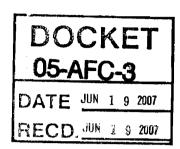


CH2M HILL

2485 Natomas Park Drive

Suite 600


Sacramento, CA 95833

Tel 916.920.0300

Fax 916.920.8463

June 19, 2007

Mr. Bob Worl Project Manager California Energy Commission 1516 Ninth Street Sacramento, CA 95814

Re:

Phase II Environmental Site Assessment Sun Valley Energy Project (05-AFC-3)

Dear Bob:

Attached are the original and 12 copies of the following two documents:

- Soil Investigation Results Development Location, Rouse Road and Menifee Road, Romoland, California, dated January 15, 2007
- Additional Soil Investigation Results Development Location, Rouse Road and Menifee Road, Romoland, California, dated May 7, 2007

The first document is the Phase II Environmental Site Assessment for the Sun Valley Energy Project (05-AFC-3), which includes the results of soil sampling within and surrounding the project site. The second document reports the results of a second sampling and analysis episode, conducted to correct a locational error in the sampling plan for the first sampling episode and provide additional samples for the project site.

These reports are filed in support of the Application for Certification for the Sun Valley Energy Project. If you have any questions about this matter, please contact me at (916) 286-0278.

Sincerely,

Douglas M. Davy, Ph.D. AFC Project Manager

I samuette Harris

in en rejeer manager

Attachment

cc: T. McCabe

J. Morris

V. Yamada

S. Galati

2025 Gateway Place, Suite 435 • San Jose, California 95110 • (408) 453-6100 • Fax (408) 453-0496

January 15, 2007

Mr. Victor Yamada Environmental Health and Safety Edison Mission Energy 18101 Von Karman Avenue Suite 1700 Irvine, California, USA 92612

Re: Soil Investigation Results – Development Location, Rouse Road and Menifee Road, Romoland, California 92585

Dear Mr. Yamada,

On behalf of Edison Mission Energy, WSP Environmental Strategies (formerly Environmental Strategies Consulting LLC) conducted a soil investigation at Rouse Road and Menifee Road, in Romoland, California.

The soil investigation was the result of a Phase I environmental site assessment conducted by Environmental Strategies Consulting LLC on May 9, 2005. Environmental Strategies conducted a Phase I environmental assessment of the vacant property in accordance with ASTM E 1527-00 Standard Practice for Environmental Site Assessments. Based on results of the site assessment, Environmental Strategies did not identify any recognized environmental conditions in connection with the site. The site assessment did conclude that before purchase or lease of the property, consideration should be given to the collection of soil and groundwater samples to ensure that any such chemical residuals do not pose environmental or health impacts that could require remediation, as well as to establish a baseline of property conditions. Based on this recommendation, Edison Mission Energy retained WSP Environmental Strategies to conduct a soil investigation.

This letter report describes the soil investigation activities completed on December 13, 2006 for the subject site. The objective of the soil investigation was to characterize any possible soil contamination at the subject site.

On December 13, 2006, WSP Environmental Strategies advanced fourteen (14) soil borings (GP-01 through GP-14) at the subject property to five feet below ground surface (bgs) using a Geoprobe® direct push method and collected two soil samples (at zero to six inches (0-6") bgs and from four to five feet (4-5") bgs, respectively) at each boring location. Sample locations GP-05, GP-11, GP-12, GP-13 and GP14 were collected outside the subject property and, as such were representative of background conditions. At boring location GP-14, a

sample was collected from zero to one foot bgs instead of zero to six inches. The soil sampling covered an area of approximately 45 acres of open farmland including background samples from neighboring land. The locations of the soil borings are presented in Figure 2.

Samples for chemical analyses were collected in acetate sleeves capped with Teflon sheets and plastic end-caps. The sample sleeves were labeled and stored in a thermally insulated cooler (approximately 0-4°C) for transport to Centrum Analytical Laboratories, Inc. of Riverside, California, a state-certified laboratory. The soil samples were analyzed for pesticides, herbicides and CAM metals using U.S. Environmental Protection Agency (EPA) Methods 8081A, 8151A and 6010B and 7471A, respectively. The soil analytical results are included in tabular form as Attachment A. Groundwater was not encountered during soil sampling activities and information from the Phase I report indicates that groundwater is likely to be approximately 50 feet bgs; therefore, groundwater samples were not collected or analyzed.

Metal and pesticide analytical results were compared to the United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goals (PRG's) (October 2004) and the California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for soil for residential and commercial/industrial land use (January 2005). Herbicide analytical results were compared to the PRG's only as there are no CHHSL's for herbicides. Herbicide concentrations were not detected above the PRG's and the laboratory reporting limits in all of the soil samples analyzed (GP-01 through GP-14). Pesticide concentrations of 4,4-DDE, 4,4-DDT, dieldrin and toxaphene were detected above the laboratory reporting limits in 14 soil samples, but no pesticide concentrations were detected above the PRG's or CHHSL's in all of the soil samples analyzed (GP-01 through Analytical results for soil samples GP-02 at 4-5', GP-06 at 4-5' and GP-14 GP-14). (background sample) at 4-5' indicated arsenic values of 1.06 mg/kg, 1.94 mg/kg and 1.39 mg/kg respectively. The CHHSL for arsenic is 0.07 mg/kg, a value well below typical naturally occurring arsenic levels. For this reason, the most realistic approach for arsenic is to evaluate arsenic concentrations at the site relative to natural background concentrations. There is no statistically significant difference between background and onsite arsenic concentrations. The onsite arsenic concentrations are considered to be naturally-occurring and no further action is warranted regarding arsenic.

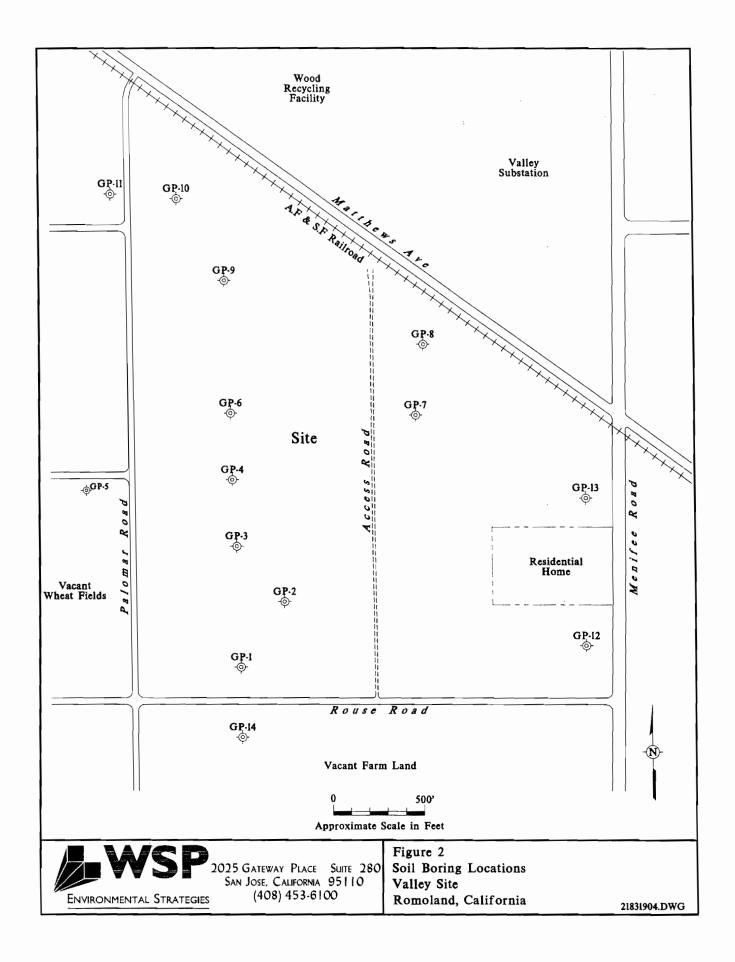
The laboratory analytical report and chain of custody documentation are included as Attachment B. A topographical survey prepared by Case Land Surveying is also included as Attachment C.

Based on the analytical results for soil samples collected by WSP Environmental Strategies, the soils at the proposed development location at Rouse Road and Menifee Road, in Romoland, California, have not been impacted by historical property uses and do not likely pose a health or environmental concern to the subject property. Additionally, based on the results of the soil samples collected by WSP Environmental Strategies, soil removal or remediation is not warranted and it is unlikely that groundwater beneath the site has been affected by past activities on the subject property.

If you have any questions or comments, please do not hesitate to call our office.

Sincerely yours,

Richard E. Freudenberger


Vice President

REF:jaz/ks

Enclosures

Figure

. .

Attachment A – Soil Analytical Results (Tables 1-3)

Table 1

Soil Analytical Results - Metals

Development Location - Rouse Road and Menifee Road, Romoland, California

December 13, 2006

						GP-01 0-6"	GP-01 4-5'	GP-02 0-6"	GP-02 4-5'	GP-03 0-6"	GP-03 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	<u>Preliminary</u>	Reporting						
	<u>Residential</u>	Commercial/	Remediation	Remediation	<u>Limit</u>						
		<u> 1ndustrial</u>	Goals (c)	Goals (c)		40,000	40/40/000/	12/12/2006	12/13/2006	12/13/2006	12/13/2006
Parameter (a)			Residential	<u>Industrial</u>		12/13/2006	12/13/2006	12/13/2006	12/13/2000	12/13/2000	12/13/2000
Metals											\
antimony	30	380	31	410	5.0	ND	ND _	ND	ND	ND	ND
arsenic	0.07	0.24	0.062 (d)	0.25 (d)	1.0	ND	ND	ND	1.06	ND	ND_
barium	5,200	63,000	5,400	67,000	0.5	209	288	298	177	204	186
beryllium	150	1,700	150	1,900	0.5	ND	ND	ND	ND	ND	ND
cadmium	1.7	7.5	37	450	0.5	ND	ND	ND	ND	ND	ND
chromium (total)	NA	NA	210	450	0.5	9.06	11.7	12.5	10.6	9.74	21.8
cobalt	660	3,200	900	1,900	0.5	8.87	10.8	12.4	8.58	10.4	7.83
copper	3,000	38,000	3,100	41,000	1.0	10.8	12.8	15.4	9.22	11.5	11.3
lead	150	3500	150 (d)	800	1.0	2.89	1.66	3.72	2.55	3.71	2.19
mercury	18	180	23	310	0.02	ND	ND	0.02	ND	0.12	ND
molybdenum	380	4,800	390	5,100	5.0	ND	ND	ND	ND	ND	ND
nickel	1,600	16,000	1,600	20,000	1.0	4.75	6.37	6.64	5.44	5.22	10.1
selenium	380	4,800	390	5,100	5.0	ND	ND	ND	ND	ND	ND
silver	380	4,800	390	5,100	2,0	ND	ND	ND	ND	ND	ND
thallium	5.0	63.0	5.2	67.0	10	ND	ND	ND	ND	ND	ND
vanadium	530	6,700	78	1,000	5.0	35.5	45,7	50.9	36.0	40.3	47.2
zinc	23,000	100,000	23,000	100,000	10	39.4	46.0	53.6	34.7	41.9	33.9

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 1

Soil Analytical Results - Metals

Development Location - Rouse Road and Menifee Road, Romoland, California

December 13, 2006

						GP-04 0-6"	GP-04 4-5'	GP-05 0-6"	GP-05 4-5'	GP-06 0-6"	GP-06 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	Limit						
		Industrial	Goals (c)	Goals (c)							12/12/2006
Parameter (a)			Residential	<u>Industrial</u>		<u>12/13/2006</u>	12/13/2006	<u>12/13/2006</u>	12/13/2006	12/13/2006	12/13/2006
Metals											100
antimony	30	380	31	410	5.0	ND	ND	ND	ND	ND	ND
arsenic	0.07	0.24	0.062 (d)	0.25 (d)	1.0	ND	ND.	ND	ND	ND	1.94
barium	5,200	63,000	5,400	67,000	0.5	282	92.5	167	172	282	146
beryllium	150	1,700	150	1,900	0.5	ND	ND	ND	ND	ND	ND
cadmium	1.7	7.5	37	450	0.5	ND	ND	ND	ND	ND	ND
chromium (total)	NA	NA	210	450	0.5	11.1	6.75	9,39	39.2	15.8	10.2
cobalt	660	3,200	900	1,900	0.5	11.4	5.83	8.14	9.07	14.5	6.63
copper	3,000	38,000	3,100	41,000	1.0	13.8	5.91	12.7	16.0	26.3	8.04
lead	150	3500	150 (d)	800	1.0	3.88	2.12	4.59	3.45	5.77	2.66
тегсигу	18	180	23	310	0.02	ND	ND	ND	ND	ND	ND
molybdenum	380	4,800	390	5,100	5.0	ND	ND	ND	ND	ND	ND
nickel	1,600	16,000	1,600	20,000	1.0	5.91	3.67	4.58	15.4	8.70	8.30
selenium	380	4,800	390	5,100	5.0	ND	ND	ND	ND	ND	ND
silver	380	4,800	390	5,100	2.0	ND	ND	ND	ND	ND	ND
thallium	5.0	63.0	5.2	67.0	10	ND	ND	ND	ND	ND	ND_
vanadium	530	6,700	78	1,000	5.0	43.4	23.8	33.9	44.2	59.8	37.7
zinc	NA	NA	23,000	100,000	10	49.0	24.7	46.1	43.9	87.0	31.4

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 1

Soil Analytical Results - Metals

Development Location - Rouse Road and Menifee Road, Romoland, California

December 13, 2006

						GP-07 0-6"	GP-07 4-5'	GP-08 0-6"	GP-08 4-5'	GP- <u>09</u> 0-6"	GP-09 4-5'
	CHHSL (b) Residential	CHHSL (b) Commercial/	Preliminary Remediation	Preliminary Remediation	Reporting Limit						
Parameter (a)		<u>Industrial</u>	Goals (c) Residential	Goals (c) Industrial		12/13/2006	12/13/2006	12/13/2006	12/13/2006	12/13/2006	12/13/2006
Metals											
antimony	30	380	31	410	5.0	ND	ND	ND	ND	ND	ND
arsenic	0.07	0.24	0.062 (d)	0.25 (d)	1.0	ND	ND	ND ND	ND	ND	ND
barium	5,200	63,000	5,400	67,000	0.5	336	282	165	240	128	82.2
beryllium	150	1,700	150	1,900	0.5	ND	ND	ND	ND	ND	ND ND
cadmium	1.7	7.5	37	450	0.5	ND	ND	ND	ND	ND	ND
chromium (total)	NA	NA	210	450	0.5	14.0	17.0	11.3	18.1	9.50	11.0
cobalt	660	3,200	900	1,900	0.5	14.4	9.10	8.91	8.73	8.52	4.99
copper	3,000	38,000	3,100	41,000	1.0	18.4	14.2	14.6	11.3	10.4	5.88
lead	150	3500	150 (d)	800	1.0	3.86	3.14	4.12	3.46	3.80	ND
mercury	18	180	23	310	0.02	0.03	ND	ND	ND	ND	ND
molybdenum	380	4,800	390	5,100	5.0	ND	ND	ND	ND	ND	ND
nickel	1,600	16,000	1,600	20,000	1.0	7.61	14.3	5.94	6.55	5.02	3.26
selenium	380	4,800	390	5,100	5.0	ND	ND	ND	ND	ND	ND
silver	380	4,800	390	5,100	2.0	ND	ND	ND	ND	ND	ND
thallium	5.0	63.0	5.2	67.0	10	ND	ND	ND	ND	ND	ND
vanadium	530	6,700	78	1,000	5.0	55.8	35,5	36.1	39.6	34.1	20.9
zinc	NA	NA	23,000	100,000	10	57.7	50.8	50.8	40.1	36.0	20.2

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 1

Soil Analytical Results - Metals

Development Location - Rouse Road and Menifee Road, Romoland, California

December 13, 2006

						GP-10 0-6"	GP-10 4-5'	GP-11 0-6"	GP-11 4-5'	GP-12 0-6"	GP-12 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	Limit						·
		<u>Industrial</u>	Goals (c)	Goals (c)							10/10/00/0
Parameter (a)			Residential	Industrial		12/13/2006	12/13/2006	12/13/2006	<u>12/13/2006</u>	12/13/2006	12/13/2006
Metals											
antimony	30	380	31	410	5.0	ND	ND	ND	ND	ND	ND
arsenic	0.07	0.24	0.062 (d)	0.25 (d)	1.0	ND	ND	ND	ND	ND_	ND
barium	5,200	63,000	5,400	67,000	0.5	180	182	210	203	149	174
beryllium	150	1,700	150	1,900	0.5	ND	ND	ND	ND	ND	ND
cadmium	1.7	7.5	37	450	0.5	ND	ND	ND	ND	ND	ND
chromium (total)	NA	NA	210	450	0.5	7.87	26.4	10.4	13.5	6.84	7.39
cobalt	660	3,200	900	1,900	0.5	8.69	9.90	11.1	8.55	7.13	8.00
copper	3,000	38,000	3,100	41,000	1.0	9.29	13.8	12.8	<u>11</u> .1	8.60	7.79
lead	150	3500	150 (d)	800	1.0	3.50	4.04	6.04	2.34	2.84	1.35
mercury	18	180	23	310	0.02	ND	ND	ND	ND	ND	ND
molybdenum	380	4,800	390	5,100	5.0	ND	ND	ND	ND	ND	ND
nickel	1,600	16,000	1,600	20,000	1.0	4.39	32.7	5.95	5.70	4.10	3.60
selenium	380	4,800	390	5,100	5.0	ND	ND	ND	ND	ND	ND
silver	380	4,800	390	5,100	2.0	ND	ND	ND	ND	ND	ND
thallium	5.0	63.0	5.2	67.0	10	ND	ND	ND	ND	ND	ND
vanadium	530	6,700	78	1,000	5.0	33.4	41.0	44.2	51.6	32.1	34.5
zinc	NA	NA	23,000	100,000	10	34.7	41.2	50.4	40.7	34.0	32.5

a\All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 1

Soil Analytical Results - Metals

Development Location - Rouse Road and Menifee Road, Romoland, California

December 13, 2006

						GP-13 0-6"	GP-13 4-5'	GP-14 0-1'	GP-14 4-5'
-	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting				
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>				
		<u>Industrial</u>	Goals (c)	Goals (c)	l				
Parameter (a)			Residential	<u>Industrial</u>		12/13/2006	<u>12/13/2006</u>	12/13/2006	12/13/2006
Metals									
antimony	30	380	31_	410	5.0	ND_	ND	ND	ND
arsenic	0.07	0.24	0.062 (d)	0.25 (d)	1.0	ND_	ND	ND	1:39
barium	5,200	63,000	5,400	67,000	0.5	219	288	167	120
beryllium	150	1,700	150	1,900	0.5	ND	ND	ND	ND
cadmium	1.7	7.5	37	450	0.5	ND	ND	ND	ND
chromium (total)	NA	NA	210	450	0.5	8.35	9.56	8.16	9.74
cobalt	660	3,200	900	1,900	0.5	8.96	11.6	8.27	8.00
copper	3,000	38,000	3,100	41,000	1.0	10.7	12.1	9.47	7.83
lead	150	3500	150 (d)	800	1.0	3.13	2.00	2.67	2.24
mercury	18	180	23	310	0.02	ND	ND	ND	ND
molybdenum	380	4,800	390	5,100	5.0	ND	ND	ND ND	ND
nickel	1,600	16,000	1,600	20,000	1.0	7.56	4.96	5.08	5.16
selenium	380	4,800	390	5,100	5.0	ND	ND	ND	ND
silver	380	4,800	390	5,100	2.0	ND	ND	ND	ND
thallium	5.0	63.0	5.2	67.0	10	ND	ND	ND	ND
vanadium	530	6,700	78	1,000	5.0	37.8	47.2	32.6	38.7
zinc	NA	NA	23,000	100,000	10	39.1	45.7	35.1	33.7

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 2

Soil Analytical Results - Herbicides

Development Location - Rouse Road and Menifee Road, Romoland, California

						GP-01 0-6"	GP-01 4-5'	GP-02 0-6"	GP-02 4-5'	GP-03 0-6"	GP-03 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	Limit						
		Industrial	Goals (c)	Goals (c)							
Parameter (a)			Residential	Industrial		12/13/2006	12/13/2006	12/13/2006	12/13/2006	12/13/2006	<u>12/13/2006</u>
Chlorophenoxy											
Herbicides											
Dalapon	NA	NA	1800	18000	250	ND	ND	ND	ND	ND	ND
Dicamba	NA	NA	1800	18000	10	ND	ND	ND	ND	ND	ND
MCPP	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
MCPA	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
Dichlorprop	NA	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4-D	NA	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4,5-TP (Silvex)		NA	490	4900	10	ND	ND	ND	ND	ND	ND :
2,4,5-T	NA_	NA	610	6200	10	ND	ND	ND	ND	ND	ND
2,4-DB	NA	NA	490	4900	100	ND	ND	ND	ND	ND	ND
Dinoseb	NA	NA	61	620	50	ND	ND	ND	ND	ND	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 2

Soil Analytical Results - Herbicides

Development Location - Rouse Road and Menifee Road, Romoland, California

						GP-04 0-6"	GP-04 4-5'	GP-05 0-6"	GP-05 4-5'	GP-06 0-6"	GP-06 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>						
		<u>Industrial</u>	Goals (c)	Goals (c)							
Parameter (a)			Residential	Industrial		12/13/2006	<u>12/13/2006</u>	<u>12/13/2006</u>	12/13/2006	<u>12/13/2006</u>	<u>12/13/2006</u>
Chlorophenoxy					·		_				
Herbicides											
Dalapon	NA	NA	1800	18000	250	ND	ND	ND	ND	ND	ND
Dicamba	NA NA	NA	1800	18000	10	ND	ND	ND	ND	ND	ND
MCPP	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
MCPA	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
Dichlorprop	NA_	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4-D	NA	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4,5-TP (Silvex)	NA	NA	490	4900	10	ND	ND	ND	ND	ND	ND
2,4,5-T	NA	NA	610	6200	10	ND	ND	ND	ND	ND	ND
2,4-DB	NA	NA	490	4900	100	ND	ND	ND	ND	ND	ND
Dinoseb	NA	NA	61	620	50	ND	ND	ND	ND	ND	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\Highlighted values indicate an exceedance of the screening level.

Table 2

Soil Analytical Results - Herbicides

Development Location - Rouse Road and Menifee Road, Romoland, California

						GP-07 0-6"	GP-07 4-5'	GP-08 0-6"	GP-08 4-5'	GP-09 0-6"	GP-09 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>						
		<u>Industrial</u>	Goals (c)	Goals (c)					10/10/00/	12/12/2006	12/13/2006
Parameter (a)			Residential	Industrial		<u>12/13/2006</u>	<u>12/13/2006</u>	12/13/2006	12/13/2006	12/13/2006	12/13/2006
Chlorophenoxy											
Herbicides											
Dalapon	NA	NA	1800	18000	250	ND	ND	ND	ND	ND	ND
Dicamba	NA	NA	1800	18000	10	ND	ND	ND	ND	ND	ND
MCPP	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
MCPA	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
Dichlorprop	NA	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4 - D	NA	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4,5-TP (Silvex)	NA	NA	490	4900	10	ND	ND	ND	ND	ND	ND
2,4,5-T	NA	NA	610	6200	10	ND	ND	ND	ND	ND	ND
2,4-DB	NA	NA	490	4900	100	ND	ND	ND	ND	ND	ND
Dinoseb	NA	NA	61	620	50	ND	ND	ND	ND	ND	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 2

Soil Analytical Results - Herbicides

Development Location - Rouse Road and Menifee Road, Romoland, California

						GP-10 0-6"	GP-10 4-5'	GP-11 0-6"	GP-11 4-5'	GP-12 0-6"	GP-12 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>						
		<u>Industrial</u>	Goals (c)	Goals (c)							
Parameter (a)			Residential	Industrial		12/13/2006	12/13/2006	12/13/2006	12/13/2006	12/13/2006	<u>12/13/2006</u>
Chlorophenoxy											
Herbicides											
Dalapon	NA	NA	1800	18000	250	ND	ND	ND	ND	ND	ND
Dicamba	NA	NA	1800	18000	10	ND	ND	ND	ND	ND	ND
MCPP	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
MCPA	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
Dichlorprop	NA	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4-D_	NA	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4,5-TP (Silvex)	NA	NA	490	4900	10	ND	ND :	ND	ND	ND	ND
2,4,5-T	NA	NA NA	610	6200	10	ND	ND	ND	ND	ND	ND
2,4-DB	NA	NA	490	4900	100	ND	ND	ND	ND	ND	ND
Dinoseb	NA	NA	61	620	50	ND	ND	ND	ND	ND	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 2

Soil Analytical Results - Herbicides

Development Location - Rouse Road and Menifee Road, Romoland, California

						GP-13 0-6"	GP-13 4-5'	GP-14 0-1'	GP-14 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting				
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>				
		<u>Industrial</u>	Goals (c)	Goals (c)					
Parameter (a)			Residential	Industrial		<u>12/13/2006</u>	12/13/2006	12/13/2006	12/13/2006
Chlorophenoxy									
Herbicides									
Dalapon	NA	NA	1800	18000	250	ND	ND	ND	ND
Dicamba	NA	NA	1800	18000	10	ND	ND	ND	ND
MCPP	NA	NA	NA	NA	10000	ND	ND	ND	ND
MCPA	NA	NA	NA	NA	10000	ND	ND	ND	ND
Dichlorprop	NA	NA	690	7700	100	ND	ND	ND	ND
2,4-D	NA	NA	690	7700	100	ND	ND	ND	ND
2,4,5-TP (Silvex)	NA	NA	490	4900	10	ND	ND	ND	ND
2,4,5-T	NA	NA	610	6200	10	ND	ND	ND	ND
2,4-DB	NA	NA	490	4900	100	ND .	ND	ND	ND
Dinoseb	NA	NA	61	620	50	ND	ND	ND	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 3

Soil Analytical Results - Pesticides

Development Location - Rouse Road and Menifee Road, Romoland, California

						GP-01 0-6"	GP-01 4-5'	GP-02 0-6"	GP-02 4-5'	GP-03 0-6"	GP-03 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	Limit						
		Industrial	Goals (c)	Goals (c)							
Parameter (a)			Residential	Industrial		12/13/2006	12/13/2006	12/13/2006	12/13/2006	12/13/2006	12/13/2006
Organochlorine											
Pesticides										- Mide	100
Aldrin	0.033	0.13	0.29	0.1	0.001	ND	ND	ND	ND	ND	ND
Alpha-BHC	NA	NA	0.09	0.36	0.001	ND	ND	ND	ND	ND	ND ·
Beta-BHC	NA	NA	0.32	1.3	0.001	ND	ND	ND	ND	ND	ND
Delta-BHC	NA	NA	NA	NA	0.001	ND	ND	ND	ND	ND	ND
Gamma-BHC (Lindane)	0.5	2	0.44	1.7	0.001	ND	ND	ND	ND	ND	ND
Chlordane	0.43	1.7	1.6	6.5	0.010	ND	ND	ND	ND	ND	ND
4,4'-DDD	2.3	9.0	2.4	10.0	0.002	ND	ND	ND	ND	ND	ND
4,4'-DDE	1.6	6.3	1.7	7.0	0.002	0.037	ND	0.084	ND	0.041	ND
4,4'-DDT	1.6	6.3	1.7	7.0	0.002	0.030	ND	0.051	ND	0.015	ND
Dieldrin	0.035	0.13	0.03	0.11	0.002	ND	ND	0.008	ND	ND	ND
Endosulfan I	NA	NA	370.0	3700.0	0.001	ND	ND	ND	ND	ND	ND
Endosulfan II	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endrin	21.0	230.0	18.0	180.0	0.002	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endrin Ketone	NA	NA	NA	NA	0.010	ND	ND	ND	ND	ND	ND
Heptachlor	0.13	0.52	0.11	0.38	0.001	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	NA	NA	0.053	0.19	0.001	ND	ND	ND	ND	ND	ND
Methoxychlor	340.0	3800.0	310	3100	0.010	ND	ND	ND	ND	ND	ND
Toxaphene	0.46	1.8	0.44	1.6	0.020	0.16	ND	0.29	ND	0.13	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 3

Soil Analytical Results - Pesticides

Development Location - Rouse Road and Menifee Road, Romoland, California

						GP-04 0-6"	GP-04 4-5'	GP-05 0-6"	GP-05 4-5'	GP-06 0-6"	GP-06 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>						
		<u>Industrial</u>	Goals (c)	Goals (c)			10/12/0006	12/12/2006	12/13/2006	12/13/2006	12/13/2006
Parameter (a)			Residential	Industrial		12/13/2006	<u>12/13/2006</u>	<u>12/13/2006</u>	12/13/2006	12/13/2000	12/13/2000
Organochlorine											
Pesticides									\	ND	ND
Aldrin	0.033	0.13	0.29	0.1	0.001	ND_	ND	ND	ND	ND	
Alpha-BHC	NA	NA	0.09	0.36	0.001	ND	ND	ND	ND	ND	ND
Beta-BHC	NA	NA	0.32	1.3	0.001	ND	ND	ND	ND	ND	ND
Delta-BHC	NA	NA	NA	NA	0.001	ND	ND	ND	ND	ND	ND
Gamma-BHC (Lindane)	0.5	2	0.44	1.7	0.001	ND	ND	ND	ND	ND	ND
Chlordane	0.43	1.7	1.6	6.5	0.010	ND _	ND	ND	ND	ND	ND
4,4'-DDD	2.3	9.0	2.4	10.0	0.002	ND	ND	_ND	ND _	ND	ND
4,4'-DDE	1.6	6.3	1.7	7.0	0.002	0.013	ND	0.063	ND	0.027	ND
4,4'-DDT	1.6	6.3	1.7	7.0	0.002	0.002	ND	0.008	ND	ND	ND
Dieldrin	0.035	0.13	0.03	0.11	0.002	ND	ND	ND	ND	ND	ND
Endosulfan I	NA	NA	370.0	3700.0	0.001	ND	ND	ND	ND	ND	ND
Endosulfan II	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	NA	NA	NA	NA	0.002	ND ·	ND	ND	ND	ND	ND _
Endrin	21.0	230.0	18.0	180.0	0.002	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endrin Ketone	NA	NA	NA	NA	0.010	ND	ND	ND	ND	ND	ND
Heptachlor	0.13	0.52	0.11	0.38	0.001	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	NA	NA	0.053	0.19	0.001	ND	ND	ND	ND	ND	ND
Methoxychlor	340.0	3800.0	310	3100	0.010	ND	ND	ND	ND	ND	ND
Toxaphene	0.46	1.8	0.44	1.6	0.020	0.033	ND	0.040	ND	0.065	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 3

Soil Analytical Results - Pesticides

Development Location - Rouse Road and Menifee Road, Romoland, California

						GP-07 0-6"	GP-07 4-5'	GP-08 0-6"	GP-08 4-5'	GP-09 0-6"	GP-09 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	Limit						
		Industrial	Goals (c)	Goals (c)							
Parameter (a)			Residential	Industrial		12/13/2006	12/13/2006	12/13/2006	<u>12/13/2006</u>	12/13/2006	<u>12/13/2006</u>
Organochlorine											
Pesticides											
Aldrin	0.033	0.13	0.29	0.1	100.0	ND	ND	ND	ND	ND	ND
Alpha-BHC	NA	NA	0.09	0.36	100.0	ND	ND	ND	ND	ND	ND
Beta-BHC	NA	NA	0.32	1.3	0.001	ND	ND _	ND	ND	ND	ND
Delta-BHC	NA	NA	NA	NA	0.001	ND	ND _	ND_	ND	ND	ND
Gamma-BHC (Lindane)	0.5	2	0.44	1.7	0.001	ND	ND	ND	ND_	ND	ND
Chlordane	0.43	1.7	1.6	6.5	0.010	ND	ND	ND	ND	ND	ND
4,4'-DDD	2.3	9.0	2.4	10.0	0.002	ND	ND	ND	ND	ND	ND
4,4'-DDE	1.6	6.3	1.7	7.0	0.002	0.008	ND	0.025	ND	0.014	ND
4,4'-DDT	1.6	6.3	1.7	7.0	0.002	ND	ND	0.004	ND	ND	ND _
Dieldrin	0.035	0.13	0.03	0.11	0.002	ND	ND	ND	ND	ND	ND
Endosulfan I	NA	NA	370.0	3700.0	0.001	ND	ND .	ND	ND	ND	ND
Endosulfan II	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endrin	21.0	230.0	18.0	180.0	0.002	ND _	ND	ND	ND	ND	ND
Endrin Aldehyde	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endrin Ketone	NA	NA	NA	NA	0.010	ND	ND	ND	ND	ND	ND
Heptachlor	0.13	0.52	0.11	0.38	0.001	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	NA	NA	0.053	0.19	0.001	ND	ND	ND	ND	ND	ND
Methoxychlor	340.0	3800.0	310	3100	0.010	ND	ND	ND	ND	ND	ND
Toxaphene	0.46	1.8	0.44	1.6	0.020	ND	ND	ND	ND	ND	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 3

Soil Analytical Results - Pesticides

Development Location - Rouse Road and Menifee Road, Romoland, California

			-			GP-10 0-6"	GP-10 4-5'	GP-11 0-6"	GP-11 4-5'	GP-12 0-6"	GP-12 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>						
		Industrial	Goals (c)	Goals (c)							1011210006
Parameter (a)			Residential	Industrial		<u>12/13/2006</u>	12/13/2006	<u>12/13/2006</u>	12/13/2006	12/13/2006	12/13/2006
Organochlorine				1	ì						
Pesticides											
Aldrin	0.033	0.13	0.29	0.1	0.001	ND	NDND	ND	ND	ND	ND
Alpha-BHC	NA	NA	0.09	0.36	0.001	ND	ND	_ND	ND	ND	ND
Beta-BHC	NA	NA	0.32	1.3	0.001	ND	ND	ND	ND	ND	ND
Delta-BHC	NA	NA	NA	NA	0.001	ND	ND	ND	ND	ND	ND
Gamma-BHC (Lindane)	0.5	2	0.44	1.7	0.001	ND	ND	ND	ND	ND	ND
Chlordane	0.43	1.7	1.6	6.5	0.010	ND	ND	ND	ND	ND	ND
4,4'-DDD	2.3	9.0	2.4	10.0	0.002	ND	ND	ND	ND	ND_	ND
4,4'-DDE	1.6	6.3	1.7	7.0	0.002	0.052	ND	0.029	ND	0.023	ND
4,4'-DDT	1.6	6.3	1.7	7.0	0.002	0.017	ND	0.005	ND	0.006	ND
Dieldrin	0.035	0.13	0.03	0.11	0.002	ND	ND	ND	ND	ND	ND
Endosulfan I	NA	NA	370.0	3700.0	0.001	ND	ND	ND	ND	ND	ND
Endosulfan II	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endrin	21.0	230.0	18.0	180.0	0.002	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endrin Ketone	NA	NA	NA	NA	0.010	ND	ND	ND	ND	ND	ND
Heptachlor	0.13	0.52	0.11	0.38	0.001	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	NA	NA	0.053	0.19	0.001	ND	ND	ND	ND	ND	ND
Methoxychlor	340.0	3800.0	310	3100	0.010	ND	ND	ND	ND	ND	ND
Toxaphene	0.46	1.8	0.44	1.6	0.020	ND	ND	0.073	ND	0.081	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b) California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 3

Soil Analytical Results - Pesticides

Development Location - Rouse Road and Menifee Road, Romoland, California

						GP-13 0-6"	GP-13 4-5'	GP-14 0-1'	GP-14 4-5'
	CHHSL (b) Residential	CHHSL (b) Commercial/	Preliminary Remediation	Preliminary Remediation	Reporting Limit				
Parameter (a)		<u>Industrial</u>	<u>Goals (c)</u> Residential	Goals (c) Industrial		12/13/2006	12/13/2006	12/13/2006	12/13/2006
Organochlorine			Residential	Industriai					
Pesticides				j					
Aldrin	0.033	0.13	0.29	0.1	0.001	ND	ND	ND	ND
Alpha-BHC	NA	NA	0.09	0.36	0.001	ND	ND ·	ND	ND
Beta-BHC	NA	NA	0.32	1.3	0.001	ND	ND	ND	ND
Delta-BHC	NA	NA	NA	NA	0.001	ND	ND	ND	ND
Gamma-BHC (Lindane)	0.5	2	0.44	1.7	0.001	ND	ND	ND	ND
Chlordane	0.43	1.7	1.6	6.5	0.010	ND	ND	ND	ND
4,4'-DDD	2.3	9.0	2.4	10.0	0.002	ND	ND	ND	ND
4.4'-DDE	1.6	6.3	1.7	7.0	0.002	0.077	ND	0.065	ND
4,4'-DDT	1.6	6.3	1.7	7.0	0.002	0.015	ND	0.039	ND
Dieldrin	0.035	0.13	0.03	0.11	0.002	ND	ND	ND	ND
Endosulfan I	NA	NA	370.0	3700.0	0.001	ND	ND	ND	ND
Endosulfan li	NA.	NA	NA	NA	0.002	ND	ND	ND	ND
Endosulfan sulfate	NA	NA	NA	NA	0.002	ND	ND	ND	<u>N</u> D
Endrin	21.0	230.0	18.0	180.0	0.002	ND	ND	ND	ND
Endrin Aldehyde	NA	NA	NA	NA	0.002	ND	ND	ND	ND
Endrin Ketone	NA.	NA	NA	NA	0.010	ND	ND	ND	ND
Heptachlor	0.13	0.52	0.11	0.38	0.001	ND	ND	ND	ND
Heptachlor Epoxide	NA	NA	0.053	0.19	0.001	ND	ND	ND	ND
Methoxychlor	340.0	3800.0	310	3100	0.010	ND	ND	ND	ND
Toxaphene	0.46	1.8	0.44	1.6	0.020	0.19	ND	0.40	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b) California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Attachment B - Soil Analytical Report and Chain of Custody

CERTIFIED HAZARDOUS WASTE TESTING MOBILE & IN HOUSE LABORATORIES

Client:

Environmental Strategies

2025 Gateway Place, Ste. 280

San Jose, CA 95110

Date Sampled:

12/13/06

Date Received:

12/13/06

Job Number:

29030

Project: Rouse Rd, Menifee Rd, Romoland, CA

CASE NARRATIVE

The following information applies to samples which were received on 12/13/06:

The samples were received at the laboratory chilled and sample containers were intact.

The Herbicide analysis was subcontracted to ELAP Lab #1230. The original report is attached to, but is not part of, this report.

Unless otherwise noted below, the Quality Control acceptance criteria were met for all samples for every analysis requested. The date of issue for this report is 12/22/06.

Report approved by

Laboratory Director

ELAP Lab# 2419, 2479, 2527, 2373, 2562

RL: Reporting Limit - The lowest level at which the compound can be reliably detected under normal laboratory conditions.

ND: Not Detected -- The compound was analyzed for, but was not found to be present at or above the Reporting Limit.

NA: Not Analyzed -- This compound was not on the list of compounds requested for analysis.

Page 1 of 16

Client: **Environmental Strategies** Project:

Rouse Rd, Menifee Rd, Romoland, CA

Job No: 29030 Soil Matrix: Analyst: TLB

Date Received: Date Digested:

Date Sampled:

12/13/06 12/13/06

Date Analyzed:

12/14/06 12/14-15/06

Batch Number:

6010S3830

7471S1519

		Sample ID:	Blank	GP-01 0-6"	GP-01 4-5'	GP-02 0-6"	GP-02 4-5'	GP-03 0-6"
Metals	Method	RL	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Antimony	6010B	5.0	ND	ND	ND	ND	ND	ND
Arsenic	6010B	1.0	ND	ND	ND	ND	1.06	ND
Barium	6010B	0.50	ND	209	288	298	177	204
Beryllium	6010B	0.50	ND	ND	ND	ND	ND	ND.
Cadmium	6010B	0.50	ND	ND	ND	ND	ND	ND
Chromium	6010B	0.50	ND	9.06	11.7	12.5	10.6	9.74
Cobalt	6010B	0.50	ND	8.87	10.8	12.4	8.58	10.4
Copper	6010B	1.0	ND	10.8	12.8	15.4	9.22	11.5
Lead	6010B	1.0	ND	2.89	1.66	3.72	2.55	3.71
Molybdenum	6010B	5.0	ND	ND	ND	ND	ND	ND.
Nickel	6010B	1.0	ND	4.75	6.37	6.64	5.44	5.22
Selenium	6010B	5.0	ND	ND	ND	ND	ND	ND
Silver	6010B	2.0	ND	ND	ND	ND	ND	ND
Thallium	6010B	10	ND	ND	ND	ND	ND	ND
Vanadium	6010B	5.0	ND	35.5	45.7	50.9	36.0	40.3
Zinc	6010B	10	ND	39.4	46.0	53.6	34.7	41.9
Mercury	7471A	0.02	ND	ND	ND	0.02	ND	0.12

Total

Client: Environmental Strategies
Project: Rouse Rd, Menifee Rd, Romoland, CA

Job No: 29030 Matrix: Soil Analyst: TLB Date Sampled:

12/13/06

Date Received:

12/13/06

Date Digested: Date Analyzed: 12/14/06 12/14-15/06

Batch Number:

6010S3830 7471S1519

		Sample ID:	GP-03 4-5	' GP-04 0-6"	GP-04 4-5'	GP-05 0-6"	GP-05 4-5'	GP-06 0-6"
Metals	Method	RL	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Antimony	6010B	5.0	ND	ND	ND	ND	ND	ND
Arsenic	6010B	1.0	ND	ND	ND	ND	ND	ND
Barium	6010B	0.50	186	282	92.5	167	172	282
Beryllium	6010B	0.50	ND	ND	ND	ND	ND	ND
Cadmium	6010B	0.50	ND	ND	ND	ND	ND	ND
Chromium	6010B	0.50	21.8	11.1	6.75	9.39	39.2	15.8
Cobalt	6010B	0.50	7.83	11.4	5.83	8.14	9.07	14.5
Copper	6010B	1.0	11.3	13.8	5.91	12.7	16.0	26.3
Lead	6010B	1.0	2.19	3.88	2.12	4.59	3.45	5.77
Molybdenum	6010B	5.0	ND	ND	ND.	ND	ND	ND
Nickel	6010B	1.0	10.1	5.91	3.67	4.58	15.4	8.70
Selenium	6010B	5.0	ND	ND	ND	ND	ND	ND
Silver	6010B	2.0	ND	ND	ND	ND	ND	ND
Thallium	6010B	10	ND	ND	ND	ND	ND	ND ·
Vanadium	6010B	5.0	47.2	43.4	23.8	33.9	44.2	59.8
Zinc	6010B	10	33.9	49.0	24.7	46.1	43.9	87.0
Mercury	7471A	0.02	ND	ND	ND	ND	ND	ND

Client: Environmental Strategies

Project: Rouse Rd, Menifee Rd, Romoland, CA

Job No: 29030 Matrix: Soil Analyst: TLB Date Sampled:

12/13/06

Date Received:

12/13/06

Date Digested:

12/14/06

Date Analyzed: Batch Number:

12/14-15/06 6010S3830

		Sample ID:	GP-06 4-5'	GP-07 0-6"	GP-07 4-5'	GP-08 0-6"	GP-08 4-5'	GP-09 0-6"
Metals	Method	RL	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Antimony	6010B	5.0	ND	ND	ND	ND	ND	ND
Arsenic	6010B	1.0	1.94	ND	ND	ND	ND	ND
Barium	6010B	0.50	146	336	282	165	240	128
Beryllium	60 1 0B	0.50	ND	ND	ND	ND	ND	ND
Cadmium	6010B	0.50	ND	ND	ND	ND	ND	ND
Chromium	6010B	0.50	10.2	14.0	17.0	11.3	18.1	9.50
Cobalt	6010B	0.50	6.63	14.4	9.10	8.91	8.73	8.52
Copper	6010B	1.0	8.04	18.4	14.2	14.6	11.3	10.4
Lead	6010B	1.0	2.66	3.86	3.14	4.12	3.46	3.80
Molybdenum	6010B	5.0	ND	ND	ND	ND	ND	ND:
Nickel	6010B	1.0	8.30	7.61	14.3	5.94	6.55	5.02
Selenium	6010B	5.0	ND	ND	ND	ND	ND	ND
Silver	6010B	2.0	ND	ND	ND	ND	ND	ND
Thallium	6010B	10	ND	ND	ND	ND	ND	ND
Vanadium	6010B	5.0	37.7	55.8	35.5	36.1	39.6	34.1
Zinc	6010B	10	31.4	57.7	50.8	50.8	40.1	36.0
Mercury	7 47 1A	0.02	ND	0.03	ND	ND	ND	ND

Client: Environmental Strategies

Rouse Rd, Menifee Rd, Romoland, CA

Project: Job No: 29030 Matrix: Soil Analyst: TLB

Date Sampled: Date Received: 12/13/06

12/13/06 Date Digested:

12/14/06

Date Analyzed: Batch Number:

12/14-15/06 6010S3830

		Sample ID:	GP-09 4-5'	GP-10 0-6"	' GP-10 4-5'
Metals	Method	RL	mg/Kg	mg/Kg	mg/Kg
Antimony	6010B	5.0	ND	ND	ND
Arsenic	6010B	1.0	ND	ND	ND
Barium	6010B	0.50	82.2	180	182
Beryllium	6010B	0.50	ND	ND	ND
Cadmium	6010B	0.50	ND	ND	ND
Chromium	6010B	0.50	11.0	7.87	26.4
Cobalt	6010B	0.50	4.99	8.69	9.90
Copper	6010B	1.0	5.88	9.29	13.8
Lead	6010B	1.0	ND	3.50	4.04
Molybdenum	6010B	5.0	ND	ND	ND
Nickel	6010B	1.0	3.26	4.39	32.7
Selenium	6010B	5.0	ND	ND	ND
Silver	6010B	2.0	ND	ND	ND
Thallium	6010B	10	ND	ND	ND
Vanadium	6010B	5.0	20.9	33.4	41.0
Zinc	6010B	10	20.2	34.7	41.2
Mercury	7471A	0.02	ND	ND	ND

Client: Environmental Strategies

Project: Rouse Rd, Menifee Rd, Romoland, CA

Job No: 29030 Matrix: Soil Analyst: TLB Date Sampled: Date Received: 12/13/06

Date Received: Date Digested: 12/13/06

Date Analyzed:

12/14/06 12/14-15/06

Batch Number:

12/14-15/06 6010S3831

		Sample ID:	Blank	GP-11 0-6"	GP-11 4-5'	GP-12 0-6"	GP-12 4-5'	GP-13 0-6"
Metals	Method	RL	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Antimony	6010B	5.0	ND	ND	ND	ND	ND	ND
Arsenic	6010B	1.0	ND	ND	ND	ND	ND	ND
Barium	6010B	0.50	ND	210	203	149	174	219
Beryllium	6010B	0.50	ND	ND	ND	ND	ND	ND
Cadmium	6010B	0.50	ND	ND	ND	ND	ND	ND
Chromium	6010B	0.50	ND	10.4	13.5	6.84	7.39	8.35
Cobalt	6010B	0.50	ND	11.1	8.55	7.13	8.00	8.96
Copper	6010B	1.0	ND	12.8	11.1	8.60	7.79	10.7
Lead	6010B	1.0	ND	6.04	2.34	2.84	1.35	3.13
Molybdenum	6010B	5.0	ND	ND	: ND ·	ND.	ND	ND
Nickel	6010B	1.0	ND	5.95	5.70	4.10	3.60	7.56
Selenium	6010B	5.0	ND	ND ¹	ND	ND	ND	ND
Silver	6010B	2.0	ND	ND	ND	ND	ND	ND
Thallium	6010B	10	ND	ND	ND	ND	ND	ND
Vanadium	6010B	5.0	ND	44.2	51.6	32.1	34.5	37.8
Zinc	6010B	10	ND	50.4	40.7	34.0	32.5	39.1
Mercury	7 47 1A	0.02	N D	ND	ND	ND	ND	ND

Client: **Environmental Strategies** Project:

Rouse Rd, Menifee Rd, Romoland, CA

Job No: 29030 Matrix: Soil Analyst: TLB

Date Sampled:

12/13/06

Date Received:

12/13/06 12/14/06

Date Digested: Date Analyzed:

12/14-15/06

Batch Number: 6010S3831

	S	ample ID:	GP-13 4-5'	GP-14 0-1'	GP-14 4-5'
Metals	Method	RL	mg/Kg	mg/Kg	mg/Kg
Antimony	6010B	5.0	ND	ND	ND
Arsenic	6010B	1.0	ND	ND	1.39
Barium	6010B	0.50	288	167	120
Beryllium	6010B	0.50	ND	ND	ND
Cadmium	6010B	0.50	ND	ND	ND
Chromium	6010B	0.50	9.56	8.16	9.74
Cobalt	6010B	0.50	11.6	8.27	8.00
Copper	6010B	1.0	12.1	9.47	7.83
Lead	6010B	1.0	2.00	2.67	2.24
Molybdenum	6010B	5.0	ND	, ND	ND
Nickel	6010B	1.0	4.96	5.08	5.16
Selenium	6010B	5.0	ND	ND	ND
Silver	6010B	2.0	ND	ND	ND
Thallium	6010B	10	ND	ND	ND
Vanadium	6010B	5.0	47.2	32.6	38.7
Zinc	6010B	10	45.7	35.1	33.7
Mercury	7471A	0.02	ND	ND	ND

QC Sample Report - Metals by EPA 6010B and EPA 7471A

Matrix: Soil

Metals by EPA 6010B

Batch Number: 6010S3830

Spike Sample ID: Laboratory Control Sample

MS/MSD Sample ID: GP-10 4-5'

	Bat	ch Acc	uracy Resi	ults	В	atch Pre	cision	Results	
Compound	Spike Concentration (mg/Kg)	Spike Sample % Recovery	% Recovery Acceptance Limits	Pass/Fail	MS Sample Result (mg/Kg)	MSD Sample Result (mg/Kg)	Relative Percent Difference (RPD)	RPD Acceptance Limit	Pass/Fail
Antimony	50	110	75 - 125	Pass	48.84	48.04	2%	20%	Pass
Arsenic	50	102	75 - 125	Pass	46.21	47.83	3%	20%	Pass
Barium	50	105	75 - 125	Pass	308.8	322.6	4%	20%	Pass
Beryllium	50	96	75 - 125	Pass	46.31	46.29	0%	20%	Pass
Cadmium	50	103	75 - 125	Pass	46.50	46.09	1%	20%	Pass
Chromium	50	102	75 - 125	Pass	59.36	59.52	0%	20%	Pass
Cobalt	50	99	75 - 125	Pass	54.66	55.13	1%	20%	Pass
Copper	50	101	75 - 125	Pass	61.55	62.11	1%	20%	Pass
Lead	50	101	75 - 125	Pass	45.34	45.61	1%	20%	Pass
Molybdenum	50	97	75 - 125	Pass	43.20	43.08	0%	20%	Pass
Nickel	50	105	75 - 125	Pass	50.49	50.96	1%	20%	Pass
Selenium	50	99	75 - 125	Pass	44.81	45.28	1%	20%	Pass
Silver	50	95	75 - 125	Pass	43.70	43.18	1%	20%	Pass
Thallium	50	102	7 5 - 1 25	Pass	36.14	34.21	6%	20%	Pass
Vanadium	50	100	75 - 125	Pass	100.0	101.4	1%	20%	Pass
Zinc	50	102	75 - 125	Pass	105.2	107.5	2%	20%	Pass

Analytical Notes:

Mercury by EPA 7471A

Batch Number: 7471S1519

Spike Sample ID: Laboratory Control Sample

MS/MSD Sample ID: GP-10 4-5'

	Ba	tch Acc	uracy Res	ults	E	Batch Pre	cision	Results	
Compound	Spike Concentration (mg/Kg)	Spike Sample % Recovery	% Recovery Acceptance Limits	Pass/Fail	MS Sample Result (mg/Kg)	MSD Sample Result (mg/Kg)	Relative Percent Difference (RPD)	RPD Acceptance Limit	Pass/Fail
Mercury	0.42	93	75 - 125	Pass	0.425	0.432	2%	20%	Pass

Analytical Notes:

MS: Matrix Spike

LCS: Laboratory Control Sample

MSD: Matrix Spike Duplicate

LCSD: Laboratory Control Sample Duplicate

QC Sample Report - Metals by EPA 6010B and EPA 7471A

Matrix: Soil

Metals by EPA 6010B

Batch Number: 6010S3831

Spike Sample ID: Laboratory Control Sample

MS/MSD Sample ID: 29033-3

	Bat	ch Acc	uracy Resu	ılts	В	atch Pre	cision l	Results	
Compound	Spike Concentration (mg/Kg)	Spike Sample % Recovery	% Recovery Acceptance Limits	Pass/Fail	MS Sample Result (mg/Kg)	MSD Sample Result (mg/Kg)	Relative Percent Difference (RPD)	RPD Acceptance Limit	Pass/Fail
Antimony	50	107	75 - 125	Pass	49.82	48.30	3%	20%	Pass
Arsenic	50	96	75 - 125	Pass	49.32	49.65	1%	20%	Pass
Barium	50	98	75 - 125	Pass	160.6	154.9	4%	20%	Pass
Beryllium	50	93	75 - 125	Pass	47.22	46.67	1%	20%	Pass
Cadmium	50	95	75 - 125	Pass	44.83	43.73	2%	20%	Pass
Chromium	50	98	75 - 125	Pass	62.15	61.03	2%	20%	Pass
Cobalt	50	97	75 - 125	Pass	49.52	49.79	1%	20%	Pass
Copper	50	98	75 - 125	Pass	61.29	61.60	0%	20%	Pass
Lead	50	96	75 - 125	Pass	46.82	46.44	1%	20%	Pass
Molybderium	50	97	75 - 125	Pass	44.90	44.31	1%	20%	Pass
Nickel	50	101	75 - 125	Pass	53.42	54.81	3%	20%	Pass
Selenium	-50	92	75 - 125	Pass	45.84	44.71	2%	20%	Pass
Silver	50	92	75 - 125	Pass	44.93	43.08	4%	20%	Pass
Thallium	50	96	75 - 125	Pass	38.35	38.47	0%	20%	Pass
Vanadium	50	96	75 - 125	Pass	78.83	79.29	1%	20%	Pass
Zinc	50	99	75 - 125	Pass	101.0	100.1	1%	20%	Pass

Analytical Notes:

Mercury by EPA 7471A

Batch Number: 7471S1520

Spike Sample ID: Laboratory Control Sample

MS/MSD Sample ID: 29033-3

	Batch Accuracy Results				Batch Precision Results				
Compound	Spike Concentration (mg/Kg)	Spike Sample % Recovery	% Recovery Acceptance Limits	Pass/Fail	MS Sample Result (mg/Kg)	MSD Sample Result (mg/Kg)	Relative Percent Difference (RPD)	RPD Acceptance Limit	Pass/Fail
Mercury	0.42	98	75 - 125	Pass	0.369	0.370	0%	20%	Pass

Analytical Notes:

MS: Matrix Spike

LCS: Laboratory Control Sample

MSD: Matrix Spike Duplicate

LCSD: Laboratory Control Sample Duplicate

Client: **Environmental Strategies**

Project: Rouse Rd, Menifee Rd, Romoland,

Job No.: 29030 Matrix: Soil KC Analyst:

Date Sampled: Date Received: 12/13/06 12/13/06

Date Extracted: 12/18-21/06

Date Analyzed: Batch Number:

12/19-21/06 PESTS1120

PESTS1121

	Sample ID:	Blank	GP-01 0-6"	GP-01 4-5'	GP-02 0-6"	GP-02 4-5'	GP-03 0-6"
Pesticides	RL	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Aldrin	0.001	ND	ND	ND	ND	ND	ND
Alpha-BHC	0.001	ND	ND	ND	ND	ND	ND
Beta-BHC	0.001	ND	ND	ND	ND	ND	ND
Delta-BHC	0.001	ND	ND	ND	NĎ	ND	ND
Gamma-BHC (Lindane)	0.001	ND	ND	ND	ND	ND	ND
Chlordane	0.010	ND	, ND	ND.	ND	ND	ND
4,4'-DDD	0.002	ND	ND	ND	ND	ND	ND
4,4'-DDE	0.002	ND	0.037	ND	0.084	ND	0.041
4,4'-DDT	0.002	ND	0.030	ND	0.051	ND	0.015
Dieldrin	0.002	ND	ND	ND	800.0	ND	ND
Endosulfan I	0.001	ND	ND	ND	ND	ND	ND
Endosulfan II	0.002	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	0.002	ND	ND	ND	ND	ND	ND
Endrin	0.002	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	0.002	ND	ND	ND	ND	ND	ND
Endrin Ketone	0.010	ND	ND	ND	ND	ND	ND
Heptachlor	0.001	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	0.001	ND	ND	ND	ND	ND	ND
Methoxychlor	0.010	ND	ND	ND	ND	ND	ND
Toxaphene	0.020	ND	0.16	ND	0.29	ND_	0.13

Surrogates in % Recovery (Acceptance Limits: 50 - 150%)

	Sample ID:	Blank	GP-01 0-6"	GP-01 4-5'	GP-02 0-6"	GP-02 4-5'	GP-03 0-6"
* * * * * * * * * * * * * * * * * * * *		1111	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
Tetrachloro-m-xylene		97	84	86	90	87	74

Client: **Environmental Strategies** Date Sampled: 12/13/06 Project: Rouse Rd, Menifee Rd, Romoland, Date Received: 12/13/06 Job No.: 29030 Date Extracted: 12/18-21/06 Matrix: Soil Date Analyzed: 12/19-21/06 Analyst: KC Batch Number: PESTS1120

PESTS1121

	Sample ID:	GP-03 4-5'	GP-04 0-6"	GP-04 4-5'	GP-05 0-6"	GP-05 4-5'	GP-06 0-6"
Pesticides	RL	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Aldrin	0.001	ND	ND	ND	ND	ND	ND
Alpha-BHC	0.001	ND	ND.	ND	ND	ND	ND
Beta-BHC	0.001	ND	ND	ND	ND	ND	ND
Delta-BHC	0.001	ND	ND	ND	ND	ND	ND
Gamma-BHC (Lindane)	0.001	ND	ND	ND	ND	ND	ND
Chlordane	0.010	ND	ND	ND	ND	ND	ND
4,4'-DDD	0.002	ND	ND	ND	ND	ND	ND
4,4'-DDE	0.002	ND	0.013	ND	0.063	ND	0.027
4,4'-DDT	0.002	ND	0.002	ND	0.008	ND	ND
Dieldrin	0.002	ND	ND	ND	ND	ND	ND
Endosulfan l	0.001	ND	ND	ND	ND	ND	ND
Endosulfan II	0.002	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	0.002	ND	ND	ND	ND	ND	ND
Endrin	0.002	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	0.002	ND	ND	ND	ND	ND	ND
Endrin Ketone	0.010	ND	ND	ND	ND	ND	ND
Heptachlor	0.001	ND [*]	ND	ND	ND	ND	ND
Heptachlor Epoxide	0.001	ND	ND.	ND	ND	ND	ND ·
Methoxychlor	0.010	ND	ND	ND	ND	ND	ND
Toxaphene	0.020	ND_	0.033	ND	0.040	ND	0.065

Surrogates in % Recovery (Acceptance Limits: 50 - 150%)

(Acceptance Limits: 00 - 10070)											
	Sample ID:	GP-03 4-5'	GP-04 0-6"	GP-04 4-5'	GP-05 0-6"	GP-05 4-5'	GP-06 0-6"				
	1		3								
Tetrachloro-m-xylene		65	71	90	76	88	82				

Client:

Environmental Strategies

Date Sampled:

12/13/06

Project:

Rouse Rd, Menifee Rd, Romoland,

Date Received:

12/13/06

Job No.:

29030

Date Extracted:

12/18-21/06

Matrix:

Soil

Date Analyzed:

12/19-21/06

Analyst:

KC

Batch Number:

PESTS1120

PESTS1121

	Sample ID:	GP-06 4-5'	GP-07 0-6"	GP-07 4-5'	GP-08 0-6"	GP-08 4-5'	GP-09 0-6"
Pesticides	RL	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Aldrin	0.001	ND	ND	ND	ND	ND	ND
Alpha-BHC	0.001	ND	ND	ND	ND	· ND	ND .
Beta-BHC	0.001	ND	ND	ND	ND	ND	ND
Delta-BHC	0.001	ND	ND	ND	ND	ND	ND
Gamma-BHC (Lindane)	0.001	ND	ND	ND	ND	ND	ND
Chlordane	0.010	ŅD	ND	ND	ND	ND	ND
4,4'-DDD	0.002	ND	ND	ND	ND	ND	ND
4,4'-DDE	0.002	ND	0.008	ND	0.025	ÑD	0.014
4,4'-DDT	0.002	ND	ND	ND	0.004	ND	ND
Dieldrin	0.002	ND	ND	ND	ND	ND	ND
Endosulfan I	0.001	ND	ND	ND	ND	ND	ND
Endosulfan II	0.002	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	0.002	ND	ND	ND	ND	ND	ND
Endrin	0.002	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	0.002	ND	ND	ND	ND	ND	ND
Endrin Ketone	0.010	ND	ND	ND	ND	ND	ND
Heptachlor	0.001	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	0.001	ND	ND	ND	ND	ND	ND
Methoxychlor	0.010	ND	ND	ND	ND	ND	ND
Toxaphene	0.020	ND_	ND	ND	ND,	ND	<u>N</u> D

Surrogates in % Recovery (Acceptance Limits: 50 - 150%)

Ourrogates in 70 recet	(Acceptance Limits: 30 - 19070)											
	Sample ID:	GP-06 4-5'	GP-07 0-6"	GP-07 4-5'	GP-08 0-6"	GP-08 4-5'	GP-09 0-6"					
Tetrachloro-m-xylene		89	89	82	87	75	70					

Client: **Environmental Strategies** Project:

Rouse Rd, Menifee Rd, Romoland,

Job No.: 29030 Matrix: Soil Analyst: KC

Date Sampled: Date Received: 12/13/06 12/13/06

Date Extracted: Date Analyzed: 12/18-21/06 12/19-21/06

Batch Number: PESTS1120

PESTS1121

	Sample ID:	GP-09 4-5'	GP-10 0-6"	GP-10 4-5'	GP-11 0-6"	GP-11 4-5'	GP-12 0-6"
Pesticides	RL	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Aldrin	0.001	ND	ND	ND	ND	ND	ND
Alpha-BHC	0.001	ND	ND	ND	ND	ND	ND
Beta-BHC	0.001	ND	ND	ND	ND	ND	ND
Delta-BHC	0.001	ND.	ND	ND	ND	ND	ND
Gamma-BHC (Lindane)	0.001	ND	ND	ND	ND	ND	ND
Chlordane	0.010	ND	ND	ND	ND	ND	ND
4,4'-DDD	0.002	ND	ND	ND	ND	ND	ND
4,4'-DDE	0.002	ND	0.052	ND	0.029	ND	0.023
4,4'-DDT	0.002	ND	0.017	ND	0.005	ND	0.006
Dieldrin	0.002	ND	ND	ND ·	ND	ND	ND
Endosulfan I	0.001	ND	ND	ND	ND	ND	ND
Endosulfan II	0.002	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	0.002	ND	ND	ND	ND	ND	ND
Endrin	0.002	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	0.002	ND	ND	ND	ND	ND	ND
Endrin Ketone	0.010	ND	ND	ND	ND	ND	ND
Heptachlor	0.001	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	0.001	ND	ND	ND	ND	ND	ND
Methoxychlor	0.010	ND	ND	ND	ND	ND	ND
Toxaphene	0.020	ND	ND .	ND	0.073	ND	0.081

Surrogates in % Recovery (Acceptance Limits: 50 - 150%)

	Sample ID:	GP-09 4-5'	GP-10 0-6"	GP-10 4-5'	GP-11 0-6"	GP-11 4-5'	GP-12 0-6"
					· .		
Tetrachloro-m-xylene		78	60	70	72	74	69
			27				

Organochlorine Pesticides by EPA 8081A

Client: **Environmental Strategies** Date Sampled: 12/13/06 Project: Rouse Rd, Menifee Rd, Romoland, Date Received: 12/13/06 29030 Job No.: Date Extracted: 12/18-21/06 Matrix: Soil Date Analyzed: 12/19-21/06 Analyst: KC Batch Number: PESTS1120

PESTS1121

	Sample ID:	GP-12 4-5'	GP-13 0-6"	GP-13 4-5'	GP-14 0-1'	GP-14 4-5'	
Pesticides	RL	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	
Aldrin	0.001	ND	ND	ND	ND	ND	
Alpha-BHC	0.001	ND	ND	ND	ND	ND	
Beta-BHC	0.001	ND	ND	ND	ND	ND	
Delta-BHC	0.001	ND	ND	ND	ND	ND	
Gamma-BHC (Lindane)	0.001	ND	ND	ND	ND	ND	
Chlordane	0.010	ND	ND	ND	ND	ND	
4,4'-DDD	0.002	ND	ND	ND	ND	ND	
4,4'-DDE	0.002	ND	0.077	ND	0.065	ND	
4,4'-DDT	0.002	ND	0.015	ND	0.039	ND	
Dieldrin	0.002	ND	ND	ND	ND	ND	
Endosulfan I	0.001	ND	ND	ND	ND	ND	
Endosulfan II	0.002	ND	ND	· ND	ND	ND	
Endosulfan sulfate	0.002	ND	ND	ND	ND	ND	
Endrin	0.002	ND	ND	ND	ND	ND	
Endrin Aldehyde	0.002	ND	ND	ND	ND	ND	
Endrin Ketone	0.010	ND	ND	ND	ND	ND	
Heptachlor	0.001	, ND	ND	ND	ND	ND	
Heptachlor Epoxide	0.001	ND	ND	ND	ND	ND	
Methoxychlor	0.010	ND	ND	ND	ND	ND	
Toxaphene	0.020	ND	0.19	ND	0.40	ND.	

Surrogates in % Recovery (Acceptance Limits: 50 - 150%)

	Sample ID:	GP-12 4-5'	GP-13 0-6"	GP-13 4-5'	GP-14 0-1'	GP-14 4-5'	
Tetrachloro-m-xylene		78	69	77	71	70	. '

QC Sample Report - Organochlorine Pesticides by EPA 8081A

Matrix: Soil

Batch Number: PESTS1120

Batch Accuracy Results

Spike Sample ID: Laboratory Control Sample

-pinto compionarion	,	•p.		
Compound	Spike Concentration (mg/Kg)	Spike Sample % Recovery	% Recovery Acceptance Limits	Pass/Fail
Lindane	0.0067	74	61 - 114	Pass
Heptachlor	0.0067	96	78 - 129	Pass
Aldrin	0.0067	101	71 - 123	Pass
Dieldrin	0.027	96	73 - 123	Pass
Endrin	0.027	103	72 - 133	Pass
DDT	0.027	90	76 - 128	Pass

Analytical Notes:	

Batch Precision Results

MS/MSD Sample ID: Laboratory Control Sample

Compound	MS Sample Result (mg/Kg)	MSD Sample Result (mg/Kg)	Relative Percent Difference (RPD)	RPD Acceptance Limit	Pass/Fail
Lindane	0.0049	0.0048	2%	25%	Pass
Heptachlor	0.0064	0.0062	4%	25%	Pass
Aldrin	0.0068	0.0066	2%	25%	Pass
Dieldrin	0.0255	0.0246	4%	25%	Pass
Endrin	0.0274	0.0264	4%	25%	Pass
DDT	0.0239	0.0227	5%	25%	Pass

Analytical Notes:

MS: Matrix Spike

LCS: Laboratory Control Sample

MSD: Matrix Spike Duplicate

LCSD: Laboratory Control Sample Duplicate

QC Sample Report - Organochlorine Pesticides by EPA 8081A

Matrix: Soil

Batch Number: PESTS1121

Batch Accuracy Results

Spike Sample ID: Laboratory Control Sample

Opike Sample ID. Laborator	,	Carripro		
Compound	Spike Concentration (mg/Kg)	Spike Sample % Recovery	% Recovery Acceptance Limits	Pass/Fail
Lindane	0.0067	66	61 - 114	Pass
Heptachlor	0.0067	81	78 - 129	Pass
Aldrin	0.0067	85	71 - 123	Pass
Dieldrin	0.027	82	73 - 123	Pass
Endrin	0.027	86	72 - 133	Pass
DDT	0.027	76	76 - 128	Pass

Analytical Notes:	

Batch Precision Results

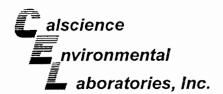
MS/MSD Sample ID: Laboratory Control Sample

Compound	MS Sample Result (mg/Kg)	MSD Sample Result (mg/Kg)	Relative Percent Difference (RPD)	RPD Acceptance Limit	Pass/Fail
Lindane	0.0044	0.0048	10%	25%	Pass
Heptachlor	0.0054	0.0061	12%	25%	Pass
Aldrin	0.0057	0.0062	9%	25%	Pass
Dieldrin	0.0218	0.0246	12%	25%	Pass
Endrin	0.0229	0.0260	13%	25%	Pass
DDT	0.0202	0.0226	12%	25%	Pass

Analytical Notes:

MS: Matrix Spike

LCS: Laboratory Control Sample


MSD: Matrix Spike Duplicate

LCSD: Laboratory Control Sample Duplicate

Site and Location: Ruse Rd, Meritee Rd. Romoland, CA Requested Analyses Project Number: Matrices: No.035163 S = Soil: 218361-1 Aq = WaterSampler's Name(s): A = Air; Bu = Bulk; Number of Container W = WipeJASON ZAJOLIK Bi = Biota; Samplers Signature(s): OW = Oily Waste; O = Other kism Remarks Sample Identification Time Matrix Date Dec. 13/56 8:20 6-64 GP-01 451 926 G-0-01 0-6" 9:42 9:47 0-64 9:59 G-P-03 GP-03 4-51 10:04 0-64 6:16 GP-04 451 10:21 0-6" 12:40 GP-05 4-51 12:45 GP-05 Ю GP-06 10:36 0-64 451 10:42 G-P-06 064 10:52 ap-07 G-P-07 451 10:57 乂 GP-08 0-6" 11:06 11:10 4-51 Date, Time Received by (Signature): Laboratory Name: Centrum, Analytical Relinquished by (Signature): chilled a estact 6 Laboratory Location: 17/13/18 THEST Received by (Signature): Relinquisted by (Signature): Riverside CA Custody Seal Numbers: Date | Time **ENVIRONMENTAL STRATEGIES CONSULTING LLC** Turn-Around Time; Tracking Number: Method of Shipment: A QUANTA TECHNICAL SERVICES COMPANY Standard Las Courter ☐ Denver Office: 4600 South Ulster, # 930, Denver, CO 80237 Reston Office: 11911 Freedom Dr, # 900, Reston, VA 20190 Tel: (703) 709-6500, Fax: (703) 709-8505 Tel: (303) 850-9200, Fax: (303) 850-9214 ☐ Pittsburgh Office: 300 Corporate Center Dr, # 200, Moon Twp, PA 15108 ☐ Minneapolis Office: 123 North 3rd St, #706, Minneapolis, MN 55401 Tel: (412) 604-1040, Fax: (412) 604-1055 Tel: (612) 343-0510, Fax: (612) 343-0506

CHAIN OF CUSTODY RECORD

	Project Number: Site and Location: 218361-1 Rouse Rd, Men. fee Rd. Sampler's Name(s): JASON ZAJDUTK Sampler & Signature(s):		Matrices: S = Soil; Aq = Water A = Air; Bu = W = Wipe Bi = Biota; OW = Oily W		Number of Containers		Sur Mark	X Chor Boone B	13 CA 162	\frac{1}{2}	Requ	rested A	Analyses		No.035167 29030
	O: Xam	Data	O = Other Time	Matrix	lumber	the		250							Remarks
1	Sample Identification: GP-09 0-64	Date Dec 13/0		Soil	1	/ X	×	X		/			$\overline{}$	f	Remarks
8		1	//:33	1	1	X	X	×							
o G	GP-10 0-6"		11:48			X	×	X							
,	6-9-10 4-5'		11:53			X	X	X							
	GP-11 0-6"		12:15			X	X	X							
,	GP-11 4-5'		12:28			X	X	X							
3	GP-12 0-6"		12:56			У	X	X							
	OP-12 4-5'		13:00			X	义	X							
	GP-13 0-6"	<u> </u>	13:11			X	X	×							
, [GP-13 45'		13:15		\perp	X	乂	X							
	GP-14 0-11		8:56			X	У_	X							
	GP-14 4-51	4	9:15	♦	\downarrow	\times	火	Y							
ŀ									\perp						
ļ															
I	Relinquished by (Signature): Date Time	by (Signati	ure):		[Labora	tory N	ame:	<u> </u>	(()			<u>chi</u>	الم	4+ intact (6)
		by (Signati					tory L	ocation	: .	CA	cal.				
l	14 Own Date Time Our	Drigu	elis		[Custod		Numbe	ers:						
7	Turn-Around Time: Tracking	Number:	0		N	Method		ipment		د اه	_				ENTAL STRATEGIES CONSULTING LLC TA TECHNICAL SERVICES COMPANY
T	☐ Reston Office: 11911 Freedom Dr, # 900		VA 20190					Denv	er Off	ice: 4	600 S), Denver, CO 80237
	Tel: (703) 709-6500, Fax: (703) 709-85 Pittsburgh Office: 300 Corporate Center Tel: (412) 604-1040, Fax: (412) 604-10	Dr, # 200	, Moon Twp	, PA 15	108			Minn	(303) 8 eapoli (612) (s Offi	ce: 12	23 No	rth 3rd	d St, #	706, Minneapolis, MN 55401

December 21, 2006

Marilu Escher
Centrum Analytical Laboratories, Inc.
1401 Research Park Drive
Suite 100
Riverside, CA 92507-2111

Subject: Calscience Work Order No.: 06-12-0897

Client Reference: Rouse Rd. Menifee Rd. Romoland, CA / 29030

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 12/14/2006 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Stephen Nowak

Project Manager

ID: 1230 • NELAP ID: 03220CA • CSDLAC ID: 10109 • SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No: Preparation:

Method:

Units:

12/14/06

06-12-0897 EPA 8151A

EPA 8151A EPA 8151A

ug/kg

Project: Rouse Rd. Menifee Rd. Romoland, CA / 29030

Page 1 of 8

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bat	
GP-01 0-6"			06-12-0	0897-1	12/13/06	Solid	12/14/06	12/18/06	061214	Ľ12
Parameter	Result	RL	DF	Qual	Parameter		Res	ult RL	DF	Qual
Dalapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
MCPP	ND	10000	1		2,4,5-T		ND	10	1	
MCPA	ND	10000	1		2,4-DB		ND	100	1	
Dichlorprop	ND	100	1		Dinoseb		ND	50	1	
Surrogates:	REC (%)	Control	•	Qual				•	•	
		Limits								
2,4-Dichlorophenylacetic acid	90	30-130								
GP-01 4-5'			06-12-	0897-2	12/13/06	Solid	12/14/06	12/18/06	061214	L12
Parameter	Result	RL	DF	Qual	Parameter		Res	ult RL	DF	Qual
Dalapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	100	1	
MCPP	ND	10000	i		2,4,5-T		ND	10	1	
MCPA	ND	10000	i		2,4-DB		ND:	100	1	
Dichlorprop	ND	100	i		Dinoseb		ND	50	1	
Surrogates:	REC (%)	Control	'	Qual	Dillosen		ND	50	'	
ourrogates.	1120 (/0)	Limits		Quai						
2,4-Dichlorophenylacetic acid	86	30-130								
GP-02 0-6"			06-12-	08 97- 3	12/13/06	Solid	12/14/06	12/18/06	061214	L12
Parameter	Result	RL	<u>DF</u>	Qual	Parameter		Res	ult RL	DF	Qual
Dalapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	i		2,4,5-TP (Silvex)		ND		i	
MCPP	ND	10000	i		2,4,5-T		ND		1	
MCPA	ND	10000	1		2,4-DB		ND		1	
Dichlorprop	ND	100	i		Dinoseb		ND		1	
Surrogates:	REC (%)	Control	'	Qual	5110005		NO	30	'	
		Limits		<u>74701</u>						
2,4-Dichlorophenylacetic acid	106	30-130								
GP-02 4-5'	<u> </u>		06-12-	0897-4	12/13/06	Solid	12/14/06	12/18/06	06121	IL12
Parameter	Result	RL	DF	Qual	<u>Parameter</u>		Res	sult RL	DF	Qual
Dalapon	ND	250	1		2.4-D		ND		1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND		1	
MCPP	ND	10000	1		2,4,5-T		ND		1	
	ND	10000	1		2,4-DB		ND		1	
MCPA			1		Dinoseb		ND		1	
MCPA Dichlomroo	ND	100								
Dichlorprop	ND REC (%)	100 Control	'	Qual						
	ND REC (%)	Control Limits		Qual					·	

RL - Reporting Limit ,

DF - Dilution Factor ,

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

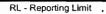
Preparation:

Method:

Units:

12/14/06

06-12-0897 **EPA 8151A**


EPA 8151A

ug/kg

Project: Rouse Rd. Menifee Rd. Romoland, CA / 29030

Page 2 of 8

Toject. Trouse Ira. Mei	moo rta. r	Ciriolai	10, 07	., 2000					. age	2010
Client Sample Number			Lab Sample Number		Date Collected_	Matrix	Date Prepared	Date Analyzed	QC Bat	ch ID
GP-03 0-6"			06-12-0897-5		12/13/06	Solid	12/14/06	12/18/06	061214	L12
'arameter	Result	RL	DF	Qual	Parameter		Res	ult RL	DF	Qual
alapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
MCPP	ND	10000	1		2,4,5-T		ND	10	1	
1CPA	ND	10000	1		2,4-DB		ND	100	1	
Dichlorprop	ND	100	1		Dinoseb		ND	50	1	
Surrogates:	REC (%)	Control	•	Qual			,,,_	00	•	
, an egatoo.		Limits		400						
,4-Dichlorophenylacetic acid	118	30-130								
GP-03 4-5'			06-12-	0897-6	12/13/06	Solid	12/14/06	12/18/06	061214	L12
Parameter	Result	RL	DF	Qual	Parameter		Res	ult RL	DF	Qual
Dalapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	100	1	
MCPP	ND	10000	. 1		2,4,5-T		ND		1	
MCPA	ND	10000	1		2,4-DB		ND		1	
Dichlorprop	ND	100	1		Dinoseb		ND			
Surrogates:	REÇ (%)	Control	1	Qual	Dillogen		ND	50	1	
ourrogates.	KEC (76)	Limits		Qual						
2,4-Dichlorophenylacetic acid	130	30-130								
GP-04 0-6"			06-12-	0897-7	12/13/06	Solid	12/14/06	12/18/06	061214	L12
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>		Res	sult RL	DF	Qual
Dalapon	ND	250	1		2,4-D		ND		1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND		1	
ИСРР	ND	10000	1		2,4,5-T		ND		1	
ИСРА	ND	10000	1		2,4-DB		ND		1	
Dichlorprop	ND	100	1		Dinoseb		ND		1	
Surrogates:	REC (%)	Control	•	Qual			,,,,	30	•	
		Limits		<u> </u>			,			
2,4-Dichlorophenylacetic acid	105	30-130					·			
GP-04 4-5'			06-12-	0897-8	12/13/06	Solid	12/14/06	12/18/06	061214	L12
Parameter	Result	<u>RL</u>	DF	Qual	Parameter		Re	sult RL	DF	Qual
Dalapon	ND	250	1		2.4-D		NE		1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		NE		1	
		10000	1		2,4,5-T		NE		1	
	Vii 3									
MCPP	ND ND		4		2 /-DB		NIT.	100		
MCPP MCPA	ND	10000	1		2,4-DB		NE NE		1	
MCPP MCPA Dichlorprop	ND ND	10000 100	1	Ouel	2,4-DB Dinoseb		NE NE		1	
MCPP MCPA	ND	10000		Qual	•					

DF - Dilution Factor

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No: Preparation:

Method:

Units:

12/14/06

06-12-0897 EPA 8151A EPA 8151A

ug/kg

Project: Rouse Rd. Menifee Rd. Romoland, CA / 29030

Page 3 of 8

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bat	tch ID
GP-05 0-6"		21 at	06-12-0	897-9	12/13/06	Solid	12/14/06	12/18/06	061214L12	
Parameter	Result	RL	DF	Qual	<u>Parameter</u>		Res	sult RL	DF	Qual
Dalapon	ND	250	1		2.4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND		1	
MCPP	ND	10000	i		2,4,5-T		ND		1	
MCPA	ND	10000	1		2,4-DB		ND		1	
Dichlorprop	ND	100	i		Dinoseb		ND		1	
Surrogates:	REC (%)	Control Limits	·	Qual				•	•	
2,4-Dichlorophenylacetic acid	123	30-130								
GP-05 4-5'	<u> </u>		06-12-0	0897-10	12/13/06	Solid	12/14/06	12/19/06	061214	L12
Parameter Parameter	Result	<u>RL</u>	<u>D</u> F	Qual	Parameter		Res	sult RL	DF	Qual
Dalapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
MCPP	ND	10000	1		2,4,5-T		ND	10	1	
MCPA	ND	10000	1		2,4-DB		ND		1	
Dichlorprop	ND	100	1		Dinoseb		ND		1	
Surrogates:	REC (%)	Control Limits	•	Qual					•	
2,4-Dichlorophenylacetic acid	128	30-130								
GP-06 0-6"	<u> </u>	<u> </u>	06-12-	0897-11	12/13/06	Solid	12/14/06 12/19/06		06 061214L12	
Parameter	Result	RL	<u>DF</u>	Qual	Parameter		Re	sult RL	DF	Qual
Dalapon	ND	250	1		2,4-D		NE	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		NE	10	1	
MCPP	ND	10000	1		2,4,5-T		NE) 10	1	
MCPA	ND	10000	1		2,4-DB		NE	100	1	
Dichlorprop	ND	100	1		Dinoseb		NE		1	
Surrogates:	REC (%)	Control Limits	,	Qual						
2,4-Dichlorophenylacetic acid	118	30-130								
GP-06 4-5'			06-12-	0897-12	12/13/06	Solid	12/14/06	12/19/06	06121	4L12
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>		Re	sult RL	DF	Qual
Dalapon	ND	250	1		2.4-D		N		1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		N		1	
MCPP	ND.	10000	1		2,4,5-T		N		1	
MCPA	ND,	10000	1		2,4-DB		, NI		1	
Dichlorprop	ND	100	1		Dinoseb		NI NI		1	
Surrogates:	REC (%)	Control Limits	-	Qual				_ 30	'	
2,4-Dichlorophenylacetic acid	122	30-130								

RL - Reporting Limit ,

DF - Dilution Factor ,

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No: Preparation:

Method:

Units:

12/14/06

06-12-0897 **EPA 8151A**

EPA 8151A

ug/kg

Project: Rouse Rd. Menifee Rd. Romoland, CA / 29030

Page 4 of 8

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bat	ch ID
GP-07 0-6"		<u> </u>	06-12-	0897-13	12/13/06	Solid	12/14/06	12/19/06	061214	L12
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>		Resu	lt RL	<u>DF</u>	Qual
Dalapon	ND	250	1		2.4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
MCPP	ND	10000	1		2,4,5-T		ND	10	1	
MCPA	ND	10000	1		2,4-DB		ND	100	1	
Dichlorprop	ND	100	1		Dinoseb		ND	50	1	
Surrogates:	REC (%)	<u>Control</u>		Qual						
		Limits								
2,4-Dichlorophenylacetic acid	110	30-130								<u> </u>
GP-07 4-5'		of popularity	06-12-	0897-14	12/13/06	Solid	12/14/06	12/19/06	061214	L12
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Resu	it <u>RL</u>	<u>DF</u>	Qual
Dalapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
MCPP	ND	10000	1		2,4,5-T		ND	10	1	
MCPA	ND	10000	1		2,4-DB		ND	100	1	
Dichlorprop	ND	100	1		Dinoseb		ND	50	1	
Surrogates:	REC (%)	Control Limits		Qual						
2,4-Dichlorophenylacetic acid	126	30-130								
GP-08 0-6"		z	06-12-	0897-15	12/13/06	Solid	12/14/06	12/19/06	061214	L12
Parameter	Result	RL	<u>DF</u>	Qual	Parameter		Resi	ult RL	DF	Qual
Dalapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
MCPP	ND	10000	1		2,4,5-T		ND	10	1	
MCPA	ND	10000	1		2,4-DB		ND	100	1	
Dichlorprop	ND	100	1		Dinoseb		ND	50	1	
Surrogates:	REC (%)	<u>Control</u>		<u>Qual</u>						
2,4-Dichlorophenylacetic acid	97	<u>Limits</u> 30-130								
GP-08 4-5'		4. 1.	06-12	-0897-16	12/13/06	Solid	12/14/06	12/19/06	06121	L12
Parameter	Result	RL	DE	Qual	Parameter		Res	utt RL	DF	Qual
Dalapon	ND	250	1	Qual	2.4-D		ND NES	100		Quai
Dicamba	ND ND	∠50 10	1		2,4-D 2,4,5-TP (Silvex)		ND ND	100	1	
MCPP	ND ND	10000	1		2,4,5-1P (Slivex) 2,4,5-T		ND ND	10	1	
MCPA	ND	10000	1		2,4,5-1 2,4-DB		ND	100	1	
Dichlorprop	ND	100	1		2,4-06 Dinoseb		ND ND	50	1	
Surrogates:	REC (%)	Control	'	Qual	Dillosed		ND	50	1	
<u>Currogates.</u>	1120 [/6]	Limits		Quai						
2,4-Dichlorophenylacetic acid	80	30-130								

RL - Reporting Limit ,

DF - Dilution Factor ,

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No: Preparation:

Method:

Units:

12/14/06

06-12-0897 EPA 8151A

EPA 8151A

ug/kg

Project: Rouse Rd. Menifee Rd. Romoland, CA / 29030

Page 5 of 8

Client Sample Number				Sample lumber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
GP-09 0-6"			06-12-0	897-17	12/13/06	Solid	12/14/06	12/19/06	061214	L12
Parameter Parameter	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>		Resu	elt RL	DF	Qual
Dalapon	ND	250	1		2.4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
ИСРР	ND	10000	1		2,4,5-T		ND	10	1	
ИСРА	ND	10000	1		2,4-DB		ND	100	1	
Dichlorprop	ND	100	1		Dinoseb		ND	50	1	
Surrogates:	REC (%)	Control		Qual					•	
		Limits								
2,4-Dichlorophenylacetic acid	126	30-130								
GP-09 4-5'	partition of		06-12-0	897-18	12/13/06	Solid	12/14/06	12/19/06	061214	L12
Parameter	Result	RL	DF	Qual	Parameter	_	Resu	ılt RL	DF	Qual
Dalapon	ND	250	1		2,4-D		ND.	100	1	<u> </u>
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	100		
MCPP	ND	10000			2,4,5-T		ND		1	
MCPA	ND	10000	1		2,4,5-1 2,4-DB		ND	10	1	
	ND		1		•			100	1	
Dichlorprop		100	1	Ouel	Dinoseb		ND	50	1	
Şurrogates:	REC (%)	Control Limits		Qual						
2,4-Dichlorophenylacetic acid	122	30-130	050 447	ar Shathie .	. 10 1 100 HT H					
GP-10 0-6"			06-12-0	897-19	12/13/06	Solid	12/14/06	12/19/06	061214	L12
Parameter Parameter	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>		Res	ult RL	DF	Qual
Dalapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
MCPP	ND	10000	1		2,4,5-T		ND	10	1	
MCPA	ND	10000	1		2,4-DB		ND	100	1	
Dichlorprop	ND	100	1		Dinoseb		ND	50	1	
Surrogates:	REC (%)	Control [*]		Qual						
-		Limits								
2,4-Dichlorophenylacetic acid	108	30-130								
GP-10 4-5'			06-12-0	0897-20	12/13/06	Solid	12/14/06	12/19/06	06121	4Ļ12
Parameter Parame	Result	RL	DF	Qual	<u>Parameter</u>	<u> </u>	Res	ult RL	DF	Qual
Dalapon	ND	250	1		2.4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	100	1	
MCPP	ND	10000	1		2,4,5-T		ND	10	1	
MCPA	ND	10000	1		2,4-DB		ND.	100	1	
Dichlorprop	ND	100	1		Dinoseb		ND ND	50	1	
	REC (%)	Control	'	Qual	5110300		NU	50	'	
Surrogates:	. 120 1707									
Surrogates: 2,4-Dichlorophenylacetic acid	112	Limits								

RL - Reporting Limit ,

DF - Dilution Factor ,

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

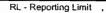
Work Order No:

Preparation:

Method:

Units:

12/14/06 06-12-0897 **EPA 8151A**


EPA 8151A

ug/kg

Project: Rouse Rd. Menifee Rd. Romoland, CA / 29030

Page 6 of 8

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
GP-11 0-6"			06-12-0	0897-21	12/13/06	Solid	12/14/06	12/19/06	061214	L13
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>		Resul	t RL	<u>DF</u>	Qual
alapon	ND	250	1		2,4-D		ND	100	1	
)icamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
ICPP	ND	10000	1		2,4,5-T		ND	10	1	
ICPA	ND	10000	1		2,4-DB		ND	100	1	
ichlorprop	ND	100	1		Dinoseb		ND	50	1	
urrogates:	REC (%)	Control Limits		Qual						
,4-Dichlorophenylacetic acid	114	30-130								
GP-11 4-5'			06-12-	0897-22	12/13/06	Solid	12/14/06	12/19/06	061214	L13
'arameter	Result	RL	<u>DF</u>	Qual	Parameter		Resu	lt RL	DF	<u>Qual</u>
alapon	ND	250	1		2,4-D		ND	100	1	
icamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
CPP	ND	10000	1		2,4,5-T		ND	10	1	
ICPA	ND	10000	1		2,4-DB		ND	100	1	
ichlorprop	ND	100	1		Dinoseb		ND	50	1	
urrogates:	REC (%)	Control Limits	·	Qual					·	
4-Dichlorophenylacetic acid	122	30-130								
GP-12 0-6"		<u> </u>	06-12-	0897-23	12/13/06	Solid	12/14/06	12/19/06	061214	L13
<u>arameter</u>	Result	RL	DF	Qual	<u>Parameter</u>		Resu	it RL	DF	Qual
alapon	ND	250	1		2,4-D		ND	100	1	
icamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
CPP	ND	10000	1		2,4,5-T		ND	10	1	
CPA	ND	10000	1		2,4-DB		ND	100	1	
ichlorprop	ND	100	1		Dinoseb		ND	50	1	
Surrogates:	REC (%)	Control		Qual					•	
,4-Dichlorophenylacetic acid	110	<u>Limits</u> 30-130								
GP-12 4-5'		Althorna Control	06-12-	0897-24	12/13/06	Solid	12/14/06	12/19/06	06121	4L13
Parameter	Result	RL	DF	Qual	Parameter		Resu	ult RL	DF	Qual
Palapon	ND	250	1		2,4-D		ND	100	1	
Picamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
ICPP	ND	10000	1		2,4,5-T		ND	10	1	
ICPA	ND	10000	1		2,4-DB		ND	100	1	
ichlorprop	ND	100	1		Dinoseb		ND	50	1	
Surrogates:	REC (%)	Control		Qual	Dirloggo		ND	50		
ourrogates.	111	<u>Limits</u> 30-130		Qual						
,4-Dichlorophenylacetic acid										

DF - Dilution Factor ,

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

Preparation: Method:

Units:

EPA 8151A ug/kg

12/14/06

06-12-0897

EPA 8151A

Project: Rouse Rd. Menifee Rd. Romoland, CA / 29030

Page 7 of 8

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
GP-13 0-6"		<u> </u>	06-12-	0897-25	12/13/06	Solid	12/14/06	12/19/06	061214	L13
Parameter	Result	RL	DF	Qual	<u>Parameter</u>		Res	ult RL	DF	Qual
Dalapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
MCPP	ND	10000	1		2,4,5-T		ND	10	1	
MCPA	ND	10000	1		2,4-DB		ND	100	1	
Dichlorprop	ND	100	1		Dinoseb		ND	50	1	
Surrogates:	REC (%)	Control Limits		Qual					·	
2,4-Dichlorophenylacetic acid	121	30-130								
GP-13 4-5'		:	06-12-	0897-26	12/13/06	Solid	12/14/06	12/19/06	061214	L13
Parameter_	Result	RL	DF	Qual	Parameter		Res	ult RL	DF	Qual
Dalapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	100	1	
MCPP	ND	10000	1		2,4,5-T		ND.	10	1	
MCPA	ND	10000	i		2,4-DB		ND	100	i	
Dichlorprop	ND	100	1		Dinoseb		ND	50	1	
Surrogates:	REC (%)	Control Limits		Qual	5		No	50	'	
2,4-Dichlorophenylacetic acid	113	30-130								
GP-14 0-1'	<u> </u>		06-12-	0897-27	12/13/06	Solid	12/14/06	12/19/06	06121	L13
Parameter	Result	RL	DF	Qual	Parameter		Res	sult RL	DF	Qual
Dalapon	ND	250	1		2.4-D		ND		1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND		1	
MCPP	ND	10000	1		2,4,5-T		ND		1	
ИСРА	ND	10000	1		2.4-DB		ND		1	
Dichlorprop	ND	100	1		Dinoseb		ND		1	
Surrogates:	REC (%)	Control	,	Qual			.,,	50		
2,4-Dichlorophenylacetic acid	110	<u>Limits</u> 30-130								
GP-14 4-5'			06-12-	0897-28	12/13/06	Solid	12/14/06	12/19/06	06121	4L13
Parameter	Result	RL	DF	Qual	Parameter		Res	sult RL	DF	Qual
	ND	250		Qua						Qual
Dalapon Dicamba	ND ND		1		2,4-D		ND		1	
MCPP	ND ND	10 10000	1		2,4,5-TP (Silvex)		ND		1	
MCPA	ND	10000	1		2,4,5-T		ND		1	
Dichlorprop	ND ND		1		2,4-DB		ND		1	
		100	1	Ouel	Dinoseb		ND	50	1	
Surrogates:	REC (%)	Control Limits		Qual						

RL - Reporting Limit ,

DF - Dilution Factor

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

Preparation:

Method:

Units:

12/14/06

06-12-0897 **EPA 8151A**

EPA 8151A ug/kg

Project: Rouse Rd. Menifee Rd. Romoland, CA / 29030

Page 8 of 8

Client Sample Number			Lab Sample Number		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
Method Blank	<u> </u>	1 1	095-01-0	033-590	N/A	Solid	12/14/06	12/18/06	061214	L12
Parameter Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Parameter</u>		Resu	ılt <u>RL</u>	DF	Qual
Dalapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
ACPP	ND	10000	1		2,4,5-T		ND	10	1	
/ICPA	ND	10000	1		2,4-DB		ND	100	1	
Dichlorprop	ND	100	1		Dinoseb		ND	50	1	
Surrogates:	REC (%)	<u>Control</u>		Qual						
2,4-Dichlorophenylacetic acid	113	<u>Limits</u> 30-130								
Method Blank			095-01-	033-592	N/A	Solid	12/14/06	12/19/06	061214	L13
Parameter	Result	<u>RL</u>	DF	Qual	Parameter		Resu	ılt RL	DF	Qual
Dalapon	ND	250	1		2,4-D		ND	100	1	
Dicamba	ND	10	1		2,4,5-TP (Silvex)		ND	10	1	
MCPP	ND	10000	1		2,4,5-T		ND	10	1	
MCPA	ND	10000	1		2,4-DB		ND	100	1	
	ND	100	1		Dinoseb		ND	50	1	
Dichlorprop										
Dichlorprop Surrogates:	REC (%)	Control Limits		<u>Qual</u>						

Quality Control - LCS/LCS Duplicate

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

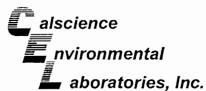
Date Received:

Work Order No:

Preparation:

Method:

N/A 06-12-0897


EPA 8151A

EPA 8151A

Project: Rouse Rd. Menifee Rd. Romoland, CA / 29030

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batcl	h
095-01-033-590	Solid	GC 17	12/14/06	12/18/06	061214L12	
<u>Parameter</u>	LCS %	REC LCSD	%REC %	RECCL RE	PD RPD CL	Qualifiers
2,4-D	106	115	i	30-130 8	0-30	
2,4,5-T	104	114	.	30-130 8	0-30	
2,4-DB	108	117	•	30-130 8	0-30	

Mulum_

Quality Control - LCS/LCS Duplicate

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

Preparation:

Method:

N/A

06-12-0897 EPA 8151A

EPA 8151A

Project: Rouse Rd. Menifee Rd. Romoland, CA / 29030

Quality Control Sample ID 095-01-033-592	Matrix Solid	Instrument GC 17	Date Prepared 12/14/06	Dat Analy 12/19	zed	LCS/LCSD Batc Number 061214L13	h , .]
<u>Parameter</u>	LCS %	REC LCSE) %REC	%REC CL	RPD	RPD CL	Qualifiers
2,4-D	114	12	2	30-130	7	0-30	
2,4,5-T	115	12	2	30-130	7	0-30	
2,4-DB	115	12	25	30-130	8	0-30	

Glossary of Terms and Qualifiers

Work Order Number: 06-12-0897

Qualifier	Definition
*	See applicable analysis comment.
	• • • • • • • • • • • • • • • • • • • •
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clanfication.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
×	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Chain of Custody Record

Centrum Job #

1401 Research Park Drive, Suite 100 Riverside, CA 92507 Voice: 951.779.0310 ● 800.798.9336

3299 Hill Street, Sui Signal Hill, CA 90755 Voice: 562.498.7005 lab@centrum-labs.com

	Fax: 951.779	.0344	0.750.55	50			Fax: 5	52.498.8617				_	PI	eas	e	ircle	e An	aly	ses	Reg	ues	ted		\	
Project No	:			Project N	ame:	RC	usc	Ra, me	enifoc	Rd.			,	Ι	GO			\neg		Τ	T			Turn A	sound Time
	29030			1				, CA					gr an		13		.		Pest/PCB			l			round Time
Project Ma	nager:			Phone:				Fax:			1		ecify		Ġ				e Pe	8				□ 24 Hr.	
													de) uj		줐				PCBs,	9				□ 48 Hr. I	
4ma	rilu Es	cher		email:							DRO	GRO	Cha		Herbicides		δlo			RCRA.			1664	Norma VI Other	5.DAY
Client Nam		24 101		Address:		_	Note: Rep	orts and Invoice w	ill be sent here		158	ie GF	Carbon Chain (specify ranges)	Onty	1 1		tes (es, or	5			6	1 /4	PRIOR approval,
(Report and Bill	ling)			(Report and E	illing)		•				PA 80	8015B		BE O	CO	624	BTEX/Oxygenates	or 625	Pesticides,	Title 22 (CAM).	STLC		413.2,	additional	charges apply
											9	EPA	, TEH),	BTEXMIBE	ğ	B, or	Š	8270C, o	<u>.</u>	9 22 (, S	155	6	Requested d	ue/dațe:
Con	itrum										Diesel,	88,0	Y.	1 1	Ž	8260B,			3082:			S.	RPH	Requested di	<i>70</i> Ψ
Centrum ID	$\overline{}$	le ID	Date	Time	Sam	ple	Site	location	Conta	iners:	LUFT	LUFT G	Fuel ID (TVH,	8021B:	Chlorinated	VOCs:	VOCs:	SVOCs:	8081A/8082:	Metals:	Metals:	PH. TI	. —	Remarks/Spe	ecial instructions
(Lab use only)	(As it should app		sampled		mat			020 1	# and		=	13	ı,	80	-	*	>	5	&	Ž	Ž	ā	12		-
	GP-01		13/3/01		SO	11	100	030-1	1.407	yar	-	_	_		X	+	4-	+	+	+	+				
	GP-01	4-6		926				-2		,				Щ	_	4	\perp	\perp	+	+-	┼-	\vdash		_	_
	OP-02	0-6"		942				-3	_						X	_	_	1	\perp	_	╀.	ļ	_		
	GP-02	4-5'		947				-4							X		_		\perp	\perp		L			
	GP-03	0-6"		959				-5		<u> </u>					X					\perp					
	6P-03	45'		1004				-6							\star			ı							
	GP-04	0-6"		1016	1			-7					•		X					i					
-	GP-04	4-5		1021	\sqcap			-8							X		T	T		\top					
	GP-05	0-6"		1240				-9							\propto			\top	T	1				·	
	GP-05	4-6	1	1245	7			-10					\exists	7	\overline{X}	1	\top	†	+	1					
1) Relinquis	hed by: (Sampler	's Signature)		Date;	Time:	<u> </u>	3) Relinqu	uished by:			Date	:	Time	:									<u>.</u>	Sample	e Disposal
2) Received	Tinene	2		Date:	Time:	1	4) Receive	ed by:	•		Date	.	Time							orator				1 '	
-,	-7.	<u> </u>				i	·																	☐ Return to clie	•
The delivery	of samples and ti	he signature on	this chair	of custody	/ form		5) Relingt	uished by:			Date		Time		All s	amp	le cor	tain	ers in	tact?	ΠY	es 🛭	No	□ Lab disposal	
constitutes a	authorization to pe	erform the analy	yses speci	fied above			6) Fecelve	ed for Laborato			Date		Time		٥ ت	ourie	r 🛭	UPS	/Fed	Ex 🗆	Han	d can	ried	Sample Locator	Number:
aboratory N							<u></u>	1200	CEL		12/	14/4	614		Reno	rt Fo	rmat	s: (heck	all ap	polica	ble			
_andratory r	ioles.														•		repor			F rep			email	idr uss)	
																ARW	-								DD (Other) *
																									* with prior approval only

Page 13 of 16

Chain of Custody Record

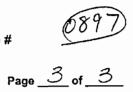
Centrum Job #

1401 Research Park Drive, Suite 100 Riverside, CA 92507 Voice: 951,779.0310 ● 800.798.9336

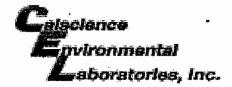
3299 Hill Street, Ait 10 Signal Hill, CA 90755 Voice: 562,498,7005

lab@centrum-labs.com

Page <u>2</u> of <u>3</u>


	Fax: 951.779	79.0310 • 80 3.0344	70.798.93		Voice: 562.498.7005 Fax: 562.498.8617 Name: ROUSE Rd, Menifee Rd.								eas	(() & €i	rcle	Ana	lvse	s Re	au	este	ed		
Project No	:			Project N	iame: R	ouse	Rd. m	ionifa	e Rd.	7				لمما			\top						
7	9030			Ron	nola	nd, c	A					E L		뙻	.		or Pest/PCB	1					Turn-Around Time
Project Ma	nager:			Phone:			Fax:			7		5		Ŭ			l å		8				□ 24 Hr. RUSH *
												§		5	-	1	1		۱,		-		☐ 48 Hr. RUSH *
mar	ilu E	schei	-	email:						DRO		Carbon Chain (specify ranges)		Herbieldes	1		PCBs,		RCRA,			or 1664	□ Normal TAT
Client Name		<u>au 101</u>		Address:	-	K.vie: Ran	orts and Invoice w	dil he sent here		48	B GRO	rog.	ו⊿			2	s, o		ا ة				* Requires PRIOR approval,
(Report and Bit	ling)			(Report and I			Dig and kilolog k		•	8 Y	8015		E Only	Ħ	624	625	Pesticides,		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	۱۵		413.2,	additional charges apply
1				1						or EPA	EPA	TEH),	8	얼	ة ق	ة ا	Pest		일 기	rs.			
Cent	Centrum							Diesel, o	s, or	ξ	BTEX/MtBE	'	8260B, or 624	8270C,	32		Title 22 (CAM),		tss.	£	Requested due, date:		
Centrum ID		ole ID	Date	Time	Time Sample Site location Containers:					ă	T Ga	Fuel ID (TVH,	ĕ	V I	~ 1	١	8081A/8082:			喜	TDS,	418.1 (TRPH), or	Remarks/Special Instructions
(Lab use only)	(As it should ap		sampled	sampled	matrix	1		ı	f type	LE	LUFT	Fue	8021B:	ਹੈ		<u> %</u>	808		Me t	<u>چ</u>	£	4 18	Nemarks/opecial instructions
	GP-06	<u>0-6"</u>	1413/0	1034	Soil	290	030-11	1-402	108					X									
	GP-06	4-6		1042			-12		٢					X									
	GP-07	0-6"		1052			-13							X									
	GP-07	4-6		1057			-14							X					\top				
	GP-08	0-6"		1106			-15							X			П		T				
	GP.08	4-5		1110			-16							X							1	T	
	GP-09	0-6		1123			-17		,					X					T				
	SP-09	4-5		1133			-18					T		X							T	\top	
k	SP-10	0-6"		1140			-19						;	X						T	1		
(SP-10	46'		1163	L		20							X					T				
	ned by: (Sampler			1163 Date: 12/14/07	Time: 14:3	3) Relingt	ilshed by:			Date:	1	Ilme:		To be	com	leted	by La	borato	ŊΡ	ersor	nnel;		Sample Disposal
2) Received	men e	3		Date:	7 Time:	4) Receive	ed by:	_		Date:	-	lme:	\dashv	Chille	ed? [] Yes	Ten	1p	С	□F	rom	Field	☐ Client will pick up
						EV Dalla	intered bus			D-4				Custo	ody se	als?	ΠY	es 🏻	No				☐ Return to client
	ivery of samples and the signature on this chain of custody form							Date:		ime:		All sa	mple	conta	iners	intact?	_	Yes	□ No	٠.	D Lab disposal		
constitutes authorization to perform the analyses specified above under the Terms and Conditions set forth on the back hereof.						,	Date:	, 	ime:	12	□ Co	urier	□ U	PS/Fe	d Ex	□ Ha	end c	arrie	ď	Sample Locator Number:			
aboratory N	otes:						110	$\frac{\mathcal{L}}{\mathcal{L}}$		12/1	4/12	0 1	R	eport	t Forn	nats;	Che	ck all a	ppli	cable	•		
														□ Pa	per re	oort	□ F	DF re	ort	(Inclu	de em	all ad	dress)
		-												O LA	RWQC	8	0 E	OF (in	clude	gioba	si ID)	0	EDD (GISKEY)

Riverside, CA 92507


Chain of Custody Record

Centrum Job #

lab@centrum-labs.com

	Fax: 951.779).0344	U. 1 30.33	30			: 562.498.700 62.498.8617	.				Ple	ease	e Gir	cle /	nal	yse	s Req	ues	ted		
Project No:				Project N	ame: RC	susc	Rd. Mi	enifoc	. Pd.					8	Т		Ι -		Г			Turn-Around Time
	29030				iolar				<u> </u>			rang			1.	ı	or Pest/PCB	1				see note *
Project Mar	nager:			Phone:			Fax:)ecff		ğ		1	or Pe	8	1			☐ 24 Hr. RUSH *
												in (s		$\frac{1}{2}$	1			ہ ا				□ 48 Hr. RUSH *
ma	rilu E	scher	_	emall;						8	ا و ا	Cha		Herbicides	only Vino		or PCBs,	RCR.			1664	Other 5 Day
Client Name		, , , , , , , , , , , , , , , , , , ,		Address:		Kute: Re	ports and knyoice w	ill be sent here		158 158	8	Carbon Chain (specify ranges)	걸.	其				۶ ا			6	* Requires PRIOR approval,
(Report and Bill	ing)			(Report and B	Hilling)					EPA 80	8015B		BTEX/MtBE Only	ninata		or 625	Pesticides,	Title 22 (CAM),	STLC		413.2,	additional charges apply
										5	EPA	필	X	4	ğ	8270C, o	&	ä	P, S	TSS	8	Requested due date:
Cor	trur)								Diesel,	88, 01		ᆲ	777			082:			1	418.1 (TRPH),	
Centrum ID	Samp		Date	Time	Sample	Si	te location	Contain	ners:	LUFT D	LUFT Gas,	Fuel 1D (8021B:	Chlo	VOCS:	SVOCs:	8081A/8082:	Metals:	Metals:	, TDS,	J. 1 (T	Remarks/Special instructions
(Lab use only)	(As it should ap		sampled		matrix	ļ		# and t		13	3	ě	\neg	_		≥	8	_ \$	ş	Æ	41	
	GP-11	0-6"	13/3/0	1215	SOII	29	030-21	1.402	jar	Ш	\Box	\downarrow	\rightarrow	X	\perp	_			_		<u> </u>	
	GP-11	4-6		1228			-22							X	\perp				_			
	GP-12	0-6		1256			-23						_ .	X								
	GP-12	4-5'		1300			-24							X								
	6P-13	0-6"	\top	1311			-25							χ								
	6P-13	4-5		1315			-26				\exists			X	T							
	6P-14	0-1	1	856			-27					T	7	X								
	GP-14	4-5"		915			-28	-	.			1)	X								
													\top		\vdash		\exists					
										П	一	1	1			П						
	red by: (Sample)					•	uished by:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Date:	7	ime:	- 1	To be	comp	leted	hv La	boratory	, pers	onne	<u>-</u> -	Sample Disposal
Received	mene by:	1 ,		2/14/cz	14:3	8 4) Receiv	red by:			Date:	-	ime:	ı					ip(
,						.,							- 1					es CIN				☐ Return to client
he delivery	of samples and t	the signature on	thie chein	of custody	form	5) Relinq	uished by:			Date:	י	ime:		All saı	nple (ontai	ners	intact?	□ Ye	s 🗓	No	☐ Lab disposal
onstitutes a	uthorization to p	erform the analy	/ses speci			6) Receiv	ed for Laborato			Date;		ime:		□ Cou	rier	□ UF	PS/Fee	tEx 🗆	Hano	carr	ied	Sample Locator Number:
						2	1200	CEL		12/1	#06	14		anart			Cha	at all an	nliaa		_	
aboratory N	otes:												- 1	eport • Pap				ck all ap DF repo			email:	address)
													- 1	C LAR								□ EDD (GISKEY) □ EDD (Other) *
																						* with prior approval only

WORK ORDER #: 0 6 - 1 2 - 0 8 9 7

Cooler __/_ of __/_

SAMPLE RECEIPT FORM

CLIENT: CONTRUM	DATE: 12/14/06
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): °C Temperature blank. °C IR thermometer Ambient temperature. Initial:
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not	Intact) : Not Present:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

Attachment C - Topographic Land Survey

2025 Gateway Place, Suite 435 · San Jose, California 95110 · (408) 453-6100 · Fax (408) 453-0496

May 8, 2007

Mr. Victor Yamada Environmental Health and Safety Edison Mission Energy 18101 Von Karman Avenue Suite 1700 Irvine, California, USA 92612

Re: <u>Additional Soil Investigation Results - Development Location, Rouse Road and Menifee</u> Road, Romoland, <u>California</u>

Dear Mr. Yamada.

On behalf of Edison Mission Energy and as a follow-up to previous sampling conducted in December 2006, WSP Environmental Strategies conducted a supplemental soil investigation at Rouse Road and Menifee Road, in Romoland, California on April 17, 2007

This letter report describes the supplemental soil investigation activities for the subject property. The objective of the soil investigation was to further characterize any possible soil contamination in areas that were not sampled in the December 2006 investigation at the subject property.

On April 17, 2007, WSP Environmental Strategies advanced four (4) hand-augered soil borings (A-1 through A-4) at the subject property to approximately five feet below ground collected two soil samples (at zero to six inches (0-6") bgs and from four to five feet (4-5") bgs, respectively) at each location. The locations of the soil samples are presented in Figure 2.

Samples for chemical analyses were collected in jars, and were labeled and stored in a thermally insulated cooler (approximately 0-4°C) for transport to Centrum Analytical Laboratories, Inc. of Riverside, California, a state-certified laboratory. The soil samples were analyzed for pesticides, herbicides, and CAM metals using U.S. Environmental Protection Agency (EPA) Methods 8081A, 8151A and 6010B and 7471A, respectively. The soil analytical results are included in tabular form as Attachment A. Groundwater was not encountered during soil sampling activities and information indicates that groundwater is likely to be approximately 50 feet bgs; therefore, groundwater samples were not collected or analyzed.

Metal and pesticide analytical results were compared to the United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goals (PRG's) (October 2004) and the California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for soil for residential and commercial/industrial land use (January 2005).

Analytical results for all eight soil samples indicated arsenic values above the CHHSLs and PRGs for arsenic, values that are well below typical naturally occurring arsenic levels. For this reason, the most realistic approach for arsenic is to evaluate arsenic concentrations at the site relative to natural background concentrations. There is no statistically significant difference between previously collected background soil samples and the most recent onsite arsenic concentrations. The onsite arsenic concentrations are considered to be naturally-occurring and no further action is warranted regarding arsenic. All other metals were detected below the PRGs and CHHSL's.

Pesticide concentrations of 4,4-DDE and 4,4-DDT were detected above the laboratory reporting limits in six soil samples, toxaphene was detected above the laboratory reporting limit in one soil sample, and dieldrin was detected above the laboratory reporting limit in three soil samples, but no pesticide concentrations were detected above the PRG's or CHHSL's in any of the soil samples analyzed.

Herbicide analytical results were compared to the PRG's only as there are no CHHSL's for herbicides. Herbicide concentrations were not detected above the PRG's and the laboratory reporting limits in all of the soil samples analyzed (A-1 through A-4).

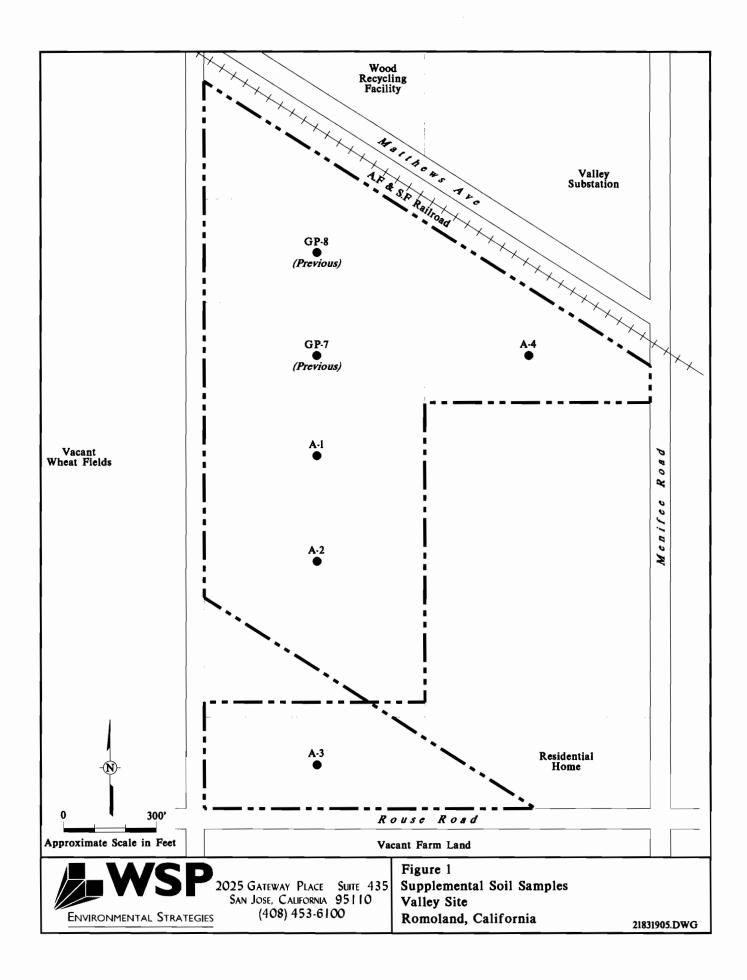
The laboratory analytical report and chain of custody documentation are included as Attachment B.

Based on the analytical results for the additional soil samples collected by WSP Environmental Strategies, the soils at the proposed development location at Rouse Road and Menifee Road, in Romoland, California, have not been impacted by historical property uses and do not likely pose a health or environmental concern to the subject property. Additionally, based on the results of the soil samples collected by WSP Environmental Strategies, soil removal or remediation is not warranted and it is unlikely that groundwater beneath the site has been affected by past activities on the subject property.

If you have any questions or comments, please do not hesitate to call our office.

Sincerely yours,

Richard E. Freudenberger


Ruhard E. Freudenkerer

Vice President

REF:jaz/ks

Enclosures

Figure

Attachment A – Soil Analytical Results (Tables 1-3)

Table 1

Supplemental Soil Analytical Results - Metals

Development Location - Rouse Road and Menifee Road, Romoland, California

April 17, 2007

						A-1 0-6"	A-1 4-5'	A-2 0-6"	A-2 4-5'	A-3 0-6"	A-3 4-5'
	CHHSL (b)	CHHSL (b)	<u>Preliminary</u>	<u>Preliminary</u>	Reporting						
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>						
		Industrial	Goals (c)	Goals (c)							
Parameter (a)			Residential	Industrial		4/17/2007	4/17/2007	4/17/2007	4/17/2007	4/17/2007	4/17/2007
Metals											
antimony	30	380	31	410	5.0	<5.00	0.490J	<5.00	<5.00	<5.00	<5.00
arsenic	0.07	0.24	0.062 (d)	0.25 (d)	1.0	1.50	0.845J	0.946J	1.18	1.12	1.25
barium	5,200	63,000	5,400	67,000	0.5	179	220	213	218	149	215
beryllium	150	1,700	150	1,900	0.5	0.275J	0.308J	0.254J	0.285J	0.190J	0.292J
cadmium	1.7	7.5	37	450	0.5	0.344J	0.250J	0.298J	0.246J	0.222J	0.254J
chromium (total)	NA	NA	210	450	0.5	9.43	7.80	9.13	7.86	6.65	8.48
cobalt	660	3,200	900	1,900	0.5	7.60	8.77	8.55	8.84	6.36	9.33
copper	3,000	38,000	3,100	41,000	1.0	22.6	9.24	13.4	10.2	11.0	10.9
lead	150	3500	150 (d)	800	1.0	3.38	2.36	2.93	1.83	2.49	1.77
mercury	18	180	23	310	0.02	0.0070J	<0.200	0.0057J	<0.0200	0.0041J	<0.200
molybdenum	380	4,800	390	5,100	5.0	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
nickel	1,600	16,000	1,600	20,000	1.0	5.10	4.02	4.22	4.17	3,38	4.18
selenium	380	4,800	390	5,100	5.0	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
silver	380	4,800	390	5,100	2.0	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
thallium	5.0	63.0	5.2	67.0	10	<10.0	<10.0	<10.0	<10.0	<10.00	<10.0
vanadium	530	6,700	78	1,000	5.0	31.6	33.3	34.3	35.6	25.8	39.0
zinc	23,000	100,000	23,000	100,000	10	130	36.0	79.8	38.0	86.8	39.7

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 1

Supplemental Soil Analytical Results - Metals

Development Location - Rouse Road and Menifee Road, Romoland, California

April 17, 2007

						A-4 0-6"	A-4 4-5'		T	
	CHHSL (b)	CHHSL (b)	Preliminary Preliminary	Preliminary	Reporting					
1	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>					
		<u>Industrial</u>	Goals (c)	Goals (c)					ĺ	
Parameter (a)			Residential	<u>Industrial</u>		4/17/2007	<u>4/17/2007</u>			
Metals										
antimony	30	380	31	410	5.0	<5.00	0.589J			
arsenic	0.07	0.24	0.062 (d)	0.25 (d)	1.0	2.14	0.694J			
barium	5,200	63,000	5,400	67,000	0.5	189	211			
beryllium	150	1,700	150	1,900	0.5	0.355J	0.316J			
cadmium	1.7	7.5	37	450	0.5	0.382J	0.216J			
chromium (total)	NA	NA	210	450	0.5	13.4	7.90			
cobalt	660	3,200	900	1,900	0.5	8.27	7.17			
copper	3,000	38,000	3,100	41,000	1.0	24.3	7.75			
lead	150	3500	150 (d)	800	1.0	4.56	2.73			
mercury	18	180	23	310	0.02	0.0088J	0.0050J			
molybdenum	380	4,800	390	5,100	5.0	<5.00	<5.00			
nickel	1,600	16,000	1,600	20,000	1.0	6.38	4.23			
selenium	380	4,800	390	5,100	5.0	<5.00	<5.00			
silver	380	4,800	390	5,100	2.0	<2.00	<2.00			
thallium	5.0	63.0	5.2	67.0	10	<10.00	<10.0			
vanadium	530	6,700	78	1,000	5.0	34.2	29.0			
zinc	NA	NA	23,000	100,000	10	94.0	29.5			

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 2

Supplemental Soil Analytical Results - Herbicides

Development Location - Rouse Road and Menifee Road, Romoland, California

						A-I 0-6"	A-1 4-5'	A-2 0-6"	A-2 4-5'	A-3 0-6"	A-3 4-5'
_	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>						
		<u>Industrial</u>	Goals (c)	Goals (c)							
Parameter (a)			Residential	<u>Industrial</u>		4/17/2007	<u>4/17/2007</u>	<u>4/17/2007</u>	4/17/2007	<u>4/17/2007</u>	<u>4/17/2007</u>
Chlorophenoxy											
Herbicides											
Dalapon	NA	NA	1800	18000	250	ND	ND	ND	ND	ND	ND
Dicamba	NA	NA	1800	18000	10	ND	ND	ND	ND	ND	ND
MCPP	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
MCPA	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
Dichlorprop	NA	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4-D	NA	NA	690	7 7 00	100	ND	ND	ND	ND	ND	ND
2,4,5-TP (Silvex)	NA	NA	490	4900	10	ND	ND	ND	ND	ND	ND
2,4,5-T	NA	NA	610	6200	10	ND	ND	ND	ND	ND	ND
2,4-DB	NA	NA	490	4900	100	ND	ND	ND	ND	ND	ND
Dinoseb	NA	NA	61	620	50	ND	ND	ND	ND	ND	ND

- a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.
- b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.
- c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).
- d\ CAL-Modified PRG
- e\ Highlighted values indicate an exceedance of the screening level.

Table 2
Supplemental Soil Analytical Results - Herbicides

Development Location - Rouse Road and Menifee Road, Romoland, California

April 17, 2007

						A-4 0-6"	A-4 4-5'		
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting				_
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>				
		<u>Industrial</u>	Goals (c)	Goals (c)					
Parameter (a)			Residential	Industrial		4/17/2007	<u>4/17/2007</u>		
Chlorophenoxy									
Herbicides									
Dalapon	NA	NA	1800	18000	250	ND	ND		
Dicamba	NA	NA	1800	18000	10	ND	ND		
MCPP	NA	NA	NA	NA	10000	ND	ND		
MCPA	NA	NA	NA	NA	10000	ND	ND		
Dichlorprop	NA	NA	690	7700	100	ND	ND		
2,4-D	NA	NA	690	7700	100	ND	ND		
2,4,5-TP (Silvex)	NA	NA	490	4900	10	ND	ND		
2,4,5-T	NA	NA	610	6200	10	ND	ND		
2,4-DB	NA	NA	490	4900	100	ND	ND		
Dinoseb	NA	NA	61	620	50	ND	ND		

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 2

Soil Analytical Results - Herbicides

Development Location - Rouse Road and Menifee Road, Romoland, California

						GP-07 0-6"	GP-07 4-5'	GP-08 0-6"	GP-08 4-5'	GP-09 0-6"	GP-09 4-5'
	CHHSL (b)	CHHSL (b)	<u>Preliminary</u>	Preliminary	Reporting			_			
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>						
		<u>Industrial</u>	Goals (c)	Goals (c)							
Parameter (a)			Residential	Industrial		4/17/2007	4/17/2007	4/17/2007	<u>4/17/2007</u>	4/17/2007	4/17/2007
Chlorophenoxy											
Herbicides					l i						
Dalapon	NA	NA	1800	18000	250	ND	ND	ND	ND	ND	ND
Dicamba	NA	NA	1800	18000	10	ND	ND	ND	ND	ND	ND
MCPP	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
MCPA	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
Dichlorprop	NA	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4-D	NA	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4,5-TP (Silvex)	NA	NA	490	4900	10	ND	ND	ND	ND	ND	ND
2,4,5-T	NA	NA	610	6200	10	ND	ND	ND	ND	ND	ND
2,4-DB	NA	NA	490	4900	100	ND	ND	ND	ND	ND	ND
Dinoseb	NA	NA	61	620	50	ND	ND	ND	ND	ND	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 2

Soil Analytical Results - Herbicides Development Location - Rouse Road and Menifee Road, Romoland, California

						GP-10 0-6"	GP-10 4-5'	GP-11 0-6"	GP-11 4-5'	GP-12 0-6"	GP-12 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>						
		<u>Industrial</u>	Goals (c)	Goals (c)							
Parameter (a)			Residential	Industrial		4/17/2007	4/17/2007	<u>4/17/2007</u>	<u>4/17/2007</u>	<u>4/17/2007</u>	4/17/2007
Chlorophenoxy						,					
Herbicides											
Dalapon	NA	NA	1800	18000	250	ND	ND	ND	ND	ND	ND
Dicamba	NA	NA	1800	18000	10	ND	ND	ND	ND	ND	ND
MCPP	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
MCPA	NA	NA	NA	NA	10000	ND	ND	ND	ND	ND	ND
Dichlorprop	NA	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4-D	NA	NA	690	7700	100	ND	ND	ND	ND	ND	ND
2,4,5-TP (Silvex)	NA	NA	490	4900	10	ND	ND	ND	ND	ND	ND
2,4,5-T	NA	NA	610	6200	10	ND	ND	ND	ND	ND	ND
2,4-DB	NA	NA	490	4900	100	ND	ND	ND	ND	ND	ND
Dinoseb	NA	NA	61	620	50	ND	ND	ND	ND	ND	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 2

Soil Analytical Results - Herbicides

Development Location - Rouse Road and Menifee Road, Romoland, California

						GP-13 0-6"	GP-13 4-5'	GP-14 0-1'	GP-14 4-5'
Parameter (a)	CHHSL (b) Residential		Preliminary Remediation Goals (c) Residential	Preliminary Remediation Goals (c) Industrial	Reporting Limit	4/17/2007	4/17/2007	4/17/2007	4/17/2007
Chlorophenoxy		_	residential	And ustrain	-				
Herbicides									
Dalapon	NA	NA	1800	18000	250	ND	ND	ND	ND
Dicamba	NA	NA	1800	18000	10	ND	ND	ND	ND
MCPP	NA	NA	NA	NA	10000	ND	ND	ND	ND
MCPA	NA	NA	NA	NA	10000	ND	ND	ND	ND
Dichlorprop	NA	NA	690	7700	100	ND	ND	ND	ND
2,4-D	NA	NA	690	7700	100	ND	ND	ND	ND
2,4,5-TP (Silvex)	NA	NA	490	4900	10	ND	ND	ND	ND
2,4,5-T	NA	NA	610	6200	10	ND	ND	ND	ND
2,4-DB	NA	NA	490	4900	100	ND	ND	ND	ND
Dinoseb	NA	NA	61	620	50	ND	ND	ND	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 3

Supplemental Soil Analytical Results - Pesticides

Development Location - Rouse Road and Menifee Road, Romoland, California

						A-1 0-6"	A-1 4-5'	A-2 0-6"	A-2 4-5'	A-3 0-6"	A-3 4-5'
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting						
	Residential	Commercial/	Remediation	Remediation	<u>Limit</u>						
		<u>Industrial</u>	Goals (c)	Goals (c)							
Parameter (a)			Residential	Industrial		<u>4/17/2007</u>	<u>4/17/2007</u>	<u>4/17/2007</u>	<u>4/17/2007</u>	4/17/2007	<u>4/17/2007</u>
Organochlorine											
Pesticides											
Aldrin	0.033	0.13	0.29	0.1	0.001	ND	ND	ND	ND	ND	ND
Alpha-BHC	NA	NA	0.09	0.36	0.001	ND	ND	ND	ND	ND	ND
Beta-BHC	NA	NA	0.32	1.3	0.001	ND	ND	ND	ND	ND	ND
Delta-BHC	NA	NA	NA	NA	0.001	ND	ND	ND	ND	ND	ND
Gamma-BHC (Lindane)	0.5	2	0.44	1.7	0.001	ND	ND	ND	ND	ND	ND
Chlordane	0.43	1.7	1.6	6.5	0.010	ND	ND	ND	ND	ND	ND
4,4'-DDD	2.3	9.0	2.4	10.0	0.002	ND	ND	ND	ND	ND	ND
4,4'-DDE	1.6	6.3	1.7	7.0	0.002	0.007	0.0007J	0.058	0.002J	0.008	0.0010J
4,4'-DDT	1.6	6.3	1.7	7.0	0.002	0.002J	ND	0.015	0.0007J	0.002	0.0004J
Dieldrin	0.035	0.13	0.03	0.11	0.002	ND	ND	0.002	0.0002J	0.0004J	ND
Endosulfan I	NA	NA	370.0	3700.0	0.001	ND	ND	ND	ND	ND	ND
Endosulfan II	NA	NA	NA	NA .	0.002	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endrin	21.0	230.0	18.0	180.0	0.002	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	NA	NA	NA	NA	0.002	ND	ND	ND	ND	ND	ND
Endrin Ketone	NA	NA	NA	NA	0.010	ND	ND	ND	ND	ND	ND
Heptachlor	0.13	0.52	0.11	0.38	0.001	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	NA	NA	0.053	0.19	0.001	ND	ND	ND	ND	ND	ND
Methoxychlor	340.0	3800.0	310	3100	0.010	ND	ND	ND	ND	ND	ND
Тохарнепе	0.46	1.8	0.44	1.6	0.020	ND	ND	0.17	ND	ND	ND

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Table 3

Supplemental Soil Analytical Results - Pesticides

Development Location - Rouse Road and Menifee Road, Romoland, California

						A-4 0-6"	A-44-5'		
	CHHSL (b)	CHHSL (b)	Preliminary	Preliminary	Reporting				
	<u>Residential</u>	Commercial/	Remediation	Remediation	<u>Limit</u>				
1		<u>Industrial</u>	Goals (c)	Goals (c)					
Parameter (a)			Residential	Industrial		<u>4/17/2007</u>	<u>4/17/2007</u>		
Organochlorine									
Pesticides									
Aldrin	0.033	0.13	0.29	0.1	0.001	ND	ND		
Alpha-BHC	NA	NA	0.09	0.36	0.001	ND	ND		
Beta-BHC	NA	NA	0.32	1.3	0.001	ND	ND		
Delta-BHC	NA	NA	NA	NA	0.001	ND	ND		
Gamma-BHC (Lindane)	0.5	2	0.44	1.7	0.001	ND	ND		
Chiordane	0.43	1.7	1.6	6.5	0.010	ND	ND		
4,4'-DDD	2.3	9.0	2.4	10.0	0.002	ND	ND		
4,4'-DDE	1.6	6.3	1.7	7.0	0.002	0.003	ND		
4,4'-DDT	1.6	6.3	1.7	7.0	0.002	ND	ND		
Dieldrin	0.035	0.13	0.03	0.11	0.002	ND	ND		
Endosulfan I	NA	NA	370.0	3700.0	0.001	ND	ND		
Endosulfan li	NA	NA	NA	NA	0.002	ND	ND		
Endosulfan sulfate	NA	NA	NA	NA	0.002	ND	ND		
Endrin	21.0	230.0	18.0	180.0	0.002	ND	ND		
Endrin Aldehyde	NA	NA	NA	NA	0.002	ND	ND		
Endrin Ketone	NA	NA	NA	NA	0.010	ND	ND		
Heptachlor	0.13	0.52	0.11	0.38	0.001	ND	ND		
Heptachlor Epoxide	NA	NA	0.053	0.19	0.001	ND	ND		
Methoxychlor	340.0	3800.0	310	3100	0.010	ND	ND		
Toxaphene	0.46	1.8	0.44	1.6	0.020	0.033	ND		

a\ All concentrations are in units of milligrams per kilogram (mg/kg). ND = not detected at or above the Reporting Limit. NA = not applicable.

b\ California Environmental Protection Agency (Cal/EPA) California Human Health Screening Levels (CHHSL) for Soil for Residential and Commercial/Industrial Land Use.

c\ United States Environmental Protection Agency (U.S. EPA) Region 9 Preliminary Remediation Goal (PRG).

d\ CAL-Modified PRG

e\ Highlighted values indicate an exceedance of the screening level.

Attachment B - Soil Analytical Report and Chain of Custody

CASE NARRATIVE

LABORATORY REPORT FORM (COVER PAGE 1)

Laboratory Name:	Centrum Analytical Laboratories, Inc.							
Address:	1401 Research Park Drive, Suite 100, Riverside, CA 92507							
Telephone/Fax:	(951) 779-0310/(951) 779-0344							
ELAP Certification No./ Expiration Date:	2419 / May 31, 2008							
Authorized Signature Name, Title: (print)	Robert R. Clark, PhD President							
Signature, Date:								
Laboratory Job Number:	29532							
Client Name:	WSP Environmental Strategies							
Project Name/No:	Rouse Rd. & Menifee Rd., Romoland, CA / 218361-1							
Date(s) Sampled: (from - to)	04/17/07 - 04/17/07							
Date(s) Received: (from - to)	04/17/07 - 04/17/07							
Date(s) Reported: (from - to)	04/17/07 - 04/25/07							
Chain of Custody received:	YesX No							
Comments:								

SAMPLE SUMMERY

LABORATORY REPORT FORM (COVER PAGE 2)

Laboratory Job Number: 29532

 Organic Analyses
 # of Samples
 # of Samples Subcontracted

 EPA 8081A
 8
 0

 EPA 8151
 8
 8

 Sample Condition:
 Intact

Inorganic Analyses# of Samples# of Samples SubcontractedEPA 6010B80EPA 7471A80

Sample Condition: Intact

<u>Microbiological Analyses</u> # of Samples # of Samples Subcontracted

Sample Condition:

Other Types of Analyses # of Samples Subcontracted

Sample Condition:

Project No: Rouse Rd. & Menifee Rd., Romoland, CA / 218361-1

Lab Job No:

29532

ANALYTICAL RESULT FOR INORGANICS

		LAB SAN	PLE I.D.	Method Blank	29532-1	29532-2	29532-3	29532-4
	CLI	ENT SAN	IPLE I.D.	NA	A-4 0-6"	A-4@4.5'	A-1@0-6"	A-1@4.5'
		DATE S	AMPLED	NA .	04/17/07	04/17/07	04/17/07	04/17/07
		DATE AN	ALYZED	04/18/07	04/18/07	04/18/07	04/18/07	04/18/07
	TYPE: T	TLC/STLC	C/TM/DM	TTLC	TTLC	TTLC	TTLC	TTLC
		SAMPLE	MATRIX	Soil	Soil	Soil	Soil	Soil
		REPORT	NG UNIT	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	D	LUTION	FACTOR		1	1	1	1
COMPOUND	METHOD	MDL*	CRDL					
Antimony	6010B	0.446	5.00	0.480J	<5.00	0.589J	<5.00	0.490J
Arsenic	6010B	0.407	1.00	<1.00	2.14	0. 694 J	1.50	0.845J
Barium	6010B	0.228	0.500	<0.500	189	211	179	220
Beryllium	6010B	0.096	0.500	<0.500	0.355J	0.316J	0.275J	0.308J
Cadmium	6010B	0.126	0.500	<0.500	0.382J	0.216J	0.3 4 4J	0.250J
Chromium	6010B	0.102	0.500	<0.500	13.4	7.90	9.43	7.80
Cobalt	6010B	0.156	0.500	<0.500	8.27	7.17	7.60	8.77
Copper	6010B	0.402	1.00	<1.00	24.3	7.75	22.6	9.24
Lead	6010B	0.306	1.00	<1.00	4.56	2.73	3.38	2.36
Molybdenum	6010B	0.251	5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Nickel	6010B	0.208	1.00	<1.00	6.38	4.23	5.10	4.02
Selenium	6010B	0.547	5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Silver	6010B	0.184	2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Thallium	6010B	0.880	10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Vanadium	6010B	0.156	5.00	< 5. <i>00</i>	34.2	29.0	31.6	33.3
Zinc	6010B	0.463	10.0	0.659J	94.0	29.5	130	38.0
Mercury	7471A	0.004	0.020	<0.0200	0.0088J	0.0050J	0.0070J	<0.0200

TTLC=Total Threshold Limit Concentration (Wet Weight); STLC=Soluble Threshold Limit Concentration; TM=Total Metals; DM=Dissolved Metals (Filtered Before Adding Preservative).

^{*}J Flagged results between the MDL and CRDL are estimated values.

Project No: Rouse Rd. & Menifee Rd., Romoland, CA / 218361-1 Lab Job No: 29532

ANALYTICAL RESULT FOR INORGANICS

		LAB SAN	PIFID	29532-5	29532-6	29532-7	29532-8	
1		ENT SAN		A2@0-6"	A2@4.5'	A3@0-6"	A3@4.5'	
ł	OLI		AMPLED		04/17/07	04/17/07	04/17/07	
			ALYZED	04/18/07	04/17/07	04/17/07	04/17/07	
	TYPE: T			TTLC	TTLC	TTLC	TTLC	
		SAMPLE		Soil	Soil	Soil	Soil	
		REPORT						
	-			mg/Kg	mg/Kg	mg/Kg	mg/Kg	
COMPOUND	METHOD	MDL*	FACTOR CRDL				<u> </u>	
Antimony	6010B	0.446	5.00	<5.00	<5.00	<5.00	<5.00	
Arsenic	6010B	0.440	1.00	0.946J	1.18	1.12	1.25	
Barium	6010B	0.228	0.500	213	218	149	215	
Beryllium	6010B	0.096	0.500	0.254J	0.285.1	0.1901	0.292J	
Cadmium	6010B	0.126	0.500	0.2 9 8J	0.246J	0.190J 0.222J	0.254J	
Chromium	6010B	0.120	0.500	9.13	7.86	6.65	8.48	
Cobalt	6010B	0.102	0.500	8.55	8.84	6.36	9.33	
li .	6010B	0.130	1.00	13.4	10.2	11.0	10.9	
Copper	6010B	0.402	1.00	2.93	1.83	2.49	1.77	
Lead	6010B	0.306	5.00	2.93 <5.00	<5.00	<5.00	<5.00	
Molybdenum Nickel	6010B	0.231	1.00	4.22	4.17	3.38	4.18	
	6010B	0.208		4.22 <5.00	<5.00		<5.00	
Selenium	6010B	0.547 0.184	5.00	< 5.00 <2.00	<5.00 <2.00	<5.00 <2.00	< 5.00 <2.00	
Silver			2.00					
Thallium	6010B	0.880	10.0	<10.0	<10.0	<10.0	<10.0	
Vanadium	6010B	0.156	5.00	34.3	35.6	25.8	39.0	
Zinc	6010B	0.463	10.0	79.8	38.0	86.8	39.7	
Mercury	7471A	0.004	0.020	0.0057J	<0.0200	0.0041J	<0.0200	

TTLC=Total Threshold Limit Concentration (Wet Weight); STLC=Soluble Threshold Limit Concentration; TM=Total Metals; DM=Dissolved Metals (Filtered Before Adding Preservative).

^{*}J Flagged results between the MDL and CRDL are estimated values.

Project No:

Rouse Rd. & Menifee Rd., Romoland, CA / 218361-1

Lab Job No: 29532

QA/QC REPORT (Continued)

II. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED:

04/18/07

ANALYTICAL METHOD:

EPA 6010B

BATCH#:

6010S3944

LAB SAMPLE I.D.:

29532-8, LCS, LCSD

REPORTING UNITS: mg/Kg

ANALYTE	SAMPLE	SPK	MS	%MS	SPIKE	MSD	%MSD	RPD	MS/MSD	RPD
	RESULT	CONC	l	ł	CONC	·	l		LIMIT	Limit
··					(DUP)					
Antimony	0.0	50	49.94	100%	50	50.30	101%	0.7%	75-125	20
Arsenic	1.3	50	48.70	95%	50	49.04	96%	0.7%	75-125	20
Barium	215.0	50	260.73	91%	50	263.65	97%	1.1%	75-125	20
Berylium	0.0	50	43.78	88%	50	43.70	87%	0.2%	7 5 -125	20
Cadmium	0.0	50	43.21	86%	50	44.16	88%	2.2%	75-125	20
Chromium	8 .5	50	50.80	85%	50	51. 83	87%	2.0%	75-125	20
Cobalt	9.3	50	49.13	80%	50	49.43	80%	0.6%	75-125	20
Copper	10.9	50	51.43	81%	50	53.23	85%	3.5%	75-125	20
Lead	1.8	50	41.72	80%	50	41.93	80%	0.5%	75-125	20
Molybdenum	0.0	50	42.76	86%	50	43.02	86%	0.6%	75-125	20
Nickel	4.2	50	46.16	84%	50	46.79	85%	1.4%	75-125	20
Selenium	0.0	50	44.42	89%	50	44.34	89%	0.2%	7 5 -125	20
Silver	0.0	50	43.28	87%	50	51.07	102%	16.5%	75-125	20
Thallium	0.0	50	45.73	91%	50	47.13	94%	3.0%	75-125	20
Vanadium	39.0	50	80.92	84%	50	83.87	90%	3.6%	75-125	20
Zinc	39.7	50	83.44	87%	50	86.78	94%	3.9%	75-125	20

III. Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

04/18/07

ANALYTICAL METHOD:

EPA 6010B

INSTRUMENT I.D.:

ICP1

LAB LCS I.D.:

Laboratory Control Sample

REPORTING UNITS: mg/Kg

ANALYTE	SPIKE CONC	RESULT	% RECOVERY	ACP % REC LIMIT
Antimony	50	56.78	114%	75-125
Arsenic	50	48.94	98%	75-125
Barium	50	44.92	90%	75-125
Berylium	50	43.97	88%	75-125
Cadmium	50	46.87	94%	75-125
Chromium	50	46.33	93%	75-125
Cobalt	50	44.71	89%	7 5- 125
Copper	50	46.37	93%	75-125
Lead	50	46.18	92%	7 5 -125
Molybdenum	50	47.40	95%	75-125
Nickel	50	47.17	94%	75-125
Selenium	50	47.38	95%	75-125
Silver	50	43.28	87%	75-125
Thallium	50	45.73	91%	75-125
Vanadium	50	45.61	91%	75-125
Zinc	50	49.52	99%	75-125

Project No:

Rouse Rd. & Menifee Rd., Romoland, CA / 218361-1

Lab Job No: 29532

QA/QC REPORT (Continued)

II. Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate(LCSD)

DATE PERFORMED:

04/19/07

ANALYTICAL METHOD:

7471A

BATCH #:

7471S1581

LAB SAMPLE I.D.:

Laboratory Control Sample

REPORTING UNITS: mg/Kg

ANALYTE	SAMPLE RESULT	SPK	LCS	%LCS	SPIKE CONC (DUP)	LCSD	%LCSD	RPD	LCS/LCSD Limit	RPD Limit
Mercury	0.0	0.42	0.374	89%	0.42	0.350	83%	6.6%	75-125	20

III. Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

04/19/07

ANALYTICAL METHOD:

<u>7471A</u>

INSTRUMENT I.D.:

FIMS100

LAB LCS I.D.:

Laboratory Control Sample

REPORTING UNITS: mg/Kg

ANALYTE	SPIKE CONC	RESULT	% RECOVERY	ACP % REC LIMIT
Mercury	0.42	0.374	89%	75-125

Project No: Rouse Rd. & Menifee Rd., Romoland, CA / 218361-1

Lab Job No:

Reporting Unit: mg/Kg

29532

ANALYTICAL RESULT FOR ORGANICS

Method: EPA 8081A

Tetrachioro-m-xylene	0.2	50-150	68	63	74	72	80
SURROGATE	SPK CONC	ACP%	%RC	%RC	%RC	%RC	%RC
Toxaphene	0.003	0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Methoxychlor	0.0006	0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Heptachlor Epoxide	0.0003	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Heptachlor	0.0004	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Endrin Ketone	0.0005	0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Endrin Aldehyde	0.0003	0.002	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Endrin	0.0003	0.002	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Endosulfan sulfate	0.0004	0.002	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Endosulfan II	0.0004	0.002	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Endosulfan I	0.0003	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Dieldrin	0.0002	0.002	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
4,4'-DDT	0.0004	0.002	<0.0020	<0.0020	<0.0020	0.002J	<0.0020
4,4'-DDE	0.0003	0.002	<0.0020	0.003	<0.0020	0.007	0.0007J
4,4'-DDD	0.0005	0.002	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Chlordane	0.008	0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Gamma-BHC (Lindane)	0.0002	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Delta-BHC	0.0003	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Beta-BHC	0.0003	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Alpha-BHC	0.0006	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Aldrin	0.0003	0.001	<0.0010	<0.0010	<0.0010	< 0.0010	<0.0010
PESTICIDE COMPOU		CRDL					
	DILUTION I	FACTOR	11	11	11	1	11
EXTRACTION METHOD		EPA 3550B	EPA 3550B	EPA 3550B	EPA 3550B	EPA 3550B	
EXTRACTION SOLVENT		Hexane/Acetone	Hexane/Acetone	Hexane/Acetone	Hexane/Acetone	Hexane/Aceton	
	DATE ANALYZED		04/18/07	04/18/07	04/18/07	04/18/07	04/18/07
	DATE EXT	RACTED	04/18/07	04/18/07	04/18/07	04/18/07	04/18/07
	DATE S	AMPLED	NA	04/17/07	04/17/07	04/17/07	04/17/07
	CLIENT SAM	IPLE I.D.	NA	A-4 0-6"	A-4@4.5'	A1@0-6"	A1@4.5'
	LAB SAN	PLE I.D.	Method Blank	29532-1	29532-2	29532-3	29532-4

^{*}J Flagged results between the MDL and CRDL are estimated values.

Project No: Rouse Rd. & Menifee Rd., Romoland, CA / 218361-1

Lab Job No:

29532

ANALYTICAL RESULT FOR ORGANICS

Method:

EPA 8081A

Reporting Unit: mg/Kg

Tetrachloro-m-xylene	0.2	50-150	61	81	68	87	
SURROGATE	SPK CONC	ACP%	%RC	%RC	%RC	%RC	
Toxaphene	0.003	0.020	0.17	<0.020	<0.020	<0.020	
Methoxychlor	0.0006	0.010	<0.010	<0.010	<0.010	<0.010	
Heptachlor Epoxide	0.0003	0.001	<0.0010	<0.0010	<0.0010	<0.0010	
Heptachlor	0.0004	0.001	<0.0010	<0.0010	<0.0010	<0.0010	
Endrin Ketone	0.0005	0.010	<0.010	<0.010	<0.010	<0.010	
Endrin Aldehyde	0.0003	0.002	<0.0020	<0.0020	<0.0020	<0.0020	
Endrin	0.0003	0.002	<0.0020	<0.0020	<0.0020	<0.0020	
Endosulfan sulfate	0.0004	0.002	<0.0020	<0.0020	<0.0020	<0.0020	
Endosulfan II	0.0004	0.002	<0.0020	<0.0020	<0.0020	<0.0020	
Endosulfan I	0.0003	0.001	<0.0010	<0.0010	<0.0010	<0.0010	
Dieldrin	0.0002	0.002	0.002	0.0002J	0.0004J	<0.0020	
4,4'-DDT	0.0004	0.002	0.015	0.0007J	0.002	0.0004J	
4,4'-DDE	0.0003	0.002	0.058	0.002J	0.008	0.0010J	
4,4'-DDD	0.0005	0.002	<0.0020	<0.0020	<0.0020	<0.0020	
Chlordane	0.008	0.010	<0.010	<0.010	<0.010	<0.010	
Gamma-BHC (Lindane)	0.0002	0.001	<0.0010	<0.0010	<0.0010	<0.0010	
Delta-BHC	0.0003	0.001	<0.0010	<0.0010	<0.0010	<0.0010	
Beta-BHC	0.0003	0.001	<0.0 0 10	<0.0010	<0.0010	<0.0010	
Alpha-BHC	0.0006	0.001	<0.0010	<0.0010	<0.0010	<0.0010	
Aldrin	0.0003	0.001	<0.0010	<0.0010	< 0.0010	<0.0010	
PESTICIDE COMPO		CRDL	· · · · · · · · · · · · · · · · · · ·		· · ·		
	DILUTION		ł .	1	1	1	
	EXTRACTION N			EPA 3550B	EPA 3550B	EPA 3550B	
			Hexane/Acetone	4 4 . 4 .			
	DATE AN			04/18/07	04/19/07	04/19/07	
	DATE EXT			04/18/07	04/18/07	04/18/07	
	DATE SAME		A2@0-6" 04/17/07	A2@4.5' 04/17/07	04/17/07	A3@4.5' 04/17/07	
	LAB SAM CLIENT SAM			29532-6	29532-7 A3@0-6"	29532-8	

^{*}J Flagged results between the MDL and CRDL are estimated values.

Project No:

Rouse Rd. & Menifee Rd., Romoland, CA / 218361-1

Lab Job No: 29532

QA/QC REPORT (Continued)

II. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED:

04/18/07

ANALYTICAL METHOD:

EPA 8081A

BATCH #:

8080S119

LAB SAMPLE I.D.:

A-3@0-6"

REPORTING UNITS: mg/Kg

ANALYTE	SAMPLE RESULT	SPK	MS	%MS	SPIKE CONC (DUP)	MSD	%MSD	RPD	MS/MSD LIMIT	RPD Limit
Lindane Heptachlor Aldrin Dieldrin Endrin DDT	0.0000 0.0000 0.0000 0.0000 0.0000 0.0020	0.00666 0.00666 0.00666 0.0267 0.0267	0.00421 0.00537 0.00571 0.02283 0.02207 0.02133	63% 81% 86% 86% 83% 72%	0.00666 0.00666 0.00666 0.0267 0.0267	0.00443 0.00585 0.00653 0.02523 0.02466 0.02530	67% 88% 98% 94% 92% 87%	5.1% 8.6% 13.4% 10.0% 11.1% 17.0%	61-114 78-129 71-123 73-123 72-133 76-128	25 25 25 25 25 25 25

III. Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

04/18/07

ANALYTICAL METHOD:

EPA 8081A

STANDARD SUPPLY SOURCE: Restek

DATE OF SOURCE: 02/27/07

INSTRUMENT I.D.:

GC#8

LOT NUMBER:

OJ-31-02

LAB LCS I.D.:

Laboratory Control Sample

REPORTING UNITS: mg/Kg

ANALYTE	SPIKE CONC	RESULT	% RECOVERY	ACP % REC LIMIT
l today	0.00000	0.00400		
Lindane	0.00666	0.00468	70%	61-114
Heptachlor	0.00666	0.00647	97%	78-129
Aldrin	0.00666	0.00676	102%	71-123
Dieldrin	0.0267	0.02602	97%	73-123
Endrin	0.0267	0.02538	95%	72-133
DDT	0.0267	0.02261	85%	76-128

April 24, 2007

Marilu Escher Centrum Analytical Laboratories, Inc. 1401 Research Park Drive Suite 100 Riverside, CA 92507-2111

Calscience Work Order No.: Subject: 07-04-1219

> Client Reference: Rouse Rd. & Menifee Rd. Romoland, CA / 29532

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 4/18/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc. Stephen Nowak

Project Manager

Analytical Report

Centrum Analytical Labo	oratories,	Inc.			Date R	eceived:				04/	18/07
1401 Research Park Drive					Work C	order No:			(07-04	-1219
Suite 100					Prepara	ation:					3151A
Riverside, CA 92507-2111					Method						3151A
111VC13IdC, O/1 02001-21	• •				Units:				'		
Desirate Dayson Dd. 9 N	Annifon De	J Dam	امصمام	04 / 205							ug/kg
Project: Rouse Rd. & M	rienitee Ro	a. Rom								_ <u>_</u> _	1 of 3
Client Sample Number			Lab Sa Num	•	Date Collected	Matrix	Instrument	Date Prepared	Dat Analy		Batch ID
A-4 @ 0-6"			07-04	-1219-1	04/17/07	Solid	GC 0	04/19/07	04/22	<u>/07 07</u>	0419L02
Comment(s): -Results were e	evaluated to the	e MDL, co	ncentrati	ons >= to the	MDL but < RL	, if found, ar	e qualified wit	h a "J" flag.			
<u>Parameter</u>	Result	RL	MDL	DF Qual	<u>Parameter</u>			Result	<u>RL</u>	MDL	DF Qua
Dalapon	ND	250	16	1	2,4-D			ND	100	15	1
Dicamba	ND	10	2.2	1	2,4,5-TP (S	Silvex)		ND	10	1.3	1
MCPP	ND	10000	1000	1	2,4,5-T			ND	10	1.5	1
MCPA	ND	10000	1600	1	2.4-DB			ND	100	16	1
Dichlorprop	ND	100	17	1	Dinoseb			ND	50	5.0	1
Surrogates:	REC (%)	Control		Qual					• •		
2,4-Dichlorophenylacetic acid	78	30-130									
A-4 @ 4.5'			07-04	-1219-2	04/17/07	Solid	GC 0	04/19/07	04/22	<u>/</u> 07 07	0419L02
Comment(s): -Results were e	waluated to the	a MDL co	ncentrati	one >= to the	MDI but < PI	if found an	e qualified wit	h a " l" flag			
Parameter	Result	RL	MDL	DF Qual		, ii iouiiu, ai	e qualified wif	•	<u>RL</u>	MDL	DF Qua
Dalapon	ND	250	16	1	2,4-D			ND	100	15	1
Dicamba	ND	10	2.2	1	2,4,5-TP (S	Silvex)		ND	10	1.3	1
MCPP	ND	10000	1000	1	2,4,5-T			ND	10	1.5	1
MCPA	ND	10000	1600	1	2,4-DB			ND	100	16	1
Dichlorprop	ND	100	17	1	Dinoseb			ND	50	5.0	1
Surrogates:	REC (%)	Control	<u>Limits</u>	Qual							
2,4-Dichlorophenylacetic acid	92	30-130									
A-1 @ 0-6"			07-04	-1219-3	04/17/07	Solid	GC 0	04/19/07	04/22	<u> 1</u> 07 07	0419L02
Comment(s): -Results were e	evaluated to the	e MDL, co	ncentrati	ons >= to the	MDL but < RL	, if found, ar	e qualified wit	h a "J" flag.			
Parameter	Result	RL	MDL	DF Qual					RL	MDL	DF Qua
Dalapon	ND	250	16	1	2,4-D			ND	100	15	1
Dicamba	ND	10	2.2	1	2,4,5-TP (S	lihay)		ND	10	1.3	1
MCPP	ND	10000	1000	1	2,4,5-T	JIIVCX)		ND	10	1.5	1
		10000	1600	1						16	1
MCPA Diablararan	ND ND	100	17	1	2,4-DB Dinoseb			ND ND	100 50	5.0	1
Dichlorprop				•	Dinoseb			ND	50	5.0	'
Surrogates: 2,4-Dichlorophenylacetic acid	<u>REC (%)</u> 54	Control 30-130	Limits	Qual							
A-1 @ 4.5'		00-100	07-04		04/17/07	Solid	GC 0	04/19/07	04/22	/07 07	0419L02
									V-1122		
Comment(s): -Results were e						., if found, an	e qualified wit		D.	Mar	DE 0
Parameter	Result	<u>RL</u>	MDL	DF Qual					<u>RL</u>	MDL	DF Qua
Dalapon	ND	250	16	1	2,4-D			ND	100	15	1
Dicamba	ND	10	2.2	1	2,4,5-TP (S	Silvex)		ND	10	1.3	1
MCPP	ND	10000	1000	1	2,4,5-T			ND	10	1.5	1
MCPA	ND	10000	1600	1	2,4-DB			ND	100	16	1
Dichlorprop	ND	100	17	1	Dinoseb			ND	50	5.0	1
Surrogates:	REC (%)	Control	<u>Limits</u>	Qual							
2,4-Dichlorophenylacetic acid	97	30-130	_								
. ,											
RL - Reporting Limit	DE D	ilution Fact	or	Qual - Qualifi	are						

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Analytical Report

Centrum Analytical Lab	oratories,	Inc.			Date R	eceived:				04	/18/07		
1401 Research Park Drive					Work (Order No:			0	7-04	l-1219		
Suite 100					Prepar								
Riverside, CA 92507-2111					Method				EPA 8151A EPA 8151A				
Merside, OA 92307-2					Units:	۵.			<u>_</u>	ra (
D : . D - D - D - D - D - D - D - D - D - D	4 :C - D			04.400							ug/kg		
Project: Rouse Rd. & N	Menifee Ro	d. Rom	oland,	CA / 29	532				P	age	2 of 3		
Client Sample Number			Lab Sa Num		Date Collected	Matrix	Instrument	Date Prepared	Date Analyze		C Batch ID		
A-2 @ 0-6"			07-04	-1219-5	04/17/07	Solid	GC 0	04/19/07			70419L02		
Comment(s): -Results were	evaluated to the	e MDL, co	oncentrati	ons >= to th	ne MDL but < RI	if found, are	e qualified wit						
Parameter	Result	RL	MDL	DF Qu					RL	MDL	DF Qual		
Dalapon	ND	250	16	1	2,4-D			ND	100	15	1		
Dicamba	ND	10	2.2	1	2,4,5-TP (\$	Silvex)		ND		1.3	1		
MCPP	ND	10000	1000	1	2,4,5-T	,		ND		1.5	1		
MCPA	ND	10000	1600	1	2,4-DB			ND		16	1		
Dichlorprop	ND	100	17	1	Dinoseb			ND		5.0	1		
Surrogates:	REC (%)	Control		Qu									
2,4-Dichlorophenylacetic acid	90	30-130											
A-2 @ 4.5'			07-04	-1219-6	04/17/07	Solid	GC 0	04/19/07	04/22/0	7 07	70419L02		
Comment(s): -Results were	evaluated to the	e MDL, co	oncentrati	ons >= to th	ne MDL but < RI	_, if found, are	e qualified wit	th a "J" flag.					
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF Qu	ıal Parameter			Result	RL	MDL	DF Qual		
Dalapon	ND	250	16	1	2,4-D			ND		 15	1		
Dicamba	ND	10	2.2	1	2,4,5-TP (\$	Silvey		ND		1.3	1		
MCPP	ND	10000	1000	1	2,4,5-T	Silvex)		ND		1.5	1		
MCPA	ND	10000	1600	1	2,4-DB			ND		16	1		
Dichlorprop	ND	100	17	1	Dinoseb			ND		5.0	1		
Surrogates:	REC (%)	Control		Qu				110		0.0	·		
2,4-Dichlorophenylacetic acid	109	30-130											
A-3 @ 0-6"			07-04	-1219-7	04/17/07	Solid	GC 0	04/19/07	04/22/0	7 07	70419L02		
Comment(s): -Results were e	evaluated to the	e MDL, co	oncentrati	ons >= to th	ne MDL but < RL	_, if found, are	e qualified wit	h a "J" flag.					
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF Qu	al Parameter			Result	<u>RL</u>	MDL	DF Qual		
Dalapon	ND	250	16	1	2,4-D			ND	100	15	1		
Dicamba	ND	10	2.2	1	2,4,5-TP (\$	Silvex)		ND		1.3	1		
MCPP	ND	10000	1000	1	2,4,5-T			ND		1.5	1		
MCPA	ND	10000	1600	1	2,4-DB			ND		16	1		
Dichlorprop	ND	100	17	1	Dinoseb			ND		5.0	1		
Surrogates:	REC (%)	Control	Limits	Qι	ıal								
2,4-Dichlorophenylacetic acid	56	30-130											
A-3 @ 4.5'			07-04	-1219-8	04/17/07	Solid	GC 0	04/19/07	04/22/0	7 07	70419L02		
Comment(s): -Results were	evaluated to the	e MDL, co	oncentrati	ons >= to th	ne MDL but < RL	_, if found, are	e qualified wit	h a "J" flag.					
<u>Parameter</u>	Result	<u>RL</u>	MDL	DF Qu	al Parameter			Result	RL	MDL	DF Qual		
Dalapon	ND	250	16	1	2,4-D			ND	100	15	1		
	ND	10	2.2	1	2,4,5-TP (S	Silvex)		ND	10	1.3	1		
•	ND				,						1		
Dicamba	ND	10000	1000	1	2,4,5-T			ND	10	1.5			
Dicamba MCPP		10000 10000	1000 1600	1 1	2,4,5-T 2,4-DB			ND ND		1.5 16	1		
Dicamba MCPP MCPA	ND								100				
Dicamba MCPP MCPA Dichlorprop Surrogates:	ND ND	10000	1600 17	1	2,4-DB Dinoseb			ND	100	16	1		
Dicamba MCPP MCPA Dichlorprop	ND ND ND	10000 100	1600 17	1 1	2,4-DB Dinoseb			ND	100	16	1		

Analytical Report

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

Preparation:

Method: Units:

Date

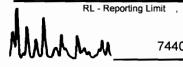
04/18/07

07-04-1219

EPA 8151A EPA 8151A

ug/kg

Project: Rouse Rd. & Menifee Rd. Romoland, CA / 29532


Page 3 of 3

Date

Date

Client Sample Number			Numb	oer	Collected	Matrix	Matrix Instrument		Analy	zed Q	QC Batch ID	
Method Blank			095-01	-033-633	N/A	Solid	GC 0	04/19/07	04/2	/07 07	0419L02	
Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.												
Parameter	Result	<u>RL</u>	MDL.	DF Qua	<u>Parameter</u>			Result	<u>RL</u>	<u>MDL</u>	DF Qual	
Dalapon	ND	250	16	1	2,4-D			ND	100	15	1	
Dicamba	ND	10	2.2	1	2,4,5-TP (S	ilvex)		ND	10	1.3	1	
MCPP	ND	10000	1000	1	2,4,5-T			ND	10	1.5	1	
MCPA	ND	10000	1600	1	2,4-DB			ND	100	16	1	
Dichlorprop	ND	100	17	1	Dinoseb			ND	50	5.0	1	
Surrogates:	REC (%)	Control	<u>Limits</u>	<u>Qual</u>								
2,4-Dichlorophenylacetic acid	87	30-130										

Lab Sample

Quality Control - Spike/Spike Duplicate

aboratories, Inc.

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

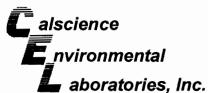
Riverside, CA 92507-2111

Date Received:

Work Order No: Preparation:

Method:

04/18/07


07-04-1219

EPA 8151A

EPA 8151A

Project Rouse Rd. & Menifee Rd. Romoland, CA / 29532

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
A-4 @ 4.5'	Solid	GC 0	04/19/07		04/21/07	070419802	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
2,4-D	109	108	30-130	1	0-30		
2,4,5-T	105	100	30-130	5	0-30		
2,4-DB	113	112	30-130	1	0-30		

Quality Control - LCS/LCS Duplicate

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

Preparation:

Method:

N/A

07-04-1219

EPA 8151A

EPA 8151A

Project: Rouse Rd. & Menifee Rd. Romoland, CA / 29532

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batcl Number	n
095-01-033-633	Solid	GC 0	04/19/07	04/21/07	070419L02	
<u>Parameter</u>	LCS %	REC LCSD	%REC %F	REC CL RPD	RPD CL	Qualifiers
2,4-D	115	127	,	30-130 10	0-30	
2,4,5-T	117	128	3 :	30-130 9	0-30	
2,4-DB	118	124	;	30-130 5	0-30	

Glossary of Terms and Qualifiers

Work Order Number: 07-04-1219

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

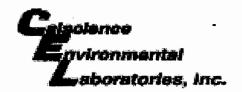
Centrum Analytical Laboratories, Inc.

Chain of Custody Record

Centrum Job

Page of 1401 Research Park Drive, Suite 100 3299 Hill Street, Suite 305 www.centrum-labs.com lab@centrum-labs.com Signal Hill, CA 90755 Riverside, CA 92507 Voice: 951.779.0310 • 800.798.9336 Voice: 562.498.7005 Please Circle Analyses Requested Fax: 562.498.8617 Fax: 951.779.0344 Rouse Rd + Menifec 12d Project No: Carbon Chain (specify ranges) 8 or Pest/PCB **Turn-Around Time** Romoland, CA 2953Z Herbicides 윤 24 Hr. RUSH * Project Manager: Phone: ò 48 Hr. RUSH * or PCBs, RCRA, Normal TAT email: BTEX/Oxygenates Only Marilu Eschor LUFT Gas, or EPA 8015B GRO ☐ Other ě 5 3081A/8082: Pesticides, BTEX/MIBE Only Requires PRIOR approval, Client Name: Address: Nute: Reports and invoice will be sent here 413.2, Title 22 (CAM), Chlorinated 8270C, or 625 TCLP, STLC additional charges apply (Report and Billing) Fuel ID (TVH, TEH), þ TSS Requested due date: _ 418.1 (TRPH), Centrum Ę, Metals: 8021B: Containers: Remarks/Special Instructions Centrum ID Sample ID Date Sample Site location Time sampled sampled matrix # and type (Leb use only) 1. 402 1ax 1045 Soil 79532-1135 1150 1230 1245 1325 1330 1405 -8 3) Relinguished by: Time: To be completed by Laboratory personnel: Sample Disposal 2) Received by: 4) Received by: Date: Time: Chilled? ☐ Yes Temp C ☐ From Field ☐ Client will pick up Custody seals? ☐ Yes ☐ No ☐ Return to client 5) Relinquished by: All sample containers intact? ☐ Yes ☐ No ☐ Lab disposal The delivery of samples and the signature on this chain of custody form constitutes authorization to perform the analyses specified above under 6) Received for Laboratory by: ☐ Courier ☐ UPS/Fed Ex ☐ Hand carried Sample Locator Number: the Terms and Conditions set forth on the back hereof. Report Formats: Check all applicable Laboratory Notes:

* NEED MDLS & J FLAGS REPORTED


☐ Paper report

□ LARWQCB

☐ PDF report (include email address)

☐ EDF (include global ID) ☐ EDD (GISKEY) ☐ EDD (Other) *

47.3 905 car-6005 ste

WORK ORDER #: **07** - 0 4 - 1 2 7

Cooler _____ of ___/

SAMPLE RECEIPT FORM

CLIENT: Cenhum	DATE: 04.18.07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): C Temperature blank. C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
	Not Present: Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

No. 025206		СН	AIN OF C	ะบรา	ODY RE	CORD	\mathcal{C}	ENTE	zum: 2	9532	-Page of	
2167/1 / Rouse	T NAME AND LOCATION: R.d. & Manifec Rd. DMOLAND, CA PRINT NAME:	7		CONTAINERS	THE 22 May	Or period of the state of the s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 C. S. C.				
SAMPLE I.D.	SAMPLE LOCATION	DATE TIME	MATRIX	NO. OF		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2,2	\int_{-}			REMARKS	i
A-4 0-6"	Romoland.	15:45		2	×	<u>×</u> _	X_					
A-4 E 45. A-10 0-6"		11:35		+	X	>_	×	-				
A1 0 4.5'		17:30	1 	\dashv	X	×	×		-			
ALCO-64		17:4	+ + +	-/	X	×	×			1		
AZE 4.5'		13:2:	1		X	×	X					
A3 8 0-6"		13:3	9	\prod	X	x	X `_					
A3 8405'	-	14:45	4	1	×	X	X					
<u> </u>	·		+ +	_					+			
			+ -			-	_			 		<u>_</u> _
						_		1				
tall bamples wer	staken + reid a	lat on	1/17/07	Q	,							
Relinquished by: (Signature)	Date/Time	Received by: (Sign	ature)	LA	B NAME:	UTRUP	4				HATEGIES CORP	ORATION
Juon	4-10-7 245	Alle		CI		iversio		a	1 <u>1911 Freed</u> Reston, Virgi (703) 709-65	nia 20190	703) 318-3995	
Reinquished by: (Signature)	Date/Time	Received by: (Sign	ature)	CC	DURIER:	1/0					703) 318-3995	
						0.			FROM F		1101740	
Received for Laboratory by:	PRINT NAME:		Date/Time	CL	JSTODY S	SEAL NOS	<u></u>					
MIN	_ MC ESCHE	2 4/10	245	CC	OOLER N	0:				E	\overline{SC}	
ATTENTION LAB: SEND A	NALYTICAL RESULTS TO THE	FOLLOWING ES	C STAFF M	/EMI	BER: Ric	k Fren	denber	ger				(E)

DISTRIBUTION: ORIGINAL ACCOMPANIES SHIPMENT: COPY TO ESC FILES

BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA

APPLICATION FOR CERTIFICATION FOR THE SUN VALLEY ENERGY PROJECT (SVEP)

DOCKET NO. 05-AFC-3 PROOF OF SERVICE LIST (Revised 3/23/07)

INSTRUCTIONS: All parties shall 1) send an original signed document plus 12 copies <u>OR</u> 2) mail one original signed copy AND e-mail the document to the web address below, AND 3) all parties shall also send a printed <u>OR</u> electronic copy of the documents that <u>shall include a proof of service declaration</u> to each of the individuals on the proof of service:

DOCKET UNIT

CALIFORNIA ENERGY COMMISSION

Attn: Docket No. 05-AFC-3 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512 docket@energy.state.ca.us

APPLICANT

Jenifer Morris
Project Manager
NJ Resources, LLC
7240 Heil Ave.
Huntington Beach, CA 92647
jenifer@njr.net

*Victor Yamada, Project Manager Edison Mission Energy 18101 Von Karman Avenue, Suite 1700 Irvine, CA 92612-1046 vyamada@EdisonMission.Com

Tom McCabe
Edison Mission Energy
18101 Von Karman Avenue
Irvine, CA 92612
tmccabe@edisonmission.com

<u>APPLICANT'S CONSULTANT</u>

CH2M HILL Douglas M. Davy, Ph.D., Sr. Project Manager 2485 Natomas Park Dr., Suite 600 Sacramento, CA 95833 ddavy@ch2m.com

COUNSEL FOR APPLICANT

Galati & Blek, LLP Scott Galatti Plaza Towers 555 Capitol Mall, Suite 600 Sacramento, CA 95814 sgalati@gb-llp.com

INTERESTED AGENCIES

*Songzhe Zhu
Ca. Independent System Operator
151 Blue Ravine Road
Folsom, CA 95630
SZhu@caiso.com

Eric Saltmarsh
Electricity Oversight Board
770 L Street, Suite 1250
Sacramento, CA 95814
esaltmarch@eob.ca.gov

Gary Fay Hearing Officer gfay@energy.state.ca.us

INTERVENORS

Roland Skumawitz, Superintendent Romoland School District 25900 Leon Road Romoland, California 92548 Robert Worl
Project Manager
rworl@energy.state.ca.us

California Unions for Reliable Energy (CURE)
C/O Marc D. Joseph
Gloria D. Smith
Adams Broadwell Joseph & Cardozo
601 Gateway Boulevard, Suite 1000
South San Francisco, California 94080
mdjoseph@adamsbroadwell.com

Staff Counsel Deborah Dyer ddyer@energy.state.ca.us

Public Advisor PAO@energy.state.ca.us

ENERGY COMMISSION

JOHN L. GEESMAN
Presiding Member
jgeesman@energy.state.ca.us

Jackalyne Pfannenstiel, Chair Presiding Committee Member ipfannen@energy.state.ca.us

DECLARATION OF SERVICE

I, Jeannette Harris, declare that on <u>June 19, 2007</u> I deposited copies of the attached <u>Phase II Environmental Site Assessment (Soil Investigation Results and Additional Soil Investigation Results) filed in Support of the Application for Certification for the Sun Valley Energy Project (05-AFC-03) in the United States mail at <u>Sacramento, CA</u> with first class postage thereon fully prepaid and addressed to those identified on the Proof of Service list above. Transmission via electronic mail was consistent with the requirements of California Code of Regulations, title 20, sections 1209, 1209.5, and 1210.</u>

I declare under penalty of perjury that the foregoing is true and correct.

Jamutte Harris
[signature]