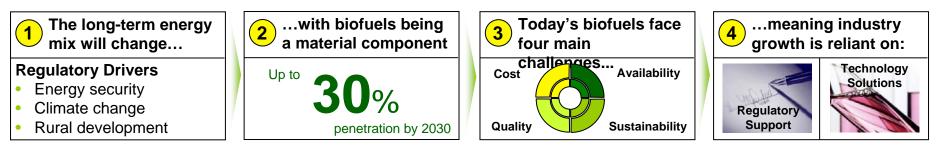


BP Biofuels

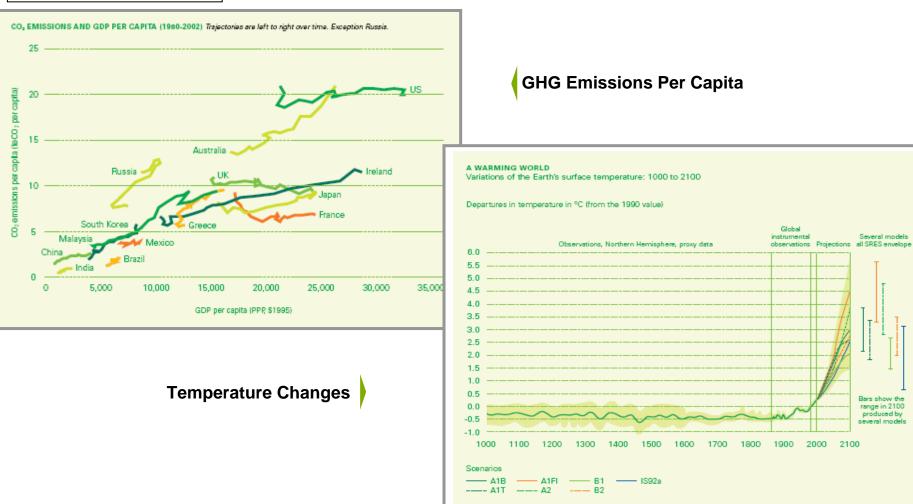
a growing alternative


Ruth Scotti US Policy Manager

Advanced Biofuels for California's Transportation Sector Sacramento CA, June 11, 2007

bp

Introduction


1 The long-term energy mix will change...

Regulatory Drivers

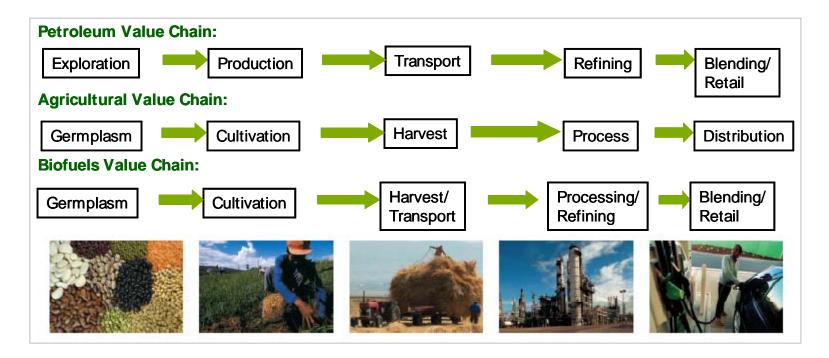
- Energy security
- Climate change
- Rural development

Energy is at the heart of the world economy. World population growth continues rapidly. Economic development lifts energy usage.

Source: UN IPCC Climate Change 2001; Synthesis Report. Summary for Policymakers

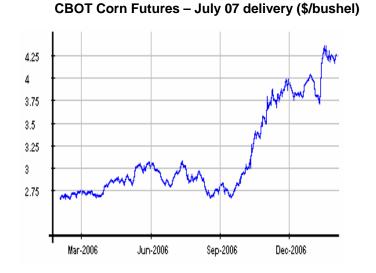
penetration by 2030

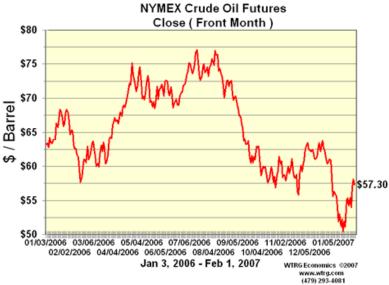
Given an increasing global energy demand, biofuels are the best supply side option for ground transportation



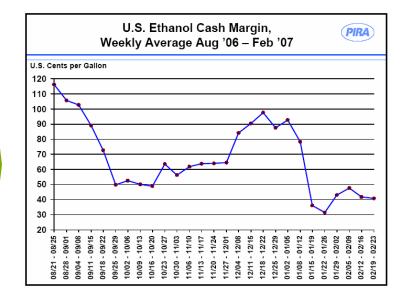
Transport's Contribution Biofuels represent ~40% of the predicted to Total CO₂ global growth in transport fuels Transport fuels **Biofuels CAGR Billion** gallons 15-20%* 30% 22% **Biofuels** as 21% 25% % of total 20% transport 8.5% 6.5% 3% fuel market 15% 28 **Biofuels** 10% 5% 403 411 380 Gas/diesel 0% 2004 2020 2006 2012 2015 * Biofuels could reach 30% of the fuel pool by 2030 Source: IEA World Energy Outlook, 2004 Source: Tecknon 2006, Team analysis

- Energy dependency and climate change will remain primary motivators for pursuing alternative and renewable transport fuels
- For ground transportation, biofuels are the best supply side option to meet both challenges in a material way by 2030. They also support rural development.

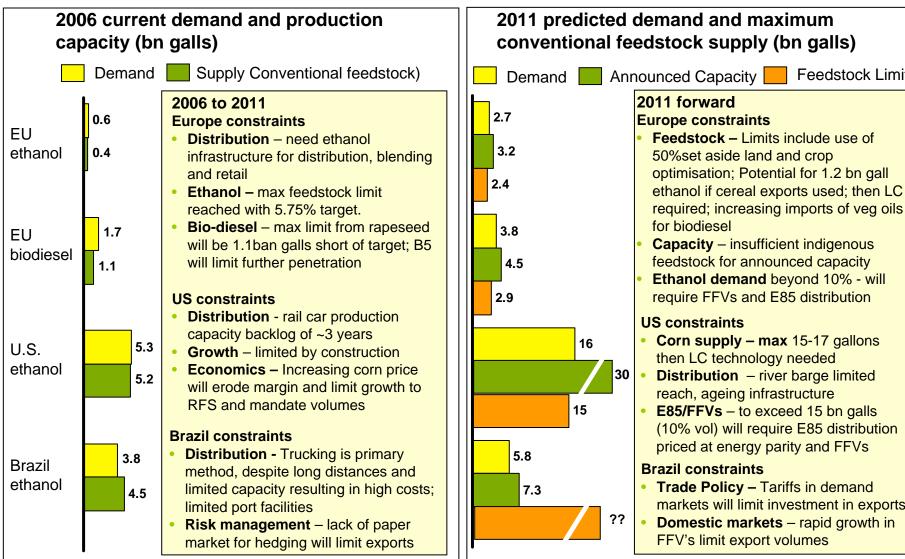

• The biofuels industry is being created through the fusion of the two most important primary industries in the world – agriculture and energy


• But today's biofuels face 4 main challenges...

Cost: production economics are volatile, caught between feedstock costs and oil prices

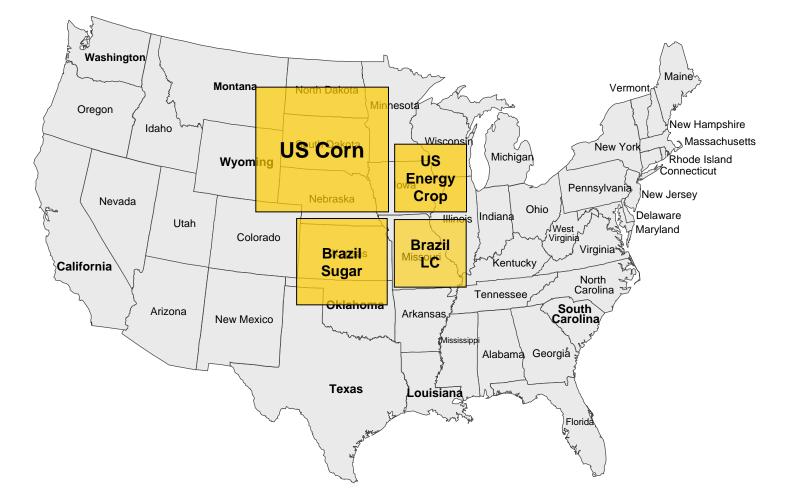


(1)


ILLUSTRATIVE EXAMPLE – US ETHANOL

Availability: biofuels currently represent 2-3% of the transport fuel pool. Today, feedstocks limit penetration to around 5-7%

(**2**a)



Feedstock Limit

- **Capacity** insufficient indigenous feedstock for announced capacity Ethanol demand beyond 10% - will require FFVs and E85 distribution
- then LC technology needed
- 30 **Distribution** river barge limited reach, ageing infrastructure
 - E85/FFVs to exceed 15 bn galls (10% vol) will require E85 distribution priced at energy parity and FFVs
 - Trade Policy Tariffs in demand markets will limit investment in exports
 - **Domestic markets** rapid growth in FFV's limit export volumes

2b US example: land area required to replace 30% of the 2006 gasoline market

2006 US gasoline market =140 bn galls.

BP Biofuels a growing alternative

30% v/v replacement adjusted for lower energy content of ethanol

Quality: conventional bio-components are essential to build the industry. We should not stop with the molecules we have.		
,	Ethanol – gasoline component	FAME - diesel component
Fuel performance characteristics	 High octane (favors good performance) but High blend vapor pressure Energy content approximately 1/3 lower than conventional gasoline Water affinity and risk of phase separation when blended with gasoline 	 Sulfur and aromatic free Higher cetane value and improved lubricity properties vs. diesel Low temperature and stability/deposit formation issues Energy content 15% lower than conventional diesel
Consumer attractiveness	 Energy content and water affinity mean that ethanol is not a good premium gasoline component 	 Stability and energy content mean that FAME is not an ideal component for premium diesel
Blending limitations	 Corrosive effect as well as performance issues such as fuel economy limit the content of ethanol in standard grade gasoline (US 10%v/v, EU 5%v/v) 	 Typically limited in standard grade diesel (e.g., 5%v/v max. Europe) OEM concern over deposit formation in high pressure fuel injection systems used in modern diesel passenger vehicles

Supply chain implications

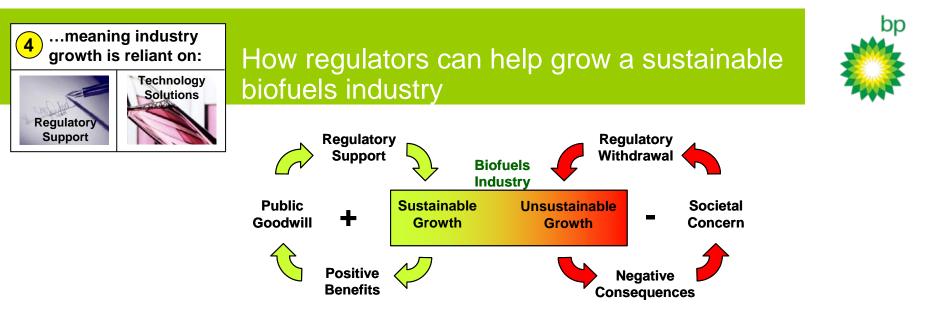
 $(\mathbf{3})$

- Poor can only be blended at the terminals, ethanol-containing blends cannot be moved by pipeline or ship and implies a segregated distribution network
- E85 issues around dispenser certification (safety)
- Moderate low concentration blends (up to 5%) treated as fungible in many markets; higher blend levels may have impacts on pipeline contamination

BP Biofuels a growing alternative

bp

Sustainability: fundamental to an enduring industry is the avoidance of harmful environmental and social impacts

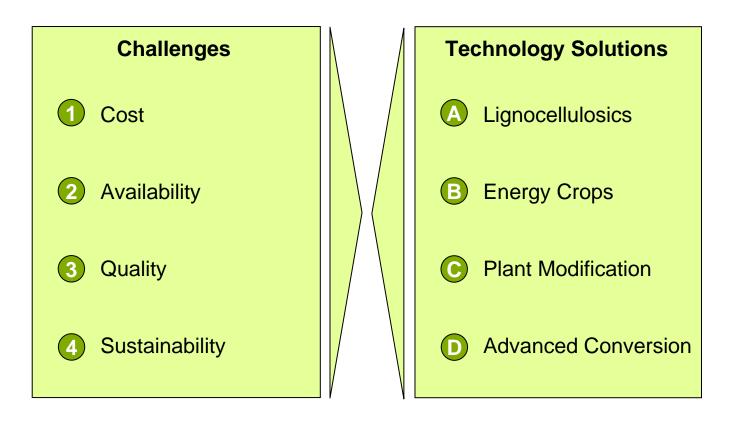


Issues (not exhaustive) include:

- Land rights, including economic and physical displacement
- Placing stress on the world's limited water resources
- Biodiversity

(4)

- Deforestation the destruction of High Conservation Value Forest (HCVF)*
- Child and forced labor and other employment abuses
- Planting on peat soils
- Community conflict issues
- Effects of monoculture on local food production and local economies
- Pollution and environmental damage (water / soil / air), including related socio-economic impacts
- Net greenhouse gas balances resulting from land use change



- Market-based regulations that balance environmental, energy security and rural development goals that face communities around the world
- Encouragement of innovation at all stages of the value chain. It is important that regulation does not pick winners but instead allows the market to find solutions
- Policy that is geared to emissions reductions or the quantity of fuel energy replaced rather than mandated volumes of a particular product.
- Regulatory mechanisms which apply equally to all and which maintain flexibility for example avoiding fixed per gallon mandates.
- Supporting guidelines for sourcing from sustainable and responsible production routes

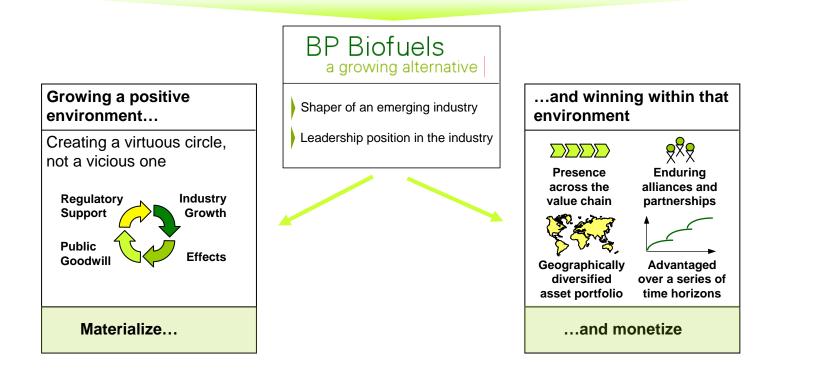
How technology has a major role to play

BP Biofuels a growing alternative

Shaper of an emerging industry

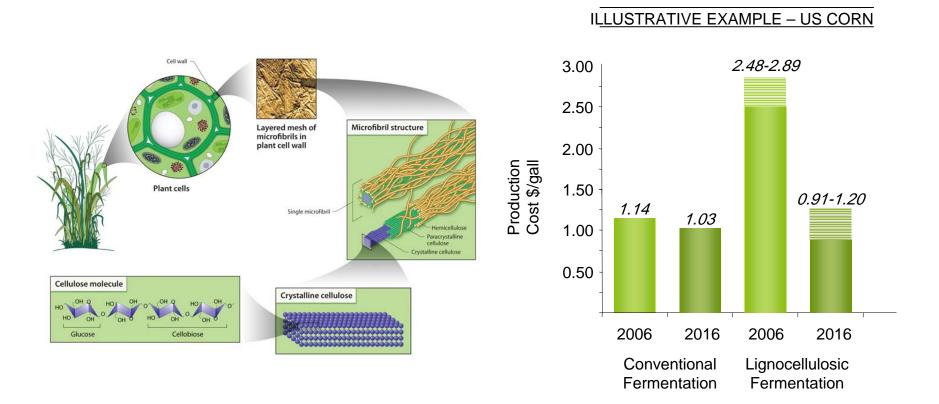
Leadership position in the industry

BP is committed to the sustainable growth of the biofuels industry



- Dedicated Global Biofuels Business Unit
- Distinctive Positions
 - Advanced Technologies & Molecules
 Energy Biosciences Institute
 Partnership with DuPont to develop biobutanol
 - Feedstock Availability
 Non-food crops grown on marginal land (e.g. Jatropha)
 - Sustainability
 - The promotion of industry standards for biofuels sourcing and production (similar to Equator Principles)

Summary



Backup Slides

Agnocellulosics: 25-100% yield improvements* in 5-10 years. Brazilian sugarcane will remain competitive (economics & GHG)

BP Biofuels a growing alternative

* Corn example: 25% (fibre only); 100% (stover), with 50% of stover must remain in field to preserve ecosystem

bn

Energy crops: non-food crops grown on marginal land reduce competition with food, especially in developing countries

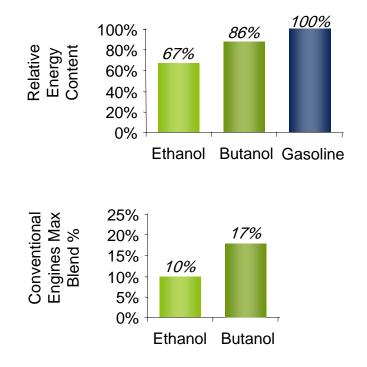
B

BP Jatropha Nursery Plantation, Andra Pradesh State, India

Plant modification: improving economics and addressing sustainability by reducing the input intensity

- Current generation technology can be input intensive e.g.
 - Water usage for plant growth
 - Acid usage in first generation lignocellulosic conversion
- Opportunities:

 (\mathbf{C})


- Genetically modified plants which are less thirsty
- Plant decomposition triggered by UV-light

D Advanced conversion: developing better quality molecules which can also increase penetration

- Next generation biofuels offer advantages over conventional biofuels (e.g. ethanol)
- Benefits:
 - Not corrosive can use in higher concentrations
 - Low water affinity no risk of phase separation; can pipeline
 - Easier to blend no RVP issues
 - Higher energy content better for the environment; better for the consumer (fewer fills)

