BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA

Order Instituting Rulemaking Regarding Policies,) Procedures and Rules for the California Solar) R.06-03-004 Initiative, the Self-Generation Incentive Program) and Other Distributed Generation Issues.

DECLARATION OF BENJAMIN S. COLLINWOOD

I, Benjamin S. Collinwood, declare as follows:

1. I am currently employed as Market Development Specialist for Sanyo Energy, (USA) Corporation. My business address is SANYO Energy (USA) Corporation, 2055 Sanyo Ave., San Diego, California, 92154.
2. I am currently responsible for product management for all H.I.T. (heterojunction with intrinsic thin layer) solar panels sold by Sanyo in the United States market. Since Sanyo initiated direct operations in the United States over three years ago, I have been responsible for North American solar sales operations. In the course of my work with Sanyo, I have gained in-depth knowledge of Sanyo solar panel technology and regularly speak at conferences and events as an expert about the solar market and Sanyo module technology. I am familiar with product design and rating systems used in the North American market.
3. Sanyo is a major participant in the worldwide market for photovoltaic panels, and has in the past three years made a major investment in the North American market, including a 22MW capacity silicon wafer manufacturing facility in the region of Los Angeles, CA. Sanyo has most recently focused on development and marketing of bifacial photovoltaic modules. Bifacial modules provide increased power generation compared to conventional single-sided panels because
the back-side of the panel generates electricity from diffuse light that has passed through the panel or is reflected off surrounding surfaces. These panels have been independently verified by Sandia National Labs in several independent tests validating their increased performance. I would be happy to provide this information if requested.
4. Bifacial panels produce from 0 to 20 percent more power (measured in kWh) than single-sided panels. The amount of increased generation depends on albedo, the amount of diffuse and reflected light, which varies depending on site characteristics and installation conditions, but averages approximately 10-15 percent.
5. The CEC AC rating process is not capable of determining system output when using the Sanyo bifacial solar panels. The CEC AC rating is based on Standard Test Condition (STC) ratings that only measure the output from one side of a panel. Since the STC rating system was developed without consideration of bifacial panels, STC ratings are measured with a solar simulator flash test of only one side of a photovoltaic panel. Output from the second side is ignored in the flash test. Because of this, the CEC AC rating process will systematically understate performance of all bifacial panels by approximately 10-15 percent.
6. We discussed this problem with CEC staff earlier in 2006, and CEC staff members have acknowledged this shortcoming of the CEC AC rating process. CEC staff members have also acknowledged that the CEC AC rating process cannot be adapted to account for back-side output from bifacial modules. When we discussed adapting the CEC rating calculation to account for the average
increased performance of bifacial modules, the CEC staff indicated that adjusting the CEC AC calculation equation could not appropriately capture the variation in performance due to installation conditions and site characteristics.
7. The CEC is correct in understanding that the back-side generation may vary by up to 20 percent, depending on whether the site and installation are optimized. Basically, the back-side produces only minimal electricity if it is flat against a roof, but it is capable of producing up to 20% of the output of the front side if it is installed at an optimal site at an optimal angle, with high albedo. Assigning a value of zero to the output of the back-side makes the CEC AC rating completely erroneous for the vast majority of bifacial installations. In short, using a CEC AC rating to calculate rebates for bifacial panels results in underpayments for virtually all installations involving bifacial modules. This would also be the case if the CPUC adopts the proposed "system" AC approach.
8. Bifacial modules are a recent major innovation in the market. I am aware that the following companies are already manufacturing bifacial solar panels: Hitachi Ltd. (Japan), Origin Energy Australia (Sliver Technology), Solar Wind Europe (Russian/Spanish joint venture), and there may be others of which I am not yet aware. Bifacial panels can be used in a variety of solar installations including commercial, residential, new construction, and architectural applications. Examples of such are: carports, awnings, canopies, facades, trellises, deck coverings, balcony coverings, vertical installations (such as fences), architectural structures, and building integrated photovoltaics (BIPV). In my opinion, bifacial modules will constitute a growing market share in the future.
9. If California uses an incentive structure that completely ignores the significantly higher output level of bifacial panels, then marketers and customers will have no incentive to use this improved product in the California market.
10. Performance-based incentives that are based on actual metered output will correctly reflect differences in technology and site specific characteristics and appropriately reward systems that generate more electricity per unit. I believe that it is extremely important that the California Solar Initiative adopt an incentive structure as soon as possible that is based on metered output.

I declare under penalty of perjury that the foregoing is true and correct.

Executed on May 24, 2006, at 2055 Sanyo Ave, San Diego, CA 92154.

Benjamin S. Collinwood

EUROPEAN PV ASSOCIATIONS' POSITION PAPER ON A FEED-IN TARIFF FOR PHOTOVOLTAIC SOLAR ELECTRICITY

The national European photovoltaic industry associations, the European Photovoltaic Industry Association (EPIA) and the Centre of Photovoltaics in Poland hereby present their common position on a Feed-in Tariff (FiT) for photovoltaic solar electricity in the European Union. This paper discusses the advantages of FiT schemes in the market development of photovoltaics and addresses potential concerns in regarding implementation.

1. Background

It is widely known and accepted by experts that current levels of dependence on fossil fuels are unsustainable. The main driving forces that necessitate a change in our energy consumption patterns include natural resource depletion, climate change, a need for security of supply, lack of access to basic energy services by one third of the world's population and the predicted economic growth of emerging markets (especially in the BRIC countries - namely Brazil, Russia, India and China).

The transition to a sustainable global energy system is one of the largest challenges to face mankind in the coming century. Increased electricity generation from renewable energy sources (RES-e) contributes substantially to the easing of geo-, climate- and energy-political areas of conflict and should therefore be prioritised at all levels - local, national and global.

The European Union has set an ambitious target of 21% of RES-e in 2010', obliging all member states to intensify efforts and reach the common objective. The European Commission's report entitled "The share of renewable energy in the EU" concludes however that: "Only a few member states have until now implemented an attractive framework for renewable energy sources. In view of the meagre results so far the Commission calls on member states to ensure the fulfilment of the 2010 targets by the implementation of appropriate measures" ${ }^{2}$.

Within various technologies photovoltaics seems to attract considerable attention due to its potential of contributing a major share of renewable energy in coming decades. The most appreciated advantage of this hi-tech innovative technology is its free, abundant and inexhaustible source of energy. A study conducted by the Renewable Energies Unit of the DG-JRC in Ispra ${ }^{3}$ shows that the entire electricity consumption of EU25 member countries would be satisfied by covering app. 0.71% of their total territory with

PV modules. Assuming that installed PV capacity in the EU may increase to that of approximately 200 GWp in 2030^{4}, emission of close to 180 Mt of CO_{2} will be avoided through the deployment of photovoltaic technology alone. Another important advantage of photovoltaics is its high reliability in crisis situations, such as blackouts and natural disasters. In the context of our transition towards a sustainable global energy system, and as a distributed, decentralized form of electricity generation PV therefore constitutes a key technology.

In additition to the objective of decreasing our reliance on fossil fuels through PV electricity, the EU also strives to ensure that the photovoltaic industry remains competitive on the worldwide market. To achieve this complementary goal, effective support mechanisms must be adopted.

Just as in any industry so also in the case of the PV sector, widespread application and therefore increased demand eventually translates into larger economies of production scale which in turn implie lower cost per unit and consumer friendly prices, all of which together ultimately results in attractive returns on investment.
As it is risky to assume that the increase of competitiveness of PV electricity will be ensured by market forces driving the prices for conventional energy to higher levels only, and ultimately favouring alternative energy resources, there is a need to launch support mechanisms aimed at ensuring both:

1. Lower inception costs for the investor and
2. Adequate gains generated throughout the lifecycle of a PV system regardless of size

Ensuring that these two 'objectives are realized will result in favourable returns for both private users (small investors) and large investors.
The two above-mentioned factors determine the development of the PV market.
One should not underestimate the role of support mechanisms aimed at reducing investment cost in the purchase of PV systems (such as low interest credits/loans, investment subsidies, tax rebates, etc.). However, we believe such measures to be of little use without the basic support of a feed-in tariff for photovoltaic solar electricity (PV electricity) to 'ensure adequate gains throughout the life-cycle of the PV system'.

2. What is a feed-in tariff (FiT)?

A feed-in tariff involves the obligation on the part of a utility to purchase electricity generated by renewable energy producers in its service area at a tariff determined by public authorities and guaranteed for a specific period of time (generally 20 years). A FiT's value represents the full price per kWh received by an independent producer of renewable energy, i.e. including a premium above or additional to the market price, but excluding tax rebates or other production subsidies paid by the government. Different tariffs can be defined for different

[^0]technologies (wind, solar, biomass, etc.) or different countries depending on resource conditions (e.g. solar irradiation). The rate of a FiT is furthermore reduced each year for new installations in order to stimulate decrease in production costs.

Historically, feed-in laws have been the primary mechanism used to support RE development in both Europe and the US. They have a track record of some two decades and are well established throughout the European Union. At present, they are being applied in 16 EU member countries.

Whilst many countries in Europe have introduced a FiT on different levels, only some of them (e.g. Germany) have adopted appropriate rates specifically for PV. Others used inadequate FiT parameters (for instance Austria - too low a ceiling on total installed PV capacity) and thus failed to stimulate significant investor interest. In other cases (e.g. Belgium, Slovenia) it is still too early to reflect on the efficiency and effectiveness of FiT programmes. The introduction of a feed-in tariff is also being considered beyond Europe (e.g. in Australia, and China). By contrast, there is little practical experience on the efficiency and effectiveness of other relatively new support instruments (e.g. RPS) (see explanatory frame below and section 4.1).

3. Other support schemes

Support schemes to stimulate renewable energy introduction and technology deployment differ greatly among EU member states. It is widely accepted that a vivid research environment and public information campaigns combined with demonstration projects are of major importance for successful market development. In stimulation of PV market growth, a feed-in tariff is the single most important and most successful driver, when applied correctly. Other market support mechanisms, as described below, will merely prove effective as and when all sources of energy (fossil fuels, nuclear energy and RES) reach the same level of competitiveness.

Investment support primarily consists of subsidies, tax facilities or subsidized low-interest rates. These are important support mechanisms as they enable PV market take-off. One should observe that investment support is important for relatively expensive technology and is used in many countries all over Europe.

Quota scheme or Renewable Portfolio Standard (RPS) - a requirement for electricity producers or retail suppliers to source a minimum percentage of their electricity consumption from eligible renewable sources. An RPS is usually combined with a Tradable Green Certificate (TGC) system, which is based on open market competition that is hence inherently price sensitive. These certificates have an economic value generating an extra income for RE electricity producers.

Tendering (or bidding) scheme - a variation of FiT and RPS; under an RES-e tendering system, the government awards power purchase contracts by way of tenders for a certain aggregate volume of eligible RES-e to project developers who submit the lowest asking price for a kWh .

4. Why a Feed-in tariff?

This position paper, as a voice for the European PV industry , is intended as an important contribution to the European debate on the future of support systems for the promotion of electricity from renewable energy sources, and photovoltaic solar electricity in particular. Discussing the advantages of FiT schemes and addressing potential concerns of implementation, the position is thus intended to be a useful tool for the European Commission, which is to present an evaluation report on RES support mechanisms by 27th October 2005 and may propose a relevant Community framework. Finally, this common position hopes to be a tool also for national legislators.

4.1 Effectiveness in terms of capacity expansion and RES-E production growth (comparative overview)

Countries with feed-in tariffs for wind power (e.g. Germany, Spain, Denmark) have seen the largest growth of RES electricity. After the Electricity Feed-in Law (EEG) was passed in Germany, installed capacity of wind energy more than doubled year-on-year during the 1990-95 period. At the same time, a viable RES-E manufacturing industry was being established in these countries. The adequate FIT also significantly contributed to surpassing capacity targets. This was the case in both Denmark and Germany, where targets set for the future were reached years in advance with regard to wind.

The German case is also a good example of the FiT effect on installed PV capacity. Although the "100,000 Rooftop Programme" did contribute to the enhancement of installed PV capacity, it was the FiT introduction and later optimisation of its rate that really enabled market take-off, as shown in Fig. 1.

Fig. 1. Market pull by the "100,000 Rooftop Programme" and FiT in Germany
(Source: EPIA)

Until 2004 yearly installed PV power increased almost thirtyfold to 363 MW and system price decreased by more than 20% since 1999. During this period German PV industry created about 10,000 jobs in production, installation, trade and maintenance of PV systems. It is also interesting to note that since 1999 the majority of investments in solar cell production facilities in Europe were made in Germany and Spain, the two countries that offer the most stable and realistic legal framework conditions for citizens investing in a PV system ${ }^{5}$.

Competitive bidding systems (e.g. applied in the UK) in contrast are not as effective in building RES-E capacity. In the past (2001) for instance Germany boasted over 8000 MW of installed wind power capacity whereas the UK showed a mere 500 MW despite a much more favourable wind regime.

Another support mechanism - renewable portfolio standard, is unlikely to have comparable impact on PV deployment as the FiT scheme and may even cause unforeseen negative implications. This arises because an RPS requirement for renewable energy may encourage the lowest direct cost for renewable energy options, so as to minimize electricity retail price. Without specific targets for PV, any portfolio standard will stifle growth of PV markets and impede the technology development.

Green certificate systems are not suitable for PV either as the Danish and Swedish cases clearly demonstrate. In Denmark, a forced transition from the FiT scheme to a green certificate system has led to a collapse of the Danish wind energy market (acc. to the WWEA ${ }^{6}$). In 2000, 600 MW of new capacity were installed based on FiT, whereas during the first half of 2001 new installations dropped to a mere 18 MW , bringing construction of wind power plants to an almost standstill.
4.2 High level of investment confidence to independent (risk-averse) producers of renewable electricity

Investors in renewable energy technology applications demand stable, durable and predictable policy frameworks, some 15-20 years ahead. Long-term stability of income provided by the FiT scheme thus enables long term investment planning and facilitates access to low interest credit and loans. A feed-in tariff proves effective in stimulating new investments, resulting in the augmentation of RES-E installed capacity. As was the case for the wind industry, the application of the FiT scheme could once again prove to be highly effective in the rapid development of a pan European PV market and an innovative industry in Europe.

Tradable Green Certificates in contrast offer much less resistance to entrepreneurial risk. Competitive bidding systems create uncertainties -as tendering processes generally include uncertain timescales and tariffs developers are unsure of whether they will be successful in their bids to develop PV projects.

4.3 Energy generation cost competitiveness in the longer term

If one agrees that photovoltaics is an energy technology which will significantly contribute to the future energy production due to its efficient conversion of abundant solar radiation and low environmental impact, then it is necessary to consider the point in time when PV will become competitive. The figure below presents the answer to that important question.

Fig. 2. PV Competitiveness (Source: W. Hoffmann "Towards an Effective European Industrial Policy for PV Solar Electricity")

The market segment "grid connected systems" will be competitive, when PV electricity generating costs based on private investments are lower compared to utility prices in a liberalised market. This will most likely happen as most PV generated kWh are produced in peak hour time and future electricity bills will charge higher prices during peak times compared to the standard flat rate. Fig. 3 shows a respective correlation between (a) spot market prices at the Amsterdam (APX) as well as European (EEX) Power Exchanges and (b) the power output of PV roof top systems installed in Germany (June 2001). It clearly presents that photovoltaic solar electricity is produced at the highest demand when conventional electricity prices are also the highest.

It is estimated that competitiveness of solar photovoltaic electricity for peak power price rates will be reached around 2015 in regions with higher irradiation (e.g. southern Europe) while for Central Europe one should add another 10 years. Competition with bulk power is projected to require 10 additional years for both regions ${ }^{7}$.

Some critics say that even in the longer term the FiT system tends to be costly and may become hard to sustain. This is hardly a convincing argument as the PV market potential is enormous, assuming a swift and successful introduction of FiT on a wide-scale in the whole European Union, as illustrated on Fig. 4.

Spot market price

PV power output

Fig. 3. Spot Market prices in correlation with PV electricity generation in Germany (Source: FhG-ISE)

Assuming that a FiT is coupled to the annual sun hours of a respective region in Europe but otherwise similar to the German EEG (20 years payment, 5\% decrease p.a.) one can calculate the total amount of resources required for the next 20 years when the system will expire due to solar PV electricity 'breaking even' also in the grid connected market segment and the phasing out of the 20 years period during which the FiT gets paid for newly installed systems.

Fig. 4. Costs of FiT implementation in the whole Europe (Source: W. Hoffmann "Towards an Effective European Industrial Policy for PV Solar Electricity")

The integral curve (upper blue one) of the FiT resources over the total of 40 years shown in the above graph may present a daunting figure of several hundred billion Euro at first sight. However, as PV kWh are mostly delivered during peak-power times, a customer may value this produced electricity from his own PV system against the price he would have to pay otherwise to his local utility. Hence, the new integral over 40 years (lower red one) decreases the total sum considerably (to 13 billion EUR only).

Adding job creation ${ }^{8}$, necessary investments into production equipment ${ }^{9}$, tax revenue from sold goods such as wafers, cells and modules ${ }^{10}$ and without further consideration of the socio-economic value of producing pollution free electricity, one can safely conclude that over the 40 years duration of an assumed feed-in tariff there is a well balanced budget of money collected from all electricity users which is distributed amongst investors in PV systems and the political-economic benefit as described above ${ }^{11}$.

Further criticism with regard to the feed-in tariff claims it to be inefficient in ensuring that electricity is generated and sold at minimum costs. However, as different companies will compete on the market to sell their products, this will ensure price decrease of the system. Additionally, annual tariff decrease for new PV installations will favour cost efficiency. This in turn will lead to price reductions in PV generated electricity. However, as this process will take time, at present only a feed-in model can create a secure future market for "less cost-competitive" technologies like PV.

Besides, competitiveness of photovoltaic solar electricity will be reached faster because of increasing prices for conventional electricity in the middle to long-term.

4.4 Independence from state budgets

A FiT, unlike investment subsidies, tax rebates etc. does not create burdens on the state budget and as such will gain political acceptance more easily.

The costs of a FiT are borne by electricity consumers. Therefore, proper information and consultation measures (preferably combined with demonstration activities) should be taken to raise environmental awareness and gain consumer approval of the FiT application. European Commission impact studies have shown that a majority of the European population (EU-15) is ready to accept an increase of their electricity bill, if related to renewable energy ${ }^{12}$. This willingness to pay more may, however, vary from country to country. The German experience shows that the real cost charged from a household using PV electricity may be low (in 2003 it was as little as one additional Euro per month $)^{13}$. This goes hand in hand with a conviction of the imperative to increase solar energy's role in ensuring future energy security, expressed by German citizens in 2004 opinion polls ${ }^{14}$.

4.5 Low and simple administration demands

From a consumer point of view the FiT is a clear and easily understandable mechanism. The one-page text of the EEG was one of the shortest and simplest laws implemented in Germany. Tendering and RPS schemes by contrast are more complex to implement. Besides, administration costs of a FiT are usually lower than for the implementation of a national trading scheme (TGCs). This fact is especially important for small countries where a competitive national trading scheme is difficult to implement. Even in Sweden, energy utilities are refraining from trade of certificates in expectation of the creation of a larger, more liquid and lucrative, pan-Nordic market for certificates.

4.6 Encouragement of technological development and high quality

This process is stimulated through the application of an annual decrease in FiT rate for new installations. Producers with lower turnover aim at improving their efficiency through technology development to stay competitive on the market. This is also important with regard to competitiveness of European production companies, since a FiT supports them by stimulating demand in the changing macroeconomic environment.

4.7 Accessibility

A FiT appears to be the most democratic support mechanism, since it is more likely to appeal also to small investors. Participation in FiT schemes is open to any system installed, regardless of its energy generation volume. In case of an RPS combined with green certificates, by contrast, larger generators are more willing to risk selling electricity and certificates under uncertain conditions. Critics point out that TGC schemes obliterate small, decentralised RES-E generation, since it is designed for a different target group: utilities, banks, pension funds, etc. ${ }^{15}$

As far as tendering schemes are concerned, the intense price competition among renewable energy suppliers favours large RE developers and suppliers who are able to reduce cost and thus offer lower prices.

Feed-in-tariffs are therefore the most effective mechanism with regard to a number of potential beneficiaries. Practice has proven that FiT create superior conditions for small and medium investors and offer improved grounds for economic development.

5. Why government support is crucial in accelerating the development of PV-specific green power schemes.

State's role

As experience shows, governments do have a vital role to play in both establishing a realistic and supportive policy framework, and in accelerating the development of PV-specific green power schemes.

The issue of the decisive role of state in FiT introduction has been examined by the European Court and thus has legal precedence. In 2001 this institution declared that the German feed-in law was compatible with EU law.

State intervention for renewable energies is also justified given a twofold obstacle they are facing in the domestic electricity market:

1) Externalities not always adequately included in the cost of conventional energy
The electricity wholesale price reflects an incomplete picture of the real, external and internal production cost. As it does not take into account the cost of pollution control inherent in the use of fossil fuels, it prevents the environmental benefits from being considered at face value, and thus denies renewable energy sources the widely acclaimed competitive advantages they were developed to provide in the first place.

Therefore public intervention may be fully justified by the imperative to take into account external costs related to the environment (not fully included in the cost of electricity produced from fossil fuels), leading to a level playing field on the market and to stimulate technological change.
2) PV markets and technologies are in its infancy they need support to become sustainable As renewable energy technologies like photovoltaics are not completely mature, they cannot enter into direct competition on the market with conventional technologies. Without the widespread dissemination of a technological learning process and economies of scale to occur properly, these technologies cannot aim to be competitive.

FiT vs. free electricity market

There is an issue that is being heavily discussed: as a national system of feed-in tariff is available only to domestic generators of green electricity it excludes imports of renewable electricity. This situation may be in conflict with the EU rules regarding nondiscrimination of domestic versus foreign producers and free international trade among member states. On the other hand, non-discrimination of producers and free international trade may lead to major imports of green electricity and major outflows of financial resources, which may be unacceptable for a country offering relatively high feed-in tariffs ${ }^{16}$. In the Community Guidelines on State Aid for Environmental Protection it is stated that state aid for renewables should result in an overall increase of renewable energy sources and not in shifts from one member state with less favourable RE incentives to another with more favourable state aid.

CONCLUSIONS

Comparing the performance of different support mechanisms applied to RES-E market development one can conclude that a feed-in tariff is at present the best support proposal for the PV market. In the future, when this
market is well developed, other mechanisms (e.g. net metering) may prove more suitable. However, at the present stage of PV development in Europe, only a feed-in model can create a secure future market for today's "less costcompetitive" technologies such as PV. And only a model based on guaranteed feed-in tariffs enables a quick and broad implementation of renewable energy, better supports its technological development, as well as more efficiently promotes cost reduction ${ }^{17}$.

The report produced in 2001 for the EU, based on the ElGreen computer model which reviews all options for supporting RESE systems comes down on the side of a FiT scheme. It has been successful for triggering substantial dissemination in most of the countries where it has been introduced. It has proven to be the preferable national instrument for significant development of RES-E. The major advantage of a feed-in tariff is that it is effective, flexible, fast and easy to establish (and to adapt if there are difficulties) ${ }^{18}$.

However, FiT criticism and improper applications are also a reality. Therefore this particular support instrument should be very carefully designed. As past experience shows administrative burdens should be removed and low ceilings of total system power avoided (consider Spanish and Austrian cases). There is also a need for a favourable legal and administrative framework (e.g. building regulations, grid access-related procedures). Hence, a successful feed-in policy includes the following design features:

- long-term contracts (15-20 years),
- guaranteed price that offers reasonable rates of return for producers, easing access to financing sources (e.g. preferential credit lines) due to clear payback periods,
- integration into long-term planning with other policy options (i.e. investment conditions),
- annual rate decrease according to technological progress for newly installed systems,
- independence from state budgets,
- simple structure,
- low administrative costs and demands,
- supportive in the changing macroeconomic environment (e.g. currency exchange rate).
Considering large investments needed to establish photovoltaic solar electricity in energy systems, it must become a magnet for private capital. Long-term stability of income is a pre-condition to attract investors in long-term investments such as RE power plants. Thus, long-term power purchase agreements guaranteed by a feed-in-tariff are a suitable means at the present stage of PV market development in Europe.

Implementation of a feed-in tariff for photovoltaic solar electricity is a necessity to significantly increase the deployment of PV in Europe!

We recommend the establishment of task-forces to prepare necessary legislative measures.

Prepared within the PV Catapult Project by:

- Centre of Photovoltaics, Warsaw University of Technology, Poland
- European Photovoltaic Industry Association, Belgium
- Bundesverband Photovoltaik Österreich, Austria
- Belsolar, Belgium
- Czech RE Agency, o.p.s., Czech Republic
- Syndicat des Energies Renouvelables, France
- Bundesverband Solarindustrie e.V., Bsi, Germany
- HELAPCO, Greece
- Hungarian PV Chapter of the Hungarian Electrotechnical Association - Solart-System Ltd, Hungary
- GIFI - Italian Association of PV Companies, Italy
- Holland Solar, The Netherlands
- Polish Society for Photovoltaics, Poland
- Apisolar, Portugal
- ApE - Agencija za prestrukturiranje energetike d.o.o., Slovenia
- ASIF, Spain
- SPIA - Scandinavian PV Industry Association, Sweden, Denmark, Norway

Acknowledgements

The authors wish to thank Andrew Machirant of Switchpower.se for his valuable comments and detailed proofreading.

Please contact us for more details and cooperation!

European Photovoltaic

 Industry AssociationAvenue Charles Quint, 124 B-1083 Brussels - Belgium Tel: +32-2-465 3884 Fax: +32-2-468 2430 E-mail: epia@epia.org Website: www.epia.org

Centre of Photovoltaics Warsaw University of Technology
IMiO PW, Koszykowa 75 00-662 Warsaw, POLAND Tel: +48-22-660 7782 +48-22-660 7530 Fax: +48-22-660 7782 E-mail: pietruszko@pv.pl Website: www.pv.pl

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA

Order Instituting Rulemaking Regarding Policies,) Procedures and Rules for the California Solar) R.06-03-004 Initiative, the Self-Generation Incentive Program) and Other Distributed Generation Issues.

DECLARATION OF JOHN BERDNER

I, John Berdner, declare as follows:

1. I am President of SMA America, Inc., U.S. subsidiary of SMA Technologie, AG. My business address is: 12438 Loma Rica Drive, Grass Valley, CA 95945
2. SMA Technologie, AG was founded in 1981 and is the oldest and largest supplier of photovoltaic (PV) inverters in the world, with more than 400,000 inverters installed worldwide. SMA has extensive experience in the development of the PV programs in Germany.
3. I have been working in the field of PV system engineering for 23 years. I am a voting member of the Standards Technical panel for Underwriters Laboratory, Inc. (UL) Standard 1741 (the PV inverter safety standard). I am a member of the industry advisory group for National Electric Code (NEC) Article 690 (the portion of the Code addressing PV standards). I am also one of the United States experts for the Institute of Energy Conversion (IEC) PV Task Group.
4. The California Energy Commission's (CEC) inverter and module rating is not an appropriate benchmark for determining system output for purposes of calculating PV incentive payments. The CEC testing model does not address accuracy of inverter power tacking and other aspects of inverter operation. In addition, there are numerous external factors, including verified module rating, wire size, and installation practices, that are not included in the CEC calculation. These other factors cumulatively can have a greater impact on system output than CEC weighted inverter efficiency.
5. The Arcata City Hall provides a real world example of the inaccuracy of the CEC AC rating system. The system consists of four matched solar arrays with inverters from four different manufacturers. The installation practices were identical but verification
tests have shown that the actual energy production varies by approximately 10%. The large variance in energy production is inconsistent with results predicted using CEC inverter efficiency ratings. The CEC efficiency ratings of the four inverters displayed, from top to bottom, are: Sunny Boy 92.5%, Fronius 93%, Xantrex 94.5%, and PV Powered 94%. The actual energy yield as of May 23, 2006, shown in the screen capture below, shows significantly lower energy production for most highly rated inverters and significantly higher production from lower rated inverters.

6. The "system" AC approach proposed by the California Public Utilities Commission Staff for the proposed "Expected Performance" Buydown Incentive does not address the accuracy and verification problems we have observed in the CEC AC inverter rating, and has the additional problem of being untested and requiring verification. In my opinion, the use of AC rating will complicate the application process by requiring complicated calculations. The additional information required for array orientation and shading will require a verification process that apparently has not yet been developed.
7. It appears from the limited information provided that the proposed verification process would also require extensive testing and on-site visits. The on-site verification process would be random in nature and therefore inherently inefficient at detecting underperforming systems. In addition, on site verification would require the creation of additional bureaucracy that will divert budget and resources away from installations.
8. A simple performance-based incentive (PBI) would be vastly superior to the inaccurate ratings currently used by the CEC and proposed by the CPUC. Rebates based on output meters are inherently preferable to rating approaches, which rely on proxies for prediction and verification. PBI based programs intrinsically provide proper market drivers encompassing all of the many variables found in PV system design and installation. Over time, market forces then act to reward high performance installation and system design and penalize underperforming systems. Public dissemination of comparative performance data would create informed consumers, thereby accelerating the corrective action of market forces.
9. With a simple PBI payment based on metered output of system performance. The CPUC will not need a complicated on-site verification system as web-based monitoring solutions are available today from multiple vendors. These web-based solutions will provide accurate verification at low initial cost and little or no recurring costs.
10. Basically, it is my observation, based on my years of experience and knowledge of the market, that basing payments for PV incentives on AC inverter ratings is and will always be problematic. Using easily verifiable, accurate and reliable metered output for calculating performance-based incentives is preferable for all of the reasons I have discussed above.

I declare under penalty of perjury that the foregoing is true and correct.

Executed on May 24, 2006, at Grass Valley, CA.

	1. Solar Electricity Production (MWh)				
Initial Year of Operation*	Total Solar Electricity Produced	\% of Total CA Load	Commercial (Larger than 10 kW)	Residential New Home	Residential (Smaller than 10kW)
2007	122,029	0.048%	24,840	20,530	76,659
2008	209,823	0.082%	27,324	45,771	136,728
2009	320,693	0.124%	30,056	83,293	207,344
2010	452,387	0.173%	36,068	135,637	280,683
2011	642,035	0.242%	50,495	211,057	380,483
2012	887,354	0.330%	70,693	322,282	494,379
2013	$1,255,846$	0.462%	103,211	323,774	828,861
2014	$1,739,972$	0.633%	152,753	301,371	$1,285,848$
2015	$2,259,060$	0.812%	267,317	288,381	$1,703,362$
2016	$2,503,753$	0.889%	528,923	285,946	$1,688,883$

	2. Solar Electric Capacity	Installed/Reserved (MW)									
Initial Year of Operation*	New Solar Capacity Installed	Cumulative Solar Capacity	Commercial (Larger than 10 kW)	Residential New Home	Residential (Smaller than 10kW)						
2007	60.0	60.0	25.0	5.0	30.0						
2008	69.3	129.4	27.5	8.8	33.0						
2009	83.1	212.5	30.3	13.3	39.6						
2010	105.7	318.2	36.3	1.9	49.5						
2011	142.4	460.5	50.8	29.8	61.7						
2012	196.5	657.1	71.1	44.7	80.7						
2013	273.9	931.0	103.9	67.1	102.9						
2014	399.8	1330.8	153.7	69.1	177.0						
2015	640.4	1971.2	269.0	70.5	300.8						
2016	1029.0	3000.3	532.3	71.9	424.8						
Totals:							$\mathbf{3 , 0 0 0}$		$\mathbf{1 , 3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{1 , 3 0 0}$

	PV Installations, California Curve (MW)			
Initial Year of Operation*	Commercial (Larger than 10 kW)	Residential New Home	Residential (Smaller than 10kW)	Total CA Electricity Retail Sales (MWh)
2007	25.0	5.0	30.0	$253,000,000$
2008	27.5	8.8	33.0	$256,036,000$
2009	30.3	13.3	39.6	$259,108,432$
2010	36.3	19.9	49.5	$262,217,733$
2011	50.8	29.8	61.7	$265,364,346$
2012	71.1	44.7	80.7	$268,548,718$
2013	103.9	67.1	102.9	$271,771,303$
2014	153.7	69.1	177.0	$275,032,558$
2015	269.0	70.5	300.8	$278,332,949$
2016	532.3	71.9	424.8	$281,672,944$
	$\mathbf{1 , 3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{1 , 3 0 0}$	$285,053,020$

Initial Year of Operation*	3. Total Funding Requirement								Average Cost to CA Retail Consumers (\$/kWh)
	Total Direct Incentives Budget	Admin Costs	Total Annual Funding Available to Projects	Interest Earned on Escrow Account	Cumulative Rolling Funding Carried Forward	Direct Incentive Sub-Totals			
						Commercial (Larger than 10 kW)	Residential New Home	Residential (Smaller than 10kW)	
2007	\$280,000,000	\$45,000,000	\$235,000,000	4.0\%	\$100,255,629	\$75,368,659	\$14,126,112	\$84,000,000	\$0.00093
2008	\$280,000,000	\$45,000,000	\$235,000,000	\$4,010,225	\$189,808,899	\$68,450,203	\$21,652,240	\$80,850,000	\$0.00092
2009	\$280,000,000	\$45,000,000	\$235,000,000	\$7,592,356	\$266,353,701	\$59,628,204	\$27,838,594	\$83,160,000	\$0.00091
2010	\$280,000,000	\$45,000,000	\$235,000,000	\$10,654,148	\$295,754,099	\$112,290,261	\$35,792,478	\$89,100,000	\$0.00090
2011	\$280,000,000	\$45,000,000	\$235,000,000	\$11,830,164	\$291,402,390	\$126,462,619	\$44,740,597	\$92,584,913	\$0.00089
2012	\$280,000,000	\$45,000,000	\$235,000,000	\$11,656,096	\$261,972,248	\$137,495,624	\$53,688,717	\$96,787,359	\$0.00088
2013	\$280,000,000	\$45,000,000	\$235,000,000	\$10,478,890	\$217,670,234	\$144,535,400	\$60,399,806	\$92,652,994	\$0.00086
2014	\$280,000,000	\$45,000,000	\$235,000,000	\$8,706,809	\$168,794,404	\$142,608,262	\$41,474,534	\$106,174,746	\$0.00085
2015	\$280,000,000	\$45,000,000	\$235,000,000	\$6,751,776	\$123,797,703	\$124,782,229	\$28,202,683	\$120,331,379	\$0.00084
2016	\$280,000,000	\$45,000,000	\$235,000,000	\$4,951,908	\$3,181,201	\$82,299,526	\$14,383,368	\$84,957,293	\$0.00083
Subtotals:	2,800,000,000	\$450,000,000	\$2,350,000,000			\$1,073,920,988	\$342,299,128	\$930,598,683	

Avg. Annual Totals (2007- 2016)	$\$ 280, \mathbf{0 0 0 , 0 0 0}$	$\$ 45,000,000$	$\$ 235,000,000$	$\$ 107,392,099$	$\$ 34,229,913$	$\$ 93,059,868$	$\$ 0.00079$
$\$ 2,800,000,000$							TOTAL FUNDING REQUIREMENT (2007-2025)

* Reflects actual payment schedule; incentives and rebates will be reserved 6 months to 1 year prior to being paid.
\square 0\% IOU Annual Avg. Rate Increase
AC-cec rating to AC-real rating factor \qquad
\qquad AC-cec rating to AC-real rating factor

California Solar Initiative Program

$\begin{aligned} & \text { System Cost } \\ & \text { Decline } \end{aligned}$	$\begin{aligned} & \text { Calendar } \\ & \text { Year } \end{aligned}$	Project Year	
	2007	2007 0	2008
7\%	2008	0	0
7\%	2009	0	0
7\%	2010	0	0
7\%	2011	0	0
7\%	2012	0	0
7\%	2013	0	0
7\%	2014	0	0
7\%	2015	0	0
7\%	2016	0	0
1\%	2017		0
1\%	2018		
1\%	2019		
1\%	2020		
1\%	2021		
1\%	2022		
1\%	2023		
1\%	2024		
1\%	2025		
1\%	2026		
1\%	2027		
1\%	2028		
1\%	2029		
1\%	2030		
1\%	2031		
1\%	2032		
1\%	2033		
1\%	2034		
1\%	2035 2036		
1\%	2036		

Tax Credits	
Per Installation	Per Watt
$\$ 2,000.00$	$\$ 1.00$
$\$ 2,000.00$	$\$ 0.91$
$\$ 2.000 .00$	$\$ 0.83$
$\$ 0.00$	$\$ 0.00$
$\$ \$ 000$	$\$ 0.00$
$\$ 0.00$	$\$ 0.00$
$\$ 0.00$	$\$ 0.00$
$\$ 0.00$	$\$ 0.00$
$\$ 0.00$	$\$ 0.00$
$\$ 0.00$	$\$ 0.00$

* Reflects actual payment schedule; incentives and rebates will be reserved 6 months to 1 year prior to being paid.

Calculate Total Cost of PBI ($\$ / \mathrm{Year})$

ASSUMPTIONS			
Year 1 Installation Cost (\$/Wac-cec)		\$7.65	PBI Pa
Avg. Production per kWac-real		1,840	
Performance DegradationAC-cec rating to AC-real rating factor		0.60\%	Distribc
		90\%	
Blended Avg. IOU Elec. Rate		0.130	
Annual Avg. Rate Increase		3.0\%	
Initial Year of Operation*	Annual Encumberance from PBI Program	Solar MWhs annually eligible for PBI Program	ANNUAL SOLAR MWac-cec Installed
			See
2007	\$26,930,659	4,826	10.0
2008	\$24,458,563	25,553	11.0
2009	\$21,306,294	41,778	12.1
2010	\$40,123,451	60,821	14.5
2011	\$45,187,505	92,440	20.3
2012	\$49,129,808	134,252	28.5
2013	\$51,645,255	199,535	41.6
2014	\$50,956,651	288,038	61.5
2015	\$44,587,070	459,988	107.6
2016	\$29,407,190	853,842	212.9
2017	\$0	849,016	
2018	\$0	828,289	
2019	\$0	812,064	
2020	\$0	793,021	
2021	\$0	761,402	
2022	\$0	719,590	
2023	\$0	654,307	
2024	\$0	565,804	
2025	\$0	393,854	
2026	\$0	0	
2027	\$0		
2028	\$0		
2029	\$0		
2030	\$0		
2031	\$0		
2032	\$0		
2033	\$0		
2034	\$0		
2035	\$0		
2036	\$0		
$\begin{aligned} & \text { Totals for } \\ & \text { Program } \end{aligned}$	\$383,732,446	8,538,419	520

* Reflects actual payment schedule; incentives and rebates will be reservi

NPV	5\%	\#REF!	\#REF!
	\$64,083,305,116.35		
Year	Multi Year Allocation		
	CBI	PBI	Total
2007	\$12,997,457,466	\#REF!	\#REF!
2008	\$56,817,411,389	\#REF!	\#REF!
2009	\$19,369,359	\#REF!	\#REF!
2010	\$33,436,210	\#REF!	\#REF!
2011	\$32,276,789	\#REF!	\#REF!
2012	\$35,092,720	\#REF!	\#REF!
2013	\$35,373,462	\#REF!	\#REF!
2014	\$34,430,170	\#REF!	\#REF!
2015	\$25,478,326	\#REF!	\#REF!
2016	\$14,862,357	\#REF!	\#REF!
2017	\$0	\#REF!	\#REF!
2018	\$0	\#REF!	\#REF!
2019	\$0	\#REF!	\#REF!
2020	\$0	\#REF!	\#REF!
2021	\$0	\#REF!	\#REF!
2022	\$0	\#REF!	\#REF!
2023	\$0	\#REF!	\#REF!
2024	\$0	\#REF!	\#REF!
2025	\$0	\#REF!	\#REF!
2026		\#REF!	\#REF!
2027	\$0		
2028			
2029			
2030			
2031			

2032			
2033			
2034			
2035			
2036			
Totals through	$\mathbf{\$ 7 0 , 0 4 5 , 1 8 8 , 2 4 7}$	\#REF!	\#REF!
$\mathbf{2 0 3 6}$			

PBI Annual Decline	0%
ay-out Term (years)	5
In-State Bonus	0%
	0%

Federal Tax Rate	35.0\%
State Tax Rate	7.8\%
Blended Federal \& State	40.1\%
Discount Rate	10.0\%

California Solar Initiative Program				
PBI payment per MWh	Customer Bill Savings per kWh	CBI Equivalent using discount rate	Fed ITC	CA ITC
Data Table on the Right				
	0.130	\$2.69	30\%	0\%
	0.134	\$2.22	30\%	0\%
	0.138	\$1.76	30\%	0\%
	0.142	\$2.76	10\%	0\%
	0.146	\$2.22	10\%	0\%
	0.151	\$1.73	10\%	0\%
	0.155	\$1.24	10\%	0\%
	0.160	\$0.83	10\%	0\%
	0.165	\$0.41	10\%	0\%
	0.170	\$0.14	10\%	0\%
	0.175	\$0.00		
	0.180	\$0.00		
	0.185	\$0.00		
	0.191	\$0.00		
	0.197	\$0.00		
	0.203	\$0.00		
	0.209	\$0.00		
	0.215	\$0.00		
	0.221	\$0.00		
	0.228	\$0.00		
	0.235	\$0.00		
	0.242	\$0.00		
	0.249	\$0.00		
	0.257	\$0.00		
	0.264	\$0.00		
	0.272			
	0.280			
	0.289			
	0.297			
	0.306			
		Average \$/Wac-cec = \$0.74	\$0.74	

ed 6 months to 1 year prior to being paid.

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#	\#REF!	\#REF!
Yearly Allocation		
CBI	PBI	Total
\$12,997,457,466	\#REF!	\#REF!
\$56,817,411,389	\#REF!	\#REF!
\$19,369,359	\#REF!	\#REF!
\$33,436,210	\#REF!	\#REF!
\$32,276,789	\#REF!	\#REF!
\$35,092,720	\#REF!	\#REF!
\$35,373,462	\#REF!	\#REF!
\$34,430,170	\#REF!	\#REF!
\$25,478,326	\#REF!	\#REF!
\$14,862,357	\#REF!	\#REF!
\$0	\#REF!	\#REF!

\#\#\#\#\#\#\#\#\#\#\#\#	\#REF!	\#REF!

Assumptions

From Other Chart

System Cost
Decline
7%
7%
7%
7%
7%
7%
7%
7%
7%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%

ASSUMPTIONS			PBI Annual Decline							Assumptions	Target IRR:			
Year 1 Installation Cost (\$/Wac-cec)		\$7.65			0\%			35.0\%						
		1,840			5									
	Performance Degradation	0.60\%	\% $\begin{array}{r}\text { In-State Bonus } \\ \text { Distribution Energy Bonus }\end{array}$		0\%	State Tax RateBlended Federal \& State			40.1\%			From Other Chart		
		90\%			Discount Rate	10.0\%	Recalculate							
Blended Avg. IOU Elec. Rate Annual Avg. Rate Increase		0.130												
		3.0\%												
Initial Year of Operation*	Annual Encumberance from PBI Program	California Solar Initiative Program										8.0\%		
		New Solar MWhs annually eligible for PBI Program	ANNUAL SOLAR MWac-cec Installed	PBI payment per MWh	Customer Bill Savings per kWh	CBI Equivalent using discount rate	Fed ITC	CA ITC	Value of Tax Benefits (\% of Net Cost)	Avg Install Price (\$/Wac-cec)	System Cost Decline	Com IRR	Gov IRR	
			See Data Table on the Right											
2007	\$48,438,000	24,840	15.0	390	0.130	\$2.69	30\%	0\%	54.4\%	\$7.65		9.0\%	2.6\%	
2008	\$43,991,640	27,324	16.5	322	0.134	\$2.22	30\%	0\%	54.4\%	\$7.11	7\%	9.0\%	2.9\%	
2009	\$38,321,910	30,056	18.2	255	0.138	\$1.76	30\%	0\%	54.4\%	\$6.62	7\%	9.0\%	3.2\%	
2010	\$72,166,810	36,068	21.8	400	0.142	\$2.76	10\%	0\%	38.9\%	\$6.15	7\%	8.1\%	7.2\%	
2011	\$81,275,114	50,495	30.5	322	0.146	\$2.22	10\%	0\%	38.9\%	\$5.72	7\%	8.0\%	7.1\%	
2012	\$88,365,816	70,693	42.7	250	0.151	\$1.73	10\%	0\%	38.9\%	\$5.32	7\%	8.0\%	7.2\%	
2013	\$92,890,146	103,211	62.3	180	0.155	\$1.24	10\%	0\%	38.9\%	\$4.95	7\%	8.0\%	7.2\%	
2014	\$91,651,611	152,753	92.2	120	0.160	\$0.83	10\%	0\%	38.9\%	\$4.60	7\%	8.1\%	7.3\%	
2015	\$80,195,159	267,317	161.4	60	0.165	\$0.41	10\%	0\%	38.9\%	\$4.28	7\%	8.1\%	7.3\%	
2016	\$52,892,336	528,923	319.4	20	0.170	\$0.14	10\%	0\%	38.9\%	\$3.98	7\%	8.4\%	7.8\%	
2017	\$0				0.175	\$0.00			31.2\%	\$3.94	1\%			
2018	\$0				0.180	\$0.00			31.2\%	\$3.90	1\%			
2019	\$0				0.185	\$0.00			31.2\%	\$3.86	1\%			
2020	\$0				0.191	\$0.00				\$3.82	1\%			
2021	\$0				0.197	\$0.00				\$3.79	1\%			
2022	\$0				0.203	\$0.00				\$3.75	1\%			
2023	\$0				0.209	\$0.00				$\$ 3.71$ $\$ 3.67$	1\%			
2024 2025	\$0				0.215 0.221	$\$ 0.00$ $\$ 0.00$				$\$ 3.67$ $\$ 3.64$	1\%			
2025	\$0				0.221 0.228	$\$ 0.00$ $\$ 0.00$				$\$ 3.64$ $\$ 3.60$	1\%			
2027	\$0				0.235	\$0.00				\$3.56	1\%			
2028	\$0				0.242	\$0.00				\$3.53	1\%			
2029	\$0				0.249	\$0.00				\$3.49	1\%			
2030	\$0				0.257 0.264	$\$ 0.00$ $\$ 0.00$				\$3.46 $\$ 3.42$	1\%			
2031	\$0				0.264 0.272	\$0.00				\$3.42	1\%			
2033	\$0				0.280					\$3.36	1\%			
2034	\$0				0.289					\$3.32	1\%			
2035	\$0				0.297 0.306					$\$ 3.29$ $\$ 3.26$	1% 1%			
Totals for Program	\$690,188,541	1,291,680	780			Average $\$ / \mathbf{W a c}-\mathrm{cec}=$	\$0.88							

* Reflects actual payment schedule; incentives and rebates will be reserved 6 months to 1 year prior to being paid.

NPV	5\%					
	\$119,071,444,501.76	\$473,092,072.05	\$119,544,536,573.81	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#	\$520,344,503.99	\$119,591,789,005.75
Year	Multi Year Allocation			Yearly Allocation		
	CBI	PBI	Total	CBI	PBI	Total
2007	\$66,895,756,953	\$9,687,600	\$66,905,444,553	\$66,895,756,953	\$48,438,000	\$66,944,194,953
2008	\$60,755,069,520	\$18,485,928	\$60,773,555,448	\$60,755,069,520	\$43,991,640	\$60,799,061,160
2009	\$29,054,038	\$26,150,310	\$55,204,348	\$29,054,038	\$38,321,910	\$67,375,948
2010	\$50,154,314	\$40,583,672	\$90,737,986	\$50,154,314	\$72,166,810	\$122,321,124
2011	\$48,415,184	\$56,838,695	\$105,253,879	\$48,415,184	\$81,275,114	\$129,690,298
2012	\$52,639,080	\$64,824,258	\$117,463,338	\$52,639,080	\$88,365,816	\$141,004,896
2013	\$53,060,193	\$74,603,959	\$127,664,152	\$53,060,193	\$92,890,146	\$145,950,339
2014	\$51,645,255	\$85,269,899	\$136,915,154	\$51,645,255	\$91,651,611	\$143,296,865
2015	\$38,217,488	\$86,875,569	\$125,093,057	\$38,217,488	\$80,195,159	\$118,412,648
2016	\$22,293,535	\$81,199,014	\$103,492,548	\$22,293,535	\$52,892,336	\$75,185,871
2017	\$0	\$63,525,850	\$63,525,850	\$0	\$0	\$0
2018	\$0	\$44,947,821	\$44,947,821	\$0	\$0	\$0
2019	\$0	\$26,617,499	\$26,617,499	\$0	\$0	\$0
2020	\$0	\$10,578,467	\$10,578,467	\$0	\$0	\$0
2021	\$0	\$0	\$0	\$0	\$0	\$0
2022	\$0	\$0	\$0	\$0	\$0	\$0
2023	\$0	\$0	\$0	\$0	\$0	\$0
2024	\$0	\$0	\$0	\$0	\$0	\$0
2025	\$0	\$0	\$0	\$0	\$0	\$0
2026	\$0	\$0	\$0	\$0	\$0	\$0
2027						
2028 2029						
2030						
2031						
2032						
2033						
2034						
2035 2036						
Totals through 2036	\$127,996,305,560	\$690,188,541	\$128,686,494,101	\#\#\#\#\#\#\#\#\#\#\#\#	\$690,188,541	\$128,686,494,101

	PBI per MWH																					
Calendar Year	Project Year																					
2007	$\begin{gathered} 2007 \\ 390 \end{gathered}$	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
2008	390	322																				
2009	390	322	255																			
2010	390	322	255	400																		
2011	390	322	255	400	322																	
2012	0	322	255	400	322	250																
2013	0	0	255	400	322	250	180															
2014	0	0	0	400	322	250	180	120														
2015	0	0	0	0	322	250	180	120	60													
2016	0	0	0	0	0	250	180	120	60	20												
2017	0	0	0	0	0	0	180	120	60	20	0											
2018	0	0	0	0	0	0	0	120	60	20	0	0										
2019	0	0	0	0	0	0	0	0	60	20	0	0	0									
2020	0	0	0	0	0	0	0	0	0	20	0	0	0	0								
2021	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							
2022	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							
2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
2024	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
2025	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
2026	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
2027	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2028	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2029	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2031	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2032	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2033	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2034	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2035	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2036	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0

10-Year PBI Program: 10 -Year Declining PBI Pay-out Schedule (\$/kWh)

	Initial Year of Operation*									
Pay-out Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
1	0.390	0.322	0.255	0.400	0.322	0.250	0.180	0.120	0.060	0.020
2	0.390	0.322	0.255	0.400	0.322	0.250	0.180	0.120	0.060	0.020
3	0.390	0.322	0.255	0.400	0.322	0.250	0.180	0.120	0.060	0.020
4	0.390	0.322	0.255	0.400	0.322	0.250	0.180	0.120	0.060	0.020
5	0.390	0.322	0.255	0.400	0.322	0.250	0.180	0.120	0.060	0.020
6	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

CALCULATIONS				
Avg Annual G		Inflation		
10-year	1,791			
20-year	1,739	134\%		
25 -year	1,714	146\%		
year	kWh/kWac	inflation	Fed Depr	State Depr
1	1,840	100\%	20.0\%	4.2\%
2	1,829	103\%	32.0\%	8.3\%
3	1,818	106\%	19.2\%	8.3\%
4	1,807	109\%	11.5\%	8.3\%
5	1,796	113\%	11.5\%	8.3\%
6	1,786	116\%	5.8\%	8.3\%
7	1,775	119\%		8.3\%
8	1,764	123\%		8.3\%
9	1,754	127\%		8.3\%
10	1,743	130\%		8.3\%
11	1,733	134\%		8.3\%
12	1,722	138\%		8.3\%
13	1,712	143\%		
14	1,702	147\%		
15	1,692	151\%		
16	1,682	156\%		
17	1,672	160\%		
18	1,662	165\%		
19	1,652	170\%		
20	1,642	175\%		
21	1,632	181\%		
22	1,622	186\%		
23	1,612	192\%		
24	1,603	197\%		
25	1,593	203\%		
			100\%	96\%

[THIS PAGE INTENTIONALLY LEFT BLANK.]

Commercial Customers			
Year	IRR	NPV (8\%)	Payback
1	9.0%	$\$ 19,694$	7.5
2	9.0%	$\$ 19,293$	8.0
3	9.0%	$\$ 17,953$	8.0
4	8.1%	$\$ 2,066$	9.1
5	8.0%	$\$ 26$	9.6
6	8.0%	$\$ 375$	10.0
7	8.0%	$(\$ 603)$	10.5
8	8.1%	$\$ 1,075$	10.7
9	8.1%	$\$ 1,596$	11.0
10	8.4%	$\$ 8,908$	10.9
11	7.1%	$(\$ 1,015)$	12.3

	2007			2008			2009			2010			2011			2012		
	Com	Res Retro	Res New	Com	Res Retro	Res New	Com	Res Retro	Res New	Com	Res Retro	Res New	Com	Res Retro	Res New	Com	Res Retro	Res New
CBI (\$M)		\$2.80	\$2.80		\$2.45	\$2.45		\$2.10	\$2.10		\$1.80	\$1.80		\$1.50	\$1.50		\$1.20	\$1.20
PBI (\$/kWh) Y1	\$0.39			\$0.32			\$0.26			\$0.40			\$0.32			\$0.25		
Y2	\$0.39			\$0.32			\$0.26			\$0.40			\$0.32			\$0.25		
Y3	\$0.39			\$0.32			\$0.26			\$0.40			\$0.32			\$0.25		
Y4	\$0.39			\$0.32			\$0.26			\$0.40			\$0.32			\$0.25		
Y5	\$0.39			\$0.32			\$0.26			\$0.40			\$0.32			\$0.25		
Y6	\$0.00			\$0.00			\$0.00			\$0.00			\$0.00			\$0.00		
Y7	\$0.00			\$0.00			\$0.00			\$0.00			\$0.00			\$0.00		
Y8	\$0.00			\$0.00			\$0.00			\$0.00			\$0.00			\$0.00		
Y9 Y10	\$0.00			\$0.00			\$0.00			$\$ 0.00$ $\$ 0.00$			\$0.00			\$0.00		
Y10	\$0.00			\$0.00			\$0.00			\$ 2.76			\$ 2.22			\$ 1.73		

Government Customers			
Year	IRR	NPV (6%)	Payback
1	2.6%	$(\$ 136,684)$	18.3
2	2.9%	$(\$ 120,654)$	17.8
3	3.2%	$(\$ 107,304)$	17.5
4	7.2%	$\$ 49,292$	11.6
5	7.1%	$\$ 84,920$	11.9
6	7.2%	$\$ 50,305$	12.2
7	7.2%	$\$ 50,607$	12.4
8	7.3%	$\$ 55,607$	12.5
9	7.3%	$\$ 58,596$	12.6
10	7.8%	$\$ 73,549$	12.3
11	7.8%	$\$ 77,181$	12.3

	2013			2014			2015			2016			2017		
	Com	$\begin{gathered} \text { Res } \\ \text { Retro } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Res } \\ & \text { New } \\ & \hline \end{aligned}$	Com	$\begin{aligned} & \hline \text { Res } \\ & \text { Retro } \end{aligned}$	$\begin{aligned} & \hline \text { Res } \\ & \text { New } \\ & \hline \end{aligned}$	Com	$\begin{gathered} \hline \text { Res } \\ \text { Retro } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Res } \\ & \text { New } \\ & \hline \end{aligned}$	Com	$\begin{aligned} & \hline \text { Res } \\ & \text { Retro } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Res } \\ & \text { New } \\ & \hline \end{aligned}$	Com	$\begin{gathered} \hline \text { Res } \\ \text { Retro } \end{gathered}$	$\begin{aligned} & \text { Res } \\ & \text { New } \end{aligned}$
CBI (\$M)		\$0.90	\$0.90		\$0.60	\$0.60		\$0.40	\$0.40		\$0.20	\$0.20		\$0.00	\$0.00
PBI (\$/kWh) Y1	\$0.18			\$0.12			\$0.06			\$0.02			\$0.00		
Y2	\$0.18			\$0.12			\$0.06			\$0.02			\$0.00		
Y3	\$0.18			\$0.12			\$0.06			\$0.02			\$0.00		
Y4	\$0.18			\$0.12			\$0.06			\$0.02			\$0.00		
Y5	\$0.18			\$0.12			\$0.06			\$0.02			\$0.00		
Y6	\$0.00			\$0.00			\$0.00			\$0.00			\$0.00		
Y7	\$0.00			\$0.00			\$0.00			\$0.00			\$0.00		
Y8	\$0.00			\$0.00			\$0.00			\$0.00			\$0.00		
Y9	\$0.00			\$0.00			\$0.00			\$0.00			\$0.00		
Y10	\$0.00			\$0.00			\$0.00			\$0.00			\$0.00		

A	B	C	D	E	F	$\underline{\mathbf{G}} \quad \underline{\mathrm{H}}$	I	J	K	\underline{L}
year	month	Total MW solar installed by month-end	New solar MW installed each month	Monthly solar MWh eligible for PBI	Total solar MWh eligible for PBI by year-end			Year of Operation	Solar MWh Generated \& Eligible for PBI	Cumulative MW of solar electricity installations (adjusted for degradation)
2007	6	0.001		1		Adj.(1) --> 99.95\%		2007	28979	60.0
2007	7	10.0	\#N/A	1381		to reflect assumed		2008	161072	128.8
2007	8	20.0	10.00	2762		monthly degradation in		2009	286944	210.9
2007	9	30.0	10.00	4141		solar output.		2010	442689	315.0
2007	10	40.0	9.99	5520				2011	647420	455.1
2007	11	50.0	9.99	6898				2012	927170	648.4
2007	12	60.0	9.98	8276	28979			2013	1315499	917.7
2008	1	65.7	5.75	9069				2014	1872729	1310.9
2008	2	71.5	5.75	9862				2015	2737189	1941.7
2008	3	77.2	5.74	10655				2016	4126348	2956.3
2008	4	82.9	5.74	11447						
2008	5	88.7	5.74	12238						
2008	6	94.4	5.73	13030						
2008	7	100.1	5.73	13820						
2008	8	105.9	5.73	14611						
2008	9	111.6	5.73	15401						
2008	10	117.3	5.72	16191						
2008	11	123.0	5.72	16980						
2008	12	128.8	5.72	17769	161072					
2009	1	135.6	6.86	18716						
2009	2	142.5	6.86	19662						
2009	3	149.3	6.85	20608						
2009	4	156.2	6.85	21553						
2009	5	163.0	6.85	22498						
2009	6	169.9	6.84	23443						
2009	7	176.7	6.84	24387						
2009	8	183.6	6.84	25330						
2009	9	190.4	6.83	26273						
2009	10	197.2	6.83	27216						
2009	11	204.0	6.83	28158						
2009	12	210.9	6.82	29100	286944					
2010	1	219.6	8.70	30301						
2010	2	228.3	8.70	31501						
2010	3	237.0	8.69	32700						
2010	4	245.6	8.69	33899						
2010	5	254.3	8.68	35098						
2010	6	263.0	8.68	36296						
2010	7	271.7	8.68	37493						
2010	8	280.4	8.67	38689						
2010	9	289.0	8.67	39886						
2010	10	297.7	8.66	41081						
2010	11	306.3	8.66	42276						
2010	12	315.0	8.65	43470	442689					
2011	1	326.7	11.71	45086						
2011	2	338.4	11.70	46700						
2011	3	350.1	11.69	48314						
2011	4	361.8	11.69	49927						
2011	5	373.5	11.68	51540						
2011	6	385.2	11.68	53151						
2011	7	396.8	11.67	54762						
2011	8	408.5	11.67	56372						
2011	9	420.1	11.66	57981						
2011	10	431.8	11.65	59589						
2011	11	443.5	11.65	61196						
2011	12	455.1	11.64	62803	647420					
2012	1	471.2	16.15	65032						
2012	2	487.4	16.14	67260						
2012	3	503.5	16.14	69486						
2012	4	519.7	16.13	71712						
2012	5	535.8	16.12	73936						
2012	6	551.9	16.11	76160						
2012	7	568.0	16.10	78382						
2012	8	584.1	16.09	80603						
2012	9	600.2	16.09	82823						
2012	10	616.2	16.08	85042						
2012	11	632.3	16.07	87259						
2012	12	648.4	16.06	89476	927170					
2013	1	670.9	22.50	92582						

2013	2	693.4	22.49	95685	
2013	3	715.9	22.48	98788	
2013	4	738.3	22.47	101889	
2013	5	760.8	22.46	104988	
2013	6	783.2	22.45	108086	
2013	7	805.7	22.44	111182	
2013	8	828.1	22.43	114277	
2013	9	850.5	22.41	117370	
2013	10	872.9	22.40	120461	
2013	11	895.3	22.39	123551	
2013	12	917.7	22.38	126640	1315499
2014	1	950.5	32.86	131174	
2014	2	983.4	32.84	135707	
2014	3	1,016.2	32.83	140237	
2014	4	1,049.0	32.81	144765	
2014	5	1,081.8	32.79	149290	
2014	6	1,114.6	32.78	153813	
2014	7	1,147.4	32.76	158334	
2014	8	1,180.1	32.74	162853	
2014	9	1,212.8	32.73	167370	
2014	10	1,245.5	32.71	171884	
2014	11	1,278.2	32.70	176396	
2014	12	1,310.9	32.68	180906	1872729
2015	1	1,363.6	52.71	188179	
2015	2	1,416.3	52.68	195450	
2015	3	1,469.0	52.66	202716	
2015	4	1,521.6	52.63	209979	
2015	5	1,574.2	52.60	217238	
2015	6	1,626.8	52.58	224494	
2015	7	1,679.3	52.55	231746	
2015	8	1,731.8	52.52	238995	
2015	9	1,784.3	52.50	246239	
2015	10	1,836.8	52.47	253481	
2015	11	1,889.3	52.45	260718	
2015	12	1,941.7	52.42	267952	2737189
2016	1	2,026.5	84.78	279652	
2016	2	2,111.2	84.74	291346	
2016	3	2,195.9	84.70	303034	
2016	4	2,280.6	84.65	314717	
2016	5	2,365.2	84.61	326393	
2016	6	2,449.7	84.57	338064	
2016	7	2,534.3	84.53	349729	
2016	8	2,618.8	84.49	361388	
2016	9	2,703.2	84.44	373041	
2016	10	2,787.6	84.40	384688	
2016	11	2,872.0	84.36	396330	
2016	12	2,956.3	84.32	407966	4126348

Reply Comments Regarding Incentives for Non-PV Solar Technologies

1. ASPv (and Other Parties) Continues to Support the Dual Program Approach for Solar Thermal Technologies

The CPUC has proposed inclusion in the CSI solar thermal hot water, heating and cooling technologies. The solar industry, and ASPv, have consistently supported the development of all solar resources and technologies for the benefit of the citizens of California. It is notable that most of the parties that addressed solar thermal technologies ("STT") in opening comments supported their inclusion in the CSI, a position the Commission has taken by specifically including solar hot water, heating, and cooling. ASPv also continues to support inclusion of all solar thermal technologies. Further, many parties, along with ASPv, support the bifurcation of the program as it is moving forward. Specifically, SDREO will develop a pilot program for residential and small commercial solar domestic hot water ("SDREO Program") and the CPUC will develop a PBI program for all solar thermal applications ("CPUC Solar Thermal Program").

ASPv has briefly reviewed the SDREO Program proposal and supports its concepts for residential and small commercial systems. It is important to note, however, that the SDREO Program limits itself to these smaller systems and the production of domestic hot water only. The CPUC Thermal Program still needs to address the larger solar domestic hot water systems along with solar process and space heating and solar process and space cooling, as proposed by Staff.

No parties appear to object to this type of division for solar thermal applications and only one party appears to question the inclusion of thermal technologies, and only solar thermal HVAC, in the CSI. San Diego Gas \& Electric/Southern California Gas Company ("SDG\&E") indicates that it believes that solar HVAC (cooling and heating)
technologies are premature, although the Commission has included these technologies in the CSI. As ASPv has previously indicated and the Commission believes, commercial solar HVAC systems are far more advanced than most other non-PV solar technologies and deployed more widely throughout the world. Residential HVAC systems, due to chiller sizing, are still not market-ready, but are moving in that direction and are certainly no less advanced than residential concentrating solar power ("CSP") systems. Again, the PBI incentive will ensure that only working systems receive incentives.

Solar thermal technologies are important to California for a variety of reasons: first, they include thermal storage and provide firm power; second, they displace peak electricity; third, thermal collectors are well over 50% efficient and produce a maximum amount of energy even with change in angle; fourth, they also displace natural gas, a fuel of increasing concern due to rising costs and limitations based on increased use for electric generation. California will benefit greatly by allowing solar thermal technologies to continue to develop. By allowing this technology to move forward under both the SDREO Program and the CPUC Solar Thermal Program utilizing PBI and maintaining a constant program over the first two to three years as proposed by Staff the Commission will obtain valuable data and be able to adequately modify the Program(s) as necessary in year three to maximize the benefits to California's ratepayers.

2. Specific Issues Raised by Parties

ASPv wishes to address the few specific issues raised by other parties. First, Joint Solar Parties discuss the appropriateness of the SRCC rating system within the context of the SDREO Program and suggest that this certification process be utilized for other solar thermal applications in the broader CPUC Solar Thermal Program. As discussed in our
original comments to the Staff proposal, the SRCC rating system is appropriate to smaller, flat-plate technologies but not to other types of solar thermal collectors. Although SRCC may have the ability to test certain additional types of collectors, they do not have the ability and are not set up to test all types of collectors and/or systems.

ASPv recommends that the CPUC Solar Thermal Program take an approach currently used by the CEC for adding technologies without certification mechanisms, such as CSP and solar HVAC, to the Emerging Renewables Program:"Manufacturers of solar thermal systems must provide acceptable evidence . . . of one year of reliable operation for each model of systems they wish to sell under this program . . . by a fullscale facility using this technology under field conditions." This approach, along with the PBI requirement, will provide adequate assurance that solar thermal technologies will perform as anticipated.

The Consumer Federation of California (CFC) suggests that only cost-effective solar technologies be included under pilot programs. To require cost-effectiveness seems reasonable; nonetheless, except for the pilot program for small solar domestic hot water, pilots are not necessary for the well-proven solar thermal technologies that are being incentivized under a PBI method.

Solar thermal applications are both well-proven and cost-effective technologies, as supported by other filings made and information provided. For solar cooling, the incentive requested is at or below the incentive level requested by the PV industry. This is presumably the benchmark for reasonableness. The incentive proposed for solar heating and hot water applications is much lower. When the two are combined in a solar HVAC system, the number will be lower then the maximum. In the early years of the

Program due to the higher cost of solar cooling, we expect that most systems will combine cooling with heating and/or hot water. This will reduce the average cost per kWh of systems well below the incentive for solar cooling.

3. Clarification Regarding Program Administration

ASPv recommends that the Commission hold an additional workshop on the non-PV solar technologies to insure that all issues are clear for the Handbook development stage of this process.

4. Solar Space Cooling

Both SDG\&E and Solargenix have addressed technical questions related to solar space cooling. There is a possibility that the proposed definition of solar space cooling is unclear. ASPv proposes the following as a definition for solar thermal space cooling technologies that qualify under this program: "Solar Space Cooling is a technology that uses solar thermal energy absent the generation of electricity to drive a mechanical refrigeration machine that provides space cooling in a building, displacing electricity." This definition encompasses the types of systems that are commercially available and well-proven. These systems can be easily measured and stated in kWh equivalent.

SDG\&E also raises a question related to how solar cooling systems are measured due to the differing chiller efficiencies and has proposed a formula for incorporating chiller efficiency. ASPv agrees with SDG\&E that chiller efficiency should be considered in solar cooling incentives and that this issue and any other remaining technical issues be handled during an additional workshop or Handbook development.

[^0]: 4 "A vision for Photovoltaic Technology for 2030 and Beyond" - a report by PV-TRAC, http://europa.eu.int/comm/research/energy/photovoltaics/vision_report_en.html

