analyses by introducing additive and multiplicative perturbative random 
variables to this HPR level relationship above utilizing Monte Carlo simulation 
technique (See, e.g. Part II, Scenario I). The simulation results show that the 
resulting CO2 SD and correlation estimates are quite robust to the unitarity 
assumptions.  

Equation 1 assumes the equilibrium behaviour of rational economic agents. 
Specifically, the higher the natural gas price is, the greater the number of 
economic agents who will switch from gas to coal, which emits more CO2. (i.e. 
the substitutability effect). This produces an outward shift of the demand curve in 
the CO2 market, which raises CO2 price, other things being equal. In the same 
manner, the faster the increase in natural gas price is (i.e. higher gas HPR), the 
faster the switch from gas to coal will be, and, hence, the faster the increase in 
CO2 price will be (higher CO2 HPR). We would, therefore, expect CO2 HPRs to 
be positively correlated with gas HPRs.  

In addition, a similar argument suggests that CO2 prices (HPR) should be 
negatively correlated with coal prices (HPR). The linear functional form and the 
unitary coefficients that we have adopted here in Equation 1 are purely for 
analytical tractability. To check for the robustness of this assumption, we conduct 
Monte Carlo simulations, as described in more detail below. (See, e.g. Part II, 
Scenario I).  
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Equation 2 summarizes the covariance structure between CO2 and fossil fuels.  

Var (CO2) = Var (gas) + Var (coal) – 2Cov (gas, coal)  (Eq. 2) 
Cov (CO2, gas) = Var (gas) – Cov (gas, coal) 
Cov (CO2, coal) = Cov (gas, coal) – Var (coal) 
 

We used annual historical gas and coal prices to compute the annual HPRs and 
the corresponding fuel covariance matrix. These values are used to calculate the 
annual CO2 SDs and CO2 correlations with the fossil fuel prices. Table A-2 
summarizes the resulting CO2 SD and correlation estimates applying Equation 2 
to the historical time-series data.  

Table A-2. Summary of CO2 SD and correlation estimates using analytical 
approach  

CO2 SD CO2 -Gas ρ CO2 -Coal ρ 

0.18 0.69 -0.31 

 

The resulting annual CO2 SD of 0.18 (Table A-2) is larger than the daily CO2 SD 
of 0.05, or the monthly CO2 SD of 0.15. These two estimates are obtained 
directly from historical CO2 price data. This is consistent with the intuition that the 
long-term or annual standard deviation of CO2 prices (HPRs) should be larger 
than the short-term—i.e. monthly and daily HPR SDs.  

Table A-3. Estimated CO2 HPR Standard Deviations 

Daily HPRs Monthly HPRs Annual HPRs 

0.05 0.15 0.18 
Historic data Historic Data Eq. (2) 

 

The only other reported CO2 correlation estimates of which we are aware are 
reported by Roques, (2006), although these are based on price levels, not HPR 
values. Table A-4 below compares the two sets of estimates. Despite significant 
differences in estimation approach and methodology, two results are in 
reasonable agreement with each other.  
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Table A-4. Comparison of Estimated CO2 Correlations 

 CO2 -Coal CO2 -Gas 

A-Y (Analytical Method) -0.31 0.69 
Roques (2006) -0.46 0.45 

Source: Awerbuch-Yang and Roques (2006) 

1.2 Method II: Monte Carlo Approach  
This section describes a series of Monte Carlo simulations from which we 
estimate annual SD values for CO2, along with correlations against annual fuel 
price HPRs. In Part I, we describe the methodology to estimate the HPR level SD 
of the simulated CO2 prices. In Part II, we describe the methodology to estimate 
the HPR level correlations of annual CO2 and fossil fuel prices. Finally, in Part III, 
we describe the methodology to estimate CO2 price distribution in year 2020 (in 
addition to the usual CO2 HPR level SD and correlations with fossil fuels) using 
Green’s (2006) formula. In each case, our estimates of the annual HPR CO2 SD 
and correlation values are based on 2,000 Monte Carlo experiments.  

Part I: Standard Deviations of annual CO2 price HPRs  

In estimating the CO2 HPR SD using Monte Carlo technique, we assume the 
following:  

1. The mean level of annual CO2 HPR exhibits no trend and does not change 
significantly over the next 20 years. This assumption is consistent with actual 
observations from other financial markets.  

2. The volatility of annual CO2 HPR exhibits an upward trend. This assumption 
captures our ‘ignorance’ about future policy changes, technological 
innovations, market environment changes, etc. Figure A-1 shows illustrative 
samples of simulated annual CO2 HPR over the next 20 years.  
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Figure A-1. Illustrative samples of simulated CO2 HPR over the next 20 
years 
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In estimating the reasonable CO2 HPR SD using the Monte Carlo approach, we 
developed three scenarios:  

1. Scenario I: Annual CO2 HPR is drawn from i.i.d. (independently and 
identically distributed) normal distribution with linearly interpolated mean and 
standard deviation. When random variables X1, …, Xn are drawn from the 
same distribution and are independently distributed, they are said to be i.i.d. 
In addition, normality is easily justifiable by a simple application of Central 
Limit Theorem (CLT) because we focus on annual frequency. This is also 
consistent with modelling on most financial markets.  



 A-6

2. Scenario II: Annual CO2 HPR follows an AR(1) process with i.i.d. normal 
random shocks we assumed in Scenario I. AR(1) represents the first order 
autoregressive model. The population AR(1) model for the time series Y(t) 
can be written as: Y(t) = β0 + β1*Y(t-1) + u(t), where the errors u(t) are serially 
uncorrelated. The AR(1) model is widely used as a basis in many time series, 
regression, and forecasting methodologies such as a certain forecast of 
inflation. The AR(1) coefficient is estimated from historical HPR data. It is 
important to note that the AR(1) model is also consistent with the efficient 
market hypothesis. An efficient market implies zero serial correlation (random 
walk) at higher frequency, but does not preclude the possibility of serial 
correlation at lower frequency, as is the case here with annual HPR.  

3. Scenario III: Major shocks in CO2 markets (in contrast to the i.i.d. normal 
random shocks modelled in Scenarios I and II) are introduced in Scenario III. 
Specifically, these major shocks, once having occurred (ex post), can 
significantly affect the volatility of CO2 markets. At the same time, the 
occurrence of such events is random and has uncertain magnitude (ex ante). 
To capture these features, we introduce an additional random component 
whose probability and magnitude simulates the impact of such major events 
in the future CO2 market on the resulting CO2 SD estimates.  

Among three scenarios listed above, Scenario III best represents the reality of 
the CO2 market. Table A-5 summarizes the results for our first two scenarios (i.e. 
normal i.i.d. and AR(1) process, respectively). The simulated CO2 SD value is 
approximately 0.25, and the corresponding 95% bound ranges between 0.17 and 
0.32.  

Table A-5. Summary of Scenario I and Scenario II Results—Monte Carlo 
Results: CO2 HPR Standard Deviations 

 mean median 95% bounds 

Scenario I: i.i.d. normal 0.25 0.25 [0.18, 0.32] 
Scenario II: AR(1) 0.24 0.24 [0.17, 0.32] 

 

Table A-6 summarizes results for Scenario III (i.e. AR(1) process with major 
shocks in the CO2 market) with various combinations of key parameters (i.e. 
probability (‘prb’) and magnitude (‘mag’) of unknown major shocks or surprises in 
the CO2 market). These shocks may be conceptually similar to the concepts of 
‘surprise’ and ‘ignorance’ (e.g. Stirling, 1994, Shackle 1972).ii The simulated CO2 
price standard deviations range between 0.24 and 0.35 depending on the 
expected magnitude and probability for the occurrence of major shocks over the 
next 20 years. The corresponding 95% bound ranges between 0.18 and 0.53. As 
shown in Table A-6, the resulting CO2 SD estimates are quite stable over the 
wide range of assumptions regarding the probability and magnitude of major 
shocks on the CO2 market over the next 20 years. For example, the resulting CO2 
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SD estimates range between 0.24 and 0.28, when the probability of major shocks 
varies from 0.05 (i.e. major shocks occur once in entire simulation time period) to 
0.4 (i.e. major shocks occur eight times), and the corresponding magnitude of 
major shocks varies from 2 (i.e. the magnitude of the shock is two standard 
deviations from the mean) to 5 (i.e. five SD from the mean). The CA portfolio 
optimization, therefore uses the CO2 HPR SD value of 0.26, which corresponds 
to the reasonable assumption that the probability and magnitude of major shocks 
over the next 20 years is approximately 0.2 and 5, respectively (See Table A-6).  

Table A-6. Monte Carlo results for Scenario III as a function of the assumed 
probability and magnitude of uncertain shocks on the CO2 market over the 

next 20 years—Estimated CO2 HPR SD (Scenario III) and 95% bounds 
mag\ 
prb 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

2 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.25 

 0.18 0.32 0.18 0.32 0.17 0.32 0.18 0.32 0.18 0.32 0.18 0.33 0.18 0.33 0.18 0.33 

3 0.24 0.25 0.25 0.25 0.25 0.25 0.26 0.26 

 0.18 0.32 0.17 0.33 0.18 0.33 0.18 0.33 0.18 0.33 0.18 0.34 0.18 0.34 0.18 0.34 

4 0.24 0.25 0.25 0.25 0.26 0.26 0.26 0.26 

 0.18 0.32 0.18 0.33 0.18 0.33 0.18 0.34 0.18 0.35 0.19 0.34 0.19 0.35 0.19 0.36 

5 0.25 0.25 0.26 0.26 0.26 0.27 0.27 0.28 

 0.17 0.33 0.18 0.34 0.18 0.34 0.18 0.35 0.19 0.35 0.19 0.36 0.19 0.37 0.20 0.38 

6 0.25 0.26 0.26 0.27 0.27 0.28 0.28 0.29 

 0.18 0.33 0.18 0.34 0.18 0.35 0.19 0.35 0.19 0.37 0.19 0.38 0.19 0.39 0.20 0.41 

7 0.25 0.26 0.26 0.27 0.28 0.29 0.29 0.30 

 0.18 0.33 0.18 0.35 0.18 0.36 0.19 0.38 0.19 0.39 0.20 0.41 0.20 0.42 0.20 0.43 

8 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.31 

 0.18 0.34 0.18 0.35 0.19 0.38 0.19 0.40 0.19 0.42 0.20 0.42 0.21 0.45 0.21 0.45 

9 0.25 0.27 0.28 0.29 0.30 0.31 0.32 0.33 

 0.18 0.34 0.18 0.38 0.19 0.40 0.19 0.43 0.20 0.44 0.20 0.45 0.21 0.48 0.21 0.51 

10 0.26 0.27 0.29 0.30 0.31 0.32 0.34 0.35 

 0.18 0.35 0.18 0.39 0.19 0.43 0.19 0.44 0.20 0.47 0.21 0.50 0.21 0.51 0.22 0.53 

  

Part II: Correlation of annual CO2 and fossil fuel HPRs  

Estimating correlations of annual CO2 HPR and fossil fuel HPRs is important in 
portfolio optimization because the magnitude and the sign of the correlations 
directly impacts the resulting optimized fossil fuel generation share in the 
presence of CO2 constrained market. Our Monte Carlo estimates of the 
correlations of annual CO2 and fossil fuel HPRs are based on the following two 
assumptions:  
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1. CO2 price HPR = gas price HPR – coal price HPR. This is the same 
assumption we used in the analytical approach described in Method I section 
(see Eq. 1).  

2. The covariance structure of coal and gas HPRs are stable over time.  

To test the sensitivity of these two assumptions, we introduce random 
perturbations to the HPR level relationships over the entire simulated time period, 
as described more fully below.  

Similar to the methodology described in Part I, our Monte Carlo estimates of 
reasonable CO2 HPR correlations are based on the simulation of the following 
two scenarios:  

1. Scenario I (Simulations with normal i.i.d.): We simulate gas and coal HPRs 
simultaneously, maintaining their covariance structure estimated from our 
sample. Then, we calculate the estimated CO2 HPR. Two random 
perturbations are introduced to test the sensitivity of our assumed covariance 
structure on our estimated CO2 HPR:  

a. Additive perturbation: CO2 Price HPR = gas price HPR – coal price HPR + 
εa  

b. Multiplicative perturbation: CO2 price HPR = gas price HPR – εm * coal 
price HPR  

In both cases, εa and εm are random variables. The random perturbations test the 
robustness of the unitary HPR relationship.  

2. Scenario II (Simulations with AR(1) process): Same as Scenario I, except that 
we use an AR(1) process to simulate the underlying trivariate time series. 
Scenario II better represents the reality of the CO2 and fossil fuel time series, 
because AR(1) process assumption is more realistic than i.i.d. process 
assumption in simulating the underlying CO2 and fossil fuel data.  

Table A-7 summarizes the Scenario I results. As shown in Table A-7, our 
simulated correlation values are quite robust over the wide ranges of additive 
(‘add’) and multiplicative (‘coef’) perturbation assumptions. For example, the 
mean value of CO2 and Gas HPR correlation estimates ranges between 0.63 and 
0.73 when the additive perturbation assumptions are varying between 0.05 and 
0.15, and the multiplicative perturbation assumptions are varying between 0.05 
and 0.3. The similar observations can be made in CO2 and Coal HPR correlation 
estimates. 
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Table A-7. Scenario I Results (IID approximation) 
Gas HPR and CO2 HPR 

add\coef 0.05 0.1 0.15 0.2 0.25 0.3 
0.05 0.73 0.73 0.72 0.73 0.73 0.73 

 0.53 0.87 0.52 0.88 0.49 0.89 0.48 0.89 0.47 0.90 0.45 0.92 
0.1 0.69 0.69 0.69 0.69 0.69 0.68 

 0.49 0.85 0.46 0.85 0.46 0.86 0.46 0.86 0.43 0.87 0.39 0.87 
0.15 0.64 0.63 0.64 0.64 0.63 0.63 

 0.41 0.82 0.39 0.81 0.39 0.82 0.36 0.82 0.36 0.83 0.36 0.83 
0.2 0.58 0.58 0.58 0.58 0.58 0.58 

 0.31 0.78 0.31 0.78 0.32 0.78 0.31 0.78 0.30 0.78 0.30 0.80 
0.25 0.53 0.52 0.52 0.52 0.53 0.52 

 0.25 0.75 0.25 0.75 0.24 0.75 0.24 0.76 0.23 0.76 0.23 0.77 
0.3 0.48 0.47 0.47 0.46 0.48 0.47 

 0.16 0.72 0.17 0.72 0.16 0.72 0.15 0.71 0.18 0.73 0.16 0.73 
 

Coal HPR and CO2 HPR 
add\coef 0.05 0.1 0.15 0.2 0.25 0.3 

0.05 -0.50 -0.50 -0.48 -0.49 -0.48 -0.48 
 -0.75 -0.18 -0.75 -0.18 -0.75 -0.13 -0.76 -0.13 -0.78 -0.07 -0.78 -0.03 

0.1 -0.47 -0.47 -0.47 -0.47 -0.46 -0.46 
 -0.73 -0.16 -0.73 -0.15 -0.74 -0.12 -0.74 -0.12 -0.76 -0.09 -0.77 -0.05 

0.15 -0.43 -0.44 -0.43 -0.42 -0.42 -0.42 
 -0.69 -0.10 -0.70 -0.11 -0.71 -0.08 -0.73 -0.05 -0.72 -0.05 -0.74 0.00 

0.2 -0.40 -0.40 -0.39 -0.40 -0.38 -0.38 
 -0.67 -0.08 -0.69 -0.05 -0.69 -0.04 -0.69 -0.03 -0.71 0.00 -0.72 0.03 

0.25 -0.36 -0.37 -0.36 -0.36 -0.36 -0.35 
 -0.65 -0.03 -0.66 -0.02 -0.66 0.00 -0.67 0.02 -0.68 0.03 -0.68 0.08 

0.3 -0.32 -0.32 -0.32 -0.32 -0.31 -0.31 
 -0.63 0.03 -0.63 0.04 -0.62 0.04 -0.65 0.07 -0.63 0.09 -0.65 0.10 

 

In addition, it is important to note that the results summarized in Table A-7 above 
are also consistent with our analytical approach described in detail supra. 
Specifically, our analytical results on CO2 correlations, as shown in Table A-8, fall 
within the 95% bound of the results summarized in Table A-7.  

Table A-8. Summary of the analytical approach results 

Correlation Gas-CO2 Coal-CO2 

Analytical Method 0.68 -0.31 
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Table A-9 summarizes the Scenario II results. Similar to the Scenario I results, 
our simulated correlation values are quite robust over the wide ranges of additive 
(‘add’) and multiplicative (‘coef’) perturbation assumptions. For example, the 
mean value of CO2 and Gas HPR correlation estimates ranges between 0.62 and 
0.72 when the additive perturbation assumptions are varying between 0.05 and 
0.15, and the multiplicative perturbation assumptions are varying between 0.05 
and 0.3. The similar observations can be made in CO2 and Coal HPR correlation 
estimates as well. Therefore, in our CA generating portfolio optimization analysis, 
we use the CO2 and fossil fuel correlation values that correspond to the additive 
and multiplicative perturbation assumptions of 0.1 (See Table A-9). This choice is 
reasonable because the resulting correlation estimates do not vary materially 
over the wide range of key parameter assumptions.  
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Table A-9. Scenario II Results (AR(1) approximation) 
Gas HPR and CO2 HPR 

add\coef 0.05 0.1 0.15 0.2 0.25 0.3 
0.05 0.72 0.72 0.72 0.72 0.72 0.71 

 0.51 0.87 0.51 0.87 0.48 0.88 0.48 0.89 0.46 0.90 0.42 0.91 
0.1 0.68 0.68 0.68 0.68 0.68 0.68 

 0.46 0.84 0.44 0.84 0.43 0.85 0.43 0.86 0.41 0.86 0.42 0.88 
0.15 0.63 0.62 0.63 0.62 0.63 0.62 

 0.39 0.81 0.38 0.81 0.37 0.82 0.37 0.82 0.37 0.83 0.35 0.83 
0.2 0.57 0.57 0.57 0.57 0.56 0.57 

 0.30 0.78 0.31 0.78 0.31 0.77 0.29 0.78 0.27 0.77 0.29 0.79 
0.25 0.51 0.51 0.51 0.51 0.51 0.51 

 0.24 0.74 0.22 0.75 0.22 0.74 0.20 0.75 0.20 0.75 0.21 0.75 
0.3 0.46 0.46 0.47 0.46 0.47 0.46 

 0.18 0.71 0.15 0.72 0.16 0.71 0.16 0.72 0.15 0.72 0.14 0.71 
             

Coal HPR and CO2 HPR 
add\coef 0.05 0.1 0.15 0.2 0.25 0.3 

0.05 -0.51 -0.51 -0.51 -0.50 -0.49 -0.49 
 -0.75 -0.19 -0.77 -0.19 -0.76 -0.16 -0.77 -0.14 -0.78 -0.10 -0.79 -0.06 

0.1 -0.49 -0.49 -0.47 -0.47 -0.47 -0.46 
 -0.74 -0.18 -0.74 -0.17 -0.75 -0.13 -0.75 -0.11 -0.76 -0.10 -0.77 -0.04 

0.15 -0.45 -0.45 -0.44 -0.44 -0.43 -0.43 
 -0.71 -0.11 -0.72 -0.11 -0.73 -0.08 -0.73 -0.07 -0.74 -0.04 -0.74 -0.01 

0.2 -0.40 -0.40 -0.40 -0.40 -0.40 -0.39 
 -0.68 -0.06 -0.69 -0.05 -0.68 -0.04 -0.69 -0.02 -0.71 -0.02 -0.72 0.03 

0.25 -0.37 -0.36 -0.37 -0.36 -0.36 -0.36 
 -0.65 -0.05 -0.65 -0.02 -0.67 -0.03 -0.67 0.01 -0.69 0.04 -0.69 0.05 

0.3 -0.33 -0.33 -0.33 -0.33 -0.32 -0.33 
 -0.63 0.01 -0.63 0.03 -0.64 0.03 -0.64 0.04 -0.65 0.06 -0.66 0.08 
             

 

Part III. Monte Carlo Simulations based on Green’s Price Level 
Formula  

We also performed Monte Carlo simulations based on Green’s (2006) equilibrium 
condition relating price levels of gas, coal, and CO2. Specifically, we estimated 
the three important parameters used in CA portfolio optimization: CO2 price 
distribution in year 2020, CO2 HPR SD, and correlations between CO2 HPR and 
fossil fuels. In CA portfolio optimization, we varied the CO2 price based on the 
estimated range of CO2 price distribution in year 2020 and analyzed the impact of 
CO2 price on optimal CA mix. Our Monte Carlo estimates of the CO2 price 
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distribution and corresponding CO2 HPR SD and correlation values are based on 
the following three assumptions:  

1. We follow Green’s (2006) approach by assuming the following equilibrium 
condition in terms of price levels of CO2, gas, and coal: i.e. 

2 3.15 4.77co gas coalP P P= − . 

2. The average price levels of gas and coal are increasing. Table A-10 
summarizes our fuel price assumptions. These values were obtained from 
IEA historical import prices and EIB 2020 forecasts.  

3. As usual, we use AR (1) process for gas and coal price levels.  

Table A-10. Summary of fossil fuel price assumptions ($/MWh) 

 2003 2020 

Gas 20.35 28.2 
Coal 8.23 13.7 

 

In developing the scenario, we again introduce random perturbations into the 
equilibrium condition. In this case, the equilibrium condition is Green’s (2006) 
price level formula rather than the HPR level relationship we used in Equation 1. 
We also consider both additive shocks of the form,  

2 3.15 4.77co gas coalP P P ε= − + ; 

 and multiplicative shocks of the form,  

2 1 2(3.15 ) (4.77 )co gas coalP P Pε ε= + − + . 

 The HPRs of CO2, gas and coal are computed from the corresponding simulated 
price level values.  

Table A-11 summarizes the estimated AR coefficients used in our Monte Carlo 
simulations. The AR coefficients were estimated from the IEA fuel prices data.  

Table A-11. Summary of the AR coefficients 

 Coal Gas 

AR coefficient 0.9379 0.7152 

 

The Monte Carlo CO2 price-level results for 2020 along with corresponding SD 
estimates are summarized in Table A-12. Specifically, 95% bound of projected 
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CO2 price level in year 2020 ranges between 5 and 57 dollars per tonne of CO2, 
and the expected average values are approximately $30 per tonne. Our Monte 
Carlo estimated mean CO2 price in 2020 is below the corresponding EIB 
projected estimate of $47 per tonne, although the EIB estimate lies within our 
95% bound estimate. In order to better understand the effects of varying CO2 
prices and to ensure that we cover the range of our 95% bound estimates, the 
CA portfolio optimizations were run for CO2 prices ranging from $10 to $30 per 
tonne. 

Table A-12. Simulated results for CO2 

Projected CO2 Price level in 2020 

mean Median 95% bound 

$31.28 $31.18 [$5.44, $57.28] 
   

SD of CO2 HPR 

mean median 95% bound 

1.31 0.27 [0.15, 1.96] 

 

Figure A-2 shows the CO2 price and SD distribution. In contrast to the CO2 price 
level distribution (top of Figure A-2), the distribution of the standard deviation of 
the simulated CO2 HPR (bottom of Figure A-2) is highly skewed. Therefore, the 
median SD (i.e. 0.27) is a better measure of the CO2 HPR risk. Note that the 
median SD estimate is consistent with our base case SD estimate of 0.26 used in 
our CA portfolio analysis. 
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Figure A-2. CO2 Price and SD distribution  
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The Monte Carlo simulation results for the CO2 HPR correlations are summarized 
in Table A-13. The mean values of correlations between CO2 HPR and Gas and 
Coal HPRs are 0.73 and 0.12, respectively. These estimates are consistent with 
our base case estimates used in the CA portfolio optimization within 95% bound, 
except for CO2-Coal HPR correlation estimates. 

Table A-13. Simulated correlation 

Correlation between CO2 HPR and Gas HPR 

mean median 95% bound 

0.73 0.81 [0.17, 0.92] 
   

Correlation between CO2 HPR and Coal HPR 

mean median 95% bound 

0.12 0.12 [-0.29 , 0.50] 
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Finally, Figure A-3 shows the distribution of simulated correlations between CO2 
and fossil fuels. 

Figure A-3. Simulated correlation distribution of CO2 and fossil fuels  
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1.3 Summary and Conclusion 
This Appendix describes the procedures we used to produce estimates of the 
risk (HPR Standard Deviation) of annual CO2 prices and their correlation with 
fossil fuel prices. It described two general methodologies, i.e. an analytical 
approach and a set of Monte Carlo simulation, that enable us to make numerical 
estimates of CO2 SD and correlations. An analytical model based on HPR level 
equilibrium approach (as described in Equation 1) is used to determine the CO2 
SD and the correlation, and these values are compared to the ones obtained 
from Monte Carlo simulation. We also perform various sensitivity analyses to test 
the reasonableness and robustness of our obtained CO2 SD and correlation 
values. In addition, Green’s (2006) price level formula is used to estimate CO2 
price distribution in year 2020. The results of this study represent required inputs 
to our CA generating portfolio optimization model.  

The following table summarizes the final set of CO2 SD and correlation estimates 
we applied in CA portfolio optimization.  
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Table A-14. Final set of CO2 SD and correlation estimates applied to CA 
portfolio optimization 

CO2 SD CO2-Gas ρ CO2-Coal ρ 

0.26 0.68 -0.49 

 

In addition, in order to better understand the effects of varying CO2 prices, and to 
insure that we cover the range of our 95% bound estimates of our CO2 price 
distribution in year 2020, we ran the portfolio optimizations for CO2 prices ranging 
from $10 to $30.00 per tonne. 
 
                                                 
i An alternative approach to estimating annual CO2 risk uses estimated historic monthly CO2 SD 
under an assumption of a random walk as follows: Annual CO2 HPR SD = SQRT[12] × monthly 
CO2 HPR SD; this also yields a high value in excess of 0.5. 
ii A discussion of these concepts in the context of mean-variance portfolio theory and Stirling 
diversity analysis is given in Awerbuch, Stirling, et al. (2006). 


