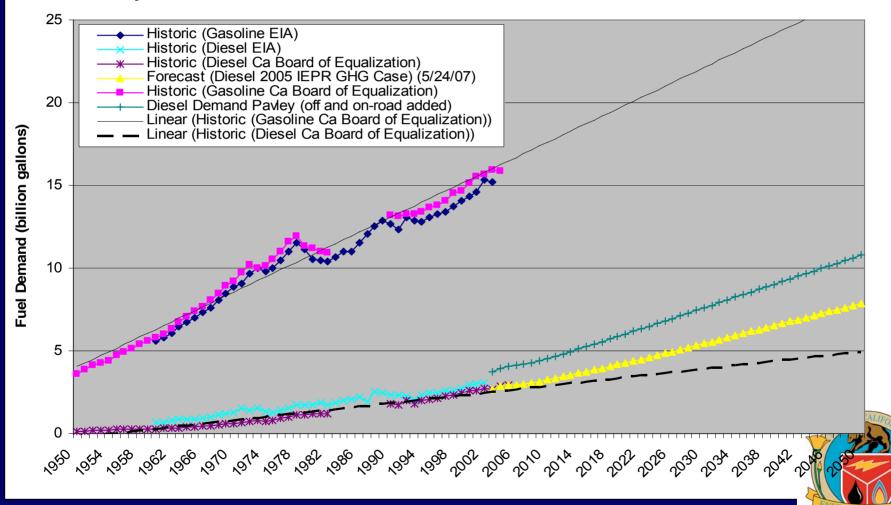
Renewable Diesel Scenario Analysis

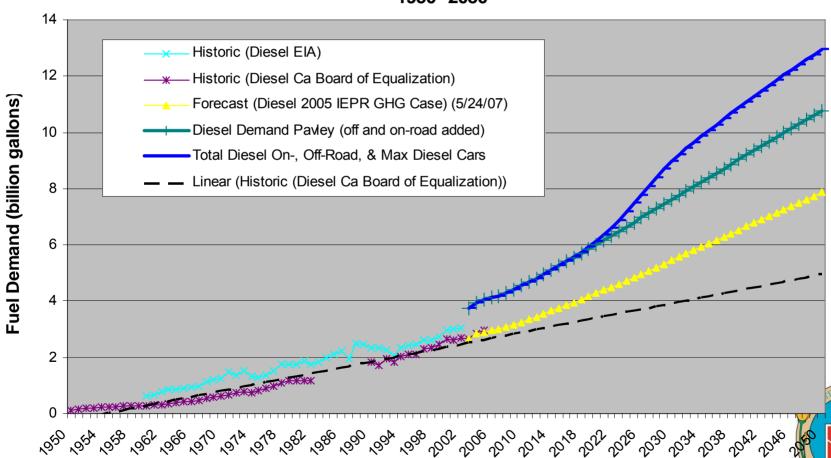
Algae
Biodiesel
Biomass-to-Diesel
Non Esterified Renewable Diesel

Gary Yowell May 31, 2007

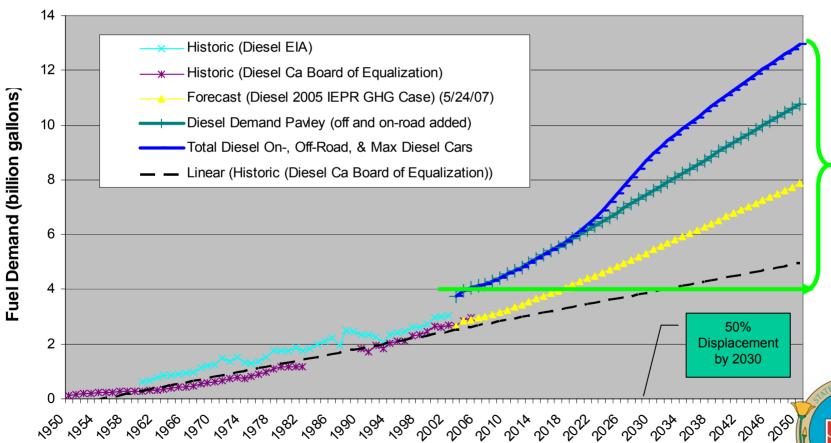


Key Issues

- Diesel Demand
- Crude Oil Price
- Renewable Diesel Supply (volume and timing)
 - □ Imports (serving Biodiesel and NERD)
 - □ Domestics (serving Biodiesel and NERD)
 - □ Unconventional (Algae, BTL, Thermal Depolymerization – with unconventional feeds)
- Projected Response to Incentives/Mandates
 - □ 0.50-\$2.00/gallon


California's Fuel Demand is Strong and Steady

100-year Trend and Forecast of California's Gasoline & Diesel Demand 1950 -2050


Diesel Demand

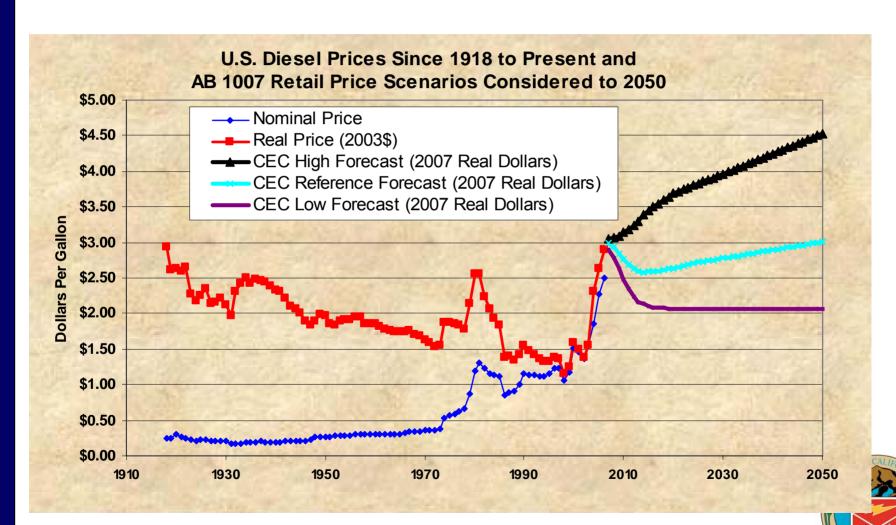
100-year Trend and Forecast of California's Diesel Demand 1950 -2050

Opportunity for Alternative Fuels to Displace 60% Before Impacting Current Levels

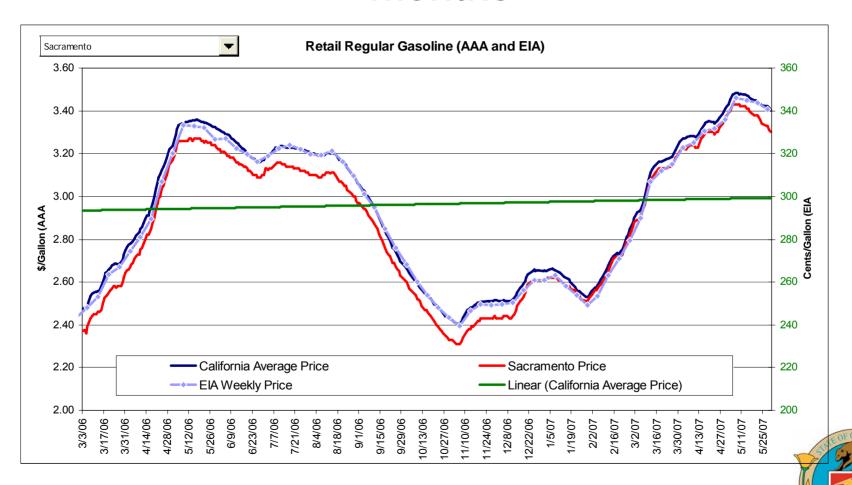
100-year Trend and Forecast of California's Diesel Demand 1950 -2050

Three Crude Oil Price Scenario

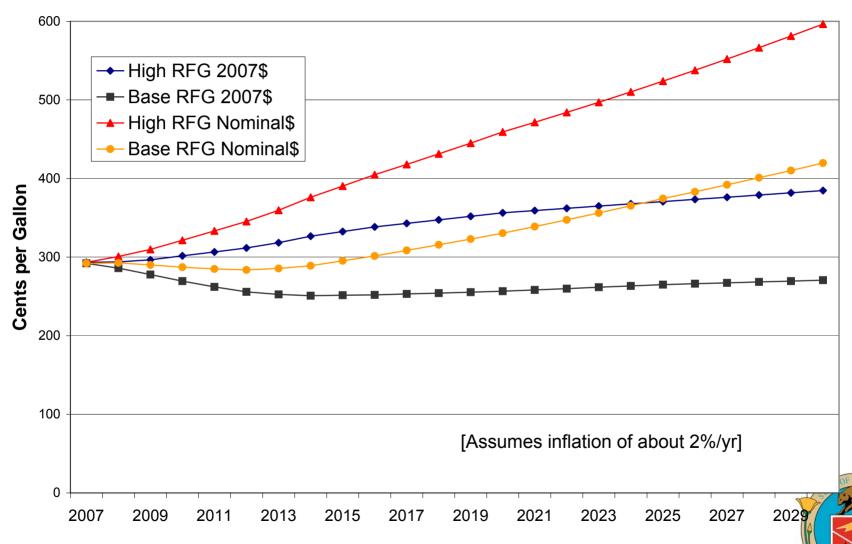
Crude Oil Price						
Scenario	2007	2012	2017	2022	2030	2050
High	63	70	83	90	99	121
Reference	63	49	48	51	55	64
Low	63	37	31	31	31	31


Prices are dollars per barrel, in constant 2007 dollars

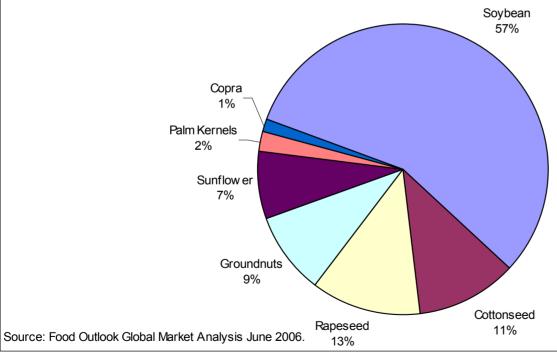
Staff Linear Extrapolated EIA values to 2050


Source: 2007 EIA AEO

Retail Diesel Price Scenarios



Average Gasoline Prices over the last 12months


High and Middle Case Gasoline Price Forecasts

Annual Average Prices for Regular-Grade in Constant & Nominal Terms

Supply Context

2005/06 World Production of major oilseeds 387 million metric tons

This production is serving food, cosmetic and other markets.

Palm production @ 9 billion gallons and growing

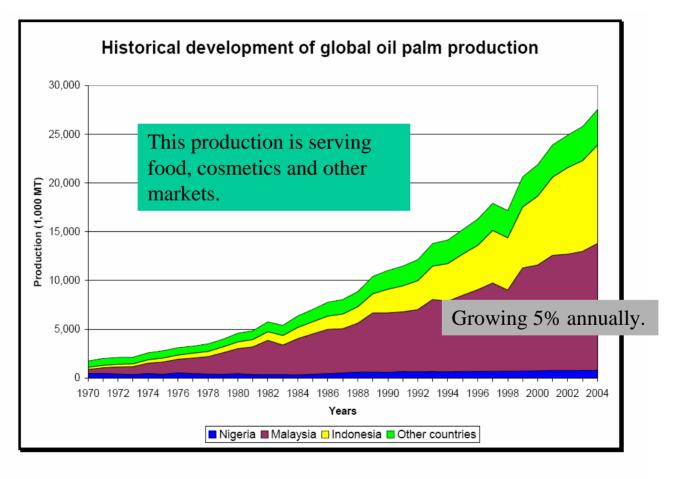
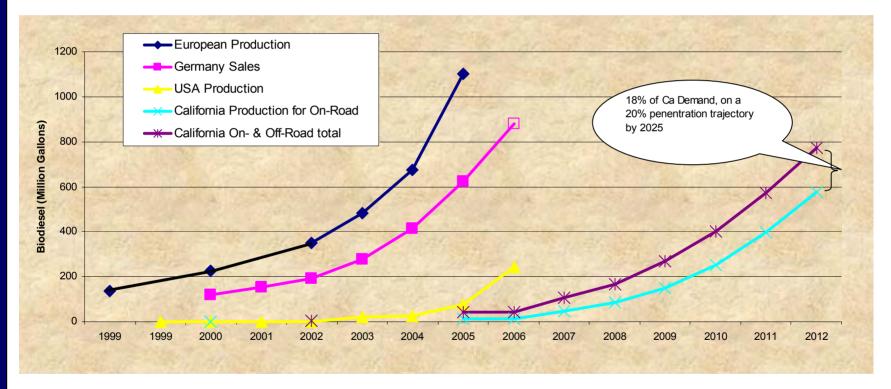



Figure 1. Historical development of the global palm oil production 1970-2004

Supply - Biodiesel Production Trends (In Million Gallons)

Sources: European Biodiesel Board, National Biodiesel Board, Commission Staff Phone Survey of Biodiesel Production,

Greenhouse Gas Emissions

- Biodiesel 50 % GHG Reduction
- RenDiesel 70-85 % GHG Reduction
- BTL 70-85% GHG Reduction

- Low Carbon Fuel Standard:
 - □ B20 Biodiesel Blends
 - □ RD15 NERD Blends

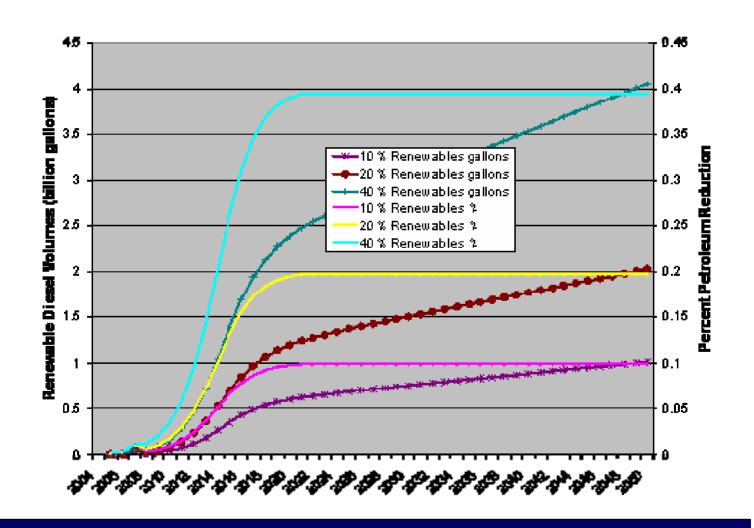
Scenario Analysis – Baseline

- Less than 4-6% of Ca demand is met with Renewable Diesel
 - □ Existing Federal Incentive Remains
 - □ No additional Research to advanced Algae, or BTL Plants
- Low Carbon Fuel Standard Baseline
 - □ 15% NERD & Biodiesel blends
 - □ Biodiesel is generally use up to B5 although B20 should be feasible with a B20 ASTM adoption

Alternative Scenarios

- State production incentives/or mandated cost of: 50,1.00, 1.50, \$2.00/gallon
- \$50 & \$500 R&D for unconventional feedstock processes (Algae, BTL)
- 10-year off-take contracts for "unconventional" plants (non-esterified Plants, Algae, BTL, Thermal Conversion)
- Favorable tax credits for in-state renewable plants
- Facilitate siting petroleum infrastructure port facilities,
 & bulk storage
 - □ Pulls Renewables into Ca market
 - □ Accelerate plants, and volume.

Market Supply Responses to Incentives or ¹⁴ Mandates


Table 2. Maximum Renewable Diesel Penetrations after 20-30 years in Response to Varying Incentives or Mandated Cost

Federal	Additional incentive (\$ / gallon)	Incentive	Low	Reference	High
\$1.00	0	\$1.00	4%	5%	6%
\$1.00	60¢	\$1.50	8%	11%	14%
\$1.00	\$1.00	\$2.00	14%	20%	24%
\$1.00	\$1.50	\$2.50	22%	31%	38%
\$1.00	\$2.00	\$3.00	30%	44%	52%

% of Ca

Demand

Fig 5 Renewable Diesel Volumes

Scenario Model Analytics

- Constructed for AB 1007 Criteria
- XTL and Renewable Diesels use same backbone - projected diesel demand vs. % displacement
- Percent of XTL supply Incentives
- ∑ Cost (Consumer, Gov, Fuel Prices, Fuel energy impacts)
- Emissions, Petroleum Reduction Cost effectiveness is quantified to 2050

Cost Effectiveness Results

@ 20% Renewable Diesel Blend with \$1.00 additional cost/gallon

	consumers	GOVTIX	GOV			
	Incremental	Revenue	Incentives	Total Gov	Petroleum	Alt Fuels
	Expense	Expense	Expense	Expense	Reduction	Demand
Cumulative Years	(billion \$)	(billion \$s)	(billion \$s)	(billion \$s)	(billions)	(billions)
2007 to 2012	0.00	0.00	0.97	0.97	0.49	0.21
2007 to 2017	0.00	0.00	7.22	7.22	3.61	0.89
2007 to 2022	0.00	0.00	18.22	18.22	9.11	1.21
2007 to 2030	0.00	0.00	41.63	41.63	20.82	1.67
2007 to 2050	0.00	0.00	125.20	125.20	62.60	2.44

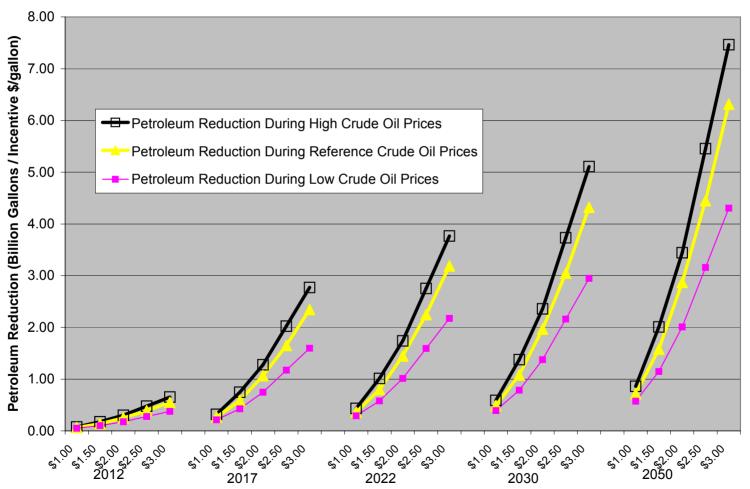
NOTE: Positive Numbers are Reductions, Negative Numbers are Increases

Cost Effectiveness Analysis (\$s per ton reduction)

Ī		Petroleum	İ		i	İ	Particulate	
	Cumulative Years	Reduction	NOx	CO	NMOG	Toxics	Matter	GHGs
	2007 to 2012	2.000	-2,925,230	268,173	-9,317,599	-1,845,561,967	3,424,927	179
	2007 to 2017	2.000	-51,598,929	2,003,386	-64,008,689	-1,880,942,645	24,263,768	183
	2007 to 2022	2.000	91,503,140	5,112,691	-142,774,934	-1,884,337,897	56,673,938	183
	2007 to 2030	2.000	45,239,677	11,953,493	-261,371,871	-1,885,592,937	111,680,338	183
	2007 to 2050	2.000	35,826,152	39,237,628	-459,910,342	-1,886,245,838	225,346,201	183

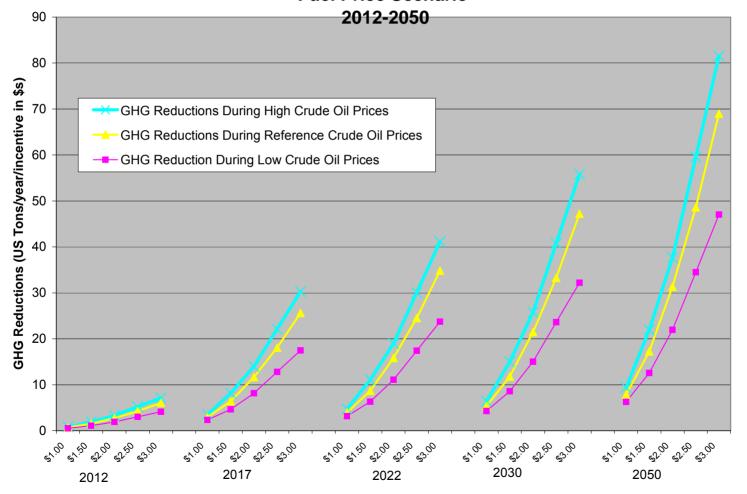
Emissions & Petroleum Reduction

Based on 2005 IEPR Emission Analysis To Be Updated ASAP


15% Renewable Diesel Blend

	Emission Reductions (in tons/year)									
							Petroleum Reduction (billion			
Single Year	NOx	CO	NMOG	Toxics	Matter	GHGs	gallons)			
2012	10	-1	0	0	1	1,733,854	0.159			
2017	41	-5	-2	-1	3	7,293,559	0.668			
2022	56	-6	-2	-1	4	9,888,819	0.905			
2030	77	-9	-3	-1	5	13,662,852	1.251			
2050	113	-13	-5	-2	8	20,006,245	1.832			

Results Petroleum Reduction


Potential Petroleum Reductions per Incentive per Fuel Price Scenario 2012-2050

GHG Reductions 80% GHG Benefit Assumed

Potential Greenhouse Gas Reductions per Incentive per Fuel Price Scenario

Staff Recommended Actions

- Lack of bulk storage sufficient to receive Renewable Diesel shipments (and XTL diesel) from abroad and keep bulk segregated
 - □ Improved Permitting Process,
 - Legislature empower the Energy Commission to Oversee and facilitate the permitting process (at ports and inland)
- Limited Market Demand for Renewable Diesels
 - Low Carbon Fuel Standard implementing the standard in a way that pulls Renewable diesels into market.
 - Need a 5% mandate to get infrastructure established
 - □ Use Incentives to move beyond 5%


Continued Staff Recommendations

- Limited In-State Renewable diesel Production.
 - ☐ The State Legislature should establish "Floor" price protection up to 25 cents per gallon excise tax exemption for Renewable diesel fuels
 - □ Floor is indexed on a composite of palm, canola and soy oil and Diesel Rack prices
 - □ Subsidy cost funded via a 0.1 cent per gallon tax per diesel gallon sold
 - ☐ Must require that the fuel be sold in California

Continued Staff Recommendations

- Now is the time to develop sustainable Biofuel production policy (guidelines) for in-state and foreign Biofuel supplies
 - □ Will the Low Carbon Fuel Process result in a GHG Certification?
 - □ Welcome comments and suggested language that staff could include into our staff recommendations.

Current Storage

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Westway Terminal

- Port of LA
- 25MM gal
 - 6MM+ dedicated to biodiesel
 - 1MM+ gallons of Ethanol Storage
 - could be expanded to support more an/or higher percentage of renewable diesel and ethanol storage
 - Close proximity to major oil refineries and Kindermorgan Carson facility
- City of LA closing down to make way for park within 18 months
- Losing this storage would make it more difficult for the state to achieve its biofuel objectives for the next 3 year
- Industry recommends delaying closing
 3-5 years until replacement facility is built

New Storage

- -Targets to meet renewable diesel growth
 - Expect 6-8 turns year for the storage
 - Takes 3-4 years to build with permitting
 - To support 1B gallons within 5 years, CA needs at least 150MM gals to 200MM gals of new storage
- What the market needs
 - -Developers of storage need to fast track permitting process to help cut one year off process
 - -Storage needs to be planned now to get ahead of the demand curve as proposed
 - -Storage needs to be near pipelines with rail, truck and ship (at least 30k MT dead tonnage)

Comments - Suggestions

