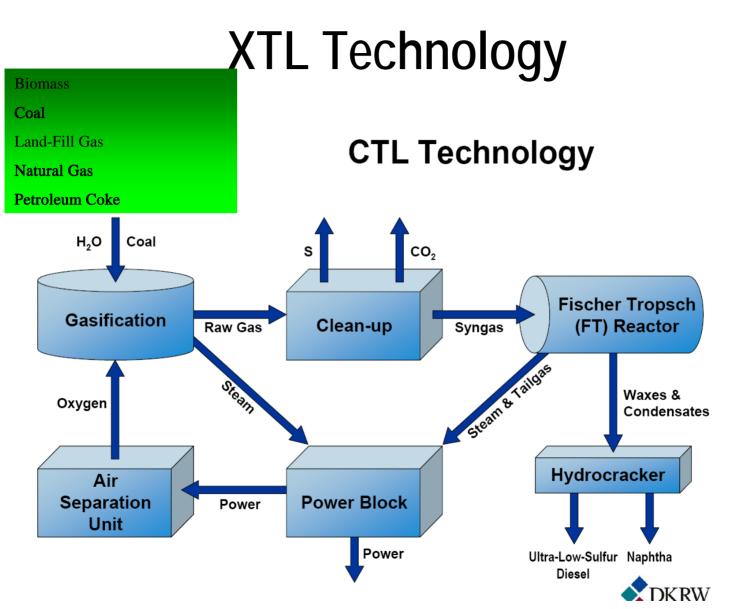
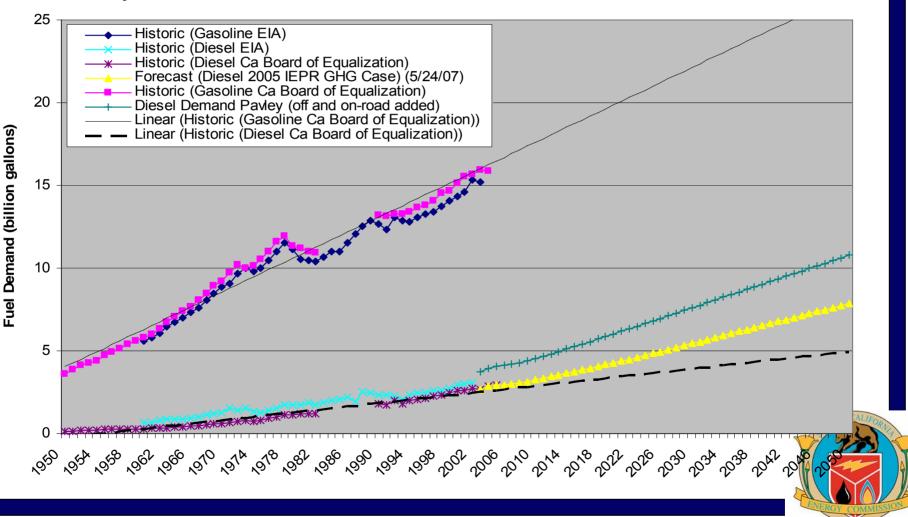
XTL Diesels Scenario Analysis Gas-to-Liquids Coal-to-Liquids

Petroleum Coke-to-Liquids

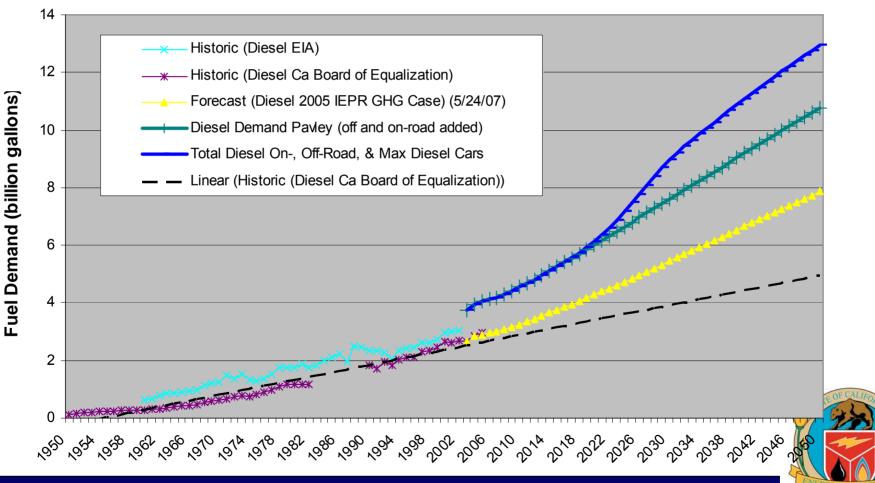

Gary Yowell May 31, 2007

Key Issues

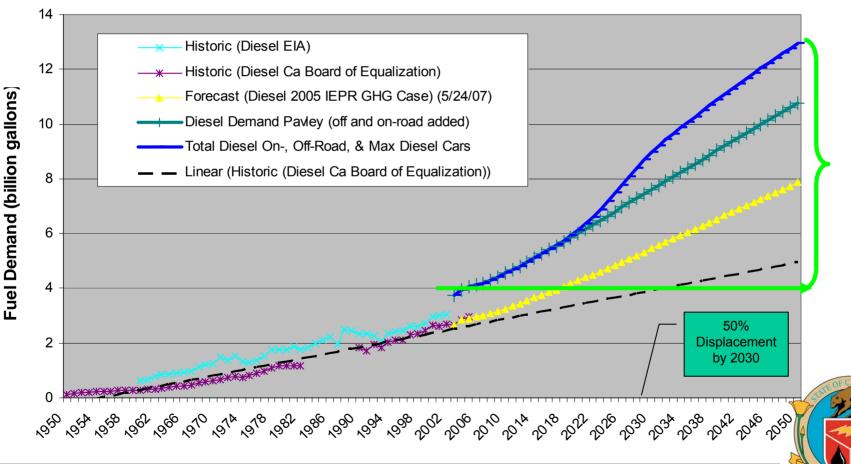
- Diesel Demand
- Crude Oil Price
- XTL Supply (volume and timing)
 GTL (World Supply)
 CTL (National Supply)
 PTL (California Supply)
- Projected Response to Incentives
 □ 0.25¢-\$1.00/gallon



California Energy Commission


California's Fuel Demand is Strong and Steady

100-year Trend and Forecast of California's Gasoline & Diesel Demand 1950 - 2050


Diesel Demand

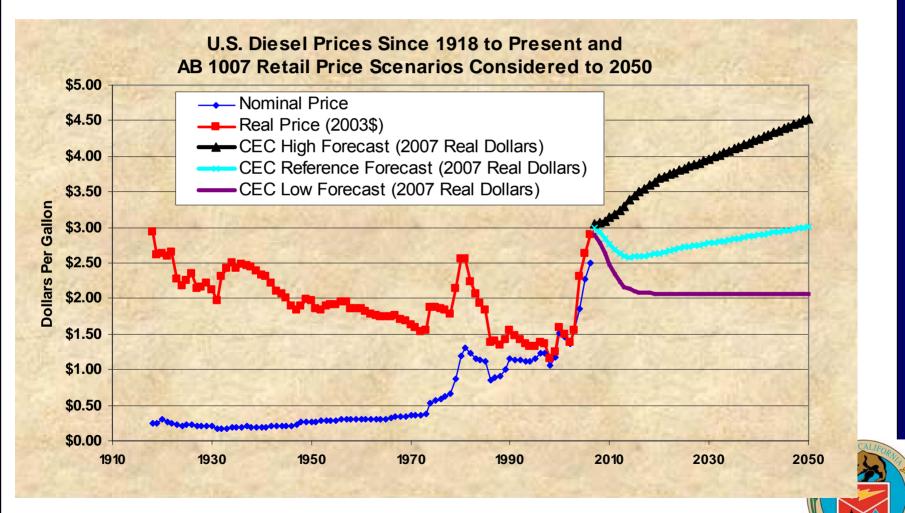
100-year Trend and Forecast of California's Diesel Demand 1950 -2050

Opportunity for Alternative Fuels to Displace 60% Before Impacting Current Levels

100-year Trend and Forecast of California's Diesel Demand 1950 -2050

Three Crude Oil Price Scenario

Crude Oil Price Scenario	2007	2012	2017	2022	2030	2050
High	63	70	83	90	99	121
Reference	63	49	48	51	55	64
Low	63	37	31	31	31	31


Prices are dollars per barrel, in constant 2007 dollars

Staff Linear Extrapolated EIA values to 2050

Source: 2007 EIA AEO

Retail Diesel Price Scenarios

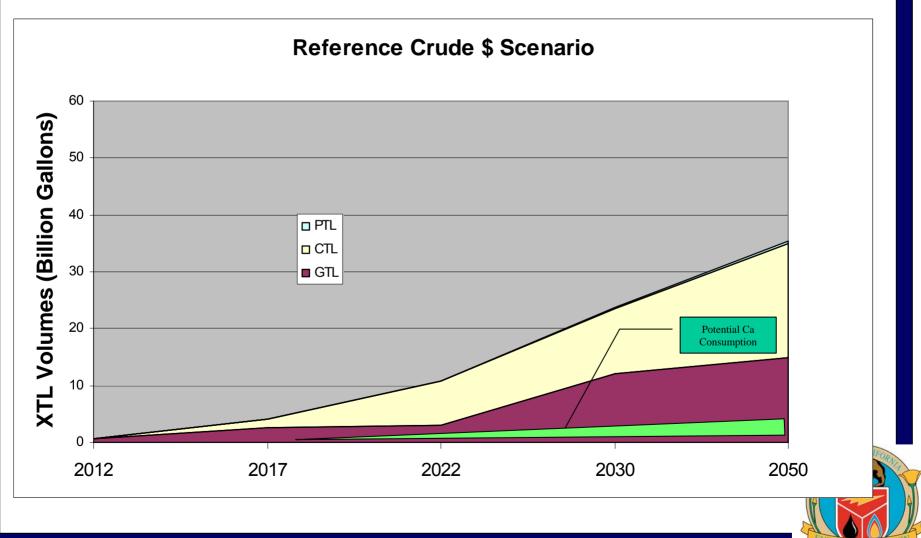
New XTL Supplies

Supply in a Low Fuel Price Scenario (Volumes)

Supply Options	2012	2017	2022	2030	2050
GTL	1	2	2	8	11
CTL	0	0	1	1	2
PTL	0.0	0.0	0.1	0.1	0.2
Total	1	2	3	10	13

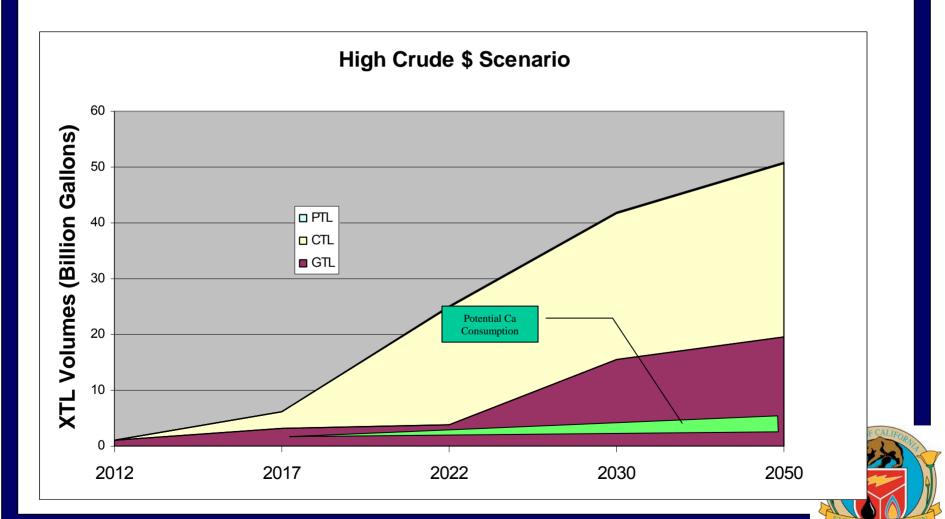
Supply in a High Fuel Price Scenario (Volumes)

Supply Options	2012	2017	2022	2030	2050
GTL	1	3	4	16	20
CTL	0	0	21	26	31
PTL	0.0	0.0	0.2	0.3	0.4
Total	1	3	25	42	51


Supply in a Reference Fuel Price Scenario (Volumes)

Supply Options	2012	2017	2022	2030	2050
GTL	1	3	3	12	15
CTL	0	1.5	8	12	20
PTL	0.0	0.0	0.2	0.2	0.3
Total	1	4	11	24	35

Sources: 2006, 2007 EIA AEO, Western Governor's Association Working Group, Oil & Gas Journal, Rentech, Shell, and Sasol-Chevron.



XTL Volumes – Reference \$

10

XTL Volumes – High \$

11

Greenhouse Gas Emissions

GTL +-10% Reduction / Increase (LCA)
CTL & (PTL) + 200% (LCA)

Potential Zero net CTL and PTL GHGs¹
 36-43% CoFeed Biomass
 \$30/ton GHG - \$50 crude

¹ Source: Western Governors Association – CTL Working Group, Robert Williams, Princeton Environmental Institute Princeton University

Scenario Analysis - Baseline

- Less than 5% of Ca demand is met with XTL
- GTL sold to Europe, Pacific Rim, East Coast
- CTL sold to other nearby states
- Pet-Coke continues sold to Pacific Rim countries as sold fuel for power generation

Alternative Scenarios

- Production incentives: 25¢, 50¢, 75¢, & \$1.00/gallon
- Facilitate Siting Petroleum Infrastructure Port Facilities, & Bulk Storage
- 10-year off-take contracts for CTL, PTL
- Favorable Tax Credits for PTL instate.
 Pulls XTLs into Ca market
 Accelerate CTL and PTL plants, and volume.

The Weakest Link Market Supply Responses to Incentives

Table 4. 2030 Assumed XTL Supply Response to Incentives (per gallon)

	CTL Analy	/sis	12%	_		o of Nationa	1 Supply		
Incentive	Low	Reference	High		90) OI INALIOITA			
0	0%	0%	0%	_			% of World	l Supply	
`25¢	0%	2%	3%				% 01 W 011	i Suppiy	
`50¢	0%	4%	6%						% of Ca Supply
`75¢	1%	7%	10%						11.7
\$1.00	1%	7%	11%			Pet Coke	Analysis	/	
	10%		15⁄5%		Incentive	Low	Referenc¢	High	
		_			0	6%	10% ′	13%	
	GTL Analy	/sis			`25¢	15%	25%	31%	
Incentive	Low	Reference	High		`50¢	30%	50%	63%	
0	1%	2%	3%		`75¢	45%	75%	94%	
`25¢	6%	8%	10%		\$1.00	60%	100%	125%	
`50¢	14%	20%	26%			60%		125%	
`75¢	17%	24%	31%				_		
\$1.00	18%	26%	34%						State of CALIFO
	70%		130%						

15

Scenario Model Analytics

- Constructed for AB 1007 Criteria
- XTL and Renewable Diesels use same backbone - projected diesel demand vs % displacement
- Percent of XTL supply Incentives
- ∑ Cost (Consumer, Gov, Fuel Prices, Fuel energy impacts)
- Emissions, Petroleum Reduction Cost effectiveness is quantified to 2050

Cost Effectiveness Results

XTL's Cost Effectivness Results for \$1.00 per gallon incentive, 28% penentration (keeps petroleum refining volume flat @ 2030)

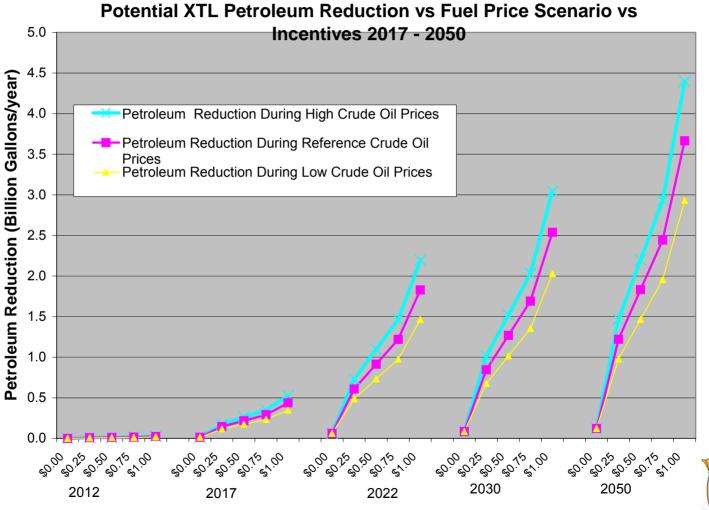
	Consumers	GOVTIX	GOV			
	Incremental	Revenue	Incentives	Total Gov	Petroleum	Alt Fuels
	Expense	Expense	Expense	Expense	Reduction	Demand
Cumulative Years	(billion \$)	(billion \$s)	(billion \$s)	(billion \$s)	(billions)	(billions)
2007 to 2012	0.00	0.00	0.03	0.03	0.03	0.03
2007 to 2017	0.00	0.00	0.74	0.74	0.74	0.74
2007 to 2022	0.00	0.00	5.47	5.47	5.47	5.47
2007 to 2030	0.00	0.00	20.56	20.56	20.56	20.56
2007 to 2050	0.00	0.00	75.35	75.35	75.35	75.35

NOTE: Positive Numbers are Reductions, Negative Numbers are Increases

Cost Effectiveness Analysis (\$s per ton reduction)

	Petroleum					Particulate	
Cumulative Years	Reduction	NOx	CO	NMOG	Toxics	Matter	GHGs
2007 to 2012	1.000	8,681,394	331,001,242	28,354,793	29,734,278	410,859,729	732
2007 to 2017	1.000	8,693,100	331,001,242	28,354,793	29,774,213	410,859,729	732
2007 to 2022	1.000	8,857,409	331,001,242	28,354,793	30,334,711	410,859,729	732
2007 to 2030	1.000	9,662,014	331,001,242	28,354,793	33,078,203	410,859,729	732
2007 to 2050	1.000	10,854,660	331,001,242	28,354,793	37,141,126	410,859,729	732

XTI s 28%


Emissions & Petroleum Reduction

Based on 2005 IEPR Emission Analysis To Be Updated ASAP

_		(Tons/yea	ar)								
ĺ								Petroleum			
	Single	NOx	CO	NMOG	Toxics	Particulate	GHGs	Reduction			
	Year	NOX	CO	NIVIOG	TUXICS	Matter	01103	(billion			
								gallons)			
	2012	2	0	1	0	0	23,850	0.017			
	2017	36	1	11	11	1	430,966	0.316			
	2022	151	4	48	44	3	1,869,812	1.369			
	2030	204	7	77	60	5	2,982,865	2.185			
	2050	274	10	113	80	8	4,371,849	3.202			

Results Petroleum Reduction

GHG Reductions 10% GHG Benefit Assumed

Potential XTL Greenhouse Gas Reductions vs Fuel Price Scenario vs Incentives 2012-2050

20

Staff Recommendations

- Lack of bulk storage sufficient to receive XTLs shipments (and renewable diesels) from abroad and keep bulk XTLs segregated
 - □ Improved Permitting Process,
 - □ Legislature empower the Energy Commission to Oversee and facilitate the permitting process (at ports and inland).
- Lack of sufficient market demand for XTLs
 - DGS 10-year off-take contracts for in-state PTL plants
- Uncertainty about greenhouse gas sequestration mitigation.
 - Government needs to establish a sequestration framework, ie., regulation that provides regulatory certainty upon which plants could be built.
 - □ Evaluate and demonstrate carbon management

Continued - Staff Recommendations

- High risk of building PTL, coal, and bio-fed plants in California
 - □ Legislature should provide up to 50 cents per gallon /20-years for domestic XTL plants
 - Plants must: mitigate GHG to same levels as conventional petroleum refining
 - Credit applies to volumes produced when crude is below \$50/bbl.
 - □ Accelerated depreciation tax rate

Comments - Suggestions

