
BEFORE THE CALIFORNIA ENERGY COMMISSION

In the matter of

Preparation of the 2011 Integrated Energy Policy Report (2011 IEPR)

) Docket No. 11-IEP-IF

CALIFORNIA ENERGY COMMISSION
HEARING ROOM A
1516 NINTH STREET
SACRAMENTO, CALIFORNIA

WEDNESDAY, JULY 20, 2011 9:00 A.M.

Reported by: Peter Petty

APPEARANCES

Staff Present:

Panama Bartholomy Martha Brook Mike Leaon Bill Pennington Peter Strait Gabriel Taylor Dave Ware

Presenters/Panelists (*Via WebEx)

Steve Galanter, Southern California Edison
Jon McHugh, PE McHugh Energy
*Cathy Fogel , CPUC
*Jordana Camarata, CPUC
Eliot Crowe, Portland Energy Conservation, Inc.
Nehemiah Stone, Benningfield Group, Inc.
Dr. G.P. Li, UC Irvine
Randall Higa, PE, LEED AP. Sr. Engineer, Southern California Edison
Konstantinos "Kosta" Papamichael, PhD, California Lighting Tech
Center, UC Davis
Dr. Carrie Armel, Precourt Institute for Energy Efficiency,
Stanford University
Jonathan P. Williams, Intel Corp.

Also Present

Public Comment

Dana Waters, Air Resources Board Mike Gable, Gable Associates Mike Keesey, SMUD George Nesbitt, Environmental Design/Build Daniel Hamilton, SMUD Smita Gupta, Itron Manuel Alvarez, Southern California Edison George Nesbitt, Cal HERS Karl Johnson, University of California Patrick Splitt, App-Tech Mike Gable, Gable Associates Mike Keesee, SMUD *Bruce Ray Daniel Hamilton, SMUD Pat Eilert, PG&E Barbie Beaudette

APPEARANCES

Also Present

Public Comment

*Jim Jungwirth Jim Francisco, Sierra Consulting Jelisaveta Gavric, California Association of Realtors Robert Raymer, CBIA

INDEX

	PAGE
Welcome to the Achieving Energy Savings in California Buildings Workshop - Panama Bartholomy, Deputy Director, Efficiency and Renewable Energy Division	7
Panel Discussion: Zero Net Energy in Newly Constructed Buildings - Martha Brook, Senior Mechanical Engineer, High Performance Buildings and Standards Development Office, CEC	10
Zero Net Energy Vision	
Jordana Camarata, Senior Analyst, Energy Efficiency, CPUC	15
Zero Net Energy Definition	
Jon McHugh, P.E., McHugh Energy	29
Zero Net Energy Pilots	
Jeff Gleeson, Customer Energy Solutions, Buildings, Pacific Gas & Electricity	50
Steve Galanter, Manager, Strategic Planning and Technical Services, Customer Energy Efficiency & Solar Division, Southern California Edison	57
California's Building Energy Efficiency Standards: The Road to Zero Net Energy	
Cathy Chappell, P.E., Director, Heschong Mahone Group, Inc.	65
Public Comments: Zero Net Energy Buildings	82
Panel Discussion: Achieving Energy Efficiency in Existing Buildings - Bill Pennington, CEC	111
Current Public Goods Energy Efficiency Programs for Existing Buildings	
Cathy Fogel, CPUC	118

CALIFORNIA REPORTING, LLC 52 Longwood Drive, San Rafael, California 94901 (415) 457-4417

INDEX

	PAGE
Plans for AB 758 Residential Needs Assessment	
Eliot Crowe, Portland Energy Conservation, Inc.	137
Plans for AB 758 Non-Residential Needs Assessment	
Nehemiah Stone, Benningfield Group, Inc.	145
Panel Discussion: Reducing Plug Loads in Buildings	
Meeting Energy Efficiency Goals Through Standards	190
Randall Higa, PE, LEED AP. Sr. Engineer, Southern California Edison	192
The Big Picture: Importance of Plug Loads in Meeting Energy Efficiency Goals	
Dr. G.P. Li, UC Irvine	198
Lighting: Intersection of Plug Load and Building Efficiency Mandates	
Konstantinos "Kosta" Papamichael, PhD, CA Lighting & Technology Center, UC Davis	213
Beyond Standards: Alternative Approaches to Appliance Stand for Meeting Energy Efficiency Goals	dards
Dr. Carrie Armel, Precourt Institute for Energy Efficiency, Stanford University	223
Jonathan P. Williams, Government Affairs, Intel Corp.	233
Public Comments: Managing the Growth of Plug Loads	242
Adjourn	264
Certificate of Reporter	265

1	Р	R	Ω	C	E	\mathbf{E}	D	Т	Ν	G	S
1		1	\circ	\sim	ш		$\boldsymbol{\mathcal{L}}$		Τ.Λ	<u> </u>	\sim

- 2 JULY 20, 2011 9:00 A.M.
- 3 MR. TAYLOR: Good morning everybody, thank you
- 4 for joining us. This is the Achieving Energy Savings in
- 5 California Building Staff Workshop on our draft staff
- 6 paper.
- 7 And to get started with a little bit of
- 8 housekeeping here, those of you who are not familiar with
- 9 the building, the closest restrooms are located out to
- 10 the left and to the right. And you can ask the security
- 11 guard if you get lost, it's pretty easy. There's a snack
- 12 bar on the second floor.
- 13 And in the event of an emergency, and we do have
- 14 fire drills on occasion, please follow the employees out
- 15 the appropriate exit, there are two exits to the
- 16 building, and we will gather at the park caddy-corner
- 17 across the street. Please proceed calmly and make sure
- 18 you stay with the employees.
- 19 Today we are here to discuss the staff draft
- 20 paper here, so we are very interested in your comments
- 21 and your input on this paper as we move towards
- 22 finalizing it at the end of August.
- 23 The comment due date is at the end of next week,
- 24 about ten days from now.
- I am the Project Manager for the Efficiency

- 1 Division of this work paper and so if you have any
- 2 questions about logistics or how to get your comments in,
- 3 please feel free to call me. My contact information is
- 4 on the workshop notice.
- 5 And now I'd like to introduce our Deputy Director
- 6 of the Efficiency and Renewable Division, Mr. Panama
- 7 Bartholomy.
- 8 MR. BARTHOLOMY: Good morning everybody, thanks
- 9 for coming to the Energy Commission today. Not too many
- 10 new faces to energy efficiency around the room, so it's
- 11 good to be at this homecoming with all of you.
- We've got a great set of panel members and panels
- 13 for you this afternoon and I really appreciate you folks
- 14 coming up to Sacramento or coming across town to attend.
- 15 And we would really, as Gabe said, like to have your
- 16 input into this process today, as well as into the final
- 17 staff paper.
- Today's work really builds upon a good 30 years
- 19 of work around energy efficiency policy here in the State
- 20 of California. And what we're trying to do today is
- 21 taking it really to the next level of discussion,
- 22 building upon such great work as the California Public
- 23 Utilities Commission sort of long-term strategic plan for
- 24 energy efficiency.
- We are taking some of the key goals out of the

- 1 Governor's Green Jobs Action Plan, zero net energy
- 2 buildings, deep reduction in energy consumption from
- 3 existing buildings, and strong appliance standards to
- 4 achieve significant reduction to energy consumption, and
- 5 focusing in on those in this year's Integrated Energy
- 6 Policy Report or IEPR.
- 7 The staff paper covers, in some detail, those
- 8 distinct goals as well as the interaction between those
- 9 goals. In today's panels you'll see, also, deep
- 10 conversation as well as the interaction between each of
- 11 those policy goals.
- 12 The first panel's going to be moderated by our
- 13 very own Martha Brook and be covering zero net energy in
- 14 newly constructed buildings, with a focus on some of the
- 15 policy goals, a discussion on definition. And you'll
- 16 notice in the staff draft paper the Energy Commission is
- 17 attempting a definition of ZNE in the staff draft, that
- 18 we would like to publish in the fall.
- 19 And then a discussion of some of the pilots that
- 20 we're already seeing in California and how the role of
- 21 ZNE will be carried out within the 2013 building
- 22 standards updates, as well as future updates.
- We are then going to move on to a discussion,
- 24 right after lunch, on achieving energy efficiency in
- 25 existing buildings. This will include a discussion of

- 1 current programs already underway in the State of
- 2 California and then moving towards the next generation of
- 3 policies around existing buildings. In particular, the
- 4 partnership between the Public Utilities Commission and
- 5 the Energy Commission around AB 758 and the reduction of
- 6 energy consumption in existing buildings, and a
- 7 discussion about some of the activities over the next
- 8 nine months or so under AB 758 for both commercial -- for
- 9 both non-residential and residential buildings.
- 10 We will then take a short break and we'll come
- 11 back, and we'll have a discussion about standards, goals
- 12 and policies around plug loads and appliances, some of
- 13 the excellent work going on in some of our universities,
- 14 some of the hopes and dreams of our investor-owned
- 15 utilities and their support of our activities over here
- 16 in California, and then moving forward into some of the
- 17 plans for the future around appliances standards.
- 18 I just want to thank you all very much for
- 19 showing up today. It's going to be -- we've brought
- 20 together a great set of panels.
- I very much want to thank the staff of the
- 22 California Energy Commission. And it's incredibly tough
- 23 right now to be a State worker. So, if folks would
- 24 indulge me and give a quick round of applause to all the
- 25 staff that worked to bring this group together today, I'd

- 1 really appreciate it.
- 2 [Applause]
- 3 DEPUTY DIRECTOR BARTHOLOMY: Thank you. Thank
- 4 you to the staff, thank you very much for the wonderful
- 5 speakers we have.
- 6 And with that I'm going to throw it over to
- 7 Martha to start the conversation on zero net energy.
- 8 Thank you very much.
- 9 MS. BROOK: Thanks Panama. Okay, I'm going to
- 10 have to negotiate a little bit here. I need to find my
- 11 presentation. Are they up here in this little folder?
- 12 Okay, and then do I need to reshare the desktop?
- Okay thank you very much. So, I'm just going to
- 14 kind of queue up our panel discussion. I want to spend
- 15 most of this morning talking with you.
- So, first, let me just talk about how we're going
- 17 to organize the panel. Each of the speakers that we've
- 18 invited is going to give about a 15-minute talk and then
- 19 I'm going to pose to the panel just a small set of
- 20 questions that I've pre-thunk, and that will sort of
- 21 start the discussion flavor of the session.
- 22 And then we'll open it up to all of you to come
- 23 and join us, and ask questions, and provide stimulating
- 24 comments. And that's how we'll spend the next 90
- 25 minutes.

- 1 But the first thing I wanted to do was sort of
- 2 just talk about why zero net energy in California. And
- 3 Panama sort of keyed up a number of policy goals that
- 4 zero net energy buildings fit into.
- 5 One of the ways that it's really easy to justify
- 6 zero net energy is with the California Global Warming
- 7 Solutions Act that was passed in 2006. And the Energy
- 8 Commission, the Public Utility Commission and, of course,
- 9 the Air Resources Board, along with numerous
- 10 stakeholders, I'm sure some of you also participated in
- 11 that activity around the scoping plan for AB 32.
- 12 And the ultimate goal that was established in
- 13 that planning document was to reduce the greenhouse gas
- 14 emissions in the State to 1990 levels by 2020; a very,
- 15 very aggressive goal.
- 16 Then there's also, if that's not aggressive
- 17 enough, sort of an aspirational goal also published in
- 18 that plan that says that we should reduce greenhouse gas
- 19 emissions to 80 percent below 1990 levels by 2050. So,
- 20 you know, that's a deep, deep dive.
- 21 And that sort of allows us to think about things
- 22 in a new way. So, just to kind of put the buildings,
- 23 residential and commercial buildings, in the context of
- 24 the State's greenhouse gas emissions, you know, we -- we
- 25 think that buildings is about a quarter of the pie. If

- 1 you look at all of the emissions in the State
- 2 transportation is the biggest chunk, buildings in the
- 3 industrial sector are the second biggest chunk, and then
- 4 the agricultural and miscellaneous that sort of rounds
- 5 out the pie.
- 6 One of the things that's important about the
- 7 second chart down here is this is sort of how the AB 32
- 8 scoping plan maps out the reduction in greenhouse gases
- 9 shared out by sectors.
- 10 So, you can see the electricity and natural gas
- 11 sector, which is where residential and commercial
- 12 building emissions fall out is almost 30 percent of the
- 13 pie. And 70 percent of this lavender pie section is
- 14 residential and commercial buildings.
- 15 So, a significant amount of the greenhouse
- 16 reduction share and especially the early action plans in
- 17 the scoping plans are focused on renewable energy and
- 18 energy efficiency because right now those look like the
- 19 most cost-effective way to achieve the greenhouse gas
- 20 emission reductions.
- 21 This next slide I've used for several years and
- 22 it's just illustrative, so you don't really need to look
- 23 at the numbers. And I'm just going to -- it just allows
- 24 me to sort of talk about why we need to have a paradigm
- 25 shift when we think about building energy consumption and

- 1 building energy efficiency.
- 2 So what I did here is that up until about
- 3 whenever I built this slide, about 2007, the jagged line,
- 4 that's historical energy usage in the State transferred
- 5 into greenhouse gas emission metrics.
- 6 And then the trend line going forward into the
- 7 future is just a simple trend line based on that
- 8 historical usage in the State.
- 9 And the yellow horizontal and vertical lines sort
- 10 of says what -- how the building sector would meet the AB
- 11 32 1990 levels by 2020 goals, just within the building
- 12 sector.
- So, if we draw the 1990 level over to 2020 that's
- 14 the wedge, that 40, approximately 40 million metric tons
- 15 of greenhouse gas emissions is that wedge that we would
- 16 have to reduce to meet that level.
- 17 And this is sort of a conservative estimate for
- 18 the building sector because, as I said, the building
- 19 sector is expected to achieve more than its share of
- 20 greenhouse gas emission reductions because of the fact
- 21 that efficiency is one of the most cost-effective way to
- 22 reduce greenhouse gas emissions in the State.
- 23 So, just assuming that we have to meet that it's
- 24 very challenging because one of the things about that
- 25 trend line is that it already assumes that we're going to

- 1 be doing all of the things we have been doing
- 2 historically for energy efficiency in the State.
- 3 So, all of the billions of dollars that we've
- 4 spent on public efficiency programs is already accounted
- 5 for in that trend line, that's the top of that big green
- 6 wedge. So, we actually have to do more and change,
- 7 basically shift, completely, to a different paradigm in
- 8 order to achieve that wedge reduction. So I think that's
- 9 really important.
- 10 And just to put it in the context of greenhouse
- 11 gas emissions, that wedge is approximately 80 percent of
- 12 all the passenger cars in California today. So it's a
- 13 challenge and one of the reasons that we've adopted the
- 14 zero net energy goals is because we think we can
- 15 partially meet that challenge.
- 16 Now, of course, with the zero net energy goals
- 17 that we're going to talk about this morning are really
- 18 focused on newly constructed buildings. That will be a
- 19 small part of this wedge because there's so many existing
- 20 buildings in the State, and we'll spend the afternoon
- 21 talking about existing buildings and what we want to
- 22 achieve to make up the rest of this wedge reduction that
- 23 we need to accomplish.
- 24 So, that sort of sets the stage for what we want
- 25 to talk about this morning. And so the way that we sort

- 1 of shaped this panel is that we have Jordana Camarata
- 2 from the Public Utility Commission. She's going to talk
- 3 about the California's zero net energy policy vision.
- 4 And then Jon McHugh, who's been part of an
- 5 informal working group to discuss the zero net energy
- 6 definition is going to present a summary of what this
- 7 working group's been discussing.
- 8 And then we're going to talk about some of the
- 9 pilot activity that our investor-owned utilities have
- 10 been planning and implementing for zero net energy
- 11 pilots.
- 12 And then, finally, we're going to talk about what
- 13 we're doing in our energy efficiency standards to get on
- 14 the path to zero net energy.
- 15 So first up we have Jordana and I'm going to run
- 16 her slide deck. Jordana's going to -- she's on the phone
- 17 and we need to unmute her line, and then I'll bring up
- 18 her presentation. One moment.
- MS. CAMARATA: Okay, can you hear me?
- MS. BROOK: We can.
- MS. CAMARATA: Okay, excellent.
- MS. BROOK: Hold on one minute, I want to
- 23 introduce you and then we'll --
- MS. CAMARATA: Sure thing.
- MS. BROOK: Thank you. Well done. Okay, Jordana

- 1 Camarata is the Senior Regulatory Analyst in the Demand
- 2 Side Program Branch at the California Public Utility
- 3 Commission.
- 4 She's involved in the oversight of the investor-
- 5 owned utilities' commercial energy efficiency programs
- 6 for existing buildings and new construction.
- 7 She also engaged with the implementation of the
- 8 California Energy Efficiency Strategic Plan and launched
- 9 the Zero Net Energy Action Plan for the commercial
- 10 sector.
- 11 And now we have Jordana.
- MS. CAMARATA: Great. Is the volume okay on your
- 13 end; can you hear me?
- MS. BROOK: We probably want you a little louder,
- 15 but I think we're going to try to do that on our end.
- MS. CAMARATA: Okay, how's this?
- MS. BROOK: In the back we're good? Yeah, we're
- 18 good.
- 19 MS. CAMARATA: Okay, great, I'll talk up. Great.
- 20 All right, well, thank you everyone. Again, my name's
- 21 Jordana, Jordana Camarata, I work in the Energy Division
- 22 at the California Public Utility Commission.
- 23 And today I'm going to be talking about the zero
- 24 net energy vision that we have here at the CPUC and
- 25 specifically talking a little bit about the Commercial

- 1 Building Action Plan that we have.
- 2 Next slide. So, a quick overview of the
- 3 presentation, I'm going to talk a little bit about the
- 4 strategic plan and zero net energy. Some of the programs
- 5 that kind of follow suit from the strategic plan, that
- 6 carry over that same vision.
- 7 And then I'm going to talk about the Zero Net
- 8 Energy Action Plan, specifically the portion of it that
- 9 talks about new construction.
- 10 The next slide. I have this slide up here to
- 11 kind of give everyone a sense of where there activities
- 12 fall within the CPUC. So, as Martha mentioned, I work in
- 13 the Demand Side Programs Branch and there's three
- 14 sections within that branch, residential programs, non-
- 15 residential programs, and then distributed generation in
- 16 California's Solar Initiative.
- 17 And I work -- and the Zero Net Energy Action
- 18 Plan, these activities for non-res, they occur within the
- 19 non-residential programs branch. As you can see
- 20 highlighted, one of the things I do is the strategic plan
- 21 activities for non-residential and then I also oversee
- 22 energy efficiency non-residential programs and portfolio.
- 23 The next slide. So, I'm going to talk a little
- 24 bit about the strategic plan, you can skip through that
- 25 kind of Title V.

- 1 So, the strategic plan, you know, Panama
- 2 mentioned it and Martha, as well, it really sets forth
- 3 zero net energy vision for California. It was adopted
- 4 via a decision in 2008 and it gives us a road map of how
- 5 to think of energy efficiency through 2020 and beyond.
- 6 It has major elements of market transformation.
- 7 And one way that we've been building off of this is we've
- 8 been creating action plans for the different chapters and
- 9 market sectors, and trying to gain momentum and market
- 10 demand for that.
- 11 And it's also -- it's also helped drive the 2010
- 12 to 2012 IOU programs.
- 13 The strategic plan has a bunch of different
- 14 sectors. I think everyone's pretty familiar but it
- 15 goes -- you know, it has chapters on residential,
- 16 commercial, and then it has lots of cross-cutting
- 17 sectors, sections such as HVAC, lighting, codes and
- 18 standards, emerging technologies, and such.
- 19 Next slide. So, in the strategic plan, this is a
- 20 basic cut and paste, this is what we -- this is the
- 21 definition that we have adopted via decision, and this is
- 22 what's in the strategic plan, currently.
- 23 Basically, the definition we have on zero net
- 24 energy is that the amount of energy provided on site by
- 25 renewable energy sources is equal to the amount of energy

- 1 used by a building annualized over a year.
- 2 And so I'm not going to get into detail on the
- 3 definition, and I know Jon McHugh will be talking about
- 4 that after me. But this is basically the definition we
- 5 have and there's been lots of kind of talk and wanting to
- 6 dig deeper into this definition, and make it a little bit
- 7 more clear so people can get their head around it and
- 8 actually move forward. So, you know, we'll look forward
- 9 to that presentation next. But this is what we currently
- 10 go by and what we have in the plan.
- 11 The next slide. The strategic plan has four big,
- 12 bold goals. I'm not going to read them, you can see them
- 13 up on the slide. But today I'm going to be focusing on
- 14 the second one, on the bottom left corner, that says "all
- 15 new commercial construction in California will be zero
- 16 net energy by 2030."
- 17 These goals were chosen because of their
- 18 potential impact on the market on deep energy savings,
- 19 and their easy comprehension and ability to galvanize
- 20 market players.
- 21 The next slide. This matrix kind of is a
- 22 snapshot from the strategic plan and this is the new
- 23 construction goal that we have for D&E commercial
- 24 buildings. And, basically, it helps us -- it lays out
- 25 how we get to our action plan later on in this

- 1 presentation. But we've got strategies on the left-hand
- 2 side that talk about these are what we need to be doing,
- 3 these are the focus of how we're supposed to get to zero
- 4 net energy that were in the -- that's in the strategic
- 5 plan.
- 6 Then we've got our near-term milestones, mid-
- 7 term, long-term and further out. And we really focused
- 8 on these near-term milestones for purposes of the action
- 9 plan, what we need to achieve to kind of get to zero in
- 10 the short term, what are some of the preliminary
- 11 activities that we need to be focused on.
- 12 The next slide and then, again, the next slide.
- 13 So, now I'm going to give just a quick snapshot of
- 14 strategic plan program implementation.
- 15 We've got our savings by design, the investor-
- 16 owned facilities, this is their new construction program
- 17 for commercial buildings. This is a quick, brief
- 18 overview of the money that's going towards this program
- 19 and the savings.
- 20 And then we also have a lot of innovative D&E
- 21 pilots.
- 22 So, the strategic plan sets forth these D&E goals
- 23 and, like I said earlier in the presentation, that
- 24 vision, that road map, the utilities use that road map to
- 25 kind of align and come up with some innovative programs

- 1 for this upcoming -- for this current, actually, program
- 2 cycle, 2010 through 2012. I know Peter will be talking
- 3 about the PG&E pilot.
- 4 The next slide, please. This is a quick
- 5 breakdown of some of the, then, investor-owned utility
- 6 zero net energy programs. So, you've got the PG&E ZNE
- 7 pilot that's doing technical assistance and design
- 8 assistance, best practices, demonstration projects.
- 9 SCE, at some of the facilities, they have the
- 10 sustainable communities new construction program, there's
- 11 about \$10 million there, and they're doing some master
- 12 planned communities.
- 13 And then SCE has the ZNE technology centers that
- 14 they're trying to integrate different demand response,
- 15 plug meter, building envelope and plug load technologies
- 16 to see how they interact, so that's also going on.
- 17 The next slide and then, again, next slide. So,
- 18 now I'm going to be talking about the Zero Net Energy
- 19 Action Plan that we put together. And, basically, it's
- 20 taking the strategic plan that was updated in January
- 21 2011 and it's kind of building that out. It's taking a
- 22 policy-focused document that sets forth leadership and
- 23 vision and kind of operationalizing that into a -- into
- 24 an action plan that's going to take those goals and try
- 25 to build them out a little bit further.

- 1 So, over the years -- over 2009 and 2010 we had a
- 2 bunch of workshops at the Commission and we built this
- 3 out. We got lots of stakeholders together to talk about
- 4 some of the key strategies and figure out what kind of
- 5 activities we needed, which ones were most important to
- 6 focus on, first, and what time frame we should have
- 7 those -- what time frame we can associate with those.
- 8 The next slide, please. So, for the commercial
- 9 chapter there's two main goals. We've got a hundred
- 10 percent new commercial buildings are ZNE by 2030 and then
- 11 we have a second goal, which I'm not going to talk about
- 12 today, which is 50 percent of existing buildings reach
- 13 zero net energy by 2030.
- So again, today we're just going to be talking
- 15 about goal one, which is pretty challenging in and of
- 16 itself.
- 17 The next slide, please. So, the goal, the
- 18 strategy, the thin gold one, I'm not going to read them,
- 19 but we're going to be talking -- I'm going to be talking
- 20 in depth about the first three. The first three are we
- 21 built out in great detail in the action plan and then the
- 22 last three are ones that we recently launched at a ZNE
- 23 meeting on June 15th, at the PPUC, and we are trying to
- 24 build them out and kind of find champions, and I'll
- 25 describe this later, and find out what kind of activities

- 1 we need to do to achieve those strategies. So, right now
- 2 I'm just going to be talking about the first three.
- 3 The next slide. So, this slide just kind of
- 4 again gives you a visualization of what I showed earlier,
- 5 that matrix, that strategic plan and what we did, we just
- 6 took that strategy. And then in the next couple of
- 7 slides you're going to see the different milestones, and
- 8 champions, and actions.
- 9 So this is what we did, we took those strategies
- 10 that I showed you earlier and then we just broke them
- 11 down and we found people that are -- we found champions
- 12 which are people who are actively working on these areas,
- 13 these issues in their everyday kind of working life, and
- 14 helping contribute, and give us input and insight on how
- 15 we should be achieving these, and then we came up with
- 16 actions and, again, timelines.
- 17 The next slide, please. All right, so this is
- 18 one of our strategies. Strategy 1.1, establish a
- 19 progressive path to energy codes. Energy codes, as
- 20 everyone knows there, they're a key policy strategy to
- 21 reach ZNE building.
- I can't stress this enough, the market
- 23 penetration that can be achieved by codes is significant.
- 24 and so this strategy and milestone kind of talks a lot
- 25 about REACH codes, it talks about Cal Green, it talks --

- 1 you know, it's basically we have this as a strategy
- 2 because it's critical to address this early and future
- 3 codes -- think about future codes now, given the time-
- 4 sensitive process of the updates for codes and standards,
- 5 and having energy codes be such a significant driver,
- 6 this is something that we want to stress in the action
- 7 plan.
- 8 And as you can see, these are the champions that
- 9 we have associated with the different milestones up on
- 10 the slide and some of the actions that we have. And a
- 11 lot of this stuff with codes is definitely ongoing, and
- 12 so we kind of portray that within the action slide.
- 13 The next slide is just a progress indicator. We
- 14 have this throughout the action plan. This kind of shows
- 15 how we're doing on progress and this, again, is for the
- 16 2010-2012 period and so we kind of take the number of
- 17 actions that we have for each strategy and then we divide
- 18 it by the number of actions that have been completed, and
- 19 that's how we come up with these arrows.
- 20 And it's a simple calculation just to quickly
- 21 help us update and check up on progress.
- The next slide, please. So, the next strategy
- 23 I'm going to talk about is expanding Title 20 and 24 to
- 24 address all significant energy end uses.
- 25 This one is also extremely important to help us

- 1 get to zero. There's a lot of non-regulated energy loads
- 2 in buildings and those definitely pose a threat to zero
- 3 net energy goals.
- 4 Plug loads kind of account for about 25 percent
- 5 of overall energy building use and even more depending on
- 6 the type of buildings that we're looking at.
- 7 So, expanding the scope of certain codes can have
- 8 a great impact. You know, some things to date, the CPUC
- 9 has done a fantastic job with energy efficiency,
- 10 television standards, PIER and emerging technology
- 11 studies and, also, battery charger standards.
- 12 So, these are -- these are definitely critical
- 13 strategies for helping us get to zero net energy.
- 14 There's another one that I couldn't fit on this
- 15 slide, it's 1-2-3, which talks about lighting.
- 16 Next slide, please, which is just basically
- 17 showing that this is an ongoing process and so
- 18 everything's kind of assigned a certain amount of ongoing
- 19 percentage. And so since these are all just ongoing,
- 20 basically, these arrows slowly move as the code updates,
- 21 slowly progress, and the workshop process occurs and the
- 22 update process happens.
- So, these are just slowly kind of chugging along
- 24 until the codes are actually updated and then this will
- 25 probably start all over again with the new code cycle.

- 1 The next slide, please. Again, this is showing,
- 2 again, how plug loads are extremely important to
- 3 incorporate and the action plan is definitely focusing on
- 4 that. That was something that we heard at a lot of our
- 5 workshops was plug loads, all right, we need to be
- 6 focused on plug loads, and this slide kind of illustrates
- 7 that.
- 8 And the next slide, again, talks about zero net
- 9 energy and plug loads, and how it's extremely important
- 10 for the commercial sector to be focused on this.
- 11 And we have another strategy with the building
- 12 goal that focuses on plug loads, as well.
- The next slide. And, lastly, I'm going to talk
- 14 about the select strategy, which is establish the path to
- 15 zero campaign to create demand for high-efficiency
- 16 building.
- So, with this strategy we've got -- we've got
- 18 some actual people that are building zero net energy
- 19 communities. We've got beta communities as a champion,
- 20 and they're kind of focused on identifying ZNE key
- 21 audiences, they're putting together outreach and
- 22 education material, really trying to get a fact sheet
- 23 together and education what, exactly, is zero net energy.
- 24 A lot of people aren't -- don't know what this is.
- 25 And so this strategy's focused on kind of

- 1 building demand and education and awareness.
- 2 And then the second strategy milestone within the
- 3 strategy really focuses on organizing forums and we have
- 4 the utilities that are actively working on this,
- 5 education, zero net energy and so forth.
- The next slide, please, which is again how we're
- 7 doing on the strategy.
- 8 And then the next slide, again, which is overall
- 9 action plan progress. So, to date we're definitely
- 10 falling a little bit behind, but this is only kind of
- 11 taking into consideration the active strategies that we
- 12 were working on. There was a whole bunch of strategies
- 13 that we just didn't even get to in the year 2010, and so
- 14 incorporating more strategies and actually trying to, you
- 15 know, build on our learning curve here of implementing
- 16 the action plan, and I do expect to see more progress in
- 17 the next year.
- 18 But there is definitely a lot of moving parts and
- 19 we're definitely in the early stages of trying to get to
- 20 ZNE. It's still kind of in the mason stage which we're
- 21 trying to build demand for at this moment.
- Next slide. These are some of the people that
- 23 are involved with the action plan and, hopefully, in the
- 24 next year we'll have even more people involved with this
- 25 action plan as we build on it.

- 1 The next slide and last slide. So, just to kind
- 2 of close, these are some of the key drivers that I see
- 3 for zero net energy for new construction. We have -- we
- 4 know we need to have aggressive codes, such as Cal Green
- 5 and REACH codes. Smart meter and demand response
- 6 devices, trying to incorporate these into the codes and
- 7 they could have a great influence on energy end use.
- 8 Demonstration projects and design contests, you know, are
- 9 definitely going to help build demand and show people
- 10 what these zero net energy buildings look like.
- 11 And, of course, innovative financing tools and
- 12 integrated design development is extremely important for
- 13 new construction.
- 14 And the last slide, that's it. And the next
- 15 slide is just Q&A, which I don't know if we'll be doing
- 16 that at the very end, and then my contact information on
- 17 the slide following.
- 18 So, thank you very much.
- 19 MS. BROOK: Great. Thank you so much, Jordana.
- 20 So, we will hold questions until all of our presenters
- 21 have gone through their talks and we appreciate you
- 22 staying online and being part of our day today.
- MS. CAMARATA: Absolutely.
- 24 MS. BROOK: So, next up we have -- first, I'm
- 25 going to get to Jon's slides and then I'll introduce him.

- 1 All right, so next up we have -- oh, and Jon just
- 2 you can either come up here and talk, or there is a
- 3 wireless mouse if you want to sit. Last time I saw it,
- 4 it was by Steve. It's completely up to you.
- 5 MR. MC HUGH: Maybe, I'll just --
- 6 MS. BROOK: All right. So, let me introduce Jon
- 7 McHugh to you. He's a registered mechanical engineer and
- 8 he's the principal of McHugh Energy Consultants.
- 9 He started in the energy field 30 years ago in
- 10 selling solar water heating systems. To pay his way
- 11 through graduate school, Jon conducted over 100
- 12 industrial energy assessments and ultimately was he
- 13 Assistant Director of the Department of Energy sponsored
- 14 Colorado State University Industrial Assessment Center.
- Jon has helped developed or upgrade energy codes
- 16 for Colorado, Canada, ASHRAE 90.1 and California's Title
- 17 24.
- 18 Jon's recent projects include strategic planning
- 19 for the California Statewide Codes and Standards Program
- 20 and for the Energy Foundation, the Strategic Plan for Net
- 21 Zero Homes by 2020.
- Thanks Jon.
- MR. MC HUGH: Good morning. So, I thought that
- 24 I'd start off with sort of the rationale behind ZNE
- 25 homes. And I'm sure many of you have seen pictures

- 1 similar to this where, you know, we've definitely changed
- 2 the global environment, whether it's the amount of light
- 3 at night, the amount of carbon in the air, and also the
- 4 amount of atmospheric ozone and the amount of ultraviolet
- 5 radiation we see at, you know, at the terrestrial level.
- 6 The thing that's interesting about this is that,
- 7 you know, if you look at all of these things you see
- 8 that, you know, the next shoe's going to drop, you know,
- 9 the series of bad news, et cetera.
- 10 However, you know, we have in the past responded
- 11 to challenges and, actually, if you look at the results
- 12 of the Montreal protocol, we've actually sort of already
- 13 hit bottom in terms of depletion of ozone and the
- 14 replacement of various, primarily, refrigerants and a
- 15 number of other activities that we've done. We've
- 16 actually started to sort of bend the curve, so to speak,
- 17 in terms of ozone.
- 18 And, you know, we're looking at trying to do some
- 19 of the same sort of things with carbon and some other
- 20 issues in the State.
- 21 But carbon is not the only issue and there's
- 22 some, you know, no-regrets responses to try to reduce
- 23 energy consumption and carbon emissions.
- 24 You know, we might think of California as a green
- 25 state, but our air certainly isn't. And, you know, we

- 1 have essentially the worst air quality in the United
- 2 States.
- 3 So, there's additional health, financial benefits
- 4 associated with these kinds of efforts in terms of energy
- 5 efficiency.
- Now, you know, we're all here to talk about zero
- 7 net -- or at least I'm here to talk about zero net
- 8 energy. And part of that is, you know, what a powerful
- 9 concept it is. It's very simple to understand. You
- 10 know, what's hard to understand about zero?
- 11 And it has reset sort of people's expectations
- 12 about what we can do in terms of energy consumption and,
- 13 also, in terms of net energy consumption in buildings.
- 14 And pretty much, you know, every country throughout the
- 15 world has got some kind of conference on zero net energy.
- 16 ASHRAE, which is the primary organization that I
- 17 participate in quite a bit, the American Society of
- 18 Heating, Refrigerating and Air Conditioning Engineers.
- 19 There's been a number of different publications,
- 20 conferences and there's all sorts of work occurring on a
- 21 variety of different levels.
- 22 And all of them has sort of reset sort of -- you
- 23 know, I mean just 10 or 15 years ago we were talking
- 24 about incrementally, you know, impacting energy
- 25 efficiency by 10 or 15 percent.

1	And	now	we're	regularly	talking	about	 vou

- 2 know, ASHRAE 90.1 had a 30 percent goal that they're
- 3 close to achieving. The standard design, sort of high-
- 4 performance building standards are focusing, looking at
- 5 20 percent reductions from, basically, the turn of the
- 6 century, you know, 2000. So, in a fairly short amount of
- 7 time we're looking at really turning on its head what
- 8 our, I'd say, prior sort of psychological barriers to
- 9 going deeper than we have in the past.
- 10 And, of course, this has an impact on the global
- 11 environment, but it also just -- you know, just like the
- 12 comment about all politics is local, well, the sort of
- 13 effect that we're talking about is something that's on an
- 14 individual basis. It gives people a sense of empowerment
- 15 in terms of their energy consumption and that they're
- 16 contributing.
- 17 And, you know, today I'm going to talk about
- 18 primarily what is this definition of zero. So, you'll
- 19 ultimately, I envision at least for homes, that we're
- 20 looking at something that helps us define what is zero on
- 21 our own energy rating system.
- 22 And, you know, so there's -- we want to have a
- 23 message that is simple to understand for the general
- 24 public in terms of, you know, what does zero mean and at
- 25 the same time have all the policy decisions because

- 1 there's lots of -- you know, it's not just carbon,
- 2 there's other things. There's air emissions, there's
- 3 water, there's a bunch of other things that impact the
- 4 State and we can't just think about a single metric when
- 5 we're talking about underneath the hood, of this
- 6 particular rating system that ultimately defines what is
- 7 zero net energy.
- 8 Now, the question is, as you've probably heard
- 9 that there's a number of people that are, you know,
- 10 concerned about global warming, and zero net energy and
- 11 these various things are seen as sort of, you know, the
- 12 opportunity for the State to shake down the general
- 13 public.
- 14 And I think the issue here is that there's a
- 15 number of different things that we can do on a statewide
- 16 basis that actually increases the wealth of all of our
- 17 inhabitants.
- 18 And I don't know if -- I'm sure most of the
- 19 people in the room have probably seen these supply curves
- 20 for carbon abatement, but just for those folks that may
- 21 have never seen it before, unlikely, I know, on the Y
- 22 axis here is the cost of abating the particular amount --
- 23 per ton of carbon, how much does it cost to abate the
- 24 amount of carbon emissions?
- 25 And this scale is actually positive and negative.

- 1 So, we would normally think, oh, it's going to cost
- 2 something to save something. Well, in fact if you look
- 3 at the lifecycle cost which is saying, okay, I'm reducing
- 4 my energy consumption. It costs me a certain amount of
- 5 money but if I, essentially, look at the present value of
- 6 borrowing the money to make the change and looking at the
- 7 cost savings, there's a number of different things that
- 8 are over on the left side of this curve here where it's
- 9 all negative. And these are primarily things associated
- 10 with energy efficiency.
- 11 And, you know, you think, hey, this is sort of
- 12 the no-brainer thing. This is the no-regrets activity.
- But the fact of the matter is, is we are actually
- 14 in a situation where we have not captured that area
- 15 that's shown in green on the plot. In fact we're in a
- 16 situation where there's a lot of reasons why the State
- 17 has not fully embraced the issues of fully optimizing or
- 18 all the wealth generation that's associated with reducing
- 19 energy consumption on a number of levels.
- 20 And then, of course, if we actually are looking
- 21 at the -- fully, you know, hitting some of these targets,
- 22 there's probably going to be some net expense to society.
- 23 And the question is these are net expenses that are net
- 24 of extranalities that don't include things like health
- 25 effects and, you know, the overall effects of

- 1 environmental degradation.
- 2 So, this is just looking at a financial basis.
- 3 And so, you know, the first steps as we look at -- and
- 4 this is all, you know, very consistent with the CPUC
- 5 loading order and the Energy Commission loading order,
- 6 first looking at all those things that are cost effective
- 7 and let's try to reduce, basically, the money that's
- 8 essentially flushed down the toilet every day where we're
- 9 not optimizing our efficiency of our buildings or the
- 10 rest of our environment.
- 11 So, I'm going to talk a little bit about, now,
- 12 the discussion that we had with our working group on the
- 13 ZNE definition. And California Public Utilities
- 14 Commission, when they first defined this a couple of
- 15 years ago, they started off with a vision, which is
- 16 great. But now, as you try to develop an implementation
- 17 plan you actually have to say, okay, now the rubber hits
- 18 the road, what do you really mean?
- 19 And so the language here, that I have posted, is
- 20 the language extracted from the Big, Bold Energy
- 21 Efficiency Strategy. You know, the primary one's about
- 22 all new residential construction being zero net energy by
- 23 2020, commercial by 2030.
- 24 And then the definition that says the amount of
- 25 energy provided by on-site renewable energy sources is

- 1 equal to the amount of energy used by the building. And
- 2 it also indicates that ZNE may also include embodied
- 3 energy.
- 4 So, the results of this, we've spent the last six
- 5 months -- you might think, six months to describe ZNE?
- 6 Well, you know, you get a bunch of people in the room and
- 7 this has, you know, a huge impact on policy of the State
- 8 so, not surprisingly, there's a lot of very intelligent
- 9 people, with a lot of different perspectives, and we're
- 10 trying to develop a consensus.
- 11 And from that work we developed a memo. And I
- 12 just have to note that we all didn't agree. So, there
- 13 was a memo and then we're looking at adding onto that,
- 14 basically, you know, the loyal opposition's various
- 15 statements about, you know, other people's definitions of
- 16 ZNE.
- So, these are some of the questions that we've
- 18 tried to address. Probably many of you have thought
- 19 about these in the past. You know, what -- how do we
- 20 define energy? Do we define it in terms of site energy,
- 21 which is the amount of energy, you know, that passes
- 22 through the meter?
- Do we use source energy, which accounts for the
- 24 amount of energy used back at the power plant?
- 25 Do we use other definitions that might include

- 1 societal costs of energy?
- 2 And then, when we look at zero net energy, what
- 3 is the energy that we're talking about? Is it just the
- 4 energy required to operate the building?
- 5 Is it the energy that we normally regulate in
- 6 Title 24?
- 7 Does it include the energy that's in our
- 8 materials, the energy that's required to get back and
- 9 forth to the building?
- 10 And then we talk about on-site renewable energy;
- 11 what does that include? Does it include photovoltaics?
- 12 If I -- can I use biomass, can I receive --
- 13 basically, can I have a pellet stove and have pellets
- 14 sent to me just as long as they're sustainably harvested
- 15 I can start heating my building with wood. So, those are
- 16 some of the questions.
- 17 And then, finally, you know, what is on site?
- 18 So, is that just the building, itself, is it the
- 19 development?
- What if I'm a large landowner and I own 20
- 21 properties and I stick all of my renewables over on one
- 22 property, can I now then not put any renewables on the
- 23 other 19?
- 24 So, those are some of the kinds of questions that
- 25 we wanted to address.

- 1 One of the things we did was that we wanted to
- 2 have a simple definition, but also have the richness of
- 3 all the policy decisions that are underneath that fairly
- 4 simple and straight forward definition.
- 5 And I want to acknowledge, you know, Rick Diamond
- 6 because I think he fairly much kind of came up with this
- 7 idea.
- 8 So, we have this simple definition and then we
- 9 have sort of the footnotes and the italicized words, et
- 10 cetera, that then, you know, the terms, themselves, are
- 11 defined. So, anyway, that's what we want to do there.
- 12 So, the first thing that we recognized was that
- 13 everyone can think about a reason why you can't have a
- 14 zero net energy building in some place.
- So, I've got the house that's in the -- I want to
- 16 build this house and it's in a 300-year-old redwood
- 17 grove. Am I going to cut down all the trees so I can be
- 18 zero net energy? No, probably not going to do that.
- 19 We're not going to have that as a State
- 20 requirement, you know, leave no tree, what, standing or
- 21 something like that.
- So, yeah, exactly. So, what this does is it
- 23 recasts those goals and says that all new construction is
- 24 ZNE or equivalent to zero net energy by 2020.
- 25 And the reason to do that is to uncouple those --

- 1 those buildings that would be touted as a genuine ZNE
- 2 building, that it actually is producing its total amount
- 3 of operational energy on site. So that if you started
- 4 trying to water down what the definition of ZNE was to
- 5 hit the policy goal, then you don't actually have a term
- 6 that's useful for marketing ZNE buildings, you know, that
- 7 we certainly want to encourage.
- 8 Because those buildings are essentially, just
- 9 like we use race cars to develop new technologies for
- 10 passenger vehicles, I see the same thing occurring with
- 11 zero net energy buildings, that these buildings -- not
- 12 every building in the future is necessarily going to be
- 13 zero net energy, but the technologies that are in those,
- 14 you know, purely zero net energy buildings are then going
- 15 to diffuse into the rest of the building stock.
- So, this was, I think, a pretty big deal to
- 17 actually revise that goal. And, of course, this is up to
- 18 the Public Utilities Commission to think about whether or
- 19 not they want to, you know, take this recommendation.
- 20 But then it frees up then, isolating, you know,
- 21 what is now zero net energy versus some policy questions
- 22 that would be embodied in codes, and programs, and other
- 23 things in terms of zero net energy equivalent.
- 24 And it should be noted that equivalency was sort
- 25 of in the original goal and that for the existing

- 1 buildings it says that 50 percent of the buildings will
- 2 be equivalent to zero net energy.
- 3 So we think that, perhaps, that was the intent,
- 4 initially, anyway.
- 5 And then in terms of the definition of zero net
- 6 energy, what we're proposing is -- or at least this
- 7 memo's proposing is that the societal value is the
- 8 definition of energy. The societal value of energy
- 9 consumed by the building is less or equal to, then, the
- 10 societal value of the on-site renewable energy generated.
- 11 And the reason for using societal value of
- 12 energy, and I'm going to go into more detail, but the
- 13 issue is that this captures a number of prior decisions
- 14 around energy policy in the State, and I'm going to go
- 15 into more detail about that.
- So, the societal value of -- so, I guess I won't
- 17 read these, but we'll get into definitions of societal
- 18 value which, historically, we've also known as TDV, or
- 19 time dependent valuation of energy.
- In terms of the site, that the site is the
- 21 property receiving development entitlements and building
- 22 code permits, because we expect that over the long term
- 23 that this would ultimately be enforced through the
- 24 Building Code, so you need some kind of mechanism of
- 25 defining what that property is.

- 1 And also that, you know, again, the purpose of
- 2 zero net energy is this paragon or example of,
- 3 essentially, a building that can "live within its means,"
- 4 that it's able to generate as much energy as it needs and
- 5 that that -- actually, I think it's pretty eye-opening
- 6 that it's actually possible to live within your means,
- 7 that we're not just, you know, developing new building
- 8 stock that ultimately is extractive and requires constant
- 9 input.
- 10 And then, also, what is renewable resources, we
- 11 talked a little bit about that earlier.
- 12 So then, you know, some of the other questions
- 13 was what sort of -- what is the basis of ZNE? Does it
- 14 include embodied energy? Does it include transportation
- 15 energy? Does it include water energy and all these kinds
- 16 of things?
- 17 At this point of time we're just talking about
- 18 the basis being on the energy usage of the building. And
- 19 the reason for this is that we feel it's an attainable
- 20 goal, it's easily understandable.
- I think when people normally say a zero net
- 22 energy building, they're not thinking of, oh, I've got a
- 23 building that's actually providing more energy than I
- 24 need to meet my ongoing needs, it actually, also, sort of
- 25 paying into the energy bank for the amount of energy that

- 1 was used in the concrete, and the foundation, or
- 2 something like that.
- 3 So, it's readily understandable to, I think,
- 4 someone's basic understanding of what ZNE means.
- 5 Also that the building usage includes plug loads.
- 6 So when we think of a zero net energy building, or at
- 7 least when I think of a zero net energy building that the
- 8 amount of renewable generation's not just serving the
- 9 heating, ventilating, and air conditioning, but that it's
- 10 also serving all of the uses that are in that building,
- 11 and so that would include plug loads.
- 12 And that has a huge policy impact because over
- 13 half of the electricity loads in homes are not -- are not
- 14 your Title 24 regulated end uses, they're -- they're
- 15 essentially plug loads, and it highlights the importance
- 16 of appliance standards and other things that we do in
- 17 terms of improving plug load efficiency.
- 18 So, this also has an implication in terms of our
- 19 rating tools. So for instance the HERS-2, which is the
- 20 Home Energy Rating System, accounts for plug loads in
- 21 that rating, and as we move forward into commercial
- 22 buildings, we'll probably want to make sure that we're
- 23 fully accounting for all of the plug loads in those
- 24 buildings.
- 25 And in some cases you have to make some

- 1 assumptions about what is a typical plug load when you
- 2 don't have that information.
- 3 And I've listed COMNET here, which is a national
- 4 group that's working on these kinds of issues.
- 5 So then what is ZNE equivalent and because,
- 6 potentially, that's sort of half of this new policy
- 7 statement which is all buildings are either ZNE or ZNE
- 8 equivalent.
- 9 So, you know, what is proposed is that it's a
- 10 property that achieves, it's a societal value of energy
- 11 equivalent for those ZNE buildings. And then that opens
- 12 the door for all of the policy decisions that have to,
- 13 you know, go through a public process and decide what
- 14 sort of tradeoffs do we allow between other factors and
- 15 energy and that potentially has -- you know, does have
- 16 those other issues associated with energy, whether it's
- 17 embedded energy, transportation energy, embedded energy
- 18 in water and those sorts of things.
- 19 And so this actually builds on the precedence
- 20 that's actually already in Title 24, where we have a
- 21 series of prescriptive standards, essentially a cookbook.
- 22 And in our case, for ZNE, the cookbook is that
- 23 the building doesn't use more societal cost of energy
- 24 than the amount of energy that it's producing.
- 25 And in the Title 24 Energy Code we have these

- 1 prescriptive buildings that, you know, say you've got
- 2 this kind of glass and this kind of insulation in the
- 3 building, but the builder has all the flexibility of
- 4 trading off as long as they run it through the
- 5 performance approach and it ends up with the same
- 6 energy -- or, actually, the same societal cost of energy
- 7 because Title 24 uses what we call PDV energy, so use the
- 8 same societal cost of energy as that base building.
- 9 So, again, it builds on sort of the existing
- 10 structures that are already in place.
- 11 So, I'm going to talk a little bit about, now,
- 12 some of the discussions that we had within our group. It
- 13 looks like I've got about five more minutes. And so some
- 14 of these issues that I've talked about earlier, and we've
- 15 seen the Big, Bold Strategies, and it's worth noting that
- 16 two of these refer to ZNE.
- 17 Again, this was the definition that was talked
- 18 about earlier.
- 19 And then, you know, what is net zero? Again,
- 20 we've talked about that basically the amount of
- 21 renewables out as the same societal cost as the total sum
- 22 of the other energy sources in.
- 23 And so there are various metrics, we've talked
- 24 about the site and source, et cetera, and societal cost.
- 25 Here's some other ones, grid neutral, carbon neutral.

1	P	ana	tnen	wnat	ao	we 1:	ncıua	e in	terms	OI	our	
2	definition	ns?	So,	one	exe	rcise	s we	went	throug	gh	was	sort

- 3 of a pro and a cons of the various definitions. And one
- 4 of the definitions, you know, that there was some support
- 5 for had to do with site energy. And the pros associated
- 6 with site energy is, well, there is a definition of just
- 7 exactly how much, you know, energy is metered when we
- 8 sell it to the consumer and, you know, so it's metered,
- 9 it has a value, et cetera, you can make conversions.
- 10 It's a more stringent view of zero net energy
- 11 because essentially the value, when you look at source
- 12 energy and some of these other definitions, the value of
- 13 electricity is a lot higher and so that exported
- 14 renewable electricity would have a lower value under this
- 15 definition. And, also, the value of gas would be
- 16 considered, essentially, relatively higher as a result.
- 17 And also that the CPUC, you know, has goals that
- 18 are associated with kilowatts, kilowatt hours and therms.
- 19 Actually, that goal is for kilowatts, which really aren't
- 20 covered in this definition, but in terms of kilowatt
- 21 hours and therms, those are captured.
- In terms of the cons, you know, the United States
- 23 is one of the few countries, you know, that uses English
- 24 units. The English don't use English units. And so we
- 25 actually don't use the same units for electricity and gas

- 1 and so it's not actually -- it's not really that simple
- 2 for the consumer. You know, okay, I've got to divide by
- 3 3413, multiply by a hundred thousand, they convert it
- 4 into therms or kilowatt hours, et cetera.
- 5 So, the simplicity of site energy when you start
- 6 doing tradeoffs isn't quite as simple in America as it
- 7 might be in Europe or something.
- 8 It's harder and more costly to achieve the goal,
- 9 it would cost 60 percent more -- and I'll show some --
- 10 I've got some backup slides, but it would -- you'd be
- 11 paying 60 percent more for your renewable system and so
- 12 it basically sets the bar, it makes it more stringent,
- 13 and so it would add substantially to the statewide cost
- 14 and for individuals to achieve this.
- 15 It treats all fuels identically so even though
- 16 propane, on average, costs about twice as much as natural
- 17 gas this would treat that those two fuels are treated
- 18 identically. So, not a great, you know, in terms of what
- 19 does the consumer care about? Do they really care about
- 20 therms and kilowatt hours or are they actually more
- 21 interested in dollars. And so site energy doesn't
- 22 necessarily create that tradeoff.
- It ignores the concept of thermodynamic quality,
- 24 which is that it took a lot more energy to make each one
- 25 of those kilowatt hours than it does for -- to make 3,000

- 1 BTUs of natural gas. You know, the reality is that since
- 2 it does have a higher quality if you treat it -- if you
- 3 treat those different energy sources identically, it
- 4 creates some distortions, including things like, you
- 5 know, potentially using electric resistance for water
- 6 heating, which I don't think the State -- you know, we've
- 7 done some things where the State doesn't really want to
- 8 follow that policy choice.
- 9 And also it doesn't address peak demand. And, of
- 10 course, we've got lots of load management policy goals
- 11 that we're trying to achieve. And so -- so, anyway,
- 12 those are some of the cons associated with site energy.
- So, source energy, that's looking at essentially
- 14 how much energy back at the power plant is consumed in
- 15 terms of looking at tradeoffs and valuing, you know, to
- 16 make those tradeoffs between renewable energy, the
- 17 various sources that are used on site.
- 18 And the pros are that there's other definitions
- 19 of ZNE that the European Union uses, source energy, the
- 20 DOE uses source energy. It values energy based on
- 21 primary energy. You know, there's some kind of weird
- 22 things when you think about it in terms of hydro.
- I've got one minute, okay.
- 24 And encourages fuel -- so, anyway, there's pros
- 25 associated with it.

1 But the cons are that the source multiplier	s are
---	-------

- 2 actually not consistent, so it's not really that
- 3 appropriate or consistent across the world. It can be
- 4 complex or it can be simplified. Again, it treats
- 5 propane and natural gas the same even though they have
- 6 different costs. It doesn't address peak demand.
- 7 And the -- for societal cost, the pros of using
- 8 societal cost is that it has sort of the benefits of
- 9 source energy, plus it's compatible with what we already
- 10 are using for Title 24. And one of the reasons we're
- 11 using it for Title 24 is that it addresses peak demand.
- 12 It's compatible with the other rating systems that we
- 13 already have in place, the HERS rating, it accounts for
- 14 the value of different energy sources. It comes closer
- 15 to the cost of what the consumer actually pays for their
- 16 energy consumption. And it also is expandable and allows
- 17 for other policy decisions to be included. And it's
- 18 actually very similar to how the CPUC evaluates their
- 19 programs.
- 20 Actually have a -- for people that are interested
- 21 later on, I have a slide that describes how, essentially,
- 22 TDV, if you take off the retail rate add or in the
- 23 emissions value that's essentially -- the rest of that
- 24 evaluation is the same as what's used for the avoided
- 25 cost of energy that's used for evaluations of efficiency

- 1 programs.
- Now, the cons are that historically we've been
- 3 using the term "time dependent valuation" and then that
- 4 leads into sort of grabs how time -- you know, how costs
- 5 vary by hour, et cetera.
- But, you know, that's really the mechanics of the
- 7 details of the thing. It's really easier to explain this
- 8 as a societal cost because that's really what we're
- 9 getting after with TDV. It is complex to calculate
- 10 because it is on an hourly basis.
- 11 You know, as I've showed kind of on my second
- 12 slide, I showed sort of the HERS rating and zero, all
- 13 these details are kind of under the hood of the
- 14 calculation engine but, you know, it does make it harder
- 15 to calculate. And for billing analyses, you know, you
- 16 need some kind of -- it also makes it more complex.
- 17 And another issue that was brought up is, well,
- 18 it's not purely energy because demand costs are really
- 19 talking about the capital costs of equipment, you know,
- 20 the power lines and all these various other things, all
- 21 the infrastructure that's required to meet those loads.
- 22 And I know that I've run out of time so I guess
- 23 I'll stop here but, hopefully, this will lead for some
- 24 interesting discussions this afternoon. Thank you.
- MS. BROOK: Okay. That was very, I think,

- 1 comprehensive and lots of things to chew on later.
- Let's get to our next speaker. Okay, so now
- 3 we're going to have two different speakers talk about the
- 4 pilot programs that are happening in the State for zero
- 5 net energy and our first speaker is Jeff Gleeson.
- 6 So, let me introduce Jeff. Jeff is currently the
- 7 manager of PG&E's Core Buildings Products Team in the
- 8 Customer Energy Solutions Organization of Pacific Gas &
- 9 Electricity.
- The Buildings Team focuses on the Zero Net Energy
- 11 Pilot Program, Energy Upgrade California, which we'll
- 12 hear about later this afternoon, and fenestration
- 13 products.
- 14 Prior to joining PG&E, Jeff received his MBA from
- 15 UC Davis, where he was an emerging venture analyst for
- 16 the Energy Efficiency Center on campus. Jeff's research
- 17 at Davis focused on thermal storage and lifecycle cost
- 18 modeling.
- 19 Jeff has a bachelor of science in civil
- 20 engineering from Cal Poly and he worked as a design
- 21 engineer prior to attending UC Davis.
- Thanks Jeff.
- MR. GLEESON: Great. So, thank you for having me
- 24 today. It's good to be here not only because this is my
- 25 home town but, also, because as Martha mentioned -- thank

- 1 you. Hopefully, everybody can hear me all right.
- 2 As Martha mentioned, my group covers ZNE, which
- 3 is a non-resource program, meaning for the utility it
- 4 doesn't have direct energy savings right now, but I'll
- 5 get into why it's going to have plenty of savings later.
- 6 But, also, the Energy Upgrade California Program,
- 7 which is otherwise known as "Whole House" in some
- 8 circles, depending on where you run in the energy
- 9 efficiency space.
- 10 So, I'm actually going to have to run after this
- 11 presentation to go talk to some folks about Energy
- 12 Upgrade California.
- So it's good to be here today to talk about sort
- 14 of the steps that we're going to take towards those 2020,
- 15 2030 goals.
- 16 So, talked this morning about the end goal and
- 17 then I'll talk with some folks about more of the near-
- 18 term retrofit activities and, obviously, we'll cover that
- 19 this afternoon.
- 20 So, I will be stepping out for a little bit, but
- 21 I will be back this afternoon and hope to connect with
- 22 folks then as there are, I'm sure, questions and some
- 23 things we can discuss.
- 24 So really quickly, just some why, what, and
- 25 specifics of what I'm here to talk about this morning,

- 1 which is PG&E's Zero Net Energy Pilot Program.
- 2 And I think it's particularly exciting, even
- 3 though it doesn't have customer-facing rebates, or
- 4 incentives, or anything that we typically would talk
- 5 about in the utility program, a lot of great studies and
- 6 some different pieces that we're looking at that I think
- 7 everybody will be interested in.
- 8 I'll leave the policy discussion, we've certainly
- 9 heard more about that than I can add right now, so I
- 10 think I'll move forward.
- 11 So, what is the objective of our pilot program?
- 12 It's really the definition up there, but it's three
- 13 buckets, three buckets of things that we're trying to do.
- We're trying to get through some project
- 15 complications for folks who are trying to move their
- 16 projects out at residential buildings, commercial
- 17 buildings, or even community-scale designs, which would
- 18 include educational facilities, things like that. It's
- 19 trying to take that sort of design or your new projects
- 20 to ZNE, but don't quite have the resources to get there,
- 21 we're going to help folks do that.
- We're also looking at large and small technology
- 23 assessments. That's a particularly exciting one. Small
- 24 technology assessments aren't really that small, we just
- 25 call them that because the larger ones are a bit loftier

- 1 in scope.
- 2 But looking at things like a heat pump water
- 3 heater; what does it take to get e-pump water heater
- 4 technology to help us on the goal to ZNE or the path to
- 5 ZNE, and then really comparing it to other technology.
- 6 So as we look forward down the 2020 or 2030 road and
- 7 you're thinking about putting something in what are your
- 8 tradeoffs, what are the technologies that you're going to
- 9 consider and the pros and cons of each.
- 10 And the those larger technology assessments that
- 11 I find even more exciting are asking bigger questions.
- 12 Examples might include DC wiring in buildings, or
- 13 district heating in the larger community. Or even one
- 14 that I find particularly intriguing, that I'd like to
- 15 talk to folks about later is what does it look like when
- 16 all of these things work? So, what does it look like
- 17 when those technologies proliferate and those -- we
- 18 actually accomplish these goals, because Energy Upgrade
- 19 California is certainly going to take us part of the way
- 20 there and so we will.
- 21 So, what does that look like, how do we really
- 22 keep the ZNE in sort of a sustainable and fair future?
- 23 It's a very interesting, it's a larger picture question.
- 24 And then the third bucket is education. So,
- 25 hopefully, a few of you were able to attend our ZNE forum

- 1 a few weeks ago in Berkeley. We're going to have another
- 2 one next year. If you weren't able to attend, then let
- 3 me know and we'll get you my contact information.
- 4 Also, courses at the Pacific Energy Center and
- 5 the Stockton Training Center; those are free, so really
- 6 encourage you to take those, if you haven't already.
- 7 We've got some really, really great instructors for our
- 8 ZNE series, some great architects, some great minds in
- 9 the space.
- 10 So, again, the complications, the tech
- 11 assessments, and then the education piece.
- 12 So those are -- the education piece we call "Tell
- 13 The World."
- 14 So, a little bit more detail on what we're trying
- 15 to do. We're going to try to look at five communities
- 16 between now and the end of our program cycle, which is
- 17 for the end of 2012. And when we say five communities
- 18 what we mean is look at five community-scale projects
- 19 that could potentially get to ZNE and look at how we can
- 20 help them get there. That might be a large residential
- 21 development, or maybe an office complex or, as I
- 22 mentioned, maybe a high school or a community college.
- 23 Demonstration showcases then would be the
- 24 buildings that are on smaller scale, so an individual
- 25 commercial building, or an individual residential

- 1 building.
- 2 If you're looking at putting something new up and
- 3 you need to -- want to get it to ZNE, don't have the
- 4 resources, that's where we'll hopefully be able to step
- 5 in. It's a competitive process, I can give you more
- 6 details if you want, but I won't get into the -- won't
- 7 get into the details now.
- 8 And then the breakdown of the technology
- 9 assessments, we're only going to do five of those large
- 10 ones, so we really need to pick our discussions wisely.
- 11 And then design integration, the last thing I
- 12 didn't mention earlier about the education piece is the
- 13 design competition. Really, excited to move forward on
- 14 some of those, we're going to have a design competition
- 15 this year that you'll be hearing about later, and then a
- 16 design competition next year for students and
- 17 professional architects.
- 18 So, taking a theoretical building, I'm sure some
- 19 of you have been involved in these in the past, I know I
- 20 was as a civil engineer and undergrad; taking a look at a
- 21 site, thinking about what could be put on it -- no
- 22 real -- not necessarily going to build anything or put up
- 23 the winning bid, but taking a look at what we could use
- 24 from a mixed-use perspective, or maybe a larger
- 25 community-scale, transportation perspective on a site

- 1 that maybe could use some help. So, we'll have two
- 2 design competitions and those should be really great
- 3 events and, hopefully, we're going to see some really
- 4 great entries in those.
- 5 So again, no incentives, no flashy marketing
- 6 materials for this program, but I think asking and then
- 7 exploring and then, hopefully, beginning to answer some
- 8 more fun questions of what we've got here that we're
- 9 talking about today.
- 10 So again I mentioned, there are some smaller
- 11 details about some of these things, be happy to follow up
- 12 with any of you offline, if you've got questions.
- 13 But competitive process for projects that are
- 14 looking for design assistance, which is kind of the
- 15 nature of what we need to do and then we are going to be
- 16 selecting consultants and then actually move through that
- 17 public process, as well, to selecting what we'll pair
- 18 with these projects and hopefully get some assistance for
- 19 folks that they otherwise wouldn't be able to bring on to
- 20 their design teams.
- 21 And then really take a comprehensive look at
- 22 project scopes and where community or building level
- 23 projects can hit.
- 24 So, that's a really quick overview and I know
- 25 we're a little behind, so I'll stop there. And I'm going

- 1 to talk about some data for the Residential Program, but
- 2 I'll be back later this afternoon, happy to talk more.
- 3 It's a small pilot, but it's an exciting pilot. So,
- 4 looking forward to talking with you folks later, thank
- 5 you.
- 6 MS. BROOK: So, all the hard questions we'll save
- 7 for this afternoon when Jeff gets back. So, great, thank
- 8 you Jeff.
- 9 Our next speaker is Steve Galanter from Southern
- 10 California Edison, and let me bring up his slides and
- 11 introduce him real quickly. I know you're in here
- 12 somewhere. Here you are. Okay.
- Okay, Steve Galanter manages Southern California
- 14 Edison's Customer Energy Efficiency and Solar Division's
- 15 Strategic Planning and Technical Services Group. His
- 16 responsibilities include the management of long-term
- 17 energy efficiency strategic planning, development and
- 18 management of engineering savings estimates for energy
- 19 efficiency program operations, tracking systems
- 20 coordination, and he's also responsible for quality
- 21 assurance for the division.
- During Steve's 30 years at Edison he's held the
- 23 positions of Manager of Regulatory Planning, Manager of
- 24 Technical Support, Manager of Technology Assessment and
- 25 Application, and Supervisor of Load Management Programs.

- 1 Steve.
- 2 MR. GALANTER: That's a great resume, I wish it
- 3 was mine. Just kidding.
- 4 So, I have really two slides that I want to go
- 5 over and the first slide is just seven projects, seven
- 6 emerging technology and customer energy efficiency, and
- 7 solar-related ZNE projects that I want to talk about.
- 8 And then comment a little bit on what John was
- 9 going over in terms of definitions of ZNE. And those are
- 10 my two slides.
- 11 So, the first one, the biggest project that we
- 12 probably have going on, which is not solely a ZNE
- 13 project, but it's an integrated project associated with
- 14 looking at our -- looking at our energy grid and asking
- 15 the question what is some of this new technology going to
- 16 do to our energy grid? What kind of affect is it going
- 17 to have? And included in that is zero net energy homes.
- 18 So there's four blocks of homes that will be
- 19 installed as part of what is called the "Irvine Smart
- 20 Grid Demonstration."
- 21 Each block of homes is about 10 to 12 homes and
- 22 they're all going to have a different focus to them. One
- 23 block of homes will have battery storage or electrical
- 24 energy storage, because some people don't like the word
- 25 "battery" for some reason. But those homes will have

- 1 site-positioned batteries in them.
- 2 Then roughly about the same number of homes will
- 3 have a community battery and it will be associated with
- 4 the transformer for those homes.
- 5 And then another group of homes will be zero net
- 6 energy homes. Those are what we're talking about today.
- 7 And then the last group of homes will be the base
- 8 case or the comparison group of homes.
- 9 It's a very big project, it's a lot of money,
- 10 it's almost \$80 million, half of which is funded by the
- 11 Department of Energy and the other half the Southern
- 12 California Edison and some other folks.
- But as you can guess by the nature of this
- 14 project, I think I could say safely that the utility
- 15 industry is concerned about what the future holds in
- 16 terms of new technology, new developments, photovoltaics,
- 17 electric vehicles, those kinds of things and what they're
- 18 going to do to our grid.
- 19 Our grid has not been that dynamic in the past.
- 20 It's been a one-way grid. Electrons have flowed out
- 21 towards businesses and homes, and it's not been a two-way
- 22 transfer of electricity.
- 23 That is already changing and it will be changing
- 24 a lot in the next ten years, and that's the time frame
- 25 for zero net energy that we're talking about; high

- 1 concentrations of photovoltaics, inverters, that sort of
- 2 thing, electric vehicles.
- 3 So this is a great project, we're leveraging
- 4 other parts of the company in terms of doing this,
- 5 because the roughly \$40 million on our side of the
- 6 funding for this is -- most of it is coming from our grid
- 7 operations team, it's not coming from energy efficiency
- 8 but, yet, we're able to leverage that.
- 9 And so this is a great project and it's just
- 10 getting underway so, hopefully, we'll get a lot of good
- 11 information out of it.
- 12 Now, the next one on the list of seven is this
- 13 power modeling study. It is a study, it's not actual
- 14 hardware in the field, but it's an analysis of inverters,
- 15 inverter technology to go primarily in homes.
- And just as CFLs, not all CFLs are alike in terms
- 17 of color quality, in terms of just longevity, and the
- 18 quality of the bulb, that's true of inverters as well.
- 19 And some inverters are what we call dirty and what are
- 20 they going to do, again, to our grid.
- 21 The anticipation is there will be lots more
- 22 inverters in place because there will be photovoltaics,
- 23 and battery storage, and that sort of thing.
- 24 And then the third project that I've listed here
- 25 is this is a single-family model home ZNE project. What

- 1 we're trying to do is solicit three developers to
- 2 participate in this project, where they would commit to
- 3 have one of their model homes being a zero net energy
- 4 home. So, this would be a home, amongst a number of
- 5 models, and you would hope that they would have
- 6 progressively better performance in those models, and
- 7 then the trophy model would be the zero net.
- 8 So we're, you know, as you can well imagine, with
- 9 the housing market as it is today, we're struggling a
- 10 little bit on this. But that is our intent and we are
- 11 pushing forward on this project.
- 12 It will focus primarily on climate zones eight,
- 13 nine and ten. If you're not familiar with Southern
- 14 California climate zones, but that goes from coastal --
- 15 well, not coastal, but near coastal to a very hot region.
- Then the next project and this was good putting
- 17 it all on one slide, I don't have to go through the -- is
- 18 what we call the ABC Home Project.
- 19 And forgive me, but I don't know what ABC stands
- 20 for, but I do know it's for trade schools, it's for folks
- 21 who build homes, and training people to build homes.
- 22 This is actually Southern California Edison
- 23 funding the education and training of folks to build
- 24 these homes. And once built, they would actually build a
- 25 full-scale home, moving that home to the community, maybe

- 1 having Habitat of Humanity or somebody take it and
- 2 actually place it and have a family move into it, and
- 3 then build another home.
- 4 So, this has just started, but we're pretty
- 5 excited about this because, as you can guess, this
- 6 incorporates a number of elements of awareness,
- 7 knowledge, technology and community involvement. So, we
- 8 really like this project.
- 9 The next one is actually a retrofit program.
- 10 It's big-box retail. And we saw one of the Big, Bold
- 11 strategies was essentially retrofit, existing homes,
- 12 existing businesses.
- 13 And although some big-box retailers have made
- 14 attempts, at least in new construction, to do zero net,
- 15 this is to go to the hard one, the real difficult one,
- 16 and we think we're close to having a commitment for this
- 17 occurring. And I can't even name who that would be, but
- 18 it's a big name. And I hope this works out because
- 19 otherwise I'm pumping you up for no reason. But, anyhow,
- 20 so that's what that is.
- 21 And then the next one is a zero net energy lab.
- 22 This is something that was funded due to our funding
- 23 request, Southern California Edison's emerging technology
- 24 funding request. It's in our program implementation
- 25 plans. It's to build an energy technology center, really

- 1 focusing in on zero net energy, that's what it is.
- We have a refrigeration technology center, we
- 3 have a lighting technology center, and this would be a
- 4 center for that, and it would be a center for integrating
- 5 a number of technologies into the concept of ZNE. How do
- 6 they work together, how can we optimize that, that's what
- 7 this activity is.
- 8 And then the last, which I know Greg is very
- 9 proud of this because I -- having worked at the Edison
- 10 Company for so many years, one of our biggest
- 11 bureaucracies is our IT department and it is really
- 12 difficult to do this, is to put a blog together from a
- 13 large company like us, and we did it in short order. And
- 14 from what Greg tells me, there's lots of interest in
- 15 this. We're posting articles. The idea, again, is to
- 16 communicate about ZNE and have a forum to do that and
- 17 this is our blog.
- 18 So, now let me just -- let me just comment very
- 19 briefly and then I'll conclude my remarks, about this
- 20 definitional discussion that we had. Jon talked about
- 21 it. And thank you, Jon, for at least recognizing that
- 22 there isn't consensus on that. Everybody has a different
- 23 opinion on how you define this ZNE.
- I think where we're coming from is simple is
- 25 good, and straight forward. We kind of like the CPUC's

- 1 approach. It's conceptually very easy to understand.
- 2 Because we're recognizing that to be market
- 3 sustainable and to really be successful over the long
- 4 haul the market has to embrace this, and customers have
- 5 to understand it.
- 6 So our approach in general is simple is good.
- 7 So, as a result site energy is what we like. We
- 8 understand transportation, water, embodied energy and all
- 9 that but, again, taking the simple track, we would prefer
- 10 not to embrace that.
- 11 And then also recognition of ZNE or I should say
- 12 near ZNE. Not everybody's going to make it and it's
- 13 okay, but if it's a fractional ZNE, maybe that's okay,
- 14 too, again, leading to market -- a potential market
- 15 transformation.
- 16 And then also recognition that not all power is
- 17 equal. Power is made up of a combination of different
- 18 generation resources from hydro, to nuclear, to coal, and
- 19 a lot of renewables. California's done a long way in the
- 20 area of renewables. That shouldn't be ignored in terms
- 21 of assessing ZNE.
- 22 Then the last thing I'd like to say is sort of a
- 23 look back to the seven projects that I outlined. As you
- 24 can imagine or as you heard, what the future's going to
- 25 hold in terms of our grid is a big deal for us. And I'll

- 1 leave you with just this thought, if you think about zero
- 2 net energy, or just an average home, ultimately zero net
- 3 energy, but an average home in our service territory
- 4 consumes between 6,000 and 6,500 kilowatt hours.
- 5 An electric vehicle that is driven about 15,000
- 6 miles a year consumes about 6,000 kilowatt hours.
- 7 A transformer, for a typical distribution, will
- 8 serve about seven hours.
- 9 So, if you put that all together and start to
- 10 think about what's going to happen in the future in terms
- 11 of our energy grid, along with all the photovoltaics,
- 12 which is increment and generation, there's a lot, a lot
- 13 of interest in what's going to be happening in the next
- 14 10 to 20 years.
- 15 And that's kind of what's kind of painted my
- 16 comments and I'll just sort of leave you with that
- 17 thought. But there's no doubt that the future will be
- 18 very different than today and it will include ZNE, and
- 19 photovoltaics, and electric vehicles, and we want to make
- 20 it work for our company and that's what we're doing,
- 21 that's what we're working on.
- MS. BROOK: Thank you.
- Okay, our final speaker for this morning is Cathy
- 24 Chappell and she's going to talk about ZNE standards.
- 25 Cathy is a registered mechanical engineer and

- 1 Director of Codes and Standards at the Heschong Mahone
- 2 Group. She's currently leading the development of the
- 3 California Investor-owned Utility sponsored Code
- 4 Revisions for the 2013 California Building Energy
- 5 Standards, which we call Title 24.
- 6 The project develops specific Title 24 standards
- 7 language in supporting compliance manual and compliance
- 8 forms.
- 9 Ms. Chappell has also assisted the California
- 10 investor-owned utilities with new construction program
- 11 development, implementation and evaluation, emphasizing
- 12 the role of utility programs and priming the market for
- 13 code updates.
- 14 Cathy.
- 15 MS. CHAPPELL: Thanks Martha. Can everybody hear
- 16 me okay, am I close enough? A little bit up, okay.
- 17 So, as the last speaker of the session, I also
- 18 have the duty of kind of giving us some time to speak,
- 19 have questions from the audience. I, also,
- 20 optimistically, scheduled another call, as did Jeff,
- 21 another meeting, so I may need to step out and take a
- 22 call, but will be around until 11:30.
- 23 So without further ado, as Martha said, what I'm
- 24 going to be talking about is the 2013 standards, Title
- 25 24, primarily the building energy efficiency both --

- 1 well, I'll get into this shortly, what we're talking
- 2 about there.
- 3 And as Jordana covered earlier today, the role,
- 4 the perspective that I have, as Martha mentioned with the
- 5 introduction, is what the investor-owned utilities are
- 6 doing in connection with the Energy Commission on working
- 7 towards Title 24.
- 8 And that is part of the long-term strategic plan.
- 9 One of the critical cross-cutting elements is codes and
- 10 standards, both for buildings and for appliances. And
- 11 the CPUC and, therefore, the IOUs are working towards
- 12 this same ZNE goal that we've been talking about.
- 13 And I like to present this, I'm not the only one
- 14 who's done this, as a continuum, when we look at energy
- 15 efficiency, the role that codes and standards plays in
- 16 the whole cycle of energy efficiency.
- 17 And we typically will start or I like to think
- 18 about starting at the R&D section. What we're looking at
- 19 is PIER, as a good example, to dive some of the research,
- 20 looking at some of the emerging technology programs and
- 21 projects. I think that the ZNE pilot program is a really
- 22 good example of that.
- 23 Moving it into the incentive programs, as Jordana
- 24 mentioned earlier Savings By Design is the utilities'
- 25 commercial new construction program. There's also the

- 1 Solar Homes Initiative that the utilities are working on.
- 2 And all of that feeds into priming the market for
- 3 codes and standards, and looking at cost-effective and
- 4 stakeholder-supported code changes that are cost
- 5 effective.
- 6 And then, of course, another key piece is the
- 7 education and training element, particularly as it
- 8 applies to the Title 24 standards. And that's not a
- 9 focus of what I'm going to be presenting today, but I
- 10 just want to emphasize that that is critical to make this
- 11 all work in the real world.
- 12 So what we're talking about when we're talking
- 13 about Title 24 and what we are specifically looking at,
- 14 we the next round of the Title 24 update, is both the
- 15 California investor-owned utilities mentioned here, and I
- 16 will also mention that the municipal utilities, SMUD and
- 17 LADWP, in particular, have been participating in this
- 18 activity working closely with the CPUC Title 24 Standards
- 19 staff to look at base code of Title 24, which is part 6,
- 20 as well as the REACH standard, which is part 11.
- 21 And so what we're looking at is trying to achieve
- 22 significant energy savings for the Title 13, Title 24
- 23 building energy update that's reasonable, responsible,
- 24 and cost effective. And this is looking at the TDV value
- 25 of energy for -- specifically for residential for a 30-

- 1 year building time frame.
- 2 And the goals that we're looking at is for -- for
- 3 Title 24, relative to ZNE, is that Title 24 is really the
- 4 logical step for ZNE.
- 5 And as Jordana mentioned, having these
- 6 requirements in code is -- you know, I think she made
- 7 some comment about readying the market, but the other way
- 8 to look at it is it basically forces the market to
- 9 implement these requirements that we've been
- 10 investigating and that we think are appropriate.
- And again, we look at the updates, which is what
- 12 I'm presenting, we look at implementation, which is the
- 13 development of the manuals and the supporting
- 14 documentation of how this works, and the enforcement both
- 15 at the building department level, as well as with the
- 16 design community and making these -- the savings actually
- 17 occur.
- 18 So, what we're looking at with the Title 24
- 19 updates is to progressively raise the bar so that towards
- 20 ZNE what we're looking at or what the Energy Commission
- 21 has specifically said, for energy efficiency improvements
- 22 getting about 50 to 70 percent there.
- 23 And the idea is that there's 20 to 30 percent
- 24 energy savings for each update cycle as we head towards
- 25 2020.

- 1 And this is just a real simplified graphic of
- 2 what that is. We're referencing it to 2008 so we're at,
- 3 you know, a hundred percent of the energy consumption.
- 4 We're looking at here's a step of about 25 percent
- 5 towards the 2013 or 2014, which is when it's going to be
- 6 implemented, code. And then stepping down progressively
- 7 so that by the time we get to 2020 we're below 40 percent
- 8 and the remainder of that is met with renewables.
- 9 And so what we're looking at basically here is,
- 10 again, this is focusing on the residential portion of
- 11 Title 24, which is the 2020 goal. The non-residential is
- 12 looking at a 2030 goal.
- 13 And we have this, what we're referring to as a
- 14 loading order, where we're basically looking at the
- 15 building envelope, first, and we're trying to minimize
- 16 the energy consumption of the building envelope, then
- 17 start looking at the system efficiencies, the HVAC, the
- 18 ducts, the water heating.
- 19 And a key part of that has been verification of
- 20 the proper installation of the components and the system.
- 21 And one piece is QII, the quality insulation installation
- 22 and then the other, and then there's additional HERS
- 23 inspections for some of the HVAC requirements, and the
- 24 infiltration and testing that's required.
- 25 And I'll go into a little bit more detail here.

- 1 Then we're also look at equipment and plug loads. And
- 2 Title 24 has addressed lighting in both commercial and
- 3 residential buildings in the form of mandatory
- 4 requirements, specifically for residential. There's also
- 5 the interest in looking at additional loads.
- And as I think Martha's previously showed, and
- 7 Jon mentioned that, you know, there's a lot of energy use
- 8 in plug use that currently isn't regulated in Title 24,
- 9 and so the CEC staff and the IOUs are looking at how to
- 10 incorporate some of that with some lighting, and HVAC,
- 11 and other plug load requirements.
- 12 Then the other thing that the energy -- that the
- 13 standards are looking at, the Title 24 standards, for the
- 14 first time is looking at renewables. So, I shouldn't say
- 15 for the first time, there have been some solar, thermal,
- 16 water-heating requirements for solar-assisted water
- 17 heating. We are starting to look at solar PV and solar-
- 18 oriented developments.
- 19 And then there's also, this is all part of the
- 20 goal of what the Title 24 base code is looking at, and
- 21 then there are additional REACH codes that will go into
- 22 the CAL Green requirement and provide a consistent goal
- 23 and set of requirements that can be adopted by REACH
- 24 communities, if they so choose.
- So, I'm not going to go into the details of this,

- 1 both in the interest of time and because this isn't
- 2 really the focus of this session, but I wanted to just
- 3 provide some illustration of what we, and again
- 4 collectively the Energy Commission, the IOUs, and all the
- 5 stakeholders, and in the workshop process that the Energy
- 6 Commission has been holding, where we have found some of
- 7 the potential energy savings.
- 8 And the middle column here is looking at analysis
- 9 that has shown that there is some efficiency levels that
- 10 can be 44 percent more efficient than the 2008 code, the
- 11 current code, and then also comparing where the Energy
- 12 Commission is currently looking at 33 percent, which gets
- 13 to that first step.
- 14 There's glazing requirements, there's insulation
- 15 requirements that include both walls, cavity insulation,
- 16 as well as rigid insulation, swilling requirements.
- 17 I'll go through real quickly some of these
- 18 acronyms. RHT, raised hill tresses, so the idea that the
- 19 insulation at the corners don't get crunched up and then,
- 20 therefore, lose some of their capacity.
- 21 Looking at roof reflection values, looking at
- 22 additional roof deck insulation, looking at radiant
- 23 barriers and the requirements for roof ventilation,
- 24 looking at duct insulation requirements, and duck ceiling
- 25 and duct pressure testing requirements.

- 1 Also looking at ventilation, WHF is whole-house
- 2 fans. And the difference between in the footnotes there
- 3 on the graph is that for the CEC staff requirements there
- 4 are some exceptions for some of these requirements and
- 5 variations based on climate zones.
- And so, obviously, where it's less cost-effective
- 7 to do so, it's not required.
- 8 There's infiltration and testing requirements.
- 9 This is changing to be consistent with the air change
- 10 testing and values that are more consistent with IECC
- 11 2012 requirements.
- 12 The three or four air changes per hour is roughly
- 13 about, you know, somewhere between 30 and 50 percent
- 14 better than what the current requirement is, which is the
- 15 7.6 of the CEC staff proposal, although, we have seen
- 16 that in a lot of existing construction, relatively new
- 17 existing construction, that buildings are actually
- 18 tighter than that 7.6.
- 19 Then we're also looking at QII, again, quality
- 20 insulation installation. It's standing currently, it
- 21 just applies to the cavity insulation, the bats that are
- 22 going in the wall, extending that to rigid insulation,
- 23 exterior, as well as roof deck insulation.
- 24 The DHW compact design is basically the idea that
- 25 the water-heating system is thought out ahead of time,

- 1 that the heating loads, the draws, the kitchens and the
- 2 bathrooms are not necessarily centrally located, but
- 3 located in the same area so that your runs are smaller
- 4 than they would otherwise need to be, and that they're
- 5 close to the water heater so that there's less of pipe
- 6 losses.
- 7 And again, the first presentation -- or this
- 8 information that's on this graph in the table is the
- 9 package requirement which, as I think everybody knows,
- 10 sets the basis for the performance approach.
- 11 So, we're not saying that this needs to be done,
- 12 but we're saying that this is going to be the model
- 13 that's used to set the budget for the performance
- 14 approach and potential tradeoffs.
- 15 The other thing that we're looking at in terms of
- 16 tradeoffs are higher efficiency of air conditioning,
- 17 furnace and water-heating measures. There are
- 18 considerable issues with Federal preemption on air
- 19 conditioning efficiencies and the Energy Commission is
- 20 looking at ways around that, as having alternative
- 21 options that can encourage higher efficiencies, and
- 22 looking at other tradeoffs with HVAC equipment, looking
- 23 at evaporative technologies that could be used.
- 24 Again, with equipment the current emphasis that
- 25 we're looking on are upgradable thermostats that address

- 1 demand response.
- We're looking at lighting requirements, both
- 3 increasing the efficacy to high-efficacy requirements in
- 4 kitchens and bathrooms, and then providing credit for
- 5 even higher-efficacy lighting, including outdoor lighting
- 6 controls.
- We're also looking at several HVAC compliance
- 8 options, including the night ventilation system that will
- 9 allow some credits for night ventilation, looking at
- 10 thermal control requirements and where they make sense
- 11 and where they don't.
- 12 Again with the renewables we're looking at the
- 13 solar water heating, solar thermal for single-family and
- 14 multi-family buildings.
- We're looking at solar-ready PV homes, which is
- 16 basically to say that the wiring needs to be typically to
- 17 the roof. There needs to be an area on the roof that is
- 18 accessible for PV. And the solar-oriented development is
- 19 an idea that, if I'm recalling correctly, it's more of a
- 20 REACH code option, which is looking at master-planned
- 21 communities that align streets and so forth to make
- 22 better access for roofs, for proper solar orientation.
- We also have been talking in various areas about
- 24 the house energy budget. The Energy Commission is
- 25 looking at having larger homes that would use more energy

- 1 or would want higher allotment of, let's say, growing
- 2 areas and so forth to trade off against PV and other
- 3 renewables.
- 4 The IOUs are also considering looking at a
- 5 maximum budget that basically says your budget is set,
- 6 it's not so much a per-square-foot value, but it's
- 7 actually looking at a maximum cap on the budget and,
- 8 therefore, larger homes would have to do more to reduce
- 9 the energy.
- 10 And I know we haven't discussed this in detail,
- 11 but that's kind of the idea of where we would go towards
- 12 the ZNE.
- 13 Then some of the REACH code options that we're
- 14 looking at are the unvented attic options, compressorless
- 15 comfort homes, which is actually a fairly broad topic,
- 16 which is looking at, again, designing the building
- 17 envelope so that -- hopefully, I can back up and not hurt
- 18 Niemeyer's (phonetic) ears. Sorry.
- 19 Looking at reducing the envelope, maximizing, you
- 20 know, how efficient we make the envelope. Looking,
- 21 again, sort of kind of going back to, you know, passive
- 22 design type of construction.
- 23 The emphasis here is that we're looking at the
- 24 ASHRAE standard 55 comfort conditions, and so it would be
- 25 verifying that the home is within comfort, the required

- 1 comfort conditions. And the idea that especially in
- 2 coastal homes that homes do not need to be built with air
- 3 conditioners, and the code could somehow address that and
- 4 allow for the energy savings and associated cost savings
- 5 of not installing an air conditioning -- an air
- 6 conditioner.
- And, again, the focus is making sure that it is a
- 8 comfortable house and not just a house without air
- 9 conditioning.
- 10 We're also -- some of the future topics that the
- 11 IOUs have been looking at is for residences, is improving
- 12 the ventilation and economizing requirements, really
- 13 looking at some of the air distribution requirements, and
- 14 what the fan energy is for fans, and looking at some duct
- 15 improvements, especially for ducts in unconditioned
- 16 space, looking at duct materials.
- 17 One of the things that we're looking at is
- 18 revisiting flex duct and how well flex duct works, and
- 19 how easy it is to manipulate it. That isn't necessarily
- 20 the best for the air flow of the system and can increase
- 21 the energy significantly.
- 22 And I think with that, that's my last slide, so I
- 23 will stop and hand it back over to Martha.
- MS. BROOK: Great.
- MS. CHAPPELL: Thank you.

- 1 MS. BROOK: Great, thank you.
- 2 All right. So, now what I'd like to do is just
- 3 before -- oh, you're going to leave right now?
- 4 MS. CHAPPELL: I've got to head out.
- 5 MS. BROOK: Oh, great.
- 6 MS. CHAPPELL: You can answer those questions.
- 7 MS. BROOK: Okay, I'll answer the code questions.
- 8 I'll ask myself a question and then answer it.
- 9 So what I'm going to do, because I think we'd
- 10 like your involvement for the last 45 minutes of this
- 11 session, I'm going to just ask a couple of questions and
- 12 then if you guys are quiet and shy, then I'll ask the
- 13 rest of my questions at the end.
- So one thing I wanted to pose, Jon, and Steve,
- 15 and I guess me is do you -- do you think that we have the
- 16 right goals, so our 2020 and 2030 goals for zero net
- 17 energy buildings. Are those the right ones? Should we
- 18 reconsider those goals or change them in any way that you
- 19 think is really important?
- 20 MR. GALANTER: I guess as an aspirational goal, I
- 21 mean clearly I think it's fine. But, you know, I think
- 22 that more than myself, you know, folks have asked the
- 23 question as how practical is it going to be to achieve
- 24 that goal in particular markets.
- MS. BROOK: Okay.

- 1 MR. GALANTER: In some areas it's easier and more
- 2 cost effective, obviously, and others it's not. Does
- 3 that say that we back away from still striving for that,
- 4 I'm not so sure.
- 5 MS. BROOK: Jon, do you want to comment?
- 6 MR. MC HUGH: So, I think the goal, you know, the
- 7 top-down approach where you set a goal, whether it's zero
- 8 net energy or if you look at, you know, hitting a
- 9 particular efficiency target, the effect of those goals
- 10 are really profound.
- 11 And I'll just give the example of -- I've been
- 12 participating in the ASHRAE 90.1 process, and if you look
- 13 for a number of years, and if you look at the difference
- 14 between ASHRAE 90.1 2004 and the 2007 version, if I
- 15 remember, the changes were something on the order of
- 16 three or four percent.
- and if you look at the -- for the 2010 version of
- 18 ASHRAE 90.1, essentially, the Executive Board of ASHRAE,
- 19 along with a little prodding from DOE, they set a goal
- 20 for 30 percent reduction in energy consumption.
- 21 And that resulted in something on the order of a
- 22 25 -- they didn't actually quite hit the goal. I mean
- 23 there's probably different ways you can slice it or dice
- 24 it, but it was somewhere on the order of 25 percent
- 25 reduction in energy consumption.

- 1 So I actually don't know how a state can make a
- 2 policy without actually having some goals because,
- 3 certainly, you know, I've participated in the codes
- 4 process and unless there is a vision and a goal the path
- 5 of least resistance is essentially to do fairly small
- 6 incremental changes.
- 7 MS. BROOK: Okay, great, thanks. And I guess you
- 8 guys already heard my pitch at the very beginning as far
- 9 as the need for a paradigm shift and so I'm going to
- 10 stick with that. I think the aspirational goals are
- 11 essential and we have to make a big shift.
- I mean we've been doing a lot of great things in
- 13 the State and it's not enough, so we need to push
- 14 ourselves really, really hard.
- 15 MR. MC HUGH: I just have one more comment which
- 16 is if we declare these goals to be aspirational, to me
- 17 that's kind of a recipe for failure because in general,
- 18 if it's an aspirational goal, then that sets up the stage
- 19 for, essentially, well, it's aspirational, I really don't
- 20 have to hit this.
- 21 And there's some hard choices ahead and so --
- MS. BROOK: Right. No, that's a good point,
- 23 yeah.
- 24 MR. MC HUGH: And so what you'd want to look at
- 25 is sort of intermediate progress indicators towards

- 1 whatever that goal is. I mean you may end up having to
- 2 change it but if you start off with the assumption that,
- 3 no, we're not going to hit it, so you say, okay, we're
- 4 trying to hit this particular goal by 2020, what does
- 5 that mean what we're going to do by 2015.
- 6 MS. BROOK: Uh-hum.
- 7 MR. MC HUGH: You can always reevaluate, but if
- 8 you don't actually have a hard goal for 2015, you know,
- 9 you're in a hard place.
- MS. BROOK: Right.
- MR. MC HUGH: And I kind of look at the -- you
- 12 know, when we take goals that are out to 2050, and these
- 13 kinds of things, you know, it sets the stage for
- 14 essentially not --
- MS. BROOK: Procrastination.
- MR. MC HUGH: Yeah, not doing much, yeah.
- MS. BROOK: All right, good. Actually, so what
- 18 I'm --
- 19 MR. GALANTER: Can I make one other comment on
- 20 that?
- MS. BROOK: Yeah.
- MR. GALANTER: Is I think what you're alluding to
- 23 is how do you execute on that goal and how do you do that
- 24 over time, where do you focus? Maybe that's particular
- 25 markets which can succeed and show the way.

- 1 MS. BROOK: Uh-hum.
- 2 MR. GALANTER: Maybe it's marginal achievements
- 3 across the board but, regardless, that's -- you know,
- 4 what the execution strategy is, or the action plan as it
- 5 were, which I think is PUC's desire through their action
- 6 plans, is how does that unfold, how do you do that.
- 7 MS. BROOK: Okay, great. And, actually, we
- 8 should open up the lines to Jordana, too, so that if she
- 9 wants to respond to any of these, she can.
- The other thing is I decided to change my mind.
- 11 What I'd like to do, because I saw Dana's hand go up, so
- 12 I'd actually think I'd like you guys to just come up to
- 13 the center podium after each of the questions, so we can
- 14 all just do this together.
- 15 MS. WATERS: Dana Waters (phonetic), with the Air
- 16 Resources Board. I just wanted to follow up on that
- 17 question and take it maybe one step further given the
- 18 proposed ZNE definition and the target dates will we be
- 19 able to achieve the goals by the target dates or do we
- 20 think we might even be able to achieve it sooner?
- MS. BROOK: Good, thanks.
- 22 Does anybody else want to come up and talk about
- 23 whether they like or dislike our policy goal? Come on
- 24 up. Just queue up there.
- 25 MR. GABLE: Mike Gable, Gable Associates. I

- 1 think the discussion between an aspirational goal and
- 2 sort of what I call an aspirational goal, I think there
- 3 needs to be kind of fine tuning. I don't think you have
- 4 to back off, as Jon suggested, necessarily is the
- 5 inevitable outcome of an aspirational goal, but I think,
- 6 for example, I would refer to something called -- I would
- 7 call it continuum of realistic opportunity, to Steve's
- 8 point, where you really have to calibrate those
- 9 opportunities what are realistic, where you can move
- 10 towards ZNE and be acknowledging the ones where there's
- 11 still difficulties.
- 12 If you don't get into carbon trading, if you
- 13 don't get into certain other areas without that sort of
- 14 super structure, what's realistic within certain
- 15 occupancy type of building climate zones --
- MS. BROOK: Uh-hum.
- 17 MR. GABLE: -- site opportunity, zoning
- 18 requirements, and so on. So I think just to move from
- 19 aspirational to operational a lot more research has to be
- 20 done to sort of define better where the opportunities are
- 21 and clarify them. Not so much give up on the
- 22 possibilities, but to clarify them further.
- MS. BROOK: Okay, great. Mike?
- 24 MR. KEESEY: Mike Keesey, I'm with the Sacramento
- 25 Municipal Utility District, I'm the Project Manager in

- 1 our R&D group. I've been working on zero energy building
- 2 since the year 2000.
- 3 I'm going to take the opportunity to talk about a
- 4 few things because that way I don't feel like a pogo
- 5 stick, coming up and down here.
- 6 But the first thing I think we would address
- 7 would be the definition. We like to keep the definition
- 8 simple, too. We use the simple, "the building uses as
- 9 much energy as it produces on a source energy basis."
- 10 This is one also used by the Department of Energy and the
- 11 National Renewable Energy Lab, if I'm not mistaken.
- 12 Other things that I would urge us all to look at
- 13 as we go through this is that in terms of Steve's comment
- 14 about it depends on the goal, I think you can build zero
- 15 energy buildings right now and you could do it cost
- 16 effectively, particularly if you look at it by building
- 17 segment.
- 18 Research done for us by NREL indicates that
- 19 schools can be done, at least in our climate zone, right
- 20 now. And so it sort of begs the question of how come the
- 21 State Architect, which has sort of led an effort in that
- 22 regard, has sort of not mandated it since it seems to
- work.
- 24 Getting back to the definition issue, we would
- 25 also have problems as a utility, I think, with TDV as the

- 1 definition, or ZNE, because we don't -- it's not clear to
- 2 us that TDV matches our peak or our load profiles, and
- 3 that's very important to SMUD. In fact, we also tack on
- 4 a definition that says zero peak for our zero energy
- 5 homes, or zero energy building effort.
- 6 Other things that I think you need to look at is
- 7 partnering with the groups out there that are already
- 8 working on this. In particular, the Department of
- 9 Energy, with NREL, has a zero energy commercial buildings
- 10 initiative, if I'm not mistaken.
- 11 Somehow you need to work with them going forward
- 12 on this because they're working with the large national
- 13 accounts and, you know, we've got to work with national
- 14 accounts, right? No ifs, ands, or buts about it, they
- 15 build most of the stuff around here.
- 16 And there's others, also, that are working like
- 17 that, the New Building Institute up in Oregon, and the
- 18 Oregon Energy Trust, which also has a very robust zero
- 19 energy building.
- 20 Things I see that are desperately needed right
- 21 now on the research end, I'm desperate for some right now
- 22 on a project, are construction details. Architects and
- 23 designers claim they know what to do and then when you go
- 24 out and give them a performance spec they come back at
- 25 you and say, oh, I don't know how to do that, it can't be

- 1 done.
- 2 A real good example is the use of continuous
- 3 ridge in insulation, particularly on mid-rise and high-
- 4 rise buildings. They're just scared to death of putting
- 5 anything more than an inch on. And if you're going to
- 6 get to these numbers, you've got to put on more than two
- 7 inches, and that's just one example.
- 8 So, help us, SCE, we need construction details
- 9 that can be used over and over.
- I also think it's desperately needed that we need
- 11 to sponsor a whole lot of projects throughout the climate
- 12 zone. We need model homes in each climate zone, we need
- 13 targeted buildings that are done in each climate zone so
- 14 that the designers and the builders actually see that
- 15 they can -- these are show-me people and this how they
- 16 get shown.
- MS. BROOK: Uh-hum.
- MR. KEESEY: And that's where I've been urging
- 19 this with the PUC.
- 20 Along those lines, also, the new construction
- 21 programs need to be -- they need to be changed. Our
- 22 residential new construction program I think is the only
- 23 utility program in the country that actual mandates PV as
- 24 part of the deal. I mean you don't get a construction
- 25 incentive for high efficiency without PV. And our

- 1 current program is at 20 percent above Title 24 and
- 2 requires PV and we're looking at Gen 2, which is going up
- 3 to 40 percent above Title 24.
- 4 MS. BROOK: What percent of the load do you
- 5 require being outside PV?
- 6 MR. KEESEY: We don't.
- 7 MS. BROOK: Okay, so it could be a little sample?
- 8 MR. KEESEY: Well, on each building.
- 9 MS. BROOK: Okay.
- 10 MR. KEESEY: It doesn't make economic sense much
- 11 below one kw.
- MS. BROOK: Uh-hum.
- MR. KEESEY: Where was I going with this? Again,
- 14 it's part of our program. I don't know how we can fold
- 15 that into Savings By Design, but it probably needs to be
- 16 considered. And at least in our Solar Smart Program,
- 17 where we're approaching a 30 percent market share in new
- 18 construction and adding to that as we speak, and I think
- 19 if you see with what's going on, at least with production
- 20 builders, they're moving in that direction in general.
- I would also urge you to engage with the USGBC on
- 22 the non-res side because LEAD has -- LEAD's got traction.
- 23 Unfortunately, LEAD's not an energy performance program
- 24 and it's woefully lacking in that area. And for some
- 25 reason it's got the designer's attention. I won't go

- 1 into my rant about that.
- 2 Did I miss anything, Dan? I think for the time
- 3 being that's what I --
- 4 MS. BROOK: Okay. Well, I want you to pogo back
- 5 up here if you think of anything else, Mike.
- 6 MR. KEESEY: Thanks.
- 7 MS. BROOK: All right, so let's -- if somebody
- 8 else wants to comment on the goals, then please come up,
- 9 otherwise I'm going to pose another question.
- 10 MR. NESBITT: George Nesbitt, Environmental
- 11 Design/Build House of California and Cal HERS, California
- 12 Association of HERS raters.
- I think the goal of net zero energy homes is a
- 14 good goal. I think what it comes down to is ultimately
- 15 is that right, or what are the consequences going to be.
- 16 If we do achieve it, what's the impact on the grid is a
- 17 very important one.
- 18 I think we're going to have to really ask whether
- 19 or not net zero energy will have to be on site or whether
- 20 it can be off site, as well as considering that we
- 21 already have renewables on the grid and are increasing
- 22 that percentage.
- 23 You also can't get to net zero with solar hot
- 24 water. You can't get there, it's physically impossible.
- MS. BROOK: Are you saying that the definition is

- 1 electricity only?
- MR. NESBITT: No, because you can't generate
- 3 energy with solar hot water. You can only generate
- 4 electricity with solar electric.
- 5 MS. BROOK: Right.
- 6 MR. NESBITT: You can generate electricity with
- 7 solar thermal conversion to electric.
- 8 MS. BROOK: Right, right.
- 9 MR. NESBITT: You can put in wind, you can
- 10 have -- you could have hydro.
- 11 MS. BROOK: Sure.
- MR. NESBITT: But basically, the way it is right
- 13 now, I mean you just -- you literally, you cannot
- 14 generate energy with --
- MS. BROOK: Well, you get hot water.
- MR. NESBITT: Yeah, but that's only part of your
- 17 budget.
- MS. BROOK: Right.
- 19 MR. NESBITT: So you can't produce more than you
- 20 consume.
- MS. BROOK: Okay.
- MR. NESBITT: So unless we figure out to do
- 23 community scale, and large heat storage, and other
- 24 complicated things that may not actually be worth it.
- MS. BROOK: Okay.

- 1 MR. NESBITT: And I think the better part of the
- 2 goal is reducing the energy use of the buildings. That
- 3 absolutely has to be first.
- 4 And I'd say, just want to reiterate, this is a --
- 5 this is actually -- this is not a technical problem, it's
- 6 more a political, economic, getting over, oh, we can't do
- 7 that, or that's not how we do it, because some of us are
- 8 doing it in the marketplace today.
- 9 MS. BROOK: Okay.
- 10 MR. NESBITT: And some of those are passive house
- 11 projects, some are not. And I would say you max out
- 12 currently at about 75 percent above code. I'd say it may
- 13 actually be impossible to get beyond that. So, I'll say
- 14 more later.
- MS. BROOK: Okay, great.
- 16 All right, anybody else? Dave, did you want to
- 17 say something?
- 18 MR. WARE: Yes, Dave Ware, Commission staff. I
- 19 first want to recognize that it's nice to see George back
- 20 with his hat on.
- Okay. For some of us who know George and enjoy
- 22 and respect his comments in our public meetings regarding
- 23 the building standards, that was a compliment, George.
- I have a question both for Jon and for Steve.
- 25 One of the things that has been heard a lot is that the

- 1 building industry as a whole is over-burdened with the
- 2 market transformation that is needed to meet ZNE. The
- 3 collapse of the lending market has led to much slower
- 4 home building activity than has been seen in a very long
- 5 time.
- 6 The home building industry and its ancillary
- 7 impacts, when it is in a traditionally growth segment or
- 8 cycle has a tremendous impact on businesses and
- 9 development that cross-cuts the market structure of our
- 10 State.
- 11 So, burdening that industry with the objectives
- 12 that ZNE is trying to achieve, we are being told is
- 13 inappropriate at this time.
- 14 What can both of you share from each of your
- 15 respective sides on that particular question?
- MR. MC HUGH: Okay. I'm sure Steve will have
- 17 some interesting things to say as well.
- So, you know, this is a good question, Dave, and
- 19 we actually hear about this very issue every single code
- 20 cycle, so it's appropriate to bring it up. And I've been
- 21 doing some thinking about it, as well, based on some
- 22 comments recently.
- 23 And I think, you know, one of the things to think
- 24 about is what is -- you know, you saw earlier that graph,
- 25 or the McKinsey curve that shows the wealth generation

- 1 versus additional first cost and that sort of thing. And
- 2 what that indicates is that there are a number of
- 3 features on buildings that reduce the net cost to the
- 4 consumer of their -- the combination of their mortgage
- 5 payment and their utility bill.
- 6 And our last workshop about the residential
- 7 standards brought up just that issue. I mean there is
- 8 this balance that the Energy Commission is trying to
- 9 strike in terms of the burden on industry and yet, also,
- 10 their obligation to faithfully fulfill the Warren-Alquist
- 11 Act.
- 12 You know, the Warren-Alquist Act asked, you know,
- 13 to maximize energy, feasible, cost-effective efficiency
- 14 measures and we're kind of falling short of that. We're
- 15 actually not maximizing those features.
- 16 And the argument, you know, understandably is,
- 17 you know, is how much burden is reasonable to put on
- 18 builders of new homes?
- 19 And I actually think this actually relates back
- 20 to a larger issue. So, the builder of a new home is
- 21 competing against all the existing buildings and I'm
- 22 talking -- I'm talking right now about homes. But, you
- 23 know, half of the homes in the State were built prior to
- 24 the efficiency standards, the building standards. So,
- 25 we've got a bunch of old buildings without -- you know,

- 1 that are actually quite inefficient. And yet, when the
- 2 buyer is comparing a house versus a new house, they don't
- 3 necessarily have any information about the consumption of
- 4 that old house versus the new house.
- 5 And so I think that's what's really, I think,
- 6 points to something really quite important that I think
- 7 would have a huge market impact, which is essentially the
- 8 rating of all houses so that the builders actually are on
- 9 a level playing field.
- 10 Because right now, with the lack of
- 11 information -- you know, that's one of the things, you
- 12 know, Adam Smith and all these folks, you know, the
- 13 markets will find the most optimal mix of resources, et
- 14 cetera. The key to that free market assumption is that
- 15 everyone has perfect amount of information. And we're
- 16 actually in the opposite situation where all you really
- 17 know is maybe the school district, and the neighborhood
- 18 and that kind of thing, and what it looks like on the
- 19 outside. But all of this stuff is kind of invisible.
- 20 So, I think -- I think there's two issues. One
- 21 is that, you know, that the burden is appropriate, but
- 22 that the builders actually have to have a way of
- 23 differentiating their product. And, you know, Mike can
- 24 probably talk to what he's found in terms of what the
- 25 first cost increment is but, you know, the bigger picture

- 1 is that even if I say it's zero energy consumption, well,
- 2 what does that mean compared to the building down the
- 3 street, it looks relatively new?
- 4 And so I think rating is a big part of that.
- 5 MR. GALANTER: I like your comment about
- 6 essentially a rising tide lifts all boats kind of a
- 7 thing, and we're not in that mode right now, the tide is
- 8 actually in the other direction. So, that's when it
- 9 becomes particularly difficult to do anything in any
- 10 of -- whether it's an innovative, zero net energy, or
- 11 more of a vanilla home.
- 12 I think from the utilities' perspective is -- you
- 13 know, what we're all about is -- you know, one half of
- 14 the utility it's focused on emerging technologies, and
- 15 developments, and trying to facilitate and urge
- 16 technology development and adoption.
- 17 On the other side of the house, which is the
- 18 program side, is how can we defer that burden or, maybe
- 19 that's the wrong word, but how do we make it easier to
- 20 actually facilitate that to either monetary compensation,
- 21 maybe education, those kinds of creative things.
- 22 So perhaps an absence of those activities, an
- 23 absence of the effort to try to relieve that burden,
- 24 maybe I could go along with that.
- 25 But I think that the idea is to have a

- 1 comprehensive program to do both. And how successful we
- 2 will be to -- you know, depends on, I guess, how much
- 3 groaning occurs.
- But, you know, I think the intention is there,
- 5 the intention is to move things along in a very positive
- 6 way by working with the industry, working with the
- 7 Commission, working with the utilities participating, and
- 8 everybody to make it doable.
- 9 The question is, you know, the pace of that I
- 10 guess is what causes this discussion of burden.
- 11 MS. BROOK: Okay. All right, thank you.
- 12 Yes, come on up.
- MR. HAMILTON: Daniel Hamilton, Sacramento
- 14 Municipal Utility District.
- To follow up, and I think this has been in part
- 16 inspired by Mike's comments, but it feeds right into
- 17 this. I think with our goals of zero net energy we can't
- 18 forget that this whole thing was started because, as
- 19 Martha mentioned, this is building on AB 32, from 2006,
- 20 which is a carbon reduction goal.
- 21 And as Mike said, from a utility perspective we
- 22 care much more about peak energy use than umbrella energy
- 23 use because the dramatic carbon effects that we get are
- 24 from reducing at the peak, when those peaker plants,
- 25 which are the most inefficient things for every one of

- 1 our utilities are in effect.
- 2 And I think until we start measuring that along
- 3 with the overall energy use, we're not going to be true
- 4 in terms of achieving the maximum efficiency in terms of
- 5 carbon reduction that we can get from these measures.
- 6 So, I think framing it as zero net energy is
- 7 probably much more easily understood by the general
- 8 public and it's going to get much more support because
- 9 the concept is understandable.
- But I think that within the papers and research
- 11 that we're doing, we need to be cataloguing the peak
- 12 energy use as well because a huge portion of the energy
- 13 savings that we're getting from the buildings is
- 14 reflecting in the utilities' operations, themselves, not
- 15 just in there.
- MS. BROOK: Uh-hum.
- MR. HAMILTON: And similar to your point that how
- 18 do we get the building industry to buy into these
- 19 additional costs when everything is going in the exact
- 20 opposite direction? I think the selling point to
- 21 homeowners and homebuyers comes in the energy costs,
- 22 themselves. And we're talking about what we're going to
- 23 be in the next code cycle, and the next code cycle. In
- 24 2020, every home in this State is going to be on time-of-
- 25 use rates. And as they are, those peak use rates are

- 1 going to be what's the most important to them, and what
- 2 the builders are going to be able to use as selling
- 3 points to homeowners, and it's going to be a way we can
- 4 universalize how much benefit they get out of this and
- 5 what the price premium should be on those.
- 6 So I think -- I think we can't forget about the
- 7 peak energy discussion here and I don't think we can
- 8 underestimate its importance in terms of the goal,
- 9 whether it's a publicly stated goal or whether it's one
- 10 that we just keep in the back of our minds as we're going
- 11 through this. I think that we need to be giving it its
- 12 due attention because it's critical to accomplishing
- 13 those AB 32 goals that this whole process is about.
- MS. BROOK: Great, thanks.
- MR. STONE: Nehemiah Stone, Benningfield Group, a
- 16 recovering builder. I'm telling you that so it will give
- 17 you some context for one of the two comments.
- 18 I have two comments, one specifically to Dave's
- 19 question and one more broadly to the goal, and both are
- 20 going to take us a couple steps back in history.
- I worked with Dave on the '92 standards here at
- 22 the Commission and, you know, as Jon said every single
- 23 iteration of the standards the building industry says,
- 24 wait a minute, you're making homes too expensive, people
- 25 aren't going to be able to afford them.

- 1 So one of the things that we did at that time
- 2 was -- you know, the two largest inputs to home
- 3 construction at that time, and I'm not sure if it's still
- 4 true, but at that time were labor and lumber.
- 5 And so what we did is we went back 40 years and
- 6 charted the price of labor and lumber, you know, as it
- 7 goes up and down. And then we took a typical home that
- 8 was -- you know, and charted what's the selling price of
- 9 that typical home in the same area over time.
- 10 And what happened was you saw that the curves
- 11 were exactly opposite, almost exactly opposite. As the
- 12 price of lumber and labor was falling, the prices of
- 13 homes were going up. As the prices of homes were coming
- down again, labor and lumber was going up.
- More than probably any other good we can think
- 16 of, housing is demand driven, not inputs driven. It's
- 17 not -- you know, what we do in the standards quite
- 18 honestly does not affect the price of the home. The
- 19 price of the home is affected by what the realtor -- or
- 20 what the builder can get in that market at that time,
- 21 period. And they will go bust building when they can't
- 22 afford to, so they keep building, and they will just
- 23 totally fill up their bank accounts building when it's
- 24 cheap and everybody's paying a lot. So, that argument
- 25 ought to be disconnected.

- 1 In fact, I would encourage the Energy Commission
- 2 to do a more comprehensive, detailed study on that same
- 3 thing and put the question to bed, you know, once and for
- 4 all.
- 5 The next step back in history is even farther
- 6 back. When the standards first started, the basis of the
- 7 standards was a passive solar home. That was the basis
- 8 back in 1977. The home that was essentially designed by
- 9 what has become NREL, but it was CERI (phonetic) at the
- 10 time.
- 11 And in almost every iteration of the standards
- 12 since then we've devalued one of the most important
- 13 things that makes passive homes work and that's mass.
- 14 You know, mass has just become less and less important.
- 15 And it's true in how we're modeling and trying to
- 16 understand the difference more than anything else.
- 17 So my comment, Martha, is in the goals of getting
- 18 to net zero by 2020 it's really important how we model,
- 19 how we look at what they're building. I mean how
- 20 we're -- I mean we can change the modeling techniques to
- 21 say buildings are net zero today, if we want to. But,
- 22 you know, honesty requires that we take a look at how the
- 23 building really performs and that means, then, that we
- 24 have to get serious at how we're looking at mass, its
- 25 interaction with the ambient air and its interaction with

- 1 the heat gain capability of fenestration, et cetera.
- 2 And I hope that in the goal of getting to net
- 3 zero that we look -- there's an adequate amount of effort
- 4 put to making sure the models represent reality as
- 5 closely as we can.
- 6 MS. BROOK: Okay, thanks. And it's a great kick
- 7 for our new simulation engine, so thanks.
- 8 MS. GUPTA: Smita Gupta, Itron Consulting and
- 9 Analysis. I would just like to bring attention to one
- 10 aspect of getting to zero net energy that's relatively
- 11 less discussed, at least, and that is the regulatory
- 12 values that are required to overcome for the projects to
- 13 get to zero net energy, having recently got a glimpse of,
- 14 you know, working in the trenches of a real project, the
- 15 West Village, U.C. Davis project. So there is technology
- 16 issues to get to zero net energy, then the market and the
- 17 cost. But a big part of the cost is also being realized
- 18 as some things aren't doable because of regulatory values
- 19 there. And I'll give just one example of, you know, the
- 20 community level as not having virtual net metering
- 21 available. So it's just a question to like State
- 22 agencies, CPUC and CEC involved in this, that that also
- 23 be -- it's not like the highest or the first step focus,
- 24 but that also, you know, not lose track of that and
- 25 somehow have a venue or a group in order to -- at least

- 1 the early ZNE Projects -- to have that ability to discuss
- 2 and get these regulatory values out of the way because
- 3 they invariably conflict with other aspirations and goals
- 4 of the State agencies.
- 5 MS. BROOK: Great, thanks. So before we have
- 6 other general comments, I just wanted to kind of put
- 7 another question out there. Go ahead.
- 8 MR. ALVAREZ: Manuel Alvarez, Southern California
- 9 Edison. Actually, the discussion here today is well
- 10 worthwhile, but since we're under the IEPR Docket, I kind
- 11 of want to remind the folks on the question of goals; two
- 12 weeks ago we met on the California Clean Energy Program
- 13 and that discussion is a series of events going on
- 14 dealing with goals and measurements and metrics. And I
- 15 quess I'm asking you folks to kind of keep in mind that
- 16 activity in conjunction with this activity because one of
- 17 the comments that came off in those workshops, and people
- 18 are filing their written comments now, was the notion
- 19 that people are looking at different objectives in terms
- 20 of silos. And so I just want to kind of keep you aware
- 21 of that issue, that when you look at zero net energy
- 22 homes, don't look at it just as a silo for this
- 23 particular program, but look at it across the board on
- 24 what kinds of measurements and goals and metrics you're
- 25 going to develop under the umbrella of the Clean Energy

- 1 Future activity, that is also part of the IEPR Docket.
- 2 MS. BROOK: Yeah, great. Thank you. Okay, so
- 3 the next thing I just want to kind of poke at is, if we
- 4 accept the goal and we want to get to zero, how should we
- 5 get there? You know, one of the examples that Cathy
- 6 showed, and it's also in our draft report, it's a linear
- 7 approach, basically, it's a stair step to zero. So, is
- 8 that the best path? Or should we start hard, take a big
- 9 dip, and then slowly slide into zero? Or should we coast
- 10 for a while and then just take a deep dive at the end and
- 11 get to zero?
- 12 So, I mean, it's easy to describe linear and it's
- 13 easy to put out there, it doesn't mean it's the right
- 14 path, so that's kind of the question for everybody. And
- 15 I would like the panel to respond first if they want to,
- 16 if they want to pass, then we'll let George talk.
- MR. GALANTER: Well, I would just say, and I
- 18 already made this comment, I think the path forward is
- 19 either incremental steps across the board in all markets,
- 20 or it's those most likely where you're going to find
- 21 success, that is, economics is going to drive it a little
- 22 bit more easily than maybe some other markets. So that,
- 23 you know, what the actual strategy is, I don't know that
- 24 that's thought out yet, but it seems to me that that
- 25 would be a way. And I would kind of lean towards the

- 1 segment sort of approach, first. But that's just my
- 2 opinion.
- 3 MS. BROOK: Okay.
- 4 MR. MCHUGH: I've actually been more focused on
- 5 zero net energy homes and the reason is just that 2020 is
- 6 before 2030, so it's kind of driven the focus, as well as
- 7 my Energy Foundation project that's focused on homes, and
- 8 I'm assuming that's part of their motivation, as well.
- 9 Like a lot of things in nature, sort of a law of
- 10 diminishing returns, and so my expectation is, you know,
- 11 getting the last bit of the way is going to be a lot
- 12 harder than the first steps, so my take is that you
- 13 really should be trying to make big inroads on the
- 14 efficiency reductions early on because if you push hard
- 15 on those things, there are still going to be issues that
- 16 you're not going to be able to hit for various
- 17 feasibility issues, market issues, etc., and by pushing
- 18 hard on those things, you identify those, and those
- 19 incremental things are things that you take up later.
- Now, the other thing, now that Cathy is back, I
- 21 would also like to bring up that, you know, Cathy was
- 22 showing sort of the 48 percent and 33 percent savings as
- 23 to savings estimates for what they call "Package A,"
- 24 those are -- you might say, "Wow, that's fantastic," and
- 25 those are big numbers, but the thing to remember is that

- 1 those numbers, the 33 percent which is where the
- 2 Commission is looking at right now, that reduction is for
- 3 essentially just HVAC and heating and water heating, and
- 4 so it doesn't include the 50 some percent of plug loads,
- 5 and it doesn't include the 17 percent of lighting load.
- 6 So what you're really talking about is 33 percent of
- 7 essentially 31 percent of electricity, so you're talking
- 8 about a 10 percent reduction in electricity consumption
- 9 in homes and a larger fraction for gas consumption.
- 10 So, just to point out that that might seem like a
- 11 really big number, but in the big picture, it's actually
- 12 fairly incremental.
- MS. BROOK: Uh huh. George.
- 14 MR. NESBITT: So, first I'd like to thank Dave for
- 15 the compliment, this cycle is the first cycle I've
- 16 participated in the Code updates, and I know what I say
- 17 is not always popular, or does not want to be heard, or
- 18 we're not ready to deal with, yet I have found that if
- 19 you make enough suggestions, and some of them are good,
- 20 that some of them will stick, which is rewarding because
- 21 most of my colleagues sit back and complain about how bad
- 22 the Code is, and this and that, yet if I look around the
- 23 room, none of them are here. So, they'd rather complain
- 24 about it than do something about it.
- 25 So then actually to address his question about

- 1 burdening the industry with the market being down, I
- 2 would say now is the best time because, in a down market,
- 3 you keep your best people, okay? That's when you've got
- 4 your best people. In an up market, you're desperate for
- 5 anybody to show up and get that house built, that's the
- 6 worst time to try to train and education.
- 7 So if we start with the best quality core, teach
- 8 them right, as the market recovers, there's more work;
- 9 hopefully they will still be there and they will be able
- 10 to maintain some sense of quality. It is like, "What day
- 11 of the week was your car built?" Apparently there are
- 12 different days of the week. So you're better off buying
- 13 a house built in a down market than a booming market.
- 14 And then, yeah, we may want to go more aggressive
- 15 to start, with the realization that one of our big
- 16 problems is enforcement. I've had people say to me,
- 17 "Well, why are we changing the Code when I already don't
- 18 understand it or it's not being enforced?" So,
- 19 enforcement will always lag behind the Code and the Code
- 20 always lags behind practice, so perhaps going more
- 21 upfront may actually be a better -- the more we put off,
- 22 the harder it will be, and we probably want to focus more
- 23 on quality than on quantity, that's really where we're
- 24 at.
- 25 And I just kind of want to hit on the zero net

- 1 energy definition. I kind of find the discussion funny
- 2 because three years ago, I participated in the Title 20
- 3 HERS Phase 2 rulemaking, which was all about defining net
- 4 zero energy, and the Commission adopted it in December of
- 5 2008 and it's been technically in effect since September
- 6 of 2009, so we have a definition, whether it's the right
- 7 definition or not. And I think a lot of people actually
- 8 don't really realize that this applies to new
- 9 construction. So, HERS 2 has been cast as an existing
- 10 home thing, which it's not, it applies -- how many new
- 11 homes have been rated yet? I don't know. And I've heard
- 12 experts in our industry say, "Well, we don't have a
- 13 definition." And I kind of have to look at them and say,
- 14 "Really?" So, and the other thing is the HERS 2, most
- 15 people -- it's often been said that it doesn't apply to
- 16 multi-family, which it clearly says in the new HERS
- 17 booklet that it applies to all single family, multi-
- 18 family, low-rise. While there may be issues there, which
- 19 there are, but that's a different story.
- 20 And I just want to hit on the TDV because I think
- 21 were increasingly -- TDV is giving us the wrong answers.
- 22 In non-air-conditioning climates, and we're looking more
- 23 and more like an air-conditioning climate, which is
- 24 driving us more, and we're already doing it anyway just
- 25 because the market provides us with low solar heat and

- 1 coefficient windows where we may technically save TDV
- 2 energy, but we're actually increasing real energy use.
- 3 And I also think, from the perspective of goals like AB
- 4 32, if we're really talking about 80 percent reductions
- 5 over 1990 levels by 2050, the problem with TDV and even
- 6 source energy is it's purely the peak electrical. I
- 7 mean, it really drives -- that's what drives it. And
- 8 although that does reduce energy use and definitely has
- 9 carbon impacts, we're not going to get to those deep
- 10 levels purely by having a metric that is really focused
- 11 more heavily on that.
- MS. BROOK: Okay, thanks, George. Karl. There's
- 13 a good face I haven't seen in a long time.
- 14 MR. JOHNSON: Yeah, it has been too long. Nice
- 15 to see many of you folks. Well, you asked about the
- 16 strategy to get to the net zero goals, so I wanted to
- 17 comment on that. I think what we haven't realize quite
- 18 is that, if we have a goal nine years from now, like net
- 19 zero, and 40 percent of existing stock transferred to net
- 20 zero, as well as requiring it, one, that's awesome, two,
- 21 getting there, you have to shift perspective, and so we
- 22 have two choices. We have the continue the standard
- 23 practice in incremental savings over three years
- 24 sections, and what we'll find is we trap savings by doing
- 25 that, and you make the next round harder to get to

- 1 because you save 20 and 30 percent; so, choice 1, you go
- 2 in and say 20, 30 percent, get a nice two-year payback,
- 3 the standard rebates, all of this is great. But you have
- 4 to get 60-80 percent according to our plan, like I'll use
- 5 the lighting plan because I helped develop it with the
- 6 CPUC. And so, to get that 60-80 percent goal in nine
- 7 years means you have to do that 20 and 30 percent savings
- 8 two or three times. We do not take that into our
- 9 strategy now. The second choice is deep energy savings,
- 10 or best practices. What the lighting plan bases itself
- 11 around is best practices to get to net zero, which is
- 12 saving 60-80 percent of electricity use for lighting in
- 13 our state by 2020. So, to do that, that means the best
- 14 practice is, for the lighting example, you go into an
- 15 office and you can do energy saving lamps, say, 20-30
- 16 percent, or a whole variety, or you could do task ambient
- 17 lighting and save 60-80 percent, and you do it once, and
- 18 you accumulate the savings for the next nine years.
- 19 Otherwise, you incrementally trap those savings that you
- 20 could be getting right here, right now. And so that is
- 21 illustrated in the Lighting Technology Overview and Best
- 22 Practice summary, we have six examples and they say the
- 23 exact same story. And what it says is we need to look at
- 24 going back two and three times to realistically evaluate
- 25 that option vs. going back now aggressively. And so my

- 1 quip is you make the best practices the customer's best
- 2 choice because, right now, we make it the continued low
- 3 hanging fruit choice, and it's our worst enemy to get to
- 4 net zero in nine years.
- 5 MS. BROOK: Okay, great. Thank you. So, come on
- 6 up, Pat. I do have other questions, but come on up.
- 7 That's what we're here for.
- 8 MR. SPLITT: Pat Splitt from App-Tech. I was at
- 9 the Building Standards Commission, so I'm not sure if I'm
- 10 coming in at the right spot, or if I missed my spot.
- 11 MS. BROOK: It doesn't matter, the spot is yours
- 12 now.
- MR. SPLITT: Okay. So I just had a couple of
- 14 questions or comments, basically details, essentially
- 15 residential comments because that's what we're mainly
- 16 talking about. And one thing I want to be sure to get to
- 17 higher energy efficiency performance, one thing I have a
- 18 problem with now that should be addressed is being able
- 19 to get credit for newer technologies, new mechanical,
- 20 water heating systems, efficient ventilation systems with
- 21 real efficient motors. There's really no way of getting
- 22 credit for that now, so there's no incentive for people
- 23 to put them in their building. So I think we have to
- 24 make sure that the compliance software enables us to take
- 25 credit for not just what's available at the instant you

- 1 release the software, but have it enabled so that it's
- 2 easy to put new things in there.
- 3 MS. BROOK: Okay, yeah.
- 4 MR. SPLITT: There's also, talking back to the
- 5 original goals of passive solar, that's one thing I want
- 6 to make sure is still in there, that we can take credit
- 7 for passive solar and model things, and that we're not
- 8 stuck with these low SHGC requirements and then get
- 9 penalized if I want to actually get some sun through the
- 10 glass. So I'd like to make sure the program really can
- 11 accurately model passive solar, both solar gain through
- 12 the glass, and thermal mass to make sure that the system
- 13 actually works.
- MS. BROOK: Okay.
- 15 MR. SPLITT: Then, the last thing, and I
- 16 mentioned this before, is also going on some of the other
- 17 comments of why wait, is I think we should make mandatory
- 18 the QII duct blasting and blower door requirements
- 19 because these are basically just ways of getting people
- 20 to do what they're actually already supposed to be doing,
- 21 which is doing things correctly, and I can't see how the
- 22 Commission can allow people to still not do them
- 23 correctly. And then, have other programs where people
- 24 can come in and retrofit these buildings that were just
- 25 built to fix the problems that should never have been in

- 1 there in the first place. So, that's it.
- MS. BROOK: Okay, good. So I was reminded that
- 3 we're officially out of time. But I do want to allow
- 4 anybody else to come up and make their comments, and I'm
- 5 okay burning a little bit of the lunch time if you are,
- 6 but we probably should try to cut it off in five minutes.
- 7 Make sense? Anybody?
- 8 MR. STRAIT: As a quick note to the people that
- 9 are attending remotely, if you want to, type your
- 10 comments into the chat box, everything that has been
- 11 typed into chat is being recorded and will be treated the
- 12 same as the comments delivered in person or in audio
- 13 format. So, if there are additional comments you want to
- 14 make, or over the lunch period, go ahead and type them
- in, we're recording the entire chat log.
- 16 MS. BROOK: Great, okay, well, I'm not going to
- 17 pose any other questions, then, because I think that
- 18 would -- I'm kind of too hungry for that. So the stomach
- 19 wins, and thank you very much, I've had a great time this
- 20 morning and I really appreciate everybody's
- 21 participation. Thanks.
- 22 (Recess at 11:34 a.m.)
- 23 (Reconvene at 12:00 p.m.)
- 24 MR. PENNINGTON: Good afternoon. My name is Bill
- 25 Pennington. I'm the Manager of the High Performance

- 1 Buildings and Standards Development Office at the Energy
- 2 Commission. And I'm sorry I had to miss the whole
- 3 morning, I'm sure Martha was very entertaining and the
- 4 panelists did a great job. Crazy fire drills are going
- 5 on at the Commission all the time, so I was not able to
- 6 be here. But I'm here now, and so we're going to be
- 7 talking about Existing Buildings this afternoon on this
- 8 panel, and just wanted to give you a quick kind of
- 9 summary overview of why we're talking about this and what
- 10 we're going to talk about.
- 11 So, really, the elephant in the room for us is
- 12 that the Energy Commission has been given a new mandate
- 13 and new authority to pursue a comprehensive, ongoing,
- 14 statewide program to achieve energy savings in
- 15 California's existing buildings under AB 758. And so
- 16 this is -- a main purpose of today's presentations is to
- 17 give you an idea about where we're headed with the work
- 18 under this program.
- 19 This mandate was looking at really a portfolio of
- 20 approaches to increase the energy efficiency in existing
- 21 buildings and there were a number of program components
- 22 that were specified in the legislation that we need to be
- 23 paying attention to and build into the program. Those
- 24 components are listed here. Public Awareness is a
- 25 significant part of this, certainly Workforce

- 1 Development, looking at ways to finance energy efficiency
- 2 improvements and get financing as a contributor towards
- 3 the project cost. The legislation was strongly
- 4 indicating that the Commission should be developing
- 5 energy performance ratings and disclosures for buildings,
- 6 potentially at a variety of different points in the life
- 7 of the building, and kind of how we would do that, the
- 8 Commission needs to be figuring out.
- 9 Just for emphasis, repeating workforce
- 10 development again here a second time, I don't know who
- 11 did these slides, we're supposed to be developing energy
- 12 assessments in residential buildings and non-residential
- 13 buildings, and figuring out how to do that effectively,
- 14 how to give building owners recommendations effectively.
- 15 And ultimately, you know, a lot of this stuff is about
- 16 the process of accomplishing upgrades, and so we are
- 17 definitely expected to have this program result in an
- 18 increase in the efficiency improvements that are
- 19 happening in these buildings and how to do that.
- The statute gives the Commission broad authority
- 21 to address these things through both regulatory and non-
- 22 regulatory approaches, and so we will be looking at, as a
- 23 component of this program, what regulations make sense.
- 24 We're thinking that those regulations have more to do
- 25 with rating buildings and disclosing ratings for

- 1 buildings, and also getting to the requirement for
- 2 improvements in existing buildings through regulation.
- 3 So we're expecting to be there at some point. We need to
- 4 have the market infrastructure related to these other
- 5 program components to enable the public to understand
- 6 what's expected and the value of doing improvements, so a
- 7 number of these things we would be pursuing through a
- 8 non-regulatory strategy.
- 9 Of course, this program related to existing
- 10 buildings builds on a lot of things that are currently
- 11 being used to try to achieve energy efficiency in
- 12 existing buildings. The Building Energy Efficiency
- 13 Standards have requirements, everyone knows that they
- 14 have requirements for newly constructed buildings, but
- 15 there also is a pretty substantial emphasis in the
- 16 standards on additions and alterations to existing
- 17 buildings, so that's an avenue to affect existing
- 18 buildings. Our appliance regulations affect equipment
- 19 regardless of where they're installed, whether it's newly
- 20 constructed buildings or existing buildings, so probably
- 21 a good half of the impact of appliance regulations are
- 22 related to existing buildings.
- 23 The PUC has done a huge and marvelous job of
- 24 developing a long term energy efficiency strategic plan
- 25 that projects what the State should be trying to

- 1 accomplish out through 2020 and also factors in what
- 2 should be the role of the IOUs in achieving that
- 3 strategic plan.
- 4 The Commission has been heavily engaged over the
- 5 last couple of years in administering a large amount of
- 6 money to existing buildings through the American Recovery
- 7 and Reinvestment Act funded programs. We have contracts
- 8 at a statewide level and we have contracts with regional
- 9 governments and consortia of regional government
- 10 contracts with individual local governments, and those
- 11 are really designed going in. The coincidence of AB 758
- 12 and the timing of getting the ARRA money was just right
- 13 about the same time, and a conscious design for these
- 14 programs was to try to pilot the program component that
- 15 AB 758 expects in this comprehensive statewide program.
- 16 At the same time that we're focusing in-house on
- 17 ARRA funding, we saw a real need to collaborate widely
- 18 with all of the other players in the marketplace that are
- 19 trying to achieve energy efficiency improvements in
- 20 existing buildings, and out of that came a collaboration
- 21 called the Energy Upgrade California, that is a
- 22 collaboration between the Energy Commission and the PUC
- 23 and the utilities, and local governments all over the
- 24 state, and with the private sector that is doing the work
- 25 in these buildings, the contractors, the HERS Raters that

- 1 are doing ratings, and the various people in the chain of
- 2 trying to accomplish retrofits. So it's a huge
- 3 consortia, probably pushing \$500 million of money in
- 4 total, that is being administered through this Energy
- 5 Upgrade California effort. And it's going to be our
- 6 intent to try to learn as much as possible about that
- 7 effort as we move into figuring out what to do to
- 8 implement AB 758.
- 9 So this is just a timeline, a rough timeline for
- 10 what we see happening under AB 758 in the first couple of
- 11 years here of feet on the road, feet on the ground.
- 12 In 2011-'12, we've got the ARRA pilots, we've got the big
- 13 effort with Energy Upgrade California, we are in the
- 14 process of adopting regulations responding to AB 1103 to
- 15 have disclosure of energy use for commercial buildings to
- 16 be made at point of sale, point of lease, point of
- 17 financing. Early on in this period, it's our expectation
- 18 that we're going to be focused on doing a building asset
- 19 rating system for commercial buildings and, so, that's
- 20 there.
- 21 And two of the speakers on the panel today will
- 22 be talking about they are technical support contractors
- 23 under AB 758 and they are going to be talking about the
- 24 kinds of things that they're going to be focusing on in
- 25 their work.

1 The next phase after this kind of infrastructure
--

- 2 development phase will be a phase where we will be trying
- 3 to put ratings and disclosures into effect, and we see
- 4 that as being in the 2012-'13 timeframe, and so we'll be
- 5 looking at regulations for rating disclosure and then
- 6 moving on to what would we be doing related to mandatory
- 7 upgrades. And then, in Phase 3, that would be when we
- 8 would start addressing the mandatory upgrades. So, in
- 9 the 2014 timeframe we would be looking at that, that's
- 10 our rough kind of approach to how we would do this over
- 11 time.
- 12 So we have three speakers today on the panel to
- 13 talk about what they're doing that kind of relates to
- 14 that overview and to existing buildings. Cathy Fogel,
- 15 who is a Senior Analyst at the PUC, will be doing the
- 16 first talk, and then Eliot Crowe and Nehemiah Stone, that
- 17 are contractors for the technical support work, are kind
- 18 of going to do a little bit of a tag team on some slides,
- 19 and Eliot will be focusing on what we plan for non-
- 20 residential, and Nehemiah for what we plan on
- 21 residential.
- 22 So, the first speaker on the panel is going to be
- 23 Cathy Fogel and, Cathy, are you on the line?
- MR. STRAIT: One moment, Cathy. Cathy, you
- 25 should be unmuted now. Can you hear us?

- 1 MS. FOGEL: I can. Can you all hear me?
- MR. STRAIT: Yes, we can.
- 3 MS. FOGEL: Okay, how is the volume?
- 4 MR. STRAIT: Volume is good, we do have volume
- 5 control on our end.
- 6 MS. FOGEL: Okay, great.
- 7 MR. PENNINGTON: So before Cathy starts, I'm
- 8 going to give you a little background on Cathy. She is a
- 9 Senior Analyst for Residential Programs at the PUC,
- 10 including Residential New Construction and Zero Energy
- 11 Programs. She is involved in oversight of the Utility
- 12 Programs to assure that they are carrying out the
- 13 expectations of the PUC that are in the Strategic Plan,
- 14 and in the Guidelines that the PUC provides for directing
- 15 the IOUs. She oversees the Utilities Single and Multi-
- 16 Family Energy Upgrade California Programs at the PUC.
- 17 She has a PhD in Environmental Studies from UC Santa
- 18 Cruz, and has had a 20-year history of policy analysis in
- 19 a variety of environmental areas and, for the last 10
- 20 years, has specialized in Climate Change Mitigation and
- 21 Policy. So, Cathy, take it away.
- MS. FOGEL: Okay, great. I'll wait for my
- 23 presentation to get pulled up. I hope everybody had a
- 24 good lunch and is not too full so you won't fall asleep
- 25 here.

- 1 MR. STRAIT: Not a problem, let me just get your
- 2 slides loaded here.
- 3 MS. FOGEL: Okay.
- 4 MR. STRAIT: All right, simply tell me whenever
- 5 you want a slide advanced.
- 6 MS. FOGEL: Okay, super. Okay, good afternoon,
- 7 everybody. Again, welcome back from lunch, hope
- 8 everybody had a nice break and hopefully it's not too
- 9 warm out there in Sacramento. I'm happy to be able to be
- 10 presenting today and really looking forward to the
- 11 comments and discussion for this panel. Next slide,
- 12 please.
- So just a brief overview of what I'll be
- 14 presenting. I'm going to start with a little background,
- 15 which may be a real review for a lot of you, but there
- 16 may be some of you in the room a little newer to this, so
- 17 just to run over that real quickly. I'll talk a little
- 18 bit about the California Energy Efficiency Strategic
- 19 Plan, which Bill gave high accolades to, which is very
- 20 nice, thank you, and which is adopted in 2008 and is the
- 21 groundwork for many of the utility programs that we
- 22 oversee at the Commission. I'm going to run over
- 23 residential and commercial building programs that we have
- 24 in place currently, and touch briefly on related
- 25 programs, and then finish up with what I see as some of

- 1 the challenges and opportunities given AB 758. Next
- 2 slide.
- 3 So just as a review of how the CPUC operates and
- 4 does our oversight over the utilities, we are currently
- 5 operating on a three-year budget cycle, although this
- 6 will be the second budget cycle in a row where we will
- 7 have a bridge year, so needless to say, the Commission is
- 8 looking at that issue, or will be, in the next little bit
- 9 here. But that's what we have right now and the CPUC's
- 10 role is to provide policy guidance over the IOUs for
- 11 this.
- 12 So the CPUC is statutorily mandated to set Energy
- 13 Efficiency Goals, which are based on Efficiency Potential
- 14 Studies. We are required to ensure that the Utilities
- 15 first procure all cost-effective energy efficiency as
- 16 part of their procurement plans, and we measure this
- 17 through a portfolio level TRC, a Total Research Cost
- 18 test, that measures the net resource benefits from the
- 19 perspective of all ratepayers. So, under the TRC tests,
- 20 the benefits, the avoided costs of the supply-side
- 21 resources and the costs encompass the cost of the
- 22 equipment, are measures installed and the costs incurred
- 23 by the Program Administrator. And again, that's set at
- 24 a portfolio level. On its own, the Commission has
- 25 established a system of shareholder incentives, the Risk

- 1 Reward Incentive Mechanism, by which utilities receive
- 2 incentives or, at least in theory, penalties if they fail
- 3 to meet the goals. And the CPUC has also established a
- 4 20 percent requirement of the budget that goes to third-
- 5 party and local government programs, each program cycle.
- And in 2008, the Commission adopted the
- 7 California Energy Efficiency Strategic Plan and that is a
- 8 final kind of overlay of policy guidance provided to the
- 9 utilities. These are the main areas of policy guidance,
- 10 there are other areas, as well.
- 11 The Utility Portfolio Applications come in
- 12 generally at least six months to a year before the
- 13 subsequent program cycle. In those applications, the
- 14 utilities have to demonstrate that they meet the goals,
- 15 that their budgets imply a net benefit and cost-
- 16 effectiveness test for ratepayers and, this last program
- 17 cycle, alignment with the strategic plan. Again, the
- 18 utilities are the administrators of the portfolio side,
- 19 CPUC decision, and the Energy Division where Jordana and
- 20 I work, we not only do oversight over these program
- 21 implementation, but our colleagues run a large valuation,
- 22 monitoring, and verification effort of each program
- 23 cycle.
- 24 So the program cycle of 2010 through '12, it's a
- 25 \$3.1 billion portfolio and there's also \$750 million

- 1 approved separately for low income programs. And for the
- 2 three years, we have combined saving targets adopted for
- 3 the utilities of 7,000 gigawatt hours, 1,500 megawatts,
- 4 and 150 million metric therms. So that's about equal to
- 5 three major power plants deferred through our energy
- 6 efficiency programs over the next three years, or over
- 7 the three-year cycle. And the efficiency is treated as a
- 8 resource and, so, it's incorporated into procurement
- 9 plans, and just to note that Public Good Fund comprises
- 10 about 43 percent of this total \$3 billion budget, through
- 11 the Gas Public Purpose Program surcharges on your utility
- 12 bills, and also the Electric Public Goods charge. And an
- 13 additional nearly 60 percent is funded through utility
- 14 procurement dollars and we and the utilities pool all of
- 15 that into one funding source to go after this cost-
- 16 effective portfolio.
- 17 As I mentioned, we've had bridge years for the
- 18 last program cycle and will again this year, and that
- 19 will be addressed in the next six months or so, I
- 20 believe. And we're hoping for a portfolio guidance
- 21 decision to provide guidance on the next utility
- 22 portfolio sometime around June of next year. Okay, next
- 23 slide, please.
- 24 So the California Energy Efficiency Long Term
- 25 Plan was ordered by the full Commission to be developed

- 1 in 2007 as a strategy to achieve all cost-effective
- 2 energy efficiency in its efforts. As many of you will
- 3 know, it was led by Commissioner Dian Greunich, who was
- 4 the assigned Commissioner on Energy Efficiency at that
- 5 time. I serve as a Project Manager on that development,
- 6 that plan, and got to know it fairly well, and then, in
- 7 2008, the full Commission adopted the plan after, again,
- 8 lots of -- I think we had something like 40 workshops and
- 9 over 500 stakeholders engaged and quite a few rounds of
- 10 review, so it was quite fully vetted and does provide a
- 11 strategic roadmap for energy efficiency through 2020.
- 12 As has been mentioned before today, there are
- 13 goals in the plan for new construction, as well as
- 14 existing homes. And for existing homes, the goal is to
- 15 reduce across California in existing homes, reduce their
- 16 energy use from the Grid by 40 percent by 2020, quite
- 17 ambitious. For existing commercial buildings, to see 50
- 18 percent of those become ZNE equivalent by 2030, to
- 19 optimize the HVAC industry across California and system
- 20 performance, and their saturation goal participation
- 21 goals for low income households. And the strategic plan,
- 22 unfortunately, was adopted by the full Commission just
- 23 after the utility submittal of their applications for the
- 24 current program cycle, but we did do our best to use it
- 25 to guide review and approval of the utility program, and

- 1 as Jordana talked about this morning, has since
- 2 instituted a number of action plans to maintain momentum
- 3 on the Strategic Plan. Next slide.
- 4 So just to get the big picture, again, there are
- 5 -- the top bar here lists the 12 statewide programs that
- 6 are common across the four utilities, and the lower bars
- 7 indicate the additional programs that are unique, either
- 8 what utility local programs are, it means just that one
- 9 utility has that individual program; third-party
- 10 programs, again, are mandated with local government
- 11 programs to comprise 20 percent of the budget, so overall
- 12 there's 113 third-party programs approved, and overall in
- 13 terms of state and local programs, there is over 80
- 14 individual either local governments or state institutions
- 15 that are participating and using ratepayer funds in a
- 16 program through one or more utilities.
- 17 And so part of the 12 statewide programs, many of
- 18 these were either modified slightly, or introduced as a
- 19 result of the strategic plan this last program cycle, so
- 20 in the industrial programs, there was a new continuous
- 21 energy improvement pilot that was introduced this program
- 22 cycle as a result of the strategic plan. There is a
- 23 significant overhaul of the HVAC Program that I'll
- 24 discuss a little later. Emerging Technologies and Codes
- 25 and Standards had several new sub-programs developed and

- 1 are being implemented this program cycle. And Marketing,
- 2 Education and Outreach had a new brand developed.
- 3 Workforce Education and Training had a new needs
- 4 assessment that was recently completed in that area, and
- 5 then the IDSM Lighting Market Transformation arms new
- 6 programs this program cycle. So there's a total of these
- 7 12 programs, there's a total of 44 sub-programs because
- 8 each program -- each of the 12 areas has a number of sub-
- 9 programs or program elements that comprise it. So now
- 10 it's about 265 programs which we oversee, which gives you
- 11 an indication of the complexity that we're dealing with
- 12 here. Next slide.
- 13 And I'll just add that the statewide programs do
- 14 comprise about two-thirds of the overall portfolio
- 15 budget. So it's quite a large part. This indicates the
- 16 budget breakdown by market sector, so our residential is
- 17 about 25 percent and commercial about 30 percent, with
- 18 the HVAC, which straddled both sectors at another four
- 19 percent. In the other category, again, it would be
- 20 Marketing, Education and Outreach, Workforce Education
- 21 and Training, IDSM, Lighting Market Transformation, and
- 22 EM&V.
- 23 So far as savings on the residential side for
- 24 kilowatt hour savings, res programs are saving about 33
- 25 percent, with commercial saving about 30, and therms

- 1 savings are dominated by industrial programs at about
- 2 half of therms savings with commercial at about 20 and
- 3 residential programs coming in just above 10 percent of
- 4 the therms savings. And some of these figures are at the
- 5 end of this Powerpoint for reference, so you can access
- 6 it online later if you're interested. Next slide,
- 7 please.
- 8 So just as kind of a benchmark, for the evaluated
- 9 savings for the last program cycle, in the therm area of
- 10 space heating, it comprised about 35 percent with water
- 11 heating about 45 percent. And in the kilowatts, the
- 12 demand side, the air-conditioning end use led to just
- 13 over 35 percent of the savings with indoor lighting at
- 14 about 54 percent. So these are the evaluated savings and
- 15 give some idea of what we can expect for this current
- 16 program cycle. Next slide.
- Okay, Residential Buildings. That's a \$718
- 18 million total budget for the three years, there are eight
- 19 sub-programs, and I've just grouped them into five areas
- 20 here. So the first two sub-programs are what is called
- 21 the HEER, Home Energy Efficiency Rebates, and MFER,
- 22 Multi-Family Efficiency Rebates, that comprise 31 percent
- 23 of the residential budget and deliver your basic rebates
- 24 on appliances, furnaces, etc., as well as the contractor
- 25 led installation of appliances and heating systems and AC

- 1 systems, and light bulbs, etc., in multi-family
- 2 dwellings.
- 3 The basic CFL in advanced lighting upstream buy-
- 4 down programs together comprise 22 percent of the budget
- 5 with basic CFL Programs totaling 10 percent of the Res
- 6 budget and just two percent of the overall budget, and
- 7 Advance Lighting consists of various rebates for light
- 8 bulbs beyond basic spiral CFL's, so specialty bulbs,
- 9 dimmable bulbs, small socket screw-in bulbs, etc., and
- 10 getting into LEDs as we go on here a little bit.
- 11 Electronics Program is about 6 percent of the Res
- 12 budget and that's a program where the utilities work with
- 13 the manufacturers and retailers to provide upstream,
- 14 midstream buy-downs of the price, and do in-store
- 15 training, and provide point of sale information in the
- 16 retail outlets. There's also the Home Energy Survey
- 17 Tools, this service can be performed online by phone or
- 18 in person, and some of the budget for that program this
- 19 year is about five percent of the total res budget, is
- 20 being used to upgrade those surveys to perform integrated
- 21 assessments, so, for instance, an online user can
- 22 estimate the cost of adding a PV system with and without
- 23 efficiency upgrades under the new integrated demand side
- 24 tool that will be available next year through all four
- 25 utilities.

- 1 And then Energy Upgrade California, as Bill
- 2 mentioned, is a comprehensive whole house improvement
- 3 program, about 15 percent of the budget. And I'll talk a
- 4 little bit more about that later.
- 5 So, the additional third-party and local utility
- 6 programs, about almost 25 percent of the budget, and one
- 7 of those, for instance, is the Online Buyer's Guide that
- 8 Edison will be launching in just a few months, I believe,
- 9 and will be expanded to the rest of the utilities by the
- 10 end of the program cycle, is the goal. That will provide
- 11 specialized information for consumers to make the
- 12 smartest choice for appliances online. And again, there
- 13 is the stats on the res program overall. Next slide.
- 14 And so, the Energy Upgrade California Program is
- 15 new this year, combining the local utility performance or
- 16 advanced budget, as well as the statewide basic or
- 17 proscriptive budget, it's about \$116 million overall for
- 18 the four utilities for this program. Most of that is
- 19 going to incentives and, of course, program
- 20 administration, quality assurance, rebate processing, and
- 21 some small amount for marketing and outreach. The total
- 22 budget for marketing and outreach across the utilities
- 23 was capped in the last portfolio decision at 6 percent of
- 24 the total budget, and that has affected the marketing and
- 25 outreach available for this and other programs.

- 1 So the utility budget for this program, for the
- 2 basic path, was a budget approved at a level that would
- 3 allow for treatment of some 42,000 homes over this
- 4 program cycle, so we're ramping up, the utilities are
- 5 ramping up, not quite at that target yet, but have that
- 6 amount in the budget at the basic incentive level. The
- 7 single family effort got launched in October of last year
- 8 and San Diego Gas & Electric has been working closely
- 9 with HMG, the City of San Diego, and County of San Diego,
- 10 and some others that have some ARRA funds and that
- 11 basically is a multi-family Energy Upgrade California
- 12 Whole Building pilot has already begun with those ARRA
- 13 partners, and San Diego Gas & Electric will be providing
- 14 incentives to that effort shortly.
- 15 We have been working closely with Energy
- 16 Commission and the other local governments and utilities
- 17 and private sector on the Energy Upgrade California
- 18 program and, through a Commission decision adopting the
- 19 program, the effort is directed to be consistent with the
- 20 Home Energy Rating System. Next slide.
- 21 And we'll see -- is Jordana Camarata unmuted and
- 22 able to join us?
- MR. STRAIT: I can unmute, one second.
- 24 MS. FOGEL: Okay, super. As you heard this
- 25 morning, Jordana is our Commercial Sector Analyst and

- 1 she's going to talk about the Commercial Programs here if
- 2 we can get her unmuted.
- 3 MR. STRAIT: All right, Jordana, I believe you're
- 4 unmuted now. Can you speak?
- 5 MS. CAMARATA: Yes. Can you hear me?
- 6 MR. STRAIT: Yes, we can hear you.
- 7 MS. CAMARATA: Great, okay. So I'm going to
- 8 quickly go over the Commercial Programs for Existing
- 9 Buildings. On the slide, you can see we've got Non-
- 10 Residential Audits, this program is a non-resource
- 11 program and it provides technical assistance and cost-
- 12 effective calculations through three different types of
- 13 audits. There is a basic audit, an integrated audit, and
- 14 a retro-commissioning audit. The integrated audit is the
- 15 new, I believe it is a new audit, an on-site audit,
- 16 performed by the utilities, and it gives you
- 17 recommendations on energy efficiency, demand response,
- 18 and distributed generation measures, and then there's
- 19 also this retro-commissioning audit which identifies
- 20 opportunities to optimize existing buildings, operational
- 21 deficiencies, and system performance. Then there is the
- 22 Dean's Incentives Program which is a basic rebate program
- 23 for the installation of energy efficiency measures.
- 24 These measures have a fixed incentive amount per unit, or
- 25 per measure. Typical measure categories including

- 1 lighting, air-conditioning, food service equipment,
- 2 refrigeration, there's a long list of that. Then,
- 3 there's calculated incentives, and that incentive program
- 4 is based on whole building, or whole system modeling, and
- 5 it includes technical and design assistance for
- 6 customized and integrated energy efficiency demand
- 7 response projects and retro-commissioning projects. It
- 8 considers system and resource interactions and also looks
- 9 at pushing the envelope with and including emerging
- 10 technologies.
- 11 The fourth sub-program is more of a pilot effort
- 12 for the utilities, it is a Continuous Energy Improvement
- 13 Program. This is a also a non-resource program and it
- 14 provides comprehensive strategic energy planning and
- 15 consulting services for mostly large and industrial
- 16 customers. It has long term strategic energy planning,
- 17 corporate wide energy management, and provides a bunch of
- 18 other type of benchmarking tools, as well.
- 19 And then the last sub-program is the Direct
- 20 Install Program, and this is free or low-cost energy
- 21 efficiency hardware retrofits and it's mostly geared
- 22 towards small businesses, and delivered through third
- 23 parties.
- 24 And then, in addition to that, as you can see,
- 25 there's also a lot of local utility programs, and then a

- 1 lot of third-party programs for the commercial sector,
- 2 and they target niche markets such as hospitals and
- 3 lodging and schools and office buildings, and a bunch of
- 4 other things, as well. And these third-party programs
- 5 represent about 40 percent of the commercial budget, so
- 6 it's quite a bit, and that was actually a directive
- 7 during a previous decision to kind of expand third party
- 8 implementation.
- 9 And the last bullet here, you can just see that
- 10 about 30 percent of electric savings comes from
- 11 commercial, 22 percent of gas, and it represents 30
- 12 percent of the entire budget as a whole. And that's it.
- 13 Thanks.
- MS. FOGEL: Great, so I'm --
- 15 MR. PENNINGTON: Cathy? This is Bill. Could you
- 16 take maybe three or four or five minutes more and finish?
- 17 MS. FOGEL: Sure. I'll skip through the HVAC
- 18 side pretty quickly. What I'll just say -- next slide --
- 19 is one of the new sub-programs developed last year by the
- 20 utilities is the HVAC Quality Maintenance Program and it
- 21 was developed in coordination with the Western HVAC
- 22 performance Alliance and so it's commercial and
- 23 residential oriented. The commercial program is based on
- 24 the ASHRAE, ACCA, and C Standard 180, establishes minimum
- 25 inspection and maintenance requirements, and it takes

- 1 kind of a predictive preventative approach rather than a
- 2 reactive approach and puts in place three-year quality
- 3 maintenance service agreement, and we can provide more
- 4 information if anyone is interested.
- 5 The Residential Quality Maintenance Program is
- 6 going to be based on the ACCA Standard 4 and establishes
- 7 minimum inspection requirements for HVAC maintenance
- 8 equipment in one family and two-family dwellings, three
- 9 stories or less, and it's providing a one-year quality
- 10 maintenance service agreement and it significantly
- 11 expands the maintenance activities performed during
- 12 visits by the qualified contractors. Next slide, please.
- So just briefly, this is a new brand launched
- 14 this year. Many of you will have heard of it, it's based
- 15 on extensive research, has a website, and I just mention
- 16 it because it is so important, marketing and outreach, to
- 17 any kind of market transformation efforts. Next slide,
- 18 please.
- 19 And so, just to recap, talking about market
- 20 transformation programs and groups of programs, aimed at
- 21 really transferring the market rather than getting
- 22 savings immediately from individual consumers or
- 23 buildings, the strategic plan has many strategies, we've
- 24 talked about before, and that you heard Bill talk about
- 25 in terms of the mandates for AB 758, it calls for the

- 1 establishment of whole house programs for increasing
- 2 consumer demand through home rating and labeling
- 3 approaches, and requirements, behavior change and social
- 4 marketing approaches, and calls on local governments to
- 5 establish residential energy conservation ordinances. It
- 6 talks about the need to develop new financial products
- 7 and, just to note, the CPUC did just release a finance
- 8 report across the market sectors last week; if anyone
- 9 wants to see it, contact Jordana and I, and we'll be
- 10 holding workshops on that a little bit later this year.
- 11 It talks about the importance of improving compliance and
- 12 addressing plug loads. And Jordana talked about earlier
- 13 Codes and Standards improvements are called out,
- 14 benchmarking and building labeling, you know, financial
- 15 products, and rewarding comprehensive retrofits. So the
- 16 point is, there's a very strong basis in this energy
- 17 efficiency strategic plan for AB 758 activities. Next
- 18 slide, please.
- 19 So one of the challenges we face is ensuring the
- 20 continued cost-effectiveness of the utility portfolio
- 21 with a number of these newer approaches and additional
- 22 non-resource programs generated by the strategic plan.
- 23 Over the last nearly 12 years now, the average portfolio
- 24 TRC has been declining, so that's a big challenge for us
- 25 and, as we think about how to direct the utilities to

- 1 undertake more market transformation activities, or how
- 2 those activities might be funded using ratepayer funds.
- 3 Next slide, please.
- 4 So keeping the portfolio cost-effective, our
- 5 savings that comprise these estimates, are based on the
- 6 valuations and those, in turn, are drawing on the DEER
- 7 database. This is heavily litigated, the ex ante values
- 8 for the current program cycle are still under litigation
- 9 between the utilities and the CPUC, so it's a major
- 10 challenge for us. Procedural requirements, I mentioned,
- 11 portfolio guidance decision in less than a year to
- 12 provide guidance for the '14 through whatever it will be,
- 13 '17 or '18, maybe, program cycle. So we've got a lot of
- 14 procedurally -- very challenging to get this guidance
- 15 into the CPUC record in that time, and have that guidance
- 16 be based on new information from ARRA programs, or any
- 17 new information that comes from the AB 758 Needs
- 18 Assessment.
- 19 An opportunity -- CEC-CPUC coordination, we've
- 20 done a lot of it over the last year and we'll be doing
- 21 more of it, so it's challenging with limited staff
- 22 resources, but so necessary, so it's really the
- 23 foundation for our efforts to go forward here. And AB
- 24 758 will provide some focus through the Needs Assessment
- 25 and the mandate given to the Energy Commission and some,

- 1 but not a whole lot, of additional resources. And of
- 2 course, the momentum and the ideas that will come from
- 3 the market actors through all of this will be very very
- 4 helpful and important in moving California forward. I
- 5 think that's my last slide, so thank you very much for
- 6 your attention.
- 7 MR. PENNINGTON: Thank you very much, Cathy, it
- 8 was very good. Hopefully, you'll be around after the
- 9 next presentations for questions?
- 10 MS. FOGEL: Yeah, I'll be able to stay on the
- 11 line.
- MR. PENNINGTON: Okay, thank you. So our next
- 13 presenter is Eliot Crowe. Eliot is a Senor Program
- 14 Manager at PECI. He has over 15 years of Engineering
- 15 Project Management experience. He's managed the Southern
- 16 California Edison Retrocommissioning Program, which has
- 17 had more than 80 Retrocommissioning projects. He's
- 18 currently managing a \$2 million PIER Research Program to
- 19 develop best practice quidelines and tools to support
- 20 Retrocommissioning, and improving the Non-Residential
- 21 Building Energy Efficiency Standards Code Sections
- 22 related to acceptance requirements and compliance with
- 23 that. He's also overseeing the day-to-day activities of
- 24 the California Commission as a member of PECI. He will
- 25 be actively leading the Non-Residential portion of the

- 1 technical support activities for AB 758. So, Eliot.
- 2 MR. CROWE: Thanks, Bill. The main focus of the
- 3 presentation that I'll be giving here and also in
- 4 partnership with Nehemiah is going to be around the Needs
- 5 Assessment portion of AB 758, and we'll start by giving a
- 6 bit more of a general --
- 7 MR. PENNINGTON: Sorry, you need to speak up.
- 8 MR. CROWE: I'm too tall, I need to crouch down.
- 9 So I'll be focusing on the Needs Assessment portion of
- 10 the program, which is the earliest part of AB 758, but I
- 11 will give a little bit of context and some of the
- 12 background information as a lead-in.
- 13 The current state of progress is that we have a
- 14 couple of work authorizations under review and we're
- 15 expecting these to be approved very shortly, but the
- 16 first focuses on the Non-Residential Needs Assessment and
- 17 the Building Energy Asset Rating System that Bill
- 18 referred to in his introduction. And we've been working
- 19 with a number of people at the Energy Commission to put
- 20 these work authorizations together, Devi Eden, Becky
- 21 Menten, Bill, Eurlyne Geiszler, Martha Brook, and Justin
- 22 Regnier have all been very instrumental in putting this
- 23 work package together. And on the Residential side, we
- 24 also have a Needs Assessment as the first fundamental
- 25 piece of that work, HERS improvements, affordable housing

- 1 initiatives, and looking to improve compliance
- 2 enforcement, which is what Nehemiah will be covering in
- 3 his portion of the presentation.
- 4 These two work authorizations, as I say, are due
- 5 to start soon and will run through the middle of next
- 6 year where we hope to really lay the groundwork for the
- 7 phases of the program.
- 8 Given the very broad scope of AB 758, we've
- 9 assembled a pretty broad range of experts to work on the
- 10 program. PECI will be the prime contractor to the Energy
- 11 Commission, and working with us on both the residential
- 12 and non-residential sides are a team of crack experts. I
- 13 won't read them all off, but you can all see that the
- 14 breadth of experience we have there, and also in addition
- 15 to the specialist residential and non-residential
- 16 technical experience, we also have some outreach and
- 17 field support to really, you know, engage with the market
- 18 out there where we're actually trying to see the
- 19 difference is made.
- The schedule for the Needs Assessments, we're
- 21 going to be running through the end of this year and the
- 22 outcome of that will be to develop an action plan for the
- 23 program out of which will fall numerous other work
- 24 authorizations to take the program forward. The key
- 25 tasks include interviewing 15-20 stakeholders and we're

- 1 certainly open to suggestions on who would be the key
- 2 people that we should obtain input from. We have a lot
- 3 of expertise within the team, we can tap into a lot
- 4 within the Energy Commission, but we're looking to engage
- 5 with the market and really pull in what's needed and
- 6 separate out what's currently being offered, what is
- 7 currently planned to be offered, and Cathy and Jordana
- 8 gave a really great account there of the wide range of
- 9 services being offered through the CPUC and the
- 10 utilities. And we're looking to complement that with
- 11 this work here.
- 12 Another part of the Needs Assessment will be some
- 13 secondary research into market data, just trying to slice
- 14 and dice the market for Residential and Non-Residential
- 15 in terms of where energy is used, breaking it down by
- 16 sector and other demographics, to identify potential gaps
- 17 in what is currently being offered, and also the areas of
- 18 the greatest potential in terms of energy use and
- 19 savings.
- 20 Another key part will be identifying the success
- 21 metrics, how we're going to actually judge the
- 22 performance of the program, itself, a really key step at
- 23 the start of the program here, and I do have a slide on
- 24 that a little bit later in the slide deck.
- 25 Another key part will be a series of public

- 1 workshops. Today isn't officially one of those public
- 2 workshops within the scope, but we're very interested in
- 3 convening meetings like this to obtain feedback from all
- 4 sectors of the industry.
- 5 Referring to the metrics, measuring success here,
- 6 we've kind of made a start here. As I say, we're not
- 7 fully in contract work authorization mode, but just
- 8 starting off instinctively, you have a sense of how we're
- 9 going to measure the success, and that's going to be in
- 10 terms of contribution to the Zero Net Energy Goals, how
- 11 we're able to transform the market in partnership with
- 12 the CPUC and other market factors. The Needs Assessment
- 13 is likely to identify a number of barriers to increasing
- 14 the overall energy efficiency of buildings, and we need
- 15 to find a way to measure our success in overcoming those
- 16 barriers. Having a qualified work force is critical, we
- 17 need to make sure we can measure the progress in that
- 18 area, also. And financing mechanisms and products will,
- 19 we think, also be instrumental in improving uptake of
- 20 offerings through the utilities and other areas.
- 21 Rating and Disclosure Programs is a really
- 22 fundamental early part of the infrastructure and, again,
- 23 you know, in measuring ratings, you can also measure
- 24 improvements in ratings, so that will be a big part of
- 25 our assessment of the program as we go forward, how

- 1 people are taking up the ratings and disclosures, and how
- 2 effective those ratings and disclosures are in actually
- 3 promoting improved energy efficiency.
- 4 So, specifically now on the Non-Residential side,
- 5 I'm going to just break down some of the areas in the
- 6 Needs Assessment that we will be looking at, it's not an
- 7 exhaustive list, this is why we need to really tap into
- 8 the industry experts to tell us where the gaps are, where
- 9 the biggest opportunities are, where the biggest areas of
- 10 needs are. But just within the team and within the
- 11 Energy Commission, we have a starting laundry list that
- 12 we're going to use to develop interview instruments for
- 13 those experts.
- 14 Financing is obviously a very big area on both
- 15 Non-Res and the Residential, and we're going to be
- 16 seeking the gaps out that will be new tools that motivate
- 17 commercial owners and enable them to make the finance
- 18 upgrades, and this may be an area where we look in
- 19 different sectors in a different way than maybe some
- 20 sectors where there are lots of financing products held
- 21 there, but they're just not well utilized, and other
- 22 areas where there just simply aren't the products
- 23 available. But certainly, municipal financing and
- 24 utility on-bill financing are both established as
- 25 offerings and, as I say, some of those are well utilized,

- 1 and some are less well utilized, we're going to look for
- 2 the causes of those things.
- 3 We will obviously be leveraging some of the work
- 4 recently completed, and Cathy did make reference to the
- 5 CPUC's recent report on workforce requirements, and you
- 6 know, in general terms, we're going to have to look out
- 7 for these kind of publications that come out all the time
- 8 and how they relate to the AB 758 work. One of the key
- 9 documents that we're talking around today is the CEC's
- 10 recently released report, which can be downloaded
- 11 alongside the Meeting Notice for today's meeting.
- 12 Specifically on the Work Force Development, then,
- 13 we're talking about adding the asset rating and
- 14 disclosure programs. We'll need workforce to actually
- 15 meet the demand to provide the services and to provide
- 16 those ratings. And then, subsequently, when the owners
- 17 get really excited about making their energy upgrades,
- 18 we're going to need an in-house workforce to support
- 19 that. And there's a lot of work already going on through
- 20 the ARRA funded programs in the state, and you know,
- 21 we'll be looking through the Needs Assessments to assess
- 22 the performance of those programs, what needs are being
- 23 met, and what are the market sectors perhaps next in line
- 24 to receive that kind of workforce training.
- The Rating, Disclosure and Efficiency Programs,

- 1 this is -- certainly rating and disclosure is a really
- 2 hot issue internationally, nationwide, in the state, AB
- 3 1103 is one precedent for a rating disclosure initiative,
- 4 and we see this as a crucial leverage point to actually
- 5 have people understand what they have in terms of their
- 6 building performance and the potential in their building
- 7 to be efficient, and to use that as a way to convince
- 8 them that they can make improvements to build off of
- 9 that, and actually make improvements in their building
- 10 rating. And there's a lot of research out there that
- 11 links building performance to building value, which is a
- 12 great boost to people's uptake in this kind of work. And
- 13 there are a number of national initiatives going on, DOE
- 14 is working on a national asset rating; ASHRAE has the
- 15 Building EQ, which is currently being piloted; COMNET is
- 16 a nationwide organization that's really looking at the
- 17 modeling foundations for asset ratings. ASTM has
- 18 recently published some disclosure-related standards, and
- 19 there are a number of local requirements statewide,
- 20 citywide, that are requiring disclosure, whether it be
- 21 public or simply within a transaction, and also some
- 22 going beyond that to talk about regular energy audits,
- 23 etc. So there is a lot of work going on in this area
- 24 and, to some degree, California will be looking to align,
- 25 and to another degree it will be looking to take the lead

- 1 and really push things forward.
- 2 And the Building Energy Asset Rating System is
- 3 something which will certainly be looking to start work
- 4 on in parallel with the Needs Assessment. I think it is
- 5 so strongly identified as a need that we don't need to go
- 6 out and talk to the experts to convince ourselves it's
- 7 necessary, but we'll certainly be looking to find the
- 8 experts who can provide the input on making it the most
- 9 successful it can be.
- In terms of the programs, themselves, which
- 11 really, I think, as Bill's phased plan presented, is
- 12 maybe the Phase 3 of the Program. We'll be looking to
- 13 work very close to the CPUC in evaluating the programs
- 14 that are offered, seeing where the gaps are, and seeing
- 15 how the AB 758 Program can really support that work and
- 16 increase uptake.
- 17 So that concludes the general intro and the non-
- 18 residential side of things. I'm going to hand over to
- 19 Nehemiah to cover the Residential side of AB 758.
- MR. PENNINGTON: So the next speaker here on the
- 21 panel is Nehemiah Stone. Nehemiah and I go way back; he
- 22 thinks it's 22 years, I'm not sure I agree with that. But
- 23 basically he's done a variety of things. We're to the
- 24 point of working together so closely that usually we just
- 25 dispense with the niceties and start arguing just at the

- 1 outset, you know.
- 2 MR. STONE: Habit.
- 3 MR. PENNINGTON: But he's done a variety of
- 4 things related to Energy, he's been a licensed
- 5 contractor, he's worked for a Building Department as a
- 6 Plan Examiner and a Building Inspector. You all remember
- 7 that he was the staff lead at the Energy Commission in
- 8 1992 when we developed residential building standards
- 9 that aggressively went after windows. After leaving the
- 10 Commission, he's worked as an Efficiency Program
- 11 Implementer for various companies, worked on Evaluation,
- 12 Policy work, and Building Science Research. He's a
- 13 principal with the Benningfield Group, and he also is the
- 14 Residential Lead for the AB 758 Contract, the Technical
- 15 Support work we're going to do. Nehemiah.
- 16 MR. STONE: Thank you. The point of what he was
- 17 just saying, that I've been ankle deep in probably about
- 18 more than half of the professions that you folks have and
- 19 any topic that comes up, there's somebody in the room
- 20 that knows worlds more than me, but I at least know how
- 21 it relates to all the other topics because I've been
- 22 ankle deep there.
- 23 One of the slides that I don't have here in the
- 24 Residential section because it was -- Eliot covered it in
- 25 the overall -- was the Needs Assessment, but that's

- 1 actually the thing I'm going to talk about the most. All
- 2 the rest of the slides here relate to what we plan to
- 3 learn about in the Needs Assessment, so I'm going to give
- 4 you just a little bit of background, the process on the
- 5 Needs Assessment, and then you won't see slides on the
- 6 Needs Assessment, but all of this relates to what we're
- 7 going to be doing in that.
- 8 So there's a number of steps that we're going to
- 9 be going through, creating a survey instrument and
- 10 talking to a couple dozen folks from different aspects of
- 11 the industry on the topics that make a difference on
- 12 where we are on trying to get, where AB 758 wants us to
- 13 be. As Eliot said, the end goal of that is to come up
- 14 with a plan on how we get there, and that's what the
- 15 Commission asked to do at the end of this whole process,
- 16 and that plan is not just a plan for what we're doing
- 17 during the iteration of this contract, but it's a plan
- 18 for how to get to the goals for 2020 and 2030. It's a
- 19 plan for how to get a much deeper energy efficiency in
- 20 the existing stock.
- 21 So, in addition to having the interviews, we're
- 22 also going to be delving into market data that's out
- 23 there. There's a lot of different sources, CIRB,
- 24 Department of Finance, NAHB, you know, all the different
- 25 associations that are involved with building the housing

- 1 stock we have, with managing it, owning it, doing the
- 2 upgrades to it, all of that. And we're going to assess
- 3 that data. We're not going to go out and do fundamental
- 4 new research on what's going on in the market, we're
- 5 going to be assessing all of the research we can find
- 6 that says what is out there, what the opportunities are,
- 7 what the barriers are.
- 8 The next step is developing a Preliminary Action
- 9 Plan for the Commission. And this is something that
- 10 we're going to be doing very interactively with the
- 11 Commission staff, and the end result, this is the
- 12 Commission's plan, and as the technical consultants we
- 13 will help to write the plan, but it's going to be very
- 14 interactive work on that. Then comes the workshops that
- 15 Eliot talked about, and those are the opportunities for
- 16 folks around the state, to see what it is that we're
- 17 preliminarily looking to do, and give us constructive or
- 18 not so constructive advice and input on it, and help the
- 19 Commission understand how that plan is going to affect
- 20 the different industries it has to affect and what those
- 21 industries think about how to make the progress towards
- 22 deeper energy efficiency happen smoother and more
- 23 certainly. After assembling that, then we will work with
- 24 the Commission to develop the final Residential Action
- 25 Plan.

1 Now, that's the first piece of what's in
--

- 2 Residential Work Authorization that's under review right
- 3 now and which we expect very shortly. Part of the intent
- 4 of that Needs Assessment was to help us figure out what
- 5 exactly to write in the work authorizations for all the
- 6 other tasks. Because of timing, and because a lot of
- 7 this work has to be wrapped up by next spring, we are
- 8 actually going to be working on a few things
- 9 concurrently. We're not going to be getting to the
- 10 conclusion of anything else before the Needs Assessment,
- 11 and as the Needs Assessment progresses, it's going to
- 12 inform us on the other tasks, but we don't have the
- 13 luxury of waiting to start on everything else until after
- 14 the Needs Assessment is done. We simply cannot get to
- 15 the finish line in time if we do that. So one of the
- 16 other areas -- well, I'll get to that in a moment. So,
- 17 the Needs Assessment will be looking at a number of
- 18 different things that impact how the various industries
- 19 involved will be able to get the deeper energy efficiency
- 20 in the existing residential market; workforce
- 21 development, obviously, is a big piece of that and,
- 22 starting at the bottom here, one of the things we're
- 23 going to be leveraging is a report that U.C. Berkeley did
- 24 in concert with the Energy Commission and PUC, evaluating
- 25 the Workforce Education and Training Needs Assessment,

- 1 they actually started it before the AB 758 mandate, but
- 2 it was very much informed by that and was just completed,
- 3 if I'm not mistaken, within the last couple months.
- 4 So the ideas are to create a sustainable
- 5 workforce, and this means making sure not only that you
- 6 have enough people, but that you're not educating too
- 7 many people in the wrong bucket, that are not going to be
- 8 able to find work, and therefore, you know, taint the
- 9 whole thing with sour grapes, if you will. Meeting the
- 10 demand for all the services that have to happen, you
- 11 know, it's not enough to go out and figure out what has
- 12 to be done to a building, you have to have qualified
- 13 people able to do it and verify that it was done
- 14 afterwards. An awful lot of programs rightfully require
- 15 that you have certifications to establish what your
- 16 qualifications are, to take part in that whole process.
- 17 So that's a critical element, in understanding what
- 18 certifications are out there, what the needs are in the
- 19 areas of certification, and what the capabilities are.
- 20 An assessment of whole house training vs.
- 21 specialized training, there's a lot of projects where --
- 22 and I've actually on one iteration of this slide deck, I
- 23 changed it and somehow I didn't on this one -- whole
- 24 building training. My focus is actually multi-family.
- 25 So when we talk about Residential, I try to remind people

- 1 that people live in -- people reside in multi-family
- 2 buildings, too. So it's a whole building perspective,
- 3 rather than whole house. But, anyway, there are some
- 4 projects where that is the best way to approach it, is to
- 5 look at the whole building, figure out everything you can
- 6 do at once, and get it all into the loan for the
- 7 refinancing package that's going to happen at that time.
- 8 There are other projects where, for one reason or
- 9 another, that's not possible. It's absolutely not
- 10 possible. And so the best approach on those is to pick
- 11 off those things that can make the biggest difference
- 12 that you can afford, and that are not going to put
- 13 something, a blockade in your path towards getting deeper
- 14 efficiency later. Training needs to be provided on both
- 15 of those tracks so that we have people who can fulfill
- 16 those roles all the way down the line.
- 17 Rating and Disclosure Programs, it's very similar
- 18 to what Eliot was talking about, but with some other
- 19 nuances. There are a couple programs out there, three
- 20 programs out there right now that are important to look
- 21 at and compare among each other so we can figure out what
- 22 the advantages and disadvantages of each of them are, and
- 23 what the capabilities are for each of them. One,
- 24 obviously, is the California Energy Commission's HERS 2,
- 25 the programs developed under the HERS 2, another is DOE's

- 1 Home Energy Score, and another is Energy Trust Energy
- 2 Performance Score. Most other states are looking at
- 3 DOE's home energy score. I am not sure of the state of
- 4 decision for any of them, but what it means is that, in
- 5 California, even though we've made a commitment to HERS
- 6 2, it is important for us to look at HERS 2 in light of
- 7 what DOE Home Energy Score Program does and doesn't do,
- 8 and what its capabilities are.
- 9 We also have up in Oregon a fairly successful
- 10 program in providing disclosure on properties as to what
- 11 their energy use is. I don't know what all the
- 12 capabilities are of that, they may not be able to be in
- 13 the right program for looking at identifying what all the
- 14 right opportunities are, and then being able to rate the
- 15 building before and after. But we need the ability to
- 16 tell somebody who is about to make a decision, whether
- 17 it's a purchase decision, or whether it's a rental
- 18 decision, what the cost of having that residence is, and
- 19 that cost has been focused almost exclusively in the past
- 20 on the cost of the mortgage, the cost of making the
- 21 payments, or the cost of the rent. And it's not a
- 22 complete decision, it's not an educated decision, as John
- 23 said earlier, if you don't also have information on what
- 24 does it cost to maintain that building -- what is it
- 25 going to cost me for electricity, for gas, for water?

- 1 We're going to be looking at financing and, on this,
- 2 obviously the heavy lifting has already been done by the
- 3 PUC, the contractor, and the report that just came out,
- 4 "Energy Efficiency Financing in California: Needs and
- 5 Gaps." But there's a lot of specifics around residential
- 6 financing that we're going to have to document, and
- 7 highlight in the report. And there's a plethora of
- 8 financing instruments in the residential sector, at least
- 9 in the single family residential. The problem there is
- 10 probably not that we don't have the right instrument.
- 11 One of the biggest problems is that there's a
- 12 discontinuity across the different financing instruments
- 13 so that they may have different descriptors, or they may
- 14 have different requirements, and for a lot of projects
- 15 you have to access more than one financing instrument at
- 16 a time, and this is clearly true for affordable multi-
- 17 family, most of those projects have at least seven
- 18 different financial instruments involved in it before
- 19 they even can break ground. So, making sure that there
- 20 are not barriers put up in one financing instrument, that
- 21 means you can't use the other ones, or identifying where
- 22 those barriers are so that solutions can be identified as
- 23 part of it.
- 24 There's some innovative ways of getting at
- 25 financing that are not what people typically think of as

- 1 financing for energy efficiency, and I just put one
- 2 example up here partly because I was very involved in it,
- 3 and that's getting the utility allowance correct when
- 4 you're going after low income housing tax credits for
- 5 affordable multi-family projects. It doesn't look like a
- 6 financing instrument, but it absolutely is because if you
- 7 have to estimate what the tenants are going to pay for
- 8 utilities based on old buildings that use a lot more
- 9 energy than your energy efficient building, then that
- 10 means that, by the calculations that you have to do,
- 11 you're subtracting a lot more from what you could charge
- 12 for rent for those than you actually should because the
- 13 tenants will be paying a lot less for their utilities
- 14 than the calculation says. Well, the California Utility
- 15 Allowance Calculator, CUAC, or as it's fondly called "the
- 16 Quack," solves that problem. It gives you a much more
- 17 accurate estimate of what the tenants will be paying.
- 18 And so, what it means, then, when you go to Bank of
- 19 America, or anybody, what you're showing them is you have
- 20 the ability to handle -- to service a lot more debt, and
- 21 it becomes, then, a financing instrument. There's other
- 22 innovative examples like that, but Bill would probably
- 23 cut me off if I try to go into too many of them.
- 24 So we'll be looking at potential opportunities to
- 25 expand the use of the CUAC, and this is very specific,

- 1 this is not an example, this is one of the tasks that
- 2 we're going to be doing is finding a way to have the
- 3 California Utility Allowance Calculator apply to a larger
- 4 range of projects. Right now, it only applies to low
- 5 income housing tax credit and new construction projects.
- 6 Well, it should apply to if we get everything in as far
- 7 as quality control in line, it should also apply to
- 8 Redevelopment Agency projects, so assuming there's any
- 9 Redevelopment Agencies going forward. It should apply to
- 10 other local government funded projects, or HUD funded
- 11 projects, or any other projects that -- I just lost all
- 12 my notes, oh well, extemporaneous -- any other projects
- 13 that have a utility allowance involved in it. So one of
- 14 the tasks here is to work with local entities to try and
- 15 find a way to make sure that the quality control can be
- 16 implemented at the local level.
- One of the other things that's going to come out
- 18 of this is working with some of the incentive programs
- 19 that are out there to try out new strategies for getting
- 20 deeper penetration into the existing residential market
- 21 and getting deeper energy efficiency gains from those
- 22 individual projects. There was consideration initially
- 23 about having pilot programs, but rather than try to
- 24 create a program and compete with the ones that are out
- 25 there, what we're going to do is we're going to work with

- 1 the programs that are out there, and get them to pilot
- 2 different innovative efforts within those programs to see
- 3 if we can find a way of increasing penetration and
- 4 increasing efficiency gains.
- 5 And one of the other big tasks is Codes and
- 6 Standards compliance improvements, and there's a couple
- 7 main areas under this, 1) we need a comprehensive
- 8 understanding of what all is happening, what all is going
- 9 on, to try to improve compliance. We need a full scale
- 10 picture of who is doing what, how is it working, you
- 11 know, what specific barriers at trying to get to -- Pat,
- 12 I'm going to borrow something from Jill here -- it's
- 13 somebody that I have been working with for quite a while
- 14 and I really enjoy working with, once said something in a
- 15 presentation like this that I've used over and over and
- 16 over again, and that is that training -- and I'm going to
- 17 get this wrong, she corrects me every time I say it but
- 18 it'll be close -- training is the right answer when lack
- 19 of knowledge is the problem, but we all too often assume
- 20 lack of knowledge is the problem, so we do more and more
- 21 training programs for people in Building Departments and
- 22 HERS folks and contractors, and subcontractors, and it's
- 23 not always the problem. Sometimes it's a different
- 24 problem that we have to solve, and so we need a range of
- 25 compliance improvement efforts, and they need to be

- 1 targeted to the specific barriers that are there.
- 2 The other major piece that's in that is that
- 3 California is committed, as have the other 49 states, to
- 4 getting -- and correct me if I'm wrong on this, Bill,
- 5 about the number -- but getting to 90 percent compliance
- 6 by 2017. Now, I'll wait for a moment while the laughter
- 7 dies down, okay, no it's supposed to die down here, okay,
- 8 all right, so the point is that, you know, if I asked
- 9 everybody in the room individually what percent
- 10 compliance do we have now, I'll bet you I'd have at least
- 11 one more answer than I have people in the room. We don't
- 12 know at this point. We have a scad of estimates and I
- 13 haven't seen two estimates that are close to each other,
- 14 so one of the things we need to do is to help the Energy
- 15 Commission in its role of coming up with a baseline and
- 16 coming up with the right metrics to measure improvement
- 17 against that baseline. There's no way in heck that we
- 18 can say, by 2017, we've gotten to 90 percent better,
- 19 unless starting off we knew where we were, and we know
- 20 how to measure what that improvement is.
- 21 There's a number of different efforts and
- 22 different places of doing something like this.
- 23 California, we're going to have to do it differently,
- 24 surprise, surprise, because we approach the standards
- 25 differently. In most of the rest of the country, their

- 1 standards are proscriptive and you'll do this, and this,
- 2 and this, and this, and folks, it's really easy to figure
- 3 out how many people are doing what and how that changes
- 4 over time if all you have to do is look at a menu and
- 5 figure out, okay, did you do this, and this, and this,
- 6 and this? In California, most compliance with the
- 7 Standard is performance-based. If it's performance-
- 8 based, you can't tick down a list of widgets and say,
- 9 "All right, here's where we are." And so it is more
- 10 complex, it's going to take time to figure it out, and
- 11 it's going to be a different system, almost certainly,
- 12 than what the rest of the country uses. I think that's
- 13 it.
- 14 MR. PENNINGTON: Okay, thank you very much.
- 15 Panelists, I think at this point we're going to turn to
- 16 questions and I've got a few questions here. I think,
- 17 missing the morning, I'm not sure I'm following the
- 18 pattern of the morning, but I'm led to believe I'm
- 19 following the pattern by posing the questions to the
- 20 panelists first, and then opening that up for people in
- 21 this audience and people on the phone. So let me do
- 22 that.
- In our IEPR Report recommendations, in the Draft
- 24 Report, we emphasize data driven policy. What design
- 25 support tools do you think we need to reduce barriers to

- 1 energy efficiency, demand, financing, and implementation?
- 2 So, would a panelist want to take that on?
- 3 MR. STRAIT: Let me really quickly step in if
- 4 there is anybody on the phone that wants to jump in,
- 5 there is a "raise your hand" button that you can press,
- 6 that will let me know to unmute you and put you on the
- 7 line.
- 8 MR. STONE: Well, Eliot and I just arm wrestled
- 9 and I get to go first here. As I mentioned in the
- 10 morning session, which you missed, if we're going to --
- 11 the morning session was about getting to net zero, and if
- 12 we're going to get to net zero, the way we're going to
- 13 figure out whether we got there is we're going to have
- 14 models that can account for actually what's going on in
- 15 the building rather than models with -- and no offense to
- 16 anybody -- but models with no problems, that don't allow
- 17 you to see the real physics that are going on in the
- 18 building. So one of the things we need to do is we need
- 19 to have models where we can enter all the parameters of
- 20 the building, it will give us an estimate of what is
- 21 going on, and we can true it up to measure data. And the
- 22 best source to measure data right now is probably utility
- 23 bills. But there can be other ways of getting at it.
- 24 So, I think that the best track will be to pay a lot of
- 25 attention to what is in the algorithms in the new ACM and

- 1 be able to dynamically, on an individual project, be able
- 2 to go in and true it up so that when you're making
- 3 improvements down the line, you have a model that shows
- 4 you what's really going on in the building.
- 5 MR. PENNINGTON: Okay, thank you. Eliot?
- 6 MR. CROWE: I guess my answer does relate
- 7 somewhat to Nehemiah's. I think I have a lot of recent
- 8 experience looking at energy monitoring and system
- 9 monitoring, certainly on the commercial side, and I think
- 10 that is another crucial tool to provide everyone with
- 11 data that's beyond the monthly billing data, and to
- 12 really support -- I think a lot of initiatives are going
- 13 to hang off of that in terms of showing people what
- 14 energy they're using, and inspiring them to action. It
- 15 also supports a lot of Demand Response work. And also,
- 16 some of the pieces that were mentioned by Cathy and
- 17 Jordana around continuous energy improvement and whole
- 18 building approaches, I think that's going to be a really
- 19 crucial piece of that puzzle to support all these
- 20 initiatives, and also in terms of measuring impacts. If
- 21 the data is being monitored, it can be effectively
- 22 aggregated so that someone at a high level can see the
- 23 overall impacts statewide, it will be very powerful.
- 24 MR. PENNINGTON: Okay, thank you. Cathy, would
- 25 you like to respond?

- 1 MS. FOGEL: Can you hear me?
- 2 MR. PENNINGTON: Yes,
- 3 MS. FOGEL: Okay. Yeah, I agree with what's been
- 4 said and I guess I would add -- and I agree with the
- 5 recommendation from the Energy Commission -- I think what
- 6 I would add is that some of this data collection has
- 7 started with our Energy Upgrade California collaborative
- 8 effort, so we're collecting data on job cost and
- 9 projected savings at this point. I think we need more
- 10 data like that that's a little bit simpler than what the
- 11 other folks were talking about, but that can let
- 12 consumers know, you know, likely costs and benefits to
- 13 help get them interested. And a lot of this information
- 14 will feed into better finance offerings, we hope. And I
- 15 think just to maybe offer, you know, come out of the box
- 16 a little bit, we probably need some more data, better
- 17 data, on contractor training and especially worker
- 18 training levels, especially in a residential space where
- 19 so much of doing really quality work, which is necessary
- 20 to really achieve these savings, is done by workers often
- 21 with fairly limited training themselves, their crew boss
- 22 might have a training, or their contractor might, and
- 23 there's going to be QA, but we need to I think some
- 24 data on overall improvement of the skills level across
- 25 the contractor base in the residential sector would be

- 1 helpful in our efforts.
- 2 MR. PENNINGTON: Okay, thank you.
- 3 MR. STONE: Bill, can I add something real
- 4 quickly? One of the other things, if the decisions are
- 5 going to be data driven, the data has to be very
- 6 accessible and you have to be able to manipulate it in a
- 7 way that makes sense. And so one of the important things
- 8 is thinking through how you might possibly want to use
- 9 all the data, and then setting up the database, if you
- 10 will, in a way that you can do that. I guess the best
- 11 example is that the Public Utilities Commission and the
- 12 utilities has spent millions of dollars on EM&V, on
- 13 programs since the early '80s, and all of that data is
- 14 "available." But it's all -- it's essentially in PDF or
- 15 in Word, or in an Excel spreadsheet that doesn't look
- 16 like any other Excel spreadsheet, and that wealth of
- 17 data, I mean, that's an incredible value that we have
- 18 there, that really is not that accessible. And going
- 19 forward, we should think about, you know, if you're going
- 20 to be collecting this data, the kind of data that Cathy
- 21 was talking about, or data on how programs perform, data
- 22 on buildings that you monitor, any of that, there should
- 23 be a consistent format and a database that it all goes
- 24 into that you can dive into, you can figure out, you can
- 25 ask questions and get an answer based on data from six or

- 1 seven different research reports because their data is
- 2 all in the same format.
- 3 MR. PENNINGTON: Okay, thank you. Is there
- 4 anyone in the room that would like to address the
- 5 question? Yes, Mike.
- 6 MR. GABLE: Mike Gable, the other Mike. Yeah, my
- 7 concern is that, in this evaluation period of assessment
- 8 that you all kind of really look at the stakeholder
- 9 issues of a system of energy, if it's a home label, or
- 10 rating, or a commercial building rating, as sort of a
- 11 crucial puzzle with a lot of pieces, which I know you
- 12 alluded to stakeholder interviews, but that what drives
- 13 the bus in your needs assessment is that you've really
- 14 accounted for all the key players having that kind of
- 15 important input in what's going to work for them, and
- 16 I'll just briefly as an example, you know, I think I've
- 17 been involved with four local governments in the last
- 18 year or two, and you know, I think with HERS 2, there are
- 19 some issues we need to probably look at, but
- 20 understandability by the consumer, by the home owner, the
- 21 real estate community, whether there is a model that you
- 22 can get this on the MLS listings, I mean, there are all
- 23 these parts of it that I think, when we all sort of went
- 24 into the story out a few years ago, we weren't quite as
- 25 attuned to it as we maybe all should have been, and I was

- 1 part of this, too, and I didn't pick up on stuff, but
- 2 that we have this chance to kind of correct a lot of
- 3 maybe errors and decisions that were made, so I just want
- 4 to make sure all the stakeholders get really included in
- 5 these key points.
- 6 MR. PENNINGTON: Thank you.
- 7 MR. STRAIT: Bruce, you are live at the moment.
- 8 MR. KEESEE: Mike Keesee, I'm with SMUD. I work
- 9 in Research and Development. The last couple of years,
- 10 I've been taking a look at the retrofit issue. How do
- 11 you achieve 50 percent plus savings in existing homes, 30
- 12 percent plus savings in existing buildings? I'm not sure
- 13 where my comments fit into what the discussion that just
- 14 happened. You can ask my opinions about HERS offline
- 15 because I think everyone should go through the process
- 16 personally to find out how frustrating and crazy it is,
- 17 because I get lots of different HERS values every time I
- 18 hit return on an energy product. I even get different
- 19 standards -- and Mike did them for me, and I get a
- 20 different number for my Title 24 addition compliance
- 21 standard budget every time I hit Return 2. Don't ask me
- 22 why. I think that's just the way it is. But this is
- 23 what I want to talk about, is opportunities. I think the
- 24 whole issue here is driven by consumer choice and
- 25 opportunities, and it's driven by financing. We all bet

- 1 the farm last year on a couple things, one was PACE. The
- 2 other was Home Star, if people remember that stuff. And
- 3 it was all the promise I saw, I went to an efficiency
- 4 conference with thousands of contractors, which was the
- 5 ACI conference in Texas and excuse me if I'm going on and
- 6 on, but there was real buzz in the conference about those
- 7 two things, they were going to make money. And if
- 8 contractors can get money, I think you've got something
- 9 going. But those things fell apart, and the whole key to
- 10 this, based on the six deep energy retrofits that I've
- 11 gotten for SMUD under our demonstration program to see
- 12 how you get to 50 percent savings in existing homes, was
- 13 predicated on opportunity. These homes were abandoned,
- 14 foreclosed homes. That's the greatest opportunity we
- 15 have right now, to do something on a scale, which is
- 16 going into the resale market and doing the improvements
- 17 there, a tool already exists, it's existed for almost 40
- 18 years now, and all of a sudden the market has got a buzz
- 19 about it. I mean, the real estate agency no longer is
- 20 opposed to trying to figure out the energy efficient
- 21 mortgage, at least locally. They're no longer opposed to
- 22 having a HERS rating done because they see the specter of
- 23 regulation breathing down their neck and nobody gets
- 24 religion better than if they think they're going to get
- 25 mandated about it. These are sort of my opinions of it,

- 1 and it's the easiest, best way to finance the saving, or
- 2 the improvement that needs to be done at the time of
- 3 resale because it's transparent to the buyer, they just
- 4 see a brand new house and better bills, and if they can
- 5 fold it into their mortgage, they don't care. Nehemiah
- 6 is shaking his head, I think he's with me on this.
- 7 And so the issue now is to pounce on the
- 8 opportunity, as slim as it's been, because we've talked
- 9 about energy efficient mortgage since my career started
- 10 20 years ago, it's never gone anywhere. But all of a
- 11 sudden, I think -- either -- there's a correlation, you
- 12 could do a study about that one, too. And then that
- 13 opportunity stretches, at least in the residential
- 14 market, to the other opportunities that exist. People
- 15 don't think about this, they think about, "Oh, my God, I
- 16 need a new roof." "Oh, my God, my air-conditioning
- 17 system broke." And if you can capitalize on those
- 18 opportunities and, again, refinancing may be the way to
- 19 do it because it's the best means of it, there's the 203
- 20 case streamline from FHA that exists. And I say this
- 21 because, you know, right now in this market, nothing is
- 22 happening, as we all know, with Energy Upgrade
- 23 California, because no one wants to invest in their home.
- 24 I think there's an analogous situation in the commercial
- 25 market when TIs occur, when owners want to improve their

- 1 existing space to try and lure a customer in. It's not
- 2 as straightforward as the residential case, and I will
- 3 admit, I don't know much about that market. So if you're
- 4 going after data collection or whatnot like that, I would
- 5 urge you to look at those markets and means to capitalize
- 6 on that because it's the only basis of low cost
- 7 financing, and people are going to do things when those
- 8 opportunities exist.
- 9 MR. PENNINGTON: Okay, thanks, Mike. So I want
- 10 to turn to people on the phone. I'll take a couple of
- 11 commenters. Again, what decision support tools do you
- 12 think we need to reduce barriers to energy efficiency,
- demand, financing, and implementation?
- 14 MR. STRAIT: Bruce, if you'd like to speak,
- 15 please go ahead.
- 16 MR. RAY: This is Bruce Ray. Can you hear me?
- MR. STRAIT: We can hear you.
- 18 MR. RAY: The question I had was maybe a
- 19 practical one. We heard an earlier presenter say that
- 20 the overall goal here is to achieve a 40 percent
- 21 reduction in energy use, or maybe it was just residential
- 22 energy use. We also heard, I think, one of the first
- 23 presenters note that a very substantial percentage of the
- 24 reduction in overall statewide greenhouse gas emissions
- 25 that are necessary to achieve the 2020 goals that AB 32

- 1 are going to come from energy efficiency and from
- 2 retrofits, and I guess the practical question I had,
- 3 then, was how many residential retrofits does the state
- 4 need to accomplish by 2020 to meet those energy reduction
- 5 goals and the AB 32 emission reduction goals? Is it one
- 6 million, is it five million, is it eight million?
- 7 Because I think you're looking at some very big numbers
- 8 and, unless you've got boots in the attic times
- 9 thousands, starting tomorrow at 8:00, I don't see how
- 10 you're going to do it.
- MR. PENNINGTON: Okay, thank you. I don't know,
- 12 Cathy, do you want to respond to that at all?
- MS. FOGEL: Yeah, I can try. I think, you know,
- 14 clearly the 40 percent energy reduction goal for existing
- 15 residential buildings is extremely ambitious. In the
- 16 Strategic Plan, it's broken down, I think, 25 percent of
- 17 homes would achieve 75 percent savings, and the other 75
- 18 would achieve a 25 percent savings, which makes it seem
- 19 potentially more reachable, but I think, you know, this
- 20 is one of those aspirational targets that was spoken of
- 21 earlier, perhaps even more so than the Zero Net Energy
- 22 Home goal, and, yeah, it's a valid question. There's
- 23 about 13 million residential dwellings in the State of
- 24 California, and I think, as we go forward, this effort
- 25 needs to be a little bit more realistic about how scaling

- 1 up might occur.
- 2 MR. PENNINGTON: Okay, thank you. We only had
- 3 one person on the phone that wanted to respond to that
- 4 question, so we'll move on to more questions. First to
- 5 the panel, how should we segment the market to best
- 6 design energy efficiency programs for existing buildings?
- 7 By type of decision maker? By buildings with, maybe with
- 8 different levels of access to financing? Or by the
- 9 technical potential of the buildings? Or some other way
- 10 of segmenting?
- 11 MR. STONE: I'm not sure you're going to like my
- 12 answer, Bill. My answer is I think that's a critical
- 13 question that needs to be answered in the Needs
- 14 Assessment. I don't think we're armed to answer that
- 15 question at this point. I think we need to find out what
- 16 the barriers are, I think we need to find out who -- what
- 17 parties in the long list of interested parties which
- 18 parties think which issue is the biggest? And I think it
- 19 also has to be informed by what we can do, you know,
- 20 what's practical. I mean, there are some things I've
- 21 heard that we can do to get better penetration of energy
- 22 efficiency, and I shake my head and go, "God, I wish I
- 23 was that naïve still." Because I got a lot done when I
- 24 was naïve, and so I believe in people that are naïve and
- 25 that don't understand what you can't do because those the

- 1 ones that get it done. But, I now know what you can't
- 2 do, and so that was the barrier for me. I think we need
- 3 to wait until we get the research done to be able to
- 4 answer that question.
- 5 MR. PENNINGTON: Cathy, do you have any response?
- 6 MS. FOGEL: Sure. I mean, I think this is a
- 7 great question and from what I've seen, and, Bill, you
- 8 may have seen this, and others as well, in terms of the
- 9 utility approach down south, they're basically overlaying
- 10 these three screens to identify areas with LA County, you
- 11 know, another ARRA program -- Administrators and the
- 12 Contractors -- where to focus their efforts solely in LA
- 13 County, they're overlaying all of these screens, type of
- 14 dwelling, estimated annual income, and whether these
- 15 buildings are high energy users, or not. So I think we
- 16 need to increase that kind of targeting by utilities now,
- 17 but Nehemiah is really right that that's just the first
- 18 step, that's almost what you might call the low hanging
- 19 fruit in the whole home retrofit market now, and the CPUC
- 20 is very committed to moving the ball forward to make sure
- 21 that these programs can reach the multi-family market, as
- 22 well as lower income households. And I think the Needs
- 23 Assessment will be hopefully move us in the direction of
- 24 accessing those markets, or creating the policy framework
- 25 that can help the offering of services effectively to

- 1 those markets.
- 2 MR. PENNINGTON: Thank you. Do you have a
- 3 response?
- 4 MR. CROWE: I'm going to avoid answering the
- 5 question in a third different way here. I kind of
- 6 picture this: there will be kind of an overlay of
- 7 matrices that will cover the kinds of issues you
- 8 mentioned, and I think that if we're really wanting to
- 9 dig in with some technical questions, then on the
- 10 commercial side, I think there's going to be a
- 11 segmentation by size, for instance, on the HVAC side,
- 12 you're going to get the smaller buildings, which maybe
- 13 all have similar types of HVAC rooftop units packaged,
- 14 and then the larger commercial with the central plant
- 15 will be another way to segment to dig into some technical
- 16 questions. And then, when we talk about financing
- 17 instruments and motivations, I think we may have a
- 18 different kind of split, and in that situation you may,
- 19 for instance, find that multi-family, you may have some
- 20 similar issues to multi-tenant commercial, that could
- 21 lead you to develop certain tools and share certain
- 22 knowledge across sectors in that way. So I don't think
- 23 there's going to be a single way that we can segment the
- 24 market that would be appropriate for all the questions we
- 25 want to get answered.

- 1 MR. PENNINGTON: Okay, thank you. Anyone in the
- 2 room want to respond? Mike.
- 3 MR. GABLE: Mike Gable. Real quick, my
- 4 experience with the City of Hayward, looking at the age
- 5 of homes as a first cut is also a pretty good indicator;
- 6 despite all these years since the Standards took effect,
- 7 you would think people would have upgrade their homes,
- 8 but older homes haven't been upgraded very well, so age
- 9 of buildings not so for commercial, it's more lighting
- 10 and HVAC driven which are more recent upgrades, but for
- 11 residential I think age of homes would be a worthwhile
- 12 thing to look at, at least.
- MR. PENNINGTON: So do you think that should be a
- 14 strong priority in how buildings get addressed?
- 15 MR. GABLE: I agree with the comment about
- 16 layering different sets of criteria, I think it's just
- 17 one layer of criteria that should at least be looked at
- 18 as a possible guidance, so....
- 19 MR. NESBITT: George Nesbitt. I'd say, you know,
- 20 we could go after the biggest users first, I mean, that's
- 21 where big users, affluent users, you know, there's a lot
- 22 to be had there. But kind of to get back to what I think
- 23 Mike Keesee said, quite frankly, every time a plumber
- 24 goes out to a house, a roofer, a painter, an HVAC
- 25 contractor, those are opportunities, those are

- 1 opportunities to not only do what they are asked to do
- 2 right, but to identify other things that may need to be
- 3 done. Every time someone remodels, it's an opportunity
- 4 to do it right. Every time someone does an addition,
- 5 every time a house is sold, so there is no one set of
- 6 opportunities for identifying. You can have an old house
- 7 that is totally upgraded beyond current Code, or you can
- 8 have a new house that's so under-performing because it
- 9 was done wrong. You know, and some of these transcend
- 10 economics or location, but there's a million
- 11 opportunities. I kind of have a saying that generalists
- 12 need to be specialists, and specialists need to be
- 13 generalists, so, as a General Contractor, I need to know
- 14 enough about all the trades to know what's right and to
- 15 be able to make sure subs and others are performing it
- 16 right, yet the subs, the specialists that so under-
- 17 perform, as we know, as in their specialty, they need to
- 18 understand where they fit in the whole building, so when
- 19 they pull out their drill, put in those recessed cam
- 20 lights, and all the wires, all the top plates, the bottom
- 21 plates, that they know that they've got to seal them, and
- 22 also identify other things that are beyond what their
- 23 specialty is. So, I would say there's lots of
- 24 opportunities. And actually, that 40 percent reduction
- 25 goal actually came from myself and someone else who was

- 1 not supposed to be on that conference call that day from
- 2 the Bali Accords, so it was kind of interesting to see
- 3 the CPUC pick that up sort of as a minor goal in the
- 4 plan. Yes, it's high, but it's achievable, even my own
- 5 house, 1923, inefficient, even though I operate it fairly
- 6 efficiently, I still have an opportunity to save 50
- 7 percent. It's not going to be inexpensive, but, you
- 8 know, the opportunities still exist. So I have a million
- 9 other things I can say, but I'll --
- MR. PENNINGTON: Thanks, George.
- 11 MR. HAMILTON: Daniel Hamilton with SMUD. Just
- 12 based on our limited experience so far with some of the
- 13 programs we're running, specifically the Home Performance
- 14 Programs, a fairly large DOE Program, if you want to get
- 15 real capture, the savings, the building doesn't matter
- 16 nearly as much as the occupant who is going to make the
- 17 decisions regarding the building. So, if we start
- 18 talking about segmenting too much into building types,
- 19 with newer and older buildings, energy efficient vs.
- 20 inefficient, we're missing out on the fact that the
- 21 buildings don't make the decisions, the owners of the
- 22 buildings make the decisions. So, I think if you're
- 23 talking about segmenting, you need to start targeting the
- 24 people who, for whatever social, psychological, financial
- 25 reasons, have the means and desire to actually upgrade

- 1 their homes consistent with their own personal values,
- 2 with the incentives offered, with whatever reason is out
- 3 there, you know, community engagement, there is all kinds
- 4 of reasons that are out there. Utilities track a lot of
- 5 this data, cities and counties track a lot of this data,
- 6 the state tracks a lot of this data. I think if you're
- 7 going to start prioritizing, you should be focusing on
- 8 the people willing to make those decisions and
- 9 investments, rather than the buildings that need them
- 10 because, if we're talking about a scale of things that is
- 11 not going to be accomplished, I think without considering
- 12 that fact as a major source, if not the primary source.
- MR. PENNINGTON: Thank you. Pat.
- MR. EILERT: SO I think more important than
- 15 segmentation is trying to identify how hard and how to
- 16 push alterations going forward. That's going to be
- 17 really the only way we can get to these goals is through
- 18 Codes and, then, underneath that, you know, there needs
- 19 to be some overlay of planning on top of the segmentation
- 20 and the more traditional programs.
- 21 MR. PENNINGTON: Okay, thank you. Anyone on the
- 22 phone?
- 23 MR. STRAIT: I'm not seeing anyone with their
- 24 hand raised.
- MR. PENNINGTON: Okay.

- 1 MS. BEAUDETTE: My name is Barbie Beaudette, I'm
- 2 just a student in green building background construction.
- 3 I noticed earlier when we were talking about the lack of
- 4 marketing, the small budget being set aside for marketing
- 5 these kinds of projects for the folks that could use them
- 6 and benefit from incentive and things like that, and I've
- 7 been to meetings and have been involved in discussions
- 8 like this for awhile, and one of the things -- having a
- 9 background in real estate and real estate finance, as
- 10 well, I notice that real estate folks are usually one of
- 11 the opponents of doing ratings at the sale because they
- 12 feel as though, especially in these economic times,
- 13 that's going to be an issue. But there's another side to
- 14 it. If you have a rating and you have folks in this
- 15 mentality where they want to do fixer uppers, for
- 16 instance, if you have a rating that says, "Hey, here's
- 17 where you could upgrade this and make this home this much
- 18 better on a measurable scale," you actually have a
- 19 marketing tool and that can actually have -- I mean, if
- 20 real estate folks get behind this on a level where
- 21 they've got a way of marketing it as a good home because
- 22 of its rating, or as a home that's got lots of potential
- 23 to be upgraded, you've got an avenue for referrals for
- 24 doing work for what kinds of work that could be done,
- 25 you've got an opportunity as that home is open to be

- 1 evaluated where someone could go in and do that and
- 2 generate a lot of these kinds of efficiency upgrade
- 3 opportunities. Also, as far as barriers, something that
- 4 I've noticed, I'm a student in the Green Workforce
- 5 Training, and I'm a Certified Building Analyst through
- 6 that, but I've also found that because of the way that
- 7 the HERS training and the certifications go, there are
- 8 barriers to a lot of folks that are trained in the
- 9 building sciences to actually getting jobs because of the
- 10 certification right now, especially since it's just in
- 11 CalCERT's hands, there's a barrier for a lot of folks to
- 12 actually get into the field that's being held at a level
- 13 that, you know, a lot of those are publicly funded
- 14 things, they've put money into training these people, and
- 15 now they can't get jobs and use that training and apply
- 16 it, and be feet on the ground and do the work. So there
- 17 are some opportunities if those barriers are removed or
- 18 worked on somehow from that perspective, to get folks on
- 19 the ground to do the work, too.
- 20 MR. PENNINGTON: So I appreciate that comment.
- 21 The Energy Commission is working with the Building
- 22 Performance Institute right now and with CalCERT's to try
- 23 to do a better alignment with the HERS 2 training and the
- 24 BPI certification training needed to be certified, and
- 25 looking for ways to allow sort of pathways in for people

- 1 that have some of the capabilities that are needed, but
- 2 not all, and to create a process for doing challenges.
- 3 So there's very serious discussion underway right now for
- 4 how to do that, and hopefully that will improve the
- 5 situation that you found when you were trying to go
- 6 through it.
- 7 Another question that relates a little bit to
- 8 David's comments about where an occupant of a building,
- 9 or the building decision maker as being the critical
- 10 lynchpin in getting things done and, you know, if you
- 11 can't be effective in communicating with the building
- 12 owner, then maybe this other segmentation is secondary.
- 13 So one of the things that we're charged to do in AB 758
- 14 is to focus on public awareness and focus on outreach and
- 15 education and that sort of thing. So the question would
- 16 be, how should we be telling the world, or telling
- 17 California consumers, about efficiency and its benefits,
- 18 and what should we be doing differently to do that than
- 19 what we're doing now? So, Eliot, do you want to start
- 20 with that?
- 21 MR. CROWE: Yeah, I'll speak to the
- 22 nonresidential side that Nehemiah covered the
- 23 residential. You know, I've found in my direct
- 24 experience, which has been mostly with larger commercial
- 25 properties, that peer group pressure and peer group

- 1 awareness is very powerful, so case studies, you know,
- 2 wanting to be seen to be the best and share your success
- 3 stories has been proven to be very successful. I think
- 4 that, again, in my experience, finding examples of people
- 5 who have taken very aggressive approaches, whole building
- 6 focused, deep retrofits, really going after the deeper
- 7 savings, we've been working on some guides for the
- 8 Department of Energy recently, and outside of large
- 9 commercial office, there are very few good examples of
- 10 people taking deep approaches and very holistic
- 11 approaches. I'll correct myself -- there are some on big
- 12 box retail, but there are many sectors where there are
- 13 really no clearly identified leaders who are sharing
- 14 their stories, or maybe that means there are no stories
- 15 to tell, or that they are too worried about
- 16 confidentiality, or perhaps they just don't have a good
- 17 means to get their stories out, but I think that is going
- 18 to be a big plus if those kind of success stories can
- 19 support AB 758 and get out into the public domain.
- 20 MR. PENNINGTON: Okay, thank you.
- 21 MR. STONE: What I'm going to say partly relates
- 22 to the same thing that Eliot was just saying, but I want
- 23 to go back just a little bit to what I had said about
- 24 what Jill Marver told me about training, that it's the
- 25 right answer if lack of knowledge is the problem. It's

- 1 the same sort of thing here. In those cases where
- 2 energizing the homeowner or, from multi-family to
- 3 building owner, is the issue, then, yeah, we need to talk
- 4 about how do we do outreach to them that is effective.
- 5 But until we've done the Needs Assessment, it's really
- 6 hard to say which of the problems for which sectors of
- 7 the market, and at which point, and can you solve one of
- 8 those problems and you take care of it, or do you need to
- 9 solve five or six for this particular sector, and seven
- 10 or eight for that sector? So, you know, I think it's
- 11 important to look at how do we do better outreach, but I
- 12 think it's important also to remember that that's not
- 13 going to solve the problem in a lot of cases. So,
- 14 getting back to Eliot's point, in the residential sector,
- 15 I mean, I absolutely agree that when you give people
- 16 comparison to what their peers are doing, positive or
- 17 negative, that can be a most powerful driver.
- 18 Robert Cialdini with the University of Arizona
- 19 has presented on this at an ACEEE workshop on hot water a
- 20 couple years ago here in Sacramento, and in the
- 21 experiments that they did, when they said, "Hey, you
- 22 know, if you're at a hotel and your towel is still clean,
- 23 just hang it back up and then we won't wash it and you'll
- 24 help us save all this water." About one percent of the
- 25 people actually did something. When they changed the

- 1 message to say, "People like you that stay here, most of
- 2 them hang the towel back up when it's still clean so it
- 3 doesn't get washed," they got like 60 percent response.
- 4 So, nobody wants to admit that peer pressure is the main
- 5 driver for each of us, but it is true, it is the main
- 6 thing. So there's been a few experiments with telling
- 7 people what other homeowners on their block, or what
- 8 other tenants in their apartment building use in energy,
- 9 in the aggregate, or on average, or whatever, and if
- 10 those are designed right so that you're not discouraging
- 11 the people that are most efficient from doing anything
- 12 and encouraging them to start leaving the lights on
- 13 because, hey, we're the best in the neighborhood, as long
- 14 as it's designed right, that can be a real powerful
- 15 motivator. And if it comes with the message, you know,
- 16 "When you get your bill, if it says right on your bill,
- 17 not just, oh, \$78.00 this month, but it says, 'By the
- 18 way, five out of six of your neighbors only owed
- 19 \$60.00.'" "And here's a program you can get into that
- 20 will help you get better than your neighbors," I think
- 21 that sort of outreach will carry a lot of power.
- 22 MR. PENNINGTON: Cathy, do you want to respond?
- 23 Are you still there, Cathy?
- MS. FOGEL: Yes, sorry, I had you on mute. I
- 25 agree with what's just been said and, to not repeat it,

- 1 I'll just add that, in the course of developing an
- 2 engaged 360, the Energy Division and the utilities did,
- 3 as I mentioned very briefly, commission some pretty
- 4 detailed ethnographic research that was both quantitative
- 5 and included qualitative interviews of a number of
- 6 California residents and came up with sort of five
- 7 personality profiles that are generalized, but you know,
- 8 reflect the sort of different types of folks out in the
- 9 California population with different values, education
- 10 levels, income levels, what they've already done in
- 11 energy efficiency, what they might be likely to do, so we
- 12 should take advantage of past research as we go forward
- 13 and shape anything new as one basic point, and I'll add
- 14 to that that there was also a fairly extensive utility
- 15 market research done before the launch of Energy Upgrade
- 16 California Incentive Program that's also quite
- 17 informative and showed, in addition to what's just been
- 18 said, that trigger points in sort of the course of
- 19 people's life, between having a baby, buying a home,
- 20 refinancing, you know, really important points to reach
- 21 people at with the message at those points, and also with
- 22 what's been said, the importance of financing, to people
- 23 actually being able to act. You know, I was sort of
- 24 wondering how much -- what's going to be the budget for
- 25 all this, and we need to take advantage not only of the

- 1 peer pressure Nehemiah mentioned, but some other behavior
- 2 change, social marketing techniques can really focus on
- 3 neighborhoods and community outreach, and generating
- 4 earned media, which I think will be essential going
- 5 forward.
- 6 MR. PENNINGTON: Thank you. Pat.
- 7 MR. EILERT: So, Nehemiah, I care about energy
- 8 efficiency, but I don't care what my neighbor uses, so
- 9 let's go ahead with the Needs Assessment, I think this
- 10 focus on peer pressure is a little bit too much today, so
- 11 far.
- MR. STONE: But do you care what I think about
- 13 your energy use?
- MR. EILERT: Yes, I do care.
- MR. STONE: Okay, there we go. Write down "peer
- 16 pressure."
- 17 MR. NESBITT: George Nesbitt. I think it's going
- 18 to take a lot of consistent and reinforced marketing.
- 19 It's got to be down at the Building Department, it's got
- 20 to be at the Material Suppliers, the design houses, in
- 21 the architect's offices, and the contractor's, it needs
- 22 to be on the radio, on the TV, on the Web, wherever,
- 23 whether it's social media, you know, all forms, it just
- 24 needs to be a message that is constantly out there and
- 25 not something that comes and goes, which has often been a

- 1 problem. Back in the old days, I was in the RCP Program
- 2 when it died and there was marketing on the radio that
- 3 told you that you needed to call the Smarter Energy line
- 4 and then they'd get the referral to the contractors and
- 5 all that, and so programs come and go, marketing
- 6 campaigns come and go, and the problem is we keep
- 7 starting, stopping, starting and stopping. So we need to
- 8 maintain some consistency and it needs to be reinforced
- 9 on all sorts of levels.
- 10 And I want to bring back up an issue that Pat
- 11 brought up, was existing plus additions and alterations.
- 12 At Friday's Energy Code workshop, I suggested and I've
- 13 been bringing it up pretty much at every workshop, well,
- 14 how is this going to apply to existing buildings, so we
- 15 need to have a workshop on the 2013 Code updates
- 16 specifically for how we are going to apply it to existing
- 17 buildings because, you know, that's another way we're
- 18 going to reinforce this is by pushing it through Code.
- 19 Actually, speaking of Codes, RECO is one of those things
- 20 that's out there, and the City of Berkeley has, well,
- 21 I've been hearing for at least half a decade that we were
- 22 going to go to a performance-based RECO and now I guess
- 23 they're delaying it because they're, I guess, under the
- 24 delusion that Energy Pro will be fixed any time soon,
- 25 which is an issue, it's a tool that works, you can read

- 1 my 14 pages of comments, it's in the HERS 2, if you want
- 2 to know more about energy modeling than you care to know.
- 3 There are definitely issues with Energy Pro, how it's
- 4 implementing HERS 2. They're not totally insurmountable.
- 5 I have a long list that keeps growing. I actually have
- 6 not noticed the inconsistency that Mike mentioned in the
- 7 current version since it was given a heart transplant to
- 8 a more modern version of Cal Res, but I had noticed that
- 9 in the past where you look at it and, once you pass and
- 10 once you don't. It seems to have been greatly improved,
- 11 yet there's a lot of things, especially when we get to
- 12 existing additions and alterations, you literally -- you
- 13 cannot -- there's a lot of things you cannot alter,
- 14 certainly not as one file within Energy Pro, you pretty
- 15 much have to go to a two-file approach, but that's minor
- 16 in comparison. Many people think that HERS 2 is totally
- 17 broken, I'm not one of them. While it may need some
- 18 tweaks here and there, I think it's fundamentally sound
- 19 and, well, yeah, especially in regards to building
- 20 performance contractors and quality of work,
- 21 unfortunately, well, Energy Upgrade California being
- 22 consistent with HERS, I find that a little odd because,
- 23 in HERS, a HERS Rater can do a rating and so can a
- 24 building performance contractor, yet, in the real world,
- 25 a Building Performance Contractor does not exist because

- 1 there is no perfect HERS provider for one yet, yet in
- 2 Energy Upgrade California, only the home performance
- 3 contractor who is not certified or trained can do the -
- 4 not technically a rating, but the energy modeling, yet we
- 5 HERS raters can't, plus I have not seen any quality
- 6 standards for the contractors articulated, and I have all
- 7 my old manuals from the RCP program 10 years ago. We had
- 8 combustion safety. PG&E's lawyers did not have a problem
- 9 with combustion safety and, apparently, they've decided
- 10 to come out with a 62-point checklist for combustion
- 11 safety, which is a joke, it doesn't take 62 points. So,
- 12 and there's also a lot of gripes just from contractors
- 13 about the complexity and the constantly changing
- 14 requirements, and I certainly --
- MR. PENNINGTON: So I'm going to move on to the
- 16 callers. Thank you.
- MR. STRAIT: Yes, there's a Jim Jungwirth that
- 18 would like to make a comment.
- 19 MR. PENNINGTON: Okay, great.
- 20 MR. STRAIT: Jim, you are live.
- 21 MR. JUNGWIRTH: Okay, thank you. There were a
- 22 number of comments earlier talking about the commercial
- 23 building energy efficiency retrofits. It occurs to me
- 24 that it is most likely when the building owner or the
- 25 building occupant are the same. In Northern California,

- 1 the largest building owner occupant is the State, itself.
- 2 So my question is, are there things in those programs
- 3 that were described earlier in the day that specifically
- 4 will facilitate the Needs Assessment and the
- 5 identification of funding mechanisms for the energy
- 6 upgrades of State Buildings? And I think that, really,
- 7 if you really want to promote that, the best way to do it
- 8 is by example.
- 9 MR. PENNINGTON: Okay, thank you. Anyone else?
- 10 MR. STRAIT: I believe that is the only person
- 11 that had their hand raised to comment on this issue.
- MR. PENNINGTON: Did you have a comment, sir?
- 13 MR. FRANCISCO: I'm Jim Francisco with Sierra
- 14 Consulting, but I want to talk to you as a consumer
- 15 instead of a businessperson here. Our utility in our
- 16 area sent out some pressure -- peer pressure mailings on,
- 17 "Jeez, your energy use is just so much greater than your
- 18 neighbors'." And I, for instance, my wife and I, jeez,
- 19 our house was built in '79, we said it probably needs to
- 20 be upgraded, so we put \$6,000 worth of windows in the
- 21 house. Got some more little things that says, "Jeez,
- 22 your energy usage is greater than your neighbors'." So
- 23 we put in \$13,000 worth of air-conditioning. Then my
- 24 neighbor comes over and says, "I don't know what's going
- 25 on with this utility, I keep getting these usage things,"

- 1 and he says, "I put in new windows and I'm still getting
- 2 them." So we got the neighborhood together and it seems
- 3 that this is a program that SMUD engages in, and I will
- 4 name them, and instead of getting us now to upgrade, if
- 5 we see a SMUD agent in the neighborhood, he's in danger.
- 6 So you've got to be very careful about what you're
- 7 putting out there and you better know it improves because
- 8 a lot of it does not improve what you're trying to do.
- 9 And that's my comment.
- 10 MR. PENNINGTON: Thank you. So we're reaching
- 11 the witching hour on this panel, so one more commenter.
- MS. GAVRIC: Funny you should mention witch. My
- 13 name is Jelisaveta Gavric, and I'm with the California
- 14 Association of Realtors. And it may be a little bit
- 15 confusing to some of you if you've heard a different name
- 16 from me before, this is my ethnic name, you may know me
- 17 as Elizabeth Gavric. I just came here today to not
- 18 necessarily comment on any of the questions, but I did
- 19 want to give a little bit of a historic perspective to
- 20 the other people in the room here who have not been
- 21 involved with the Legislative portion of the fight to get
- 22 or to pass AB 758 Skinner. The bill actually started off
- 23 in a previous legislative session, it was AB 2678 Nuñez,
- 24 and that bill the realtors were vehemently opposed to
- 25 because a friend in the audience just said realtors tend

- 1 to be opposed to time of sale mandates, and we were. And
- 2 AB 2678 had a specific mandate for audits and
- 3 specifically retrofits at time of sale. The Legislature
- 4 did consider that bill and they decided that they would
- 5 not advance or pass that bill, that was something the
- 6 Legislature decided that they didn't feel was good
- 7 policy, and that was to advance a piece of legislation
- 8 which demanded retrofits at time of sale.
- 9 There was also similarly a bill recently passed
- 10 in the last session that was Senate Bill 407. That bill
- 11 initially started off by Senator Padilla as being a
- 12 mandatory time of sale water fixture retrofit bill, and
- 13 through a tremendous amount of debate and discussion,
- 14 again, within the California State Legislature, it was
- 15 determined that a time of sale program was not a good
- 16 approach to achieving efficiencies in California's
- 17 housing stock. And so that bill was eventually amended
- 18 to do just a date certain that all homes have to be
- 19 compliant with these fixtures, by several different
- 20 dates, 2014 for retrofits, 2017 for single-family
- 21 housing, and 2019 for commercial properties and multi-
- 22 family housing.
- 23 So going back to AB 2678, which is where the
- 24 genesis of AB 758, Assembly Member Skinner had the
- 25 wherewithal to understand all of the arguments,

- 1 complaints, and considerations that were given for AB
- 2 2678, and so when she reintroduced the concept, she
- 3 actually took out the point of sale mandate that was in
- 4 2678. She specifically stated in her bill that the
- 5 program, AB 758, would include a broad range of
- 6 implementation approaches, and she also specified in her
- 7 bill that assessments, ratings, or improvements will not
- 8 unreasonably or unnecessarily affect the home purchasing
- 9 process. And so I'm just here today to echo the actual
- 10 language that statutorily is in place that we are using
- 11 as the basis for the promulgation of these regulations.
- 12 I want to remind folks that, as we go forward in this
- 13 process, that the realtors are very supportive of
- 14 increasing home energy efficiency, and for Nehemiah and
- 15 Eliot, I hope that we are one of your 11 to 14
- 16 stakeholder interviews that you get, or at least -- no,
- 17 not getting that? Okay, well, then, I won't give you my
- 18 card then. But we do strongly believe that it will take
- 19 a lot of innovation to get that deep market penetration
- 20 that we need because you cannot take a market where it is
- 21 right now with less than two percent of houses turning
- 22 over, and half of those are banked owned. You cannot get
- 23 those homes energy efficient and achieve that 40 percent
- 24 goal that you would like to see by 2020, it simply cannot
- 25 happen. So we're here to help, we're here to advise and

- 1 see what we can do to at least provide insight into the
- 2 real estate transaction, we know that real estate will be
- 3 one star in the constellation that will make up this
- 4 program, we know it's not going to be the sun, it won't
- 5 be the center of the universe for us, it can't be, it's
- 6 just not functional, it's not the way this program is
- 7 going to be successful. And that's all I'm here to say.
- 8 Thank you.
- 9 MR. PENNINGTON: Thank you much. So I'm going to
- 10 call a close with that, thank you very much, everyone,
- 11 for your comments. Thank you very much for the panelists
- 12 to be here and make their presentations, so I appreciate
- 13 it. Thank you, Cathy. We're going to take a short
- 14 break. Is that right?
- MR. STRAIGHT: Yes, we're going to have a five-
- 16 minute break. During this time, there's a small bit of
- 17 technical assistance I need to provide one of our call-in
- 18 users.
- 19 (Recess at 2:46 p.m.)
- 20 (Reconvene at 2:55 p.m.)
- MR. LEAON: Okay, folks. If we could all find
- 22 our seats, let's go ahead and get started with our next
- 23 panel discussion. For the record, my name is Michael
- 24 Leaon, I'm the Manager of the Appliances and Process
- 25 Energy Office. And this afternoon we'll have a panel on

- 1 reducing plug loads in buildings, so we're switching
- 2 gears a little bit, but talking about a very important
- 3 component of meeting building energy efficiency goals. I
- 4 think we have another excellent panel for you this
- 5 afternoon. Our panelists will include a talk from Dr.
- 6 G.P. Li with UC Irvine, also Randall Higa with Southern
- 7 California Edison, he'll be telling you about standards.
- 8 We'll also -- a little change on the panel make-up for
- 9 this session -- Michael Siminovitch will not be able to
- 10 make it and the co-director of the California Lighting
- 11 Technology Center, Kosta Papamichael, will be speaking
- 12 instead, and we also have a remote presentation from Dr.
- 13 Carrie Armel with Stanford, and also we'll hear from
- 14 Jonathan Williams with Intel Corporation, and they'll
- 15 both be addressing the topic of alternatives to standards
- 16 for meeting building energy efficiency goals. So with
- 17 that, I'd like to go ahead and kick off our panel
- 18 presentations with Dr. Li, and Dr. Li, if you'd like to
- 19 come up to the podium?
- DR. LI: Thank you, Mike.
- 21 MR. STRAIT: Uh, one moment, we have to locate
- 22 the presentation, just one second. Okay, we're going to
- 23 do a little change in the order of the presentation.
- 24 Randall, if you don't mind starting off, if that's okay,
- 25 we're having difficulty locating Dr. Li's presentation

- 1 and I'm going to go locate that and bring that back. And
- 2 in the interim, we'll hear from Randall.
- 3 MR. HIGA: Thanks, Mike. And welcome, everybody,
- 4 to the final panel presentation today. I'm going to be
- 5 talking about the Utilities Codes and Standards work
- 6 specific to plug loads and appliances, and in our world
- 7 sort of the plug loads and appliances are mostly
- 8 synonymous, but you know, the appliance standards also
- 9 relate to things like water heaters and small air-
- 10 conditioners, so it's a little bit expanded from just the
- 11 traditional plug loads. So I'm going to try to sort of
- 12 take off from where Cathy Chappell [phon.] left off this
- 13 morning, she was talking more about the Building
- 14 Standards related specifically to the buildings,
- 15 themselves; I'm going to be talking a little bit about
- 16 Building Standards, but mostly in the context of plug
- 17 loads, as well as, of course, appliance regulations also.
- 18 First, I wanted to give an overview of what the
- 19 utility programs involve and consist of, so the Codes and
- 20 Standards Program is a statewide program, meaning that
- 21 Southern California Edison, PG&E, SoCal Gas, and San
- 22 Diego Gas & Electric work together on the same program to
- 23 work with and support the California Energy Commission in
- 24 developing -- and I'll just say "more stringent" --
- 25 energy standards, both buildings and appliances. We do

- 1 deal with the Federal Regulations, and I'll talk about
- 2 that in a minute also.
- 3 So the four programs for the Codes and Standards
- 4 Program is we do the Building Code Advocacy, most of that
- 5 is Title 24, Part 6, we do get involved with Title 24,
- 6 Part 11, which is CalGreen, and we also coordinate with
- 7 the other model energy codes such as ASHRAE 90.1, IECC,
- 8 and some of the Green Building Codes as IGCC and the
- 9 IECC. Sorry for the alphabet soup there. The second set
- 10 of programs is pretty much the same thing, except we're
- 11 focused on appliance regulations, in this case, Title 20,
- 12 and also the Federal standards. We also have two other
- 13 sub-programs new for this Code cycle, and that is a
- 14 compliance enhancement, we call it holistic, meaning that
- 15 we're trying to increase the compliance rates across the
- 16 board, rather than any sort of focused activities. We do
- 17 some focused compliance enhancement activities under the
- 18 first two sub-programs, which we call extension of
- 19 advocacy, where we're trying to make sure that the
- 20 verified energy savings of new Codes that we are involved
- 21 with have the highest level of compliance. And then the
- 22 Best Practices pilot is a program that we're working
- 23 with, where we're working with roughly we're targeting
- 24 about 12 local governments statewide to sort of take a
- 25 deed dive into the processes for plan checking,

- 1 inspection, etc., and we're trying to come up with better
- 2 ways to get through that process of plan check and
- 3 inspection, and we're going to put together a report of
- 4 all the best practices and try to communicate that out to
- 5 the other cities in the state.
- 6 And the last thing is REACH Codes, and this is
- 7 where we work with local governments who are interested
- 8 in adopting ordinances that go beyond the base Title 24
- 9 Code, so because it is a highly political process, we
- 10 don't try to get involved with their politics and it's
- 11 more of a reactionary role in the sense that, if they are
- 12 interested in doing a REACH Code, we'll support them with
- 13 a cost-effectiveness analyses, ordinance writing, etc.
- 14 etc. Most of them, these days, are tied together with
- 15 Green Building Codes, so it's just an element of it,
- 16 including CalGreen which have Tier 1 and Tier 2 levels of
- 17 compliance, that is Tier 1 being 15 percent beyond Code,
- 18 which is where most of the REACH Codes are at these days,
- 19 and then Tier 2 at 30 percent beyond Code.
- 20 So, getting back to plug loads. These are some
- 21 of the three main areas in which we deal with plug loads.
- 22 So, as I mentioned before, as far as the first sub-
- 23 program, we're dealing with building standards and
- 24 building regulations. And we focus our attention on
- 25 Title 24, Part 6, but as I said, also Part 11, which is

- 1 CalGreen, as well as the model Energy Codes. And where
- 2 the -- one distinction maybe is how, one way to look at
- 3 it, is that we're not regulating the efficiency of plug
- 4 loads, but we're trying to set standards of regulations
- 5 for how the plug loads are used, and let me give you an
- 6 example. We're looking at requirements for office
- 7 buildings where task lighting would be on separate
- 8 receptacles that can be put onto time clocks, or
- 9 connected to the building energy management systems, so
- 10 they can be swept off at night, so we're not trying to
- 11 change the efficiency of those task lights, or they could
- 12 be printers, or monitors, or whatever, but we're putting
- 13 into the Building Code the ability, not necessarily
- 14 forcing people to do it because you can't tell people how
- 15 to control the buildings, but at least giving them the
- 16 capabilities to turn off those plug loads. We're doing
- 17 something similar for residential, and those are just a
- 18 couple of examples of how the plug loads actually could
- 19 be a part of the Building Code.
- 20 Of course, a key thing on plug loads if the Title
- 21 20 Regulations. Again, it's something what the utilities
- 22 do is develop in the same way as the Building Energy
- 23 Standards is, develop code change proposals to support
- 24 the CEC in developing new versions of other regulations
- 25 and Building Standards. So, thus far, the IOUs have been

- 1 -- the utilities have been involved in a number of
- 2 measures, those are just a couple of examples of them.
- 3 The most recent one completed, I guess, would be
- 4 televisions. I looked at sort of from our latest impact
- 5 evaluation studies, some of the highest energy savings
- 6 measures and those, I think, are the top four, so Pulse
- 7 Start, HID Lights, walk-in freezers and coolers, and pool
- 8 pumps. And currently we're working with the CEC on the
- 9 battery charger rulemaking, which we hope is going to get
- 10 wrapped up soon, and then we also have some future
- 11 proposals that we're thinking about and I'll get into
- 12 those in the next slide, what we're calling Phase 3 and
- 13 Phase 4. And lastly, we have been working with the
- 14 Federal Department of Energy in their appliance
- 15 regulation rulemakings, all of which are included as part
- 16 of Title 20, and of course the key issue with the Federal
- 17 Standards is, well, it's good in that you have a
- 18 nationwide standard for efficiency for appliances and
- 19 plug loads, it preempts the state from adopting more
- 20 stringent Codes, more stringent efficiency levels, for
- 21 those appliances. And these days, although California
- 22 may have started the regulation of appliances back in the
- 23 `70s, now the Federal Government has taken over the
- 24 regulation of a large number of those efficiency
- 25 regulations. Their process is a lot slower and, so, the

- 1 pace at which the regulations at the Federal level can
- 2 proceed is not generally as quick as what we could do
- 3 here in California.
- 4 The bottom line is, as you've heard in the
- 5 previous presentations, plug loads are significant energy
- 6 use in buildings, both residential and non-residential,
- 7 and to the extent that we cannot surpass efficiency
- 8 levels of those Federal requirements, it does pose a
- 9 significant barrier to reaching the Zero Net Energy
- 10 goals, so it's something that we're trying to work
- 11 around, work with, and work with the DOE to get the
- 12 highest efficiency levels that we can.
- Getting back to the upcoming Title 20 topics,
- 14 this is just an example of the items that we're
- 15 considering proposing, and I won't read through all of
- 16 this list, you could take a look at these. We see the
- 17 Phase 3 starting, having the scoping workshop later this
- 18 year, and then Phase 4 following that at some time. This
- 19 is just a little chart to give you some idea of what kind
- 20 of energy savings, the orders of magnitude of energy
- 21 savings, the battery chargers, ones that we're involved
- 22 with now. As you can see, it's roughly 2000 gigawatt
- 23 hours per year. Again, that's after turnover which we've
- 24 got defined at the bottom there, first year savings times
- 25 estimated useful life.

- 1 So we're talking about pretty big energy savings.
- 2 Again, I think you saw from the previous presentations,
- 3 you know, how big these markets are and how much we're
- 4 impacting the marketplace with these appliance
- 5 regulations. Again, it affects both new buildings,
- 6 existing buildings, everything, because everything that
- 7 is sold will have to meet these regulations.
- 8 So just in summary, this is what we see as
- 9 potential benefits of the future Title 20 topics, and
- 10 those of you who have been in the workshops before will
- 11 recognize these, they are the same slides, but I just
- 12 wanted to sort of reiterate that this is a big deal,
- 13 there's a lot of energy savings here, there's a lot of
- 14 potential, but this doesn't necessarily get us through
- 15 this barrier of preemption, and it doesn't by itself get
- 16 us to ZNE, so, you know, more work is still required, but
- 17 at least I think we're off to a good start. So, thank
- 18 you.
- 19 MR. LEAON: Thank you, Randall. Okay, so we're
- 20 going to proceed with Dr. Li's presentation. Peter, if
- 21 you could get that teed up and, Dr. Li, let me give you a
- 22 proper introduction here. Dr. Li is a Professor at the
- 23 University of California Irvine with appointments in
- 24 three departments, Electrical Engineering, Computer
- 25 Science, and Chemical Engineering and Materials Science,

- 1 and Biomedical Engineering. At UCI, he also serves as
- 2 Division Director of the California Institute for
- 3 Telecommunications and Information Technology, and
- 4 Director of the Integrated Nano Systems Research facility
- 5 in the Henry Sumueli School of Engineering. He receives
- 6 his Bachelor's Degree in Electrical Engineering from
- 7 National Cheng Kung University in Taiwan, and his
- 8 Master's and Doctorate Degrees also in Electrical
- 9 Engineering from UCLA. Dr. Li.
- 10 DR. LI: Thank you so much, Mike. Before I
- 11 start, I would like to take this opportunity to thank the
- 12 Organization Committee for inviting me to come to this
- 13 meeting and I would also like to thank you, the audience,
- 14 to allow me to share a research idea with you. And
- 15 lastly, I would like to take this opportunity to thank
- 16 CEC PIER Program for their support to our Centers.
- 17 So, currently we are working on the California
- 18 Plug Load Research related topic and just started the
- 19 Center in UCI. So the topic I'm going to present to you
- 20 today is The Big Picture: Importance of Plug Loads in
- 21 Meeting Zero Net Energy -- Existing Energy Efficiency
- 22 Goals.
- 23 So I am showing here in the last four years, we
- 24 have witnessed the tremendous growth of plug load devices
- 25 at home. Starting in '70, it was about two devices; in

- 1 this generation, we are talking about more than 40
- 2 consumer electronics devices at home. And this
- 3 penetrating of the consumer electronic devices,
- 4 penetrating into the home, can be attributed to the
- 5 success of semiconductor, microelectronic technology
- 6 following the Moore's Law in that industry, we have
- 7 witnessed every two years they have doubled the density
- 8 of the memory, and doubled the processing power. As a
- 9 result of that success, we have seen the affordable
- 10 processing power, information processing, information
- 11 communication, and control, at the fingertip of the uses.
- 12 And this is really good for the economic growth, but it
- 13 also puts tremendous stress on the energy consumption in
- 14 our communities. So, more than that is, this kind of a
- 15 consumer electronic plug load is not typical Building
- 16 Standard problems. The reason for that is, these devices
- 17 have wide range of devices, as I illustrated earlier to
- 18 you, more than 40 to 100 devices. And what are the uses
- 19 of those devices? They are used ranging from two-years-
- 20 old all the way to 100-years-old, so you don't have a
- 21 target user group to come up with a standard, or come up
- 22 with an incentive for the use to adopt the most energy
- 23 efficient solutions.
- 24 Also, the retailers, they have a wide range to
- 25 sell the product to the consumers, and most importantly,

- 1 because this is following the semiconductor,
- 2 microelectronic industries, so it has a very fast
- 3 development cycle, so almost every two years you will see
- 4 a new generation of consumer electronic plug load
- 5 devices.
- 6 And the example of the iPhone and the iPad, we
- 7 have seen is almost every six months we have a new
- 8 generation coming up, so this is the reality we're
- 9 dealing with in the plug load environments. So, as a
- 10 result of that, depending on what report you are reading,
- 11 we see in today's, the consumer plug load devices
- 12 contributed to about 10-15 percent of over energy usage
- 13 at home and, in the near future, according to the
- 14 predictions, it will grow to 30 percent of over-energy
- 15 usage. So this becomes a major issue we have to deal
- 16 with.
- To further validate these statements, here shows
- 18 a report, the forecast report from Department of Energy,
- 19 using the 2006 study reference point about the energy
- 20 usage growth in the residential area due to the plug
- 21 load. So what you can notice here is, in most of the
- 22 sector of the so-called ether-wire goods, or the
- 23 lightings, or the water heating, and so on, in the next
- 24 20 years we see sort of a steady growth, it's a relative
- 25 fact. On the other hand, when we look at the plug load

- 1 devices, continued growth. So, if we use the number of
- 2 the household growth rate in the United States in the
- 3 next 20 years, and look at it compared to the plug load
- 4 devices, it's substantially higher than that. And the
- 5 reason for that is the plug load devices is not used by
- 6 only one person, so now you can imagine, for one cell
- 7 phone, in the past, we think about one phone per
- 8 household, now we are talking about one or two phones per
- 9 person, and the number makes a difference. And think
- 10 about worldwide, when we have more than one billion cell
- 11 phones in use, and the number makes a difference even
- 12 though individual plug load devices use less energy, and
- 13 they are more energy efficient. So that is the issue at
- 14 hand we have to deal with.
- So, similarly, from that same report, in the
- 16 commercial, the residential and non-residential area, we
- 17 also see the growth of the plug load energy usage as
- 18 compared to the growth of the floor space. Again, they
- 19 are attributed to the plug load related to the office
- 20 equipment, and also a variety of like the ATM, telecom
- 21 gadgets, and so on. So this is the growth area. So far,
- 22 we don't have a very good way to control the use of
- 23 energy due to this tremendous growth of the use of the
- 24 plug load devices in both residential and non-residential
- 25 areas. So, these plug load devices further complicate

- 1 the issue of over-energy consumption. The reason for
- 2 that is, so far, there are only a very limited number of
- 3 plug load devices that have been studied. For example,
- 4 external power supply, the battery chargers, and the TV
- 5 and so on, they are only a few that we have done
- 6 tremendous study, and more work is needed to be done.
- 7 But more than that is, so far, we have not done more job
- 8 about the interaction of many plug load devices; for
- 9 example, at the home, entertainment system, you can
- 10 imagine they are more than 10 devices that plug in, and
- 11 to give you one example, when I watch TV, sometimes I
- 12 need to turn on the VCR and either turn on the DVD, I
- 13 need to turn on the stereo, and so on, and by the time
- 14 I'm done with watching TV, sometimes I forget to turn off
- 15 other plug load devices, I just turn off the TV and walk
- 16 away. So, the interaction of other plug load devices
- 17 become an issue to us in terms of over-energy savings.
- 18 So, in order to come up with a solution, we have to think
- 19 about it's not only in the visual plug load device
- 20 efficiency, but also the interaction among them, we have
- 21 to come up with a solution like that.
- 22 So as a result of this progressive use of
- 23 microelectronic devices in the consumer electronics, we
- 24 also accelerate the use of the devices in different
- 25 sectors of business. And for example, now days, you can

- 1 easily see those plug load devices used in the buildings
- 2 as a way to do Demand, Response and Demand solutions, and
- 3 also using the vehicles and using the wire good area as
- 4 intelligent appliances, and so on.
- 5 But one unique feature about the plug load
- 6 devices is we are using the semiconductor microelectronic
- 7 technology, and they are all powered by the DC source,
- 8 and they need to have a timer embedded. So, by the time
- 9 you turn off your appliances, the timer needs to be on,
- 10 as a result you have continuous AC to DC converging to
- 11 power up your timers. As a result of that, you do see
- 12 additional so-called Vampire load which you don't see
- 13 that in the regular traditional appliances. When you
- 14 power up the appliances, actually, the device is still on
- 15 and, in the steep mode [phon.], in the Vampire load,
- 16 energy consumption ranging from .5 watt to 1 watts. But
- 17 think about it now a days, in U.S. we have more than four
- 18 billion plug load devices, so what is the energy
- 19 consumption? That's a four billion watt hours and 7/24,
- 20 and how do we deal with that? So the real issue is, a
- 21 simple sum, it's more than the past of the audio plug
- 22 load devices. And this issue is further complicated by
- 23 the emerging demand of plug load devices at home. As you
- 24 know, our nation is moving towards managed care in order
- 25 to provide higher quality of care, at the same time

- 1 reducing the cost, so that the ration in the managed care
- 2 is, for example, to have a medical home device, medical
- 3 home solution, as well as tele-medicine, so that the
- 4 doctor can get into the iPhone or Smart Phone and talk to
- 5 the patient at home, and the patient also can talk to
- 6 some of the technicians and to discuss the testing
- 7 results and so on. So all of the devices used here are
- 8 plug load devices. Even now, you will see more use of
- 9 the devices in this medical home industry, for example,
- 10 now there is for the diabetes patients, they deal with
- 11 the special insulin pump, it senses the glucose level and
- 12 injects insulin. And you will continue to consume the
- 13 energy, but in the future what we see is these medical
- 14 devices number will grow, as well. And this is very
- 15 similar to the automobile industry, and in that industry
- 16 we have seen more than about hundred sensors embedded
- 17 inside the car as a way to improve, enrich driver's
- 18 experience. And we see the same thing what happened here
- 19 as a result of using those sensors, that it will enrich
- 20 patients' or users' experience and actually manage their
- 21 wellness and care. And all the devices become sort of
- 22 plug load devices at home and it will consume the energy,
- 23 as well. So this is a really emerging demand of plug
- 24 load devices.
- 25 So far, in medical sectors, we have not done any

- 1 regulation of medical devices, they are regulated by FDA
- 2 to deal with safety of the devices, as well as efficacy
- 3 of the device. So we have not done any Standard Code for
- 4 the medical devices. And it consumes about four percent
- 5 of over-energy in our nation. So, there is a need to
- 6 look at those emerging markets and see how we come up
- 7 with solutions.
- 8 So, at this point, I would like to point out how
- 9 to take a holistic approach so that we can come up with a
- 10 solution to what is a Zero Net Energy Efficiency
- 11 Buildings. So one thing I like to bring to your
- 12 attention, most plug load devices are developed based on
- 13 the consumer based on the semi-conductor
- 14 microelectronic devices. So they are powered up by the
- 15 DC source. So, in order to have the timer on, we always
- 16 need to have the device plugged in, to have the AC to DC
- 17 consumption. So the one question we could ask ourselves,
- 18 in the future, would a building battery save energy as
- 19 compared to the full-time AC-DC conversions? So far, do
- 20 we have that solution? That's one simple question. I
- 21 don't have the answer yet, and that is some issue we need
- 22 to look at. And the second thing is, when we talk about
- 23 on-site renewable energy generation such as the solar
- 24 panels, and the fuel cells, or the windmill, and so on,
- 25 they all generate DC power. But what we did is to

- 1 convert the DC to AC, it has 10 percent efficiencies. By
- 2 the time we use the electricity at home for the plug-load
- 3 devices, they are all powered up by DC, even the TV,
- 4 right? So we have to go through the process of
- 5 converting the AC to DC, again, that is 10 percent
- 6 efficiency. So overall, by going through the process, DC
- 7 to AC, AC to DC, we lost 20 percent of efficiency. And
- 8 have we done anything about that? And that is the
- 9 question we're posing here. So should we think about in
- 10 the future, should we have a DC distribution system in
- 11 the buildings? Right? So we can isolate the DC system
- 12 from the AC system, and because this is a generation of
- 13 distributed generation, so that is the question we are
- 14 posing here as a way for discussions.
- 15 Also, as I mentioned earlier about emerging
- 16 market demand, or plug load, in health care, in home
- 17 entertainment, social media, social network, and the
- 18 video conferences, they are all devices we see have a
- 19 tremendous use to help us manage our care, or manage our
- 20 wellness, or to have a way to reduce travel to visit
- 21 doctor's office, or to have sort of a telecommute instead
- 22 of coming to Sacramento for the conference, I can stay in
- 23 my office to have video conferencing with all of you, and
- 24 it will save energy in a different form. So we need to
- 25 think about the new Standards for the plug load

- 1 efficiency in terms of over-energy saving, not just
- 2 electricity efficiency itself, but overall energy saving
- 3 because you can reduce energy consumption in different
- 4 forms. So I think that is another topic that always
- 5 comes up in my mind, is how do we deal with that. So
- 6 far, we don't see a way to handle that.
- 7 And the other area is the Demand Response for the
- 8 plug load in buildings. As I mentioned to you earlier,
- 9 there are many opportunities here to introduce the Demand
- 10 Response solution to the buildings and to the plug load
- 11 devices as a way, say, for example, depending on the
- 12 occupancy inside a building, you can turn on and off air-
- 13 conditioners, you can turn on or off the lights, and so
- 14 on, as a way to further save energy. And that can be
- 15 sort of an incentive program to have a better rating for
- 16 the residential home, or non-residential buildings,
- 17 instead of having Standards. So those are the tradeoffs,
- 18 I really don't have the answer, and it is worthwhile
- 19 discussing. And also, when we look at all the sort of
- 20 very short development cycle for the consumer electronics
- 21 and we need to have production of ever improved energy
- 22 efficient solutions. We have to look at different
- 23 incentive approaches. Currently, when we think about the
- 24 incentive program for the consumer electronics, all we
- 25 think about is the consumers, but I know the CEC and also

- 1 two of the companies are looking at different incentive
- 2 programs to provide incentives to retailers. For
- 3 example, if you provide \$20.00 rebate for buying a high
- 4 energy efficient flat screen TV for a consumer, that is a
- 5 very small percentage, but if you provide \$20.00 to a
- 6 retailer, their profit margin is, I don't know, \$50.00,
- 7 they do have incentive to sell more energy efficient
- 8 products, so that is a different game change. And that's
- 9 worthwhile discussing here, as well. And lastly, one
- 10 thing we do know is consumer electronic cycle, much
- 11 faster than the center can do, so this is a lot of
- 12 opportunity for us to think about, most of the consumer
- 13 electronic use is the younger generations, they are the
- 14 agents of change, they are sort of the early adopter of
- 15 any new gadgets, so if there is a way to use the Social
- 16 Network, use a different platform, media platform, to
- 17 reach out to their audience, maybe there is a way to do
- 18 game change instead of dealing with traditional Codes and
- 19 Standards approach. So I think that is the opportunity
- 20 area for us to reach our goal, as well.
- 21 So at the end, I pose a question. Dealing with
- 22 energy is at the start of forever, right, so we talk
- 23 about 2020 for the home and 2030 for the buildings, non-
- 24 residential buildings, we know to reach our goal is
- 25 challenging enough, but can this Zero Net Energy last as

- 1 the family grows and prospers? An example, we know back
- 2 to '60s, on the average in the United States, one car per
- 3 household; today it is 2.3 cars per household. That is
- 4 the nature of the growth, that is the economy we have
- 5 here, and we know that is going to continue growth as we
- 6 prosper. So how do we come out with zero net energy and
- 7 last forever? It's not just for one year, or 2020, or
- 8 2030. And how can we handle growth demand for plug load
- 9 in the emerging markets? And this is also, as I
- 10 mentioned earlier, because more and more devices will
- 11 come and I do believe every year we will see maybe 10
- 12 more new devices, every time when you visit consumer
- 13 electronic tradeshow in Las Vegas, you will see the
- 14 number of attendees, it is double every year, and we see
- 15 that as the market we're dealing with. And how do we
- 16 really join forces with them and encourage them to
- 17 provide more energy efficient solutions to our sectors of
- 18 business? It would be one of the things we need to work
- 19 on, so also in today's discussion, in the morning and in
- 20 the afternoon, first sections, always ask a question, is
- 21 zero net energy efficiency a requirement just for the
- 22 building or for all of us? I think that is a question we
- 23 need to answer. It's not just built and we are ready to
- 24 go, it's when we live in there, and how we use the plug
- 25 load inside the building that makes a tremendous

- 1 difference in the outcome of energy savings.
- 2 So, to deal with all the issues at UCI, we come
- 3 up with the so-called California Plug Load Research
- 4 Centers, and we are taking a holistic approach, including
- 5 energy research for coming up with the solutions. And
- 6 also, we are working with the professors in Social
- 7 Science, as well as in Economics, to come up with market
- 8 behavior research to understand the implications of the
- 9 plug load on the adoption of the solution for energy
- 10 efficiencies. And also, we will work closely with the
- 11 CEC, CPUC, and utility companies and manufacturers and
- 12 retailers and common organizations and so on to organize
- 13 and coordinate efforts. I think that this is the only
- 14 way we can come up with consensus and to come up with a
- 15 solution. And lastly, we have to bring the awareness to
- 16 the public. Education is so important. We happen to be
- 17 education sectors, and we are very creative to come up
- 18 with the different media channels to reach out to our
- 19 youngsters and see how we can include them in the process
- 20 in achieving our zero net energy goal. So if you are
- 21 interested, please join us in California, Plug Load
- 22 Research Center, an attachment at the end of the slides.
- 23 Thank you.
- 24 MR. LEAON: Thank you very much, Dr. Li. Next on
- 25 the panel discussion we'll have a talk from "Kosta"

- 1 Papamichael. Kosta is a Professor and Co-Director of the
- 2 California Lighting Technology Center at the University
- 3 of California Davis. Kosta holds an Architectural
- 4 Engineering Degree from Aristotelian University in
- 5 Thessaloniki, Greece, a Masters in Architecture from Iowa
- 6 State University, with a major emphasis in Building
- 7 Science, and a minor in Energy Systems Engineering, and a
- 8 PhD in Architecture from the University of California at
- 9 Berkeley, with a major emphasis in Design Theories and
- 10 Methods and minors in Building Science and Computer
- 11 Science.
- During the last 30 years, Kosta has been working
- 13 on the development of energy efficiency strategies and
- 14 technologies for buildings, focusing on lighting,
- 15 daylighting, and the integration of electric lighting and
- 16 fenestration controls. He participates in a wide range
- 17 of academic and professional activities related to
- 18 daylighting, electric lighting, energy, and environmental
- 19 impact. He is author and co-author of over 80
- 20 publications and holds four patents on lighting controls.
- 21 Kosta is also a member of several committees
- 22 addressing lighting and daylighting issues, and currently
- 23 serves as the Chair of the Illuminating Energy Society
- 24 Daylighting Committee. His work in photo sensor-based
- 25 lighting controls for daylight harvesting was recognized

- 1 by the Illuminating Engineering Society as a unique and
- 2 significant advancement to the Art and Science of
- 3 Lighting. So, with that, Dr. Papamichael.
- DR. PAPAMICHAEL: Thank you very much, Mike. And
- 5 good afternoon to everybody. Mike is sending greetings,
- 6 Michael Siminovitch, he is sorry that he couldn't be
- 7 here, he has jury duty, his experience, the privilege of
- 8 being an American citizen, I guess. So I am here in his
- 9 place to talk to you mainly about lighting plug loads.
- 10 This is a presentation that Michael put together, he
- 11 trained me yesterday, and here I am to give it now for
- 12 you.
- 13 There are three main plug loads that we have
- 14 identified in lighting, task lighting in office spaces,
- 15 that is the commercial part, portable lighting in
- 16 residential, and then some of the high bay lighting is
- 17 also a plug load, considered as appliances. So I am
- 18 going to talk today about these three areas where
- 19 lighting and plug loads intersect.
- 20 The key efficiency drivers that we see for plug-
- 21 based lighting, it comes in two forms, legislative and
- 22 technological. The technological growth that we have
- 23 been seeing in lighting over the last 10 years is really
- 24 amazing. We heard from the previous speaker, Dr. Li,
- 25 that the semiconductor industry, they have a pace of

- 1 their own, but the lighting industry was an extremely
- 2 slow moving industry. We increased the fluorescent
- 3 efficiency by one percent every year since the '60s and
- 4 '70s until today, we saw LEDs going from 20 lumens per
- 5 watt in 2004 to now more than 100 in the lab, 150. And
- 6 this technological growth is truly a major driver that
- 7 effects plug-based lighting.
- 8 On the Legislative front, we have the Huffman
- 9 Bill we talked about there, Title 24 and 20, and the
- 10 Strategic Plan, several speakers mentioned that, I will
- 11 not spend more time on that, here it is again. When it
- 12 comes to commercial Title 24 or the current drafted 1324,
- 13 there is a potential increase through that on lighting
- 14 plug loads. Actually, we had Karl earlier mentioned the
- 15 task ambient approach for office lighting. We would say,
- 16 we have found over the last decade to be a pretty good
- 17 and effective strategy that people like and embrace, and
- 18 the whole idea is you reduce the overhead lighting to
- 19 provide only ambient light, rather than providing task
- 20 lighting everywhere into the space. And then you give
- 21 people high quality task lights that they can place and
- 22 orient the way that they want to do their task job. And
- 23 here, the main issue is the basic principle of light, the
- 24 inverse square law, if I have a task light at this height
- 25 illuminating my desk, I can do that with 30 watts and to

- 1 bring the same light here from the ceiling, I need more
- 2 than 30. So the whole idea is bring the light source
- 3 closer to what we want to illuminate, and then use the
- 4 general lighting for ambient lighting. We have gotten
- 5 repeatedly 50 percent savings over Code that is .5 watts
- 6 per square foot in many different applications. And
- 7 people really like it. So we see encouragement of the
- 8 use of task lighting in the future, any office of the
- 9 future that will have a change, or will bring a change in
- 10 the commercial plug loads in office spaces.
- 11 Here is a diagram that shows the drops that we
- 12 have done, and this was back in 2007, considering
- 13 another, if you like, wattage 1.75 watts per square foot
- 14 being used in existing spaces. The current standards
- 15 were down at 1.1 or at 37 percent reduction. The best
- 16 practice that Karl, again, mentioned and it may be key to
- 17 achieving these goals in the right way and the right
- 18 time, I think, brings it down to 57. We think that with
- 19 task ambient lighting, we can go even further down to
- 20 .50. Here are the 60-80 percent that we want to get from
- 21 the California Strategic Lighting Plan. The task
- 22 ambient, as I explained, is something that many people
- 23 have truly embraced. It wasn't easy to do, the right
- 24 strategy for it is to spread it evenly. We did first
- 25 some mistakes to over beam the overhead light and give to

- 1 people too much of a task light. We've seen relative
- 2 terms, so if we take one light source in the space and we
- 3 make it too bright, everything else appears dim. And
- 4 inversely, if we dim some of the lights in the space,
- 5 whatever is left will appear too bright, so a good
- 6 balance is the key to produce the energy savings along
- 7 with the occupant acceptance.
- 8 We see two ways that this task ambient approach
- 9 can help, one is through Title 20, addressing efficacy in
- 10 lighting quality, I will talk more about this quality.
- 11 Traditionally, we have been addressing mostly efficacy,
- 12 and not as much as the quality, and through efficacy,
- 13 manufacturers gain all of the utility programs if you
- 14 like, but they lose the end users. Quality is really
- 15 what the end users are out getting in the market, and we
- 16 should try to focus more on that. And on the Title 24,
- 17 the Building Codes, we're going to see changes in power
- 18 density, and then we can also consider credits for task
- 19 ambient lighting approaches.
- 20 Here is a slide on the high bay lighting. I will
- 21 not see much more, we show the electronic ballasts and
- 22 the inherent controls that come with electronics
- 23 controls, that can be used for Demand Response, so this
- 24 is something that we should be paying attention. Also,
- 25 with occupancy controls, we can turn lights off or dim

- 1 them down when there is no one there, and this is again
- 2 another area where we believe plug loads will be
- 3 affected.
- 4 Then we come in to the residential part of the
- 5 lighting. We talk a lot about residential and, truly,
- 6 going into spaces like these, you're going to see all
- 7 kinds of forms and shapes, and interestingly enough, most
- 8 of them are being sold with a CFL that, when people go
- 9 home, they just get out and they throw it and they put
- 10 the light that they like. We did a study back when the
- 11 Huffman Bill came along to see, is it possible to truly
- 12 go and have these reductions, and here is from the 2007
- 13 that moves through 2018, and this is if we really do
- 14 nothing, and we just keep on increasing the residential
- 15 square footage, we would see this type of an increase, if
- 16 you like. But, if we change all of the light sources to
- 17 40 lumens per watt or more, we can see that, yes, it is
- 18 possible to clearly meet the Huffman Bill, so it was not
- 19 something that was impossible; if you use the right
- 20 sources, you can do it. Unfortunately, the way that we
- 21 see it, it is not going to happen with halogens and
- 22 incandescent, which is what we expect people to like,
- 23 being used to incandescent, it's going to have to be done
- 24 with CFLs and LEDs. And here is where we need to make
- 25 sure that we learn from the mistakes that we have done

- 1 with the CFL type of distribution. We think, with
- 2 Michael, we share this experience and the explanation, if
- 3 you like, that the CFL was a disaster mainly because we
- 4 focused so much on efficiency and cost, and we forgot
- 5 what it is that people pay when they go into a store to
- 6 buy something. So we propose, as you will see later, we
- 7 are really focused on addressing lighting quality.
- 8 In Title 20, Portable Lighting Wattage
- 9 Limitation, we have the 2000 1845 lumens per watt, and we
- 10 expect that this will leave mostly the CFLs and LEDs some
- 11 incandescent technology can reach that level with
- 12 halogen, and the IR Coatings to heat up the filament even
- 13 more. The key opportunities that we see is Title 20 to
- 14 regulate lamps, we see tremendous promise, if you like,
- 15 in LED lighting. You can do much much more than we ever
- 16 expected and there are some pretty interesting value
- 17 propositions that will make people pay for them, not to
- 18 save energy, but for the amenities that they can get
- 19 through it. We can also have voluntary standards and,
- 20 again, regulating the quality is really a key element and
- 21 quite a lot of those are going to go in portable
- 22 lighting, plug lighting. So we truly see residential
- 23 lighting as a target for efficiency programs and they're
- 24 subject to massive change.
- 25 The experience that we had from the past, again,

- 1 here is the distribution of CFLs vs. incandescent, and
- 2 you see that the new construction in California, that
- 3 Title 24 has been highly successful and we got, really in
- 4 the new construction, 58 percent. We don't really know
- 5 how many of those stay there. On the break, I heard
- 6 again another story of many such stories, that people
- 7 actually take the fluorescent lights out and they put in
- 8 incandescent, and again, this is a lesson for us to
- 9 provide better quality. If we see the whole California
- 10 housing stock, we see that still CFLs is about 20
- 11 percent, and we are the number one state, so apparently
- 12 we really need to do more and this is actually pretty
- 13 good seeing how much we can do with all of the
- 14 incandescent that we have. And we believe, I think I
- 15 have it on the next slide, that we can chop of easily
- 16 with plug loads on lighting about 20-25 percent of the
- 17 incandescent in existing houses. Yes, here is the chart
- 18 that shows -- actually, the biggest one here is the table
- 19 lamps, you can see over here, we have torcheres and floor
- 20 lamps over here, together they are about 20 to 25 percent
- 21 of lighting. In 2007, as I showed with CFL use, it was
- 22 at about 15 percent, and actually I didn't show that, I
- 23 show it now, it was about 15 percent, and after a lot of
- 24 effort and a lot of money, by 2010, we were up to 20
- 25 percent which is a very very slow increasing adoption

- 1 and, again, we believe that the main reason is the lack
- 2 of lighting quality mainly on color, temperature, color,
- 3 appearance, if you like, longevity, quite a lot of the
- 4 CFLs didn't live to their promise for a long life mainly
- 5 because they were putting in down lights where
- 6 incandescent had a great time, they're not scared of
- 7 heat, but in CFLs the electronics fried. I lost all of
- 8 the seven CFLs that I put in my kitchen, after I was able
- 9 to convince my wife and sell her on longevity and they
- 10 were all gone without six months, and in seven years we
- 11 hadn't changed a single incandescent, so right now she is
- 12 into incandescent and there is nothing that I can tell
- 13 her.
- 14 So the major barriers with CFLs, one of the first
- 15 ones was the color, appearance. People were expecting
- 16 the warm light of incandescent lighting and they really
- 17 didn't get that. The longevity, I just described my
- 18 experience, and I heard quite a lot of experiences like
- 19 that. In certain applications, they will last, but if
- 20 the luminaire is not designed for them, chances are that
- 21 they will overheat and die young. Dimming was another
- 22 interesting issue that came up with CFLs and it's still a
- 23 very big issue. We all should try to promote dimming and
- 24 we still believe in dimming, that it is a great strategy
- 25 to save energy. If I have a dimmer, there is always one

- 1 way that I can go -- down. And fortunately, most of the
- 2 CFLs, especially the low cost CFLs that we distributed
- 3 and we flooded the market, they couldn't do that
- 4 effectively.
- Now, with LEDs, which truly have an amazing
- 6 promise and they are even more efficacious than CFLs,
- 7 with plenty of things to do, still we can see exactly the
- 8 same type of issues, the color, appearance, the
- 9 longevity, the dimming, the lighting quality color, etc.,
- 10 we really need to address quality issues and bring the
- 11 consumers into the equation, get the consumers to tell us
- 12 what it is that they like to do. We believe that with
- 13 LED lighting, we have already won the efficiency game, we
- 14 are up to 100 lumens per watt, even with 30 lumens per
- 15 watt, we can save 50 percent of the electric lighting
- 16 through lamp replacement. Being at those high levels of
- 17 100 lumens per watt, we think we can sacrifice 10 and 20
- 18 lumens, and 30 lumens, to bring the quality high so that
- 19 consumers go and buy them because they really like it,
- 20 and for the amenities it provides, rather than accepting
- 21 it to save the energy and not being happy with it.
- 22 And this is my last slide where, again, I'm going
- 23 to make the point pretty fast because many have made it
- 24 already, that it's the existing homes that really hold
- 25 the promise on meeting the aggressive goals of

- 1 California. This is pretty much a generic plot, if you
- 2 like, and you can see a two percent increase in the
- 3 growth, and if here we're at 2010, by 2018, we still have
- 4 more than 80 percent of the actual load being in existing
- 5 buildings. Thank you very much.
- 6 MR. LEAON: Thank you very much, Dr. Papamichael.
- 7 Next up, we're switching topics to Beyond Standards, and
- 8 we're going to be discussing Alternative Approaches to
- 9 Appliance Standards for Meeting Energy Efficiency Goals.
- 10 And Dr. Carrie Armel will be making a presentation
- 11 remotely. And while Peter is getting that organized, I
- 12 will go ahead and introduce Dr. Armel.
- Dr. Carrie Armel is a Research Associate at
- 14 Stanford's Precourt Institute for Energy Efficiency,
- 15 where she investigates the diverse ways in which an
- 16 understanding of human behavior can lead to improvements
- 17 in energy efficiency. Dr. Armel co-chairs the Behavior,
- 18 Energy and Climate Change Conference, oversees Precourt
- 19 Institute's behavior and energy, bibliographic database
- 20 and website, and teaches courses on behavior and energy
- 21 at Stanford. In addition to these initiatives, Dr. Armel
- 22 developed specific energy efficiency interventions that
- 23 apply behavioral and design principles, and develops
- 24 measures to evaluate the efficacy of such interventions.
- 25 Her most recent project involves a collaboration between

- 1 academic and nonacademic organizations to design and
- 2 evaluate a technology that takes advantage of Smart
- 3 Meters to provide feedback to residents on home
- 4 electricity use. Dr. Armel completed a PHD in Cognitive
- 5 Neuroscience from the University of California at San
- 6 Diego, and Post-Doctoral Work in Neuroeconomics at
- 7 Stanford. In these programs, she employed behavioral,
- 8 psycho-physiological, and neuroscientific methods to
- 9 investigate how effect and motivation influence behavior.
- 10 She most recently completed post-doctorate work at
- 11 Stanford School of Medicine, translating intervention
- 12 techniques used in health promotion work into the domain
- 13 of energy efficiency. Dr. Armel.
- 14 DR. ARMEL: Hi. Good afternoon. Thank you so
- 15 much for having me, it's a real honor to be able to speak
- 16 today. I also appreciate the behavioral comments by the
- 17 previous two speakers, they're a good set-up and I'm glad
- 18 to see that people are identifying behavioral issues and
- 19 the importance of that.
- 20 So today I'm going to give an overview of our
- 21 ARPA-E Grant which focuses on residential buildings and
- 22 ties into behavior, energy use, and also sensor
- 23 technologies. We have some work on transportation and
- 24 also small and medium commercial, but the focus of our
- 25 initiative is on residential buildings. And I guess I'll

- 1 just say "next slide" for you to queue them forward?
- 2 MR. STRAIT: That will be fine.
- 3 DR. ARMEL: Okay. So go ahead to the next slide.
- 4 So before I tell you about our initiative, I'd like to
- 5 just clarify that our project doesn't focus just on plug
- 6 loads, but rather on several types of energy efficiency
- 7 actions or behaviors that can achieve energy savings in
- 8 residential buildings, so the purchase and installation
- 9 of energy efficient technologies, reducing waste,
- 10 shifting settings, and installing controls, or pairing
- 11 items, or performing maintenance, adjusting patterns of
- 12 use and habits, etc. Next slide.
- So our funding is from the relatively new Federal
- 14 agency ARPA-E at Department of Energy, which is modeled
- 15 after DARPA, but focuses specifically on energy. And
- 16 then we also get funding from CEC. Our initiative has
- 17 about 20 different projects across 10 different
- 18 departments, and these departments range from electrical
- 19 engineering, computer science, mechanical engineering and
- 20 design, civil and environmental engineering, economics,
- 21 psychology, communications, education, behavioral
- 22 epidemiology at the School of Medicine, etc., so it's a
- 23 very diverse effort. All of the projects center around
- 24 how to leverage Smart Meter or other sensor data with
- 25 behavioral approaches to maximize energy phasing. Next

- 1 slide.
- 2 So our initiative attempts to address the
- 3 following problems: first, billions are being spent to
- 4 produce Smart infrastructure, but without careful
- 5 consideration of the human element, this infrastructure
- 6 is unlikely to reach its full potential; and second,
- 7 energy efficiency is difficult, so figuring out what to
- 8 do and how to do it is difficult and boring, often times.
- 9 So how can we address both of these issues? How can we
- 10 leverage Smart infrastructure to maximize energy savings?
- 11 Next slide.
- 12 Our solution is that a smart infrastructure
- 13 enables quantification, which in turn enables ways to
- 14 reduce energy use. So, for one, it enables diagnostics
- 15 for personalized recommendations so that people aren't
- 16 left guessing what they should do; second, quantification
- 17 enables a variety of behavioral techniques that were
- 18 difficult to implement before, for example, feedback,
- 19 incentives, markets, competition data, visualization,
- 20 etc., and third, quantification allows us to create the
- 21 best programs with unprecedented speed, ease, cost, and
- 22 scale, through objective evaluation of program energy
- 23 savings and then improvements of the programs over time
- 24 and their evaluation. Next slide.
- 25 So how can we achieve these and other benefits?

- 1 Our initiative links two technologies that have recently
- 2 become pervasive, the first, as I previously mentioned,
- 3 the wireless sensors, as indicated in the box on the
- 4 left-hand side of the Collect and Capture, so these could
- 5 be Smart Meters, Home Area Networks, gas sensors, gas
- 6 transportation sensors, hot water sensors, etc. And
- 7 then, the second technology indicated on the right in the
- 8 Present and Inform box is web enabled devices like
- 9 computers, Smart Phones, etc., which can deliver programs
- 10 to help individuals reduce energy use. We think that, by
- 11 linking these two through the Stanford engine or
- 12 initiative, we can realize significant energy savings.
- 13 Our engine is composed of a technology platform in the
- 14 red, which includes sensor and networking improvements
- 15 and a database on analytics. On top of that, in the
- 16 green, lives our programs or interventions, we have
- 17 multiple foundational projects, for example, identifying
- 18 target behavior for recommendations, doing segmentation,
- 19 etc., and then the programs themselves include media,
- 20 policy, and community programs, and I'm going to tell you
- 21 a little bit more about those in a minute. And then, in
- 22 addition, in the blue, modeling projects evaluate the
- 23 data from all of the programs to inform future work and
- 24 policy about which techniques and programs are most
- 25 effective, where to get the biggest bang for the buck,

- 1 building, modeling projects, etc. Next slide.
- 2 So I'll give a quick overview of several of the
- 3 projects now. I'll just say, we have some pretty sexy
- 4 projects and graphics, unfortunately, I can't show you
- 5 all of them today because I need to get permission from
- 6 the individual projects and I wasn't able to do that
- 7 quickly over the summer, but I think you'll get a bit of
- 8 the flavor for what we're working on.
- 9 So the graph that you see on this slide is a
- 10 piece of our simple feedback interface project. The data
- 11 is graphed compared to one's baseline in the past,
- 12 compared to one's neighbor's energy use, and the user is
- 13 also given recommendations and sent emails at strategic
- 14 times, etc., so this is sort of our basic feedback
- 15 interface, a piece of it. Next slide.
- 16 As an example for one of our media programs, we
- 17 have an online game that takes in real world energy use
- 18 data from Smart Meters into its point system, so this
- 19 game is called Power House, and the game, you'll see in
- 20 the graph on the left, the graph of energy use data, and
- 21 that's, like I said, converted into points, you can
- 22 compete with your friends in the game through Facebook
- 23 Connect, etc., and then embedded within the overall game
- 24 or website are smaller games, so, for example, in the one
- 25 illustrated on the right, you race around the house to

- 1 pick the tier to achieve all of the goals in your virtual
- 2 household with the lowest energy use possible, and in the
- 3 game, by speeding up time, and by seeing quick feedback
- 4 in the form of points, that actually are set up to
- 5 accurately reflect the energy consumption with the
- 6 different appliances in the game, one can more easily
- 7 develop habits, so you get reinforced more quickly. And
- 8 after playing, it's actually rather difficult to leave a
- 9 room without thinking about turning off lights and TV,
- 10 etc. So it builds up those habits more quickly. And
- 11 then within this overall framework, there's also game
- 12 challenges to reduce real world energy use, like I
- 13 mentioned. Next slide.
- 14 We have GLEE, Girls Learning Energy and
- 15 Environment, which is a Girl Scout Program that teaches
- 16 the girls about how to reduce energy use. We've just
- 17 finished implementing the program in 30 troops and are
- 18 analyzing the data. Half of the troops focused on
- 19 reducing home energy use, and the other half on
- 20 transportation and food energy use, and each group serves
- 21 as a control to the other. The program includes five
- 22 lessons at troop meetings and a corresponding website
- 23 which is shown here. At the end of each in-person
- 24 lesson, the girls create a news video to put on the
- 25 website, which is intended to draw the parents there,

- 1 where they can find additional resources related to audit
- 2 and retrofit programs, etc. etc. Next slide.
- 3 I'll quickly go through just a couple of other
- 4 behavioral projects, so one of our Facebook apps allows
- 5 one to use their energy savings to micro finance
- 6 individuals through Kiva. Our appliance calculator
- 7 allows one to easily compute energy costs of their
- 8 current appliances, as well as any appliance currently on
- 9 the market to determine when they should make the switch
- 10 to a new appliance, and what new appliance would be good
- 11 to purchase. We have a couple of incentives projects
- 12 that leverage behavioral economic principles to motivate
- 13 folks to shift energy use, for example, during off-peak
- 14 hours. Next slide.
- To support these and other projects, we've built
- 16 an energy services platform that is a collection of
- 17 software services. We're hoping to make the software
- 18 available as a service to Program Developers outside of
- 19 our team in the coming months. The Energy Service's
- 20 platform allows Program Developers to easily implement
- 21 their programs, to assign participant to different
- 22 experimental conditions, to store various types of data
- 23 and perform analytics. Next slide.
- 24 I'm going to mention just one type of analytics
- 25 that we're working on, that I think is critical to

- 1 realizing energy efficiency savings, and which is being
- 2 implemented within the Energy Services Platform. These
- 3 analytics allow us to take whole home data like that from
- 4 Smart Meters, and separate it into appliance specific
- 5 information. We believe that appliance specific
- 6 information will allow individuals to quickly and
- 7 automatically identify the changes that would be most
- 8 effective in reducing their energy use. Studies show
- 9 that there's 200 to 300 percent variability in energy use
- 10 between identical housing units due to appliance
- 11 saturation and lifestyle patterns, and people don't know
- 12 where it would be most effective for them to make
- 13 changes. Once we identify what changes they should make,
- 14 we could recommend or channel them to specific rebates,
- 15 programs, etc. Next slide.
- To tie the different pieces together that I've
- 17 described, we see that community programs like the Girl
- 18 Scouts and online social networking, etc., at the top,
- 19 can channel folks to the core analytics and
- 20 recommendation system indicated in red in the middle,
- 21 which then channels the folks to the bottom layer of
- 22 rebates and appliance replacement, or audit programs,
- 23 etc. The online game, Smart Incentives, and other media
- 24 programs we and others are working on are depicted in the
- 25 middle layer and can reinforce the recommendation system

- 1 and improve persistence in trying to make energy
- 2 efficiency changes. Next slide.
- 3 So, just to summarize, there's multiple benefits
- 4 that sensors such as smart meters could provide, some of
- 5 which I covered earlier like providing diagnostics,
- 6 motivating action with enhanced behavioral techniques,
- 7 and creating best practices for programs. There are
- 8 several additional benefits. So, the platform could
- 9 transform program evaluation and significantly increase
- 10 the diversity of energy programs, it would enable
- 11 utilities, government, and others to quantify reductions
- 12 in energy use attributable to a wide range of programs
- 13 whose impact was previously difficult to measure, thereby
- 14 diversifying the program toolkit. Additionally, the data
- 15 collected here and models derived from the data can
- 16 inform policy and also these programs, the hardware and
- 17 communication efforts that we're working on, can be
- 18 refined to be better, more usable to get energy
- 19 efficiency savings in the future. Next slide.
- 20 This is just a summary of everyone who is
- 21 involved currently on our team. I would just like to add
- 22 one clarification to my presentation because I did
- 23 mention Smart Meters a couple of times as being useful
- 24 and, just for the record, although they are -- the amount
- 25 of disaggregation that can be done at the current

- 1 resolution of data is fairly limited, and so we do have a
- 2 policy piece, a policy and technology paper that we're
- 3 close to finishing at this point that looks at what data
- 4 resolution, temporal frequency is needed to be able to do
- 5 different amounts of disaggregation. In other words, get
- 6 different numbers of appliances identified in the home
- 7 and the constraints of Smart Meters and what they should
- 8 be able to achieve and where we should push Smart Meters
- 9 in the future. Thank you.
- 10 MR. LEAON: Thank you, Dr. Armel. Will you be
- 11 able to hold on the line for the comment period?
- DR. ARMEL: Yes, I will.
- MR. LEAON: Okay, thank you. All right, let's
- 14 proceed to our final speaker for this panel, Jonathan P.
- 15 Williams, a Government Affairs Manager for Intel Corp.
- 16 Jonathan is responsible for developing, implementing and
- 17 managing public policy strategies for local, regional,
- 18 and state government entities and officials, developing
- 19 legislative priorities and positions on key policy issues
- 20 for Intel, while engaging and gaining support from senior
- 21 management, influencing and leading legislative activity
- 22 through participation in public policy committees,
- 23 specific and industry associations. Also, protecting and
- 24 enhancing the Intel brand and corporate reputation
- 25 through engagement and relationship development with

- 1 elected leaders and statewide stakeholders. Jonathan.
- 2 MR. WILLIAMS: Right, thanks very much. My
- 3 apologies for the heresy, I didn't bring slides; fear to
- 4 think anybody would bring slides, it would probably be
- 5 the guy from the high tech company. But being the last
- 6 person on the agenda, I'm not going to punish you any
- 7 further with a 27-slide deck, which is what I passed on.
- 8 I'm going to break my comments really into just
- 9 three parts, and I'm anxious to turn it over to the Q&A
- 10 because there's been so much on this panel that it kind
- 11 of dovetails with what I'd like to touch on.
- 12 First, let me just thank the CEC for the
- 13 invitation. I really appreciate Intel being thought of
- 14 in this context. We've been doing a lot of work in the
- 15 energy efficiency space over the last several years. I
- 16 heard semiconductors mentioned; the pace of the
- 17 semiconductor industry, I think you may have touched on,
- 18 is pretty exciting, and what we're doing with energy
- 19 efficiency, I think, is pretty exciting, as well, so I
- 20 appreciate being thought of in that context.
- I want to thank the CEC specifically for the work
- 22 we've done recently with former Commissioner Byron and
- 23 staff and the consultants on Smart Meters, Home Energy
- 24 Management Systems, and Harinder Singh and Ken Ryder's
- 25 team for the work that we're doing with them right now on

- 1 battery charger requirements, both here and at the U.S.
- 2 DOE level.
- 3 Let me give a quick Intel infomercial, I'll tell
- 4 you a little about Intel, what we're doing from a
- 5 corporate perspective, from an energy efficiency and our
- 6 product perspective, and then I'll kind of take it to the
- 7 final piece of the remarks, which is kind of where we
- 8 think the industry can go, and it really fits in with
- 9 what you just heard on this panel.
- 10 From a company perspective, you may know that
- 11 Intel is the largest purchaser of renewable energy in the
- 12 U.S., we have been for the last four years, something
- 13 we're pretty proud of. We have the number one spot on
- 14 the EPA's Green Power Partner Program, something we're
- 15 proud of, and we're getting about 50 percent of our
- 16 domestic U.S. energy from renewable sources, which I
- 17 think is pretty impressive, considering we're a major
- 18 U.S. manufacturer. So, those are a few things about the
- 19 company from a corporate perspective that we're proud of.
- 20 But where Intel can make the biggest difference
- 21 is in our products, the energy efficiency that we can
- 22 deliver through our products, and a couple data points on
- 23 that before I get into some specifics. You look at the
- 24 number of installed -- the PC installed bases, we would
- 25 call it internally, basically the number of PCs globally

- 1 -- one billion in 2007; it's going to be two billion in
- 2 2014, right? But the energy consumed by that second
- 3 billion PCs is half of the energy consumed by that first
- 4 billion, a tremendous amount of energy efficiency
- 5 happening within our products today, and that's obviously
- 6 a good thing.
- 7 You look at what is happening in the server
- 8 space, right, in the enterprise, where you have in 2005 a
- 9 rack of 20 Intel Xeon servers, which is our standard
- 10 server processor, a rack of 20 of those is now being done
- 11 by a single -- excuse me -- 20 racks of Intel Xeon is now
- 12 being done in 2010 by a single rack. The energy
- 13 efficiency delivered through that, as well as the cost
- 14 savings for our corporate customers, is extremely strong.
- 15 Now, why is that happening? This is very intuitive, and
- 16 I think it will make sense as far as just your own
- 17 personal buying habits. From a consumer perspective, I
- 18 go back to I've been with Intel for 14 years and one of
- 19 the jobs I had back in 2002 was the role of our Centrino
- 20 processor, if anybody remembers that. That was the
- 21 processor that basically had the integrated WiFi. And it
- 22 was the compelling notion at the time, was the integrated
- 23 WiFi, right? What that has engendered is, you know,
- 24 reduced battery consumption, greater energy efficiency
- 25 for all of the obvious reasons, right, because you want

- 1 that connectivity remotely, you don't want to be working
- 2 remotely and have a battery life of two hours, right, so
- 3 we've been driving greater energy efficiency and greater
- 4 battery life into our product for years and years and
- 5 years, just to meet the usage demands. Now, that's
- 6 happened with things like WiFi and other things, as well.
- 7 You look at Solid State Drives, if anybody is familiar
- 8 with Solid State Drives, as opposed to the traditional
- 9 hard drive, the spinning hard drive, right? Now, a
- 10 spinning hard drive, as you would suspect because it's
- 11 moving parts, consumes more energy; you move to solid
- 12 state drives, you're getting better battery life, you're
- 13 getting more energy efficiency. These things are all
- 14 happening right now and we're actually I was on a call
- 15 earlier before I got here, we're having a hard time
- 16 making enough solid state drives to meet the demand, so
- 17 we're happy with what we're seeing in the market as far
- 18 as demanding the kind of energy efficiency that we've
- 19 been talking about today. Very briefly, at the server
- 20 level, what we're seeing from our customers at that level
- 21 is the exact same thing, you know, transistors,
- 22 microprocessors, continue to get faster, they continue to
- 23 get more energy efficient, and computing continues to get
- 24 smarter. At the server level, you see that through
- 25 things like virtualization, which is simply having

- 1 multiple servers, but being able to offload the work of
- 2 multiple servers onto a single server, simply through
- 3 software. And that's happening, and that's causing
- 4 significant energy efficiency, energy cost reductions, as
- 5 well as just cost reductions, in general, from having to
- 6 buy less technology, right, so these are all things that
- 7 are happening because of the product enhancements that
- 8 Intel is making, that the entire industry is making. And
- 9 it's a good thing in the context of what we're talking
- 10 about today.
- 11 So bottom line, though, as all that would kind of
- 12 suggest, the best way to drive enhanced energy efficiency
- 13 is to upgrade those older systems, right, if you're
- 14 working off of systems, you know, CRT monitors, right?
- 15 Simply moving to flat screens, as all of you know, is
- 16 significant energy savings with that, right? Getting off
- 17 of an older system that isn't being effectively managed,
- 18 where it's, you know, the intelligence of computing where
- 19 it knows you've left because, you know, it'll shut down
- 20 after two minutes, it'll go into hibernation after a
- 21 couple minutes if you're not using it. That kind of
- 22 intelligence can be managed into newer systems, and if
- 23 you're managing a large enterprise environment, you know,
- 24 an upgraded set of systems will deliver energy efficiency
- 25 through that kind of intelligent computing. So, those

- 1 kinds of things are all happening in the market today.
- What -- and this really fits in, I think, most
- 3 specifically with the last comments -- what else can
- 4 happen? You know, where is the technology going that is
- 5 outside of the context of maybe the more traditional
- 6 technology roadmap that I've just touched on? What we're
- 7 seeing is Intel has been involved in a few different
- 8 programs I think are particularly interesting, and I just
- 9 want to share very briefly with this audience, 1) in
- 10 France, we're working with a consortium of companies on
- 11 developing positive net energy buildings, buildings that
- 12 aren't zero energy, but they're actually generating
- 13 energy. And this is a result of some regulations in
- 14 France that are about a decade or so away. And what
- 15 we're seeing that I think is most compelling is, without
- 16 the buy-in of the users within the building, you're not
- 17 going to get there, right? It has to be at that
- 18 individual user level. No amount of energy efficiency at
- 19 the appliance level, or kind of building regulation
- 20 level, is going to get you there unless you have the buy-
- 21 in of the users and the people within that building. And
- 22 that's been a pretty compelling message from the research
- 23 we've done. We're also involved with the Oregon
- 24 Sustainability Center, which is a really neat public-
- 25 private partnership. I lived in Oregon for about 10

- 1 years, and I know this one pretty well. The idea that
- 2 Oregon is designing what they're calling a "Living
- 3 Building" that is trying to get to zero net energy, as
- 4 well as some really cutting edge sustainability efforts
- 5 around things like water re-use, right? And we're seeing
- 6 the same thing there, without getting the buy-in of the
- 7 users to take, you know, you can get double-digit energy
- 8 efficiency gains through managing the users and helping
- 9 them understand ways to deliver energy efficiency at the
- 10 micro level. And the way we've been talking about it
- 11 internally, and actually I heard something very similar
- 12 to this in the last presentation, making energy personal.
- 13 Making it a personal thing that you think about. And
- 14 we've developed a software application that we've just
- 15 recently rolled out early this month, actually, called
- 16 the "Personal Office Energy Manager," POEM is the
- 17 acronym, of course, and anybody in high tech knows
- 18 everything gets an acronym. The Personal Office Energy
- 19 Manager is a software application that you can install
- 20 for your users, where they can track their own personal
- 21 energy consumption as it relates to the use of their
- 22 system, the use of the printer. They can weigh in on how
- 23 they feel about the office climate, and that data can be
- 24 aggregated at the floor level, the building level, and
- 25 there's any number of incentives that you could introduce

- 1 to help folks understand ways that, you know, their own
- 2 personal energy fits into the energy use of the other
- 3 folks in that building.
- I heard some comments on the prior panel toward
- 5 the very end that I thought were really interesting, the
- 6 idea of peer pressure vs. just kind of increased
- 7 awareness, and I wouldn't go to the peer pressure sense
- 8 of it because I don't think that's the right mechanism by
- 9 which to view this, but having a better familiarity with
- 10 kind of your own environment, in how folks on the same
- 11 floor as you, how they're doing. You know, I believe in
- 12 technology and I believe in technology's ability to
- 13 increase user control, user awareness, and give folks
- 14 more clear understanding of their own personal energy
- 15 usage and how they can do a better job managing it. And
- 16 I think that's the real promise of technology as far as
- 17 kind of going beyond the kinds of standards that we
- 18 traditionally talk about. I think there are
- 19 applications, there are software applications that are
- 20 being developed today, you just saw some in the earlier
- 21 presentations, and in the work that we're doing with this
- 22 Personal Office Energy Manager. These things are
- 23 happening, they're being developed today, and I think
- 24 they're going to create this new area that we haven't
- 25 traditionally looked at that is really going to be an

- 1 opportunity to drive the kind of energy efficiency that
- 2 we're most interested in.
- 3 Two last things and then I'll turn it over to the
- 4 discussion. We're doing similar work in China, and the
- 5 reason I simply say that is because there's really global
- 6 interest in this and we think we're going to try and
- 7 deploy somewhere on the order of 30 million Home Energy
- 8 Management Systems over the next five years in China to
- 9 help the Chinese market better understand their energy
- 10 usage, so we're particularly excited about that. And
- 11 lastly, you know, Intel has got a venture capital arm,
- 12 many of you may know, and we've invested more than \$150
- 13 million in about 20 clean tech companies that are doing
- 14 everything from solar to battery technology, to the kinds
- 15 of software that help lead to the things like this
- 16 personal office energy manager. So our interest in this
- 17 is extremely broad. We're pretty proud of what we're
- 18 doing from a product perspective, but also in these kind
- 19 of cutting edge areas, and I will be happy to turn it
- 20 over to the discussion and take some more questions on
- 21 that.
- MR. LEAON: Thank you, Jonathan. I want to thank
- 23 all of our panel members for their thought provoking
- 24 presentations, very informative, and I think there was
- 25 some common themes there that we can discuss during the

- 1 open discussion period here.
- 2 To begin with, I guess I'd like to start with a
- 3 question to the panel about key challenges. In the draft
- 4 staff report for the appliance program, specifically, one
- 5 of the key issues that we identified within the framework
- 6 of our regulatory program of standards compliance and
- 7 enforcement, related directly to enforcement authority
- 8 and the need to have greater enforcement authority than
- 9 we currently have under statute. We have found through
- 10 market survey reports that there is a high degree of non-
- 11 compliant products entering the marketplace in
- 12 California, so obviously a key going forward and meeting
- 13 efficiency goals for buildings is to capture the energy,
- 14 all of the energy savings we should be capturing. And
- 15 the one recommendation that's currently in the draft
- 16 report relates to that, asking for a fine in a citation
- 17 authority, and there is a bill in the Legislature right
- 18 now that would provide that authority, Senate Bill 454.
- 19 And we think, in terms of capturing all the savings we
- 20 possibly can, that's going to be a key thing for us to
- 21 have moving forward within our existing program.
- 22 However, during the presentations, I think it's clear
- 23 that there are a number of themes that are emerging that
- 24 are not necessarily something we can address through our
- 25 existing program, whether it's a smart technology,

- 1 whether it's addressing public acceptance, whether it's
- 2 engaging the public to change their behaviors and find
- 3 ways to get them involved in managing energy.
- 4 So, I guess the question I would like to pose to
- 5 the panel is, what do you see as the key challenges
- 6 moving forward in regard to managing plug loads? And
- 7 it's not clear to me that, necessarily, all of this can
- 8 be addressed within our existing regulatory framework.
- 9 DR. LI: Maybe I can jump in first. We had one
- 10 behavior study conducted in our university with the
- 11 residential area, so what we found out in that study is
- 12 we collected a lot of information, but the information
- 13 somehow cannot be easily understood by the users; for
- 14 example, when we presented data to them, a kilowatt hour,
- 15 that's the typical unit we used, and the user was asked
- 16 the question, "Kilowatt hour? Kilowatt what?" They said
- 17 they do not understand that unit. When we explained to
- 18 them one kilowatt hour equivalent to a double cheese
- 19 hamburger, 860 calories, and your home is eating more
- 20 hamburgers, they understand it. So the question here is
- 21 how do we really present the information to the users so
- 22 that it can be easily understood. And we have lots of
- 23 sense of technology and Smart Meters, and so on, the
- 24 information how to present the information, and the user
- 25 can use that information as a way to make actionable

- 1 information, and they can make decisions, and so far we
- 2 have not reached that level yet. We are at the very
- 3 beginning of really solving the problem, so that's why I
- 4 think it's having the consortium and industry, utilities,
- 5 and Energy Commissions, and universities, and so on, we
- 6 work together. And I think, especially if we're talking
- 7 to the K through 12 students, that is the opportunity for
- 8 us, they are the angels, they are the agents of change,
- 9 and somehow if we present the information in a way they
- 10 understand, so "a hamburger is obesity," and "there is an
- 11 obesity issue in our society," and they can understand
- 12 that. They can personalize that information. And we
- 13 have not done the work yet. So I think this is a really
- 14 tremendous opportunity for us to really embark on that
- 15 problem, and it will also create new markets for all of
- 16 us.
- 17 MR. PENNINGTON: Thank you, Dr. Li. I think from
- 18 our perspective at the Energy Commission, one of our
- 19 challenges is in this era of resource constraints,
- 20 budgetary constraints, we're really focused on our core
- 21 activities of developing Standards, ensuring compliance
- 22 with those Standards, and enforcing those Standards. And
- 23 I think the area where we're venturing into is the need
- 24 for collaborative approaches to do education and
- 25 outreach, and that is certainly an area where we would

- 1 like to do a lot more, but again, we're challenged by
- 2 resource constraints. So, let me ask this question, and
- 3 one of the things I think we should be looking at are,
- 4 what are the opportunities out there to establish
- 5 collaboratives, to work on outreach and education?
- 6 MR. WILLIAMS: So I'll jump in and at the risk of
- 7 this sounding awfully self-serving, from a computing
- 8 perspective, you know, two percent of the global carbon
- 9 emissions have been attributed from outside analysts to
- 10 information in computing technologies, right? Leaving 98
- 11 percent among the wide other sectors, but the data has
- 12 also shown that every one additional kilowatt hour
- 13 associated with computing leads to a 10X increase in
- 14 energy efficiency in kind of reductions in other
- 15 computing, you know, referencing your slides, you show
- 16 the medical technologies and, you know, the emergence of
- 17 those, what are the -- and you hit on, I think, the exact
- 18 issue -- how do you measure the energy savings that are
- 19 delivered because more people are able to get care at
- 20 home? Right? You know, we think they're tremendous. I
- 21 think there's a lot to be learned, not just from a
- 22 healthcare cost savings perspective, but keeping cars off
- 23 the road, keeping people out of hospitals, keeping people
- 24 in their home where there's a greater likelihood that
- 25 they won't need urgent care and tap into all kinds of

- 1 additional costs associated with that. But studying
- 2 these kinds of emerging technologies, having the data, is
- 3 something we struggle with and, if we're struggling with
- 4 it, I can imagine that regulators are struggling with it
- 5 significantly. Right? So I do think there's a
- 6 tremendous opportunity to work more closely with the
- 7 private sector to understand where we are going and where
- 8 the technology is going. I liked your line, as well, you
- 9 know, the pace of change in the industry continues to
- 10 surpass the ability to keep up via regulation. Right?
- 11 It's just really hard to do that. We understand that.
- 12 I've seen that my entire career at Intel. The idea,
- 13 though, that we could work more closely together to
- 14 understand, you know, the significant accomplishments
- 15 that have been made through energy efficiency and where
- 16 the critical mass may lie, outside of the traditional
- 17 energy efficiency models, right? Because we think the
- 18 pace of energy efficiency in the computing industry has
- 19 been extremely rapid, you know, estimates as much as
- 20 3,000 percent increases in energy efficiency over the
- 21 last 30 years for computing. There's no other industry
- 22 in the world that can match the computing industry when
- 23 it comes to energy efficiency. The gains and the savings
- 24 have just been completely enormous. So that being said,
- 25 how do we take the power of computing to deliver energy

- 1 savings across the broader industry? That's actually, I
- 2 think, the most exciting challenge that we've been
- 3 looking at internally. And we've done some very good
- 4 work with the CEC, we've done some very good work through
- 5 PIER, we think there's tremendous opportunities through
- 6 the initiatives that are being established and absolutely
- 7 would like to work more closely with this agency to help
- 8 understand where we're going.
- 9 DR. ARMEL: I had a response to the question
- 10 posed -- I don't know if somebody wants to respond to
- 11 that, but I was going to respond to a question posed by
- 12 the moderator --
- MR. LEAON: Yes, go ahead.
- 14 DR. ARMEL: -- about you had mentioned
- 15 collaboratives that could be established to make better
- 16 user leveraged funds. And I had a question, perhaps this
- 17 is an inappropriate place to mention this, and forgive me
- 18 if it is, but my understanding is that the Public
- 19 Utilities Commission provides repair dollars in three-
- 20 year cycles to use utilities for utility programs related
- 21 to energy efficiency, and I've done a little bit of
- 22 inquiring as to how those funds get allocated and stuff,
- 23 but it seems like, at least I'm finding it sort of
- 24 complex and difficult to figure out, you know, how that
- 25 works, and I wonder if perhaps -- I don't know if there's

- 1 anybody there from the PUC, or whether folks from CEC
- 2 have some insight on this, but whether some of that
- 3 funding could actually be potentially opened up for
- 4 research or other initiatives that might kind of expand
- 5 the scope beyond the more traditional utility programs.
- 6 MR. LEAON: Let me ask our utility reps if they
- 7 can respond to that.
- 8 MR. HIGA: I'm not sure if I completely
- 9 understand the question. Its funding for doing more than
- 10 the traditional incentive programs or ...?
- 11 DR. ARMEL: No, I think this is funding that is
- 12 typically earmarked and there's three-year cycles, and I
- 13 guess we're about half way through one currently, and
- 14 there's talk of having a lag time of about a year when
- 15 this cycle ends, before the next cycle begins, and
- 16 there's discussion now between the utilities and the PUC
- 17 about for the next cycle where those funds should get
- 18 allocated for a utility program. I apologize that I
- 19 don't have a way of referring to it as a specific type of
- 20 program, I'm not -- the process is somewhat enigmatic to
- 21 me. This is for marketing dollars, education dollars
- 22 related to energy efficiency.
- 23 MR. HIGA: Right, well, there is, I think, I'm
- 24 not sure if you heard some of the previous presenters
- 25 from the CPUC, but there's a Workforce Education and

- 1 Training Program that currently exists that does address
- 2 a lot of these training types of issues. That being
- 3 said, you know, the next program cycle has -- the
- 4 planning for that has not begun yet, so I think any input
- 5 that you have to what the Workforce Education Training
- 6 Program consists of and what are its program elements,
- 7 I'm sure that there will be, you know, input would be
- 8 welcome. I'm sure there will be upcoming workshops that
- 9 will be noticed, you know, in the upcoming future, and I
- 10 don't know if there's anybody from the CPUC on the line
- 11 right now that also wants to address that.
- MR. STRAIT: Cathy Fogel did have her hand
- 13 raised, she may have some contribution to this subject.
- MS. FOGEL: Can you hear me?
- MR. STRAIT: Yes, we can.
- 16 MS. FOGEL: Yeah, thanks for your question,
- 17 Carrie. I can give a brief response and I'm happy to
- 18 meet with you separately, as well. Yeah, I work at the
- 19 CPUC and I find the whole process fairly confusing, as
- 20 well, so you know, I'm joking a little bit, but it is
- 21 something that is a problem because it's so challenging
- 22 for people who aren't deep into it to understand this,
- 23 but as Randall mentioned, we are beginning to plan for
- 24 our sort of guidance that the CPUC will be providing for
- 25 the next program cycle, and most of the what's called

- 1 "Record Development" needs to take place in about the
- 2 next nine months for that, which means new ideas, report
- 3 information, data that would inform the Commissioners
- 4 guidance need to get formally into our proceeding record
- 5 in that time, so it's really what the previous speaker
- 6 was talking about, how the marketplace moves just much
- 7 more quickly than the regulatory framework is really able
- 8 to accommodate, and this issue of, you know, particularly
- 9 the behavior programs, which is really just kind of
- 10 exploding what's possible coupled with competing
- 11 technology. You know, I think it's a challenge for us to
- 12 figure out how to get these innovative programs assessed
- 13 and funded, whether that's via the utility programs, or
- 14 via third-party programs, or via some other mechanism,
- 15 there's also potentially -- research could potentially be
- 16 conducted on behavior-based programs in the utilities'
- 17 emerging technologies programs.
- 18 And I kind of had a question back for Carrie,
- 19 although I don't want to dominate the conversation of how
- 20 are some of these behavior change programs -- how do the
- 21 researchers currently see them to be best implemented?
- 22 Because utilities, not to mention the regulatory
- 23 agencies, are pretty slow moving beasts, we're not really
- 24 known particularly for innovation over the years, so do
- 25 you foresee these being implemented by utilities, or by

- 1 other third parties? And do you see them mostly as
- 2 marketing and education initiatives, as you mentioned?
- 3 Or getting into this [quote unquote] "savings framework"
- 4 that the CPUC currently has for utilities, in which we
- 5 have adopted goals, savings goals that they have to meet?
- 6 DR. ARMEL: I would think it could definitely be,
- 7 especially with the measurement component, related to the
- 8 work that I mentioned, that work that has a strong
- 9 measurement component could fit into the latter type of
- 10 programs that you referred to. The utilities, I agree
- 11 that they're slow moving, we've had a lot of interactions
- 12 with them and there's been strong interest, but our stuff
- 13 seems a little bit outside the envelope to some, I guess.
- 14 So I don't know, there's been some interest in perhaps
- 15 pilot programs with the utilities, we're independently
- 16 doing kind of direct recruitment to folks, tapping into
- 17 diffusion channels like the Girl Scouts and other
- 18 channels. I think there could be a role for energy
- 19 services companies, or companies like EnerNOC and CPower,
- 20 so I think there's a variety of channels, and I don't
- 21 know whether the PUC funds are tied specifically to the
- 22 utilities, or whether they're open to other channels, as
- 23 well.
- 24 MS. FOGEL: Yeah, they are open to other
- 25 channels, as well. Twenty percent -- currently, the

- 1 policy rules state that 20 percent of the funding needs
- 2 to go to non-utility programs.
- 3 DR. ARMEL: Okay, well, maybe we should continue
- 4 the conversation offline and I would be curious because
- 5 I've come across also some other entities doing really
- 6 interesting stuff that might be useful for you to be
- 7 aware of, maybe we could organize like a lunch meeting
- 8 where I could get some groups together to come up and do
- 9 presentations to expose the PUC, if that would be useful.
- 10 I'm not sure of the best mechanism, but perhaps we could
- 11 have another call and you could make some
- 12 recommendations?
- MS. FOGEL: Sure, that would be great.
- DR. ARMEL: Super.
- 15 MR. LEAON: Okay, thank you. All right, let me
- 16 ask if there are any comments in the room at this point?
- 17 Okay, if you could state your name, organization, and
- 18 please provide a business card for the Court Reporter.
- 19 MR. RAYMER: Okay, thank you. I'm Bob Raymer,
- 20 Senior Engineer with the California Building Industry
- 21 Association. And my comments will focus on plug load,
- 22 but then lapse back into energy efficiency and zero net
- 23 energy. One of the cost concerns that we have right now
- 24 is, under current technologies, there's rather high costs
- 25 projected for reaching Zero Net Energy. And a big chunk

- 1 of that is the size of the PV system that needs to be put
- 2 on the roof to account for the plug load. And so,
- 3 obviously it behooves us over the next eight to 10 years
- 4 to do everything we can to reduce that plug load.
- Now, getting into the energy efficiency
- 6 standards, we're in the middle of probably historically
- 7 large increase in stringency that the CEC will probably
- 8 be proposing quite shortly. And we're seeing out in the
- 9 field compliance with the performance methodology, the
- 10 performance compliance approach for the standards is by
- 11 far the one that is most commonly used. I would have to
- 12 say that probably 98 percent of the homes that comply
- 13 with the Energy Regs use the performance approach.
- One of the things we need when we're looking at
- 15 the Standards is we need compliance options. Now, the
- 16 measures that create that performance budget that we have
- 17 to meet are arrived at through looking at what is put
- 18 into the proscriptive packages for each of the 16 climate
- 19 zones, and I know this kind of gets into the minutiae of
- 20 the Energy Efficiency Standards, but in this particular
- 21 go-round, a great many of the compliance options that
- 22 we've been using for the last three to six years are
- 23 being moved out of the compliance option column and over
- 24 into the proscriptive column. And so, although you can
- 25 still do tradeoffs, there's far less over in the

- 1 compliance option column that we can tradeoff anymore.
- 2 And so, to the extent that the Energy Commission can
- 3 somehow quantify certain benefits of either appliance
- 4 efficiency on things that were not currently regulated,
- 5 or plug load methodology systems, plug load reduction
- 6 devices, there could be a great market right away within
- 7 the next two to two and a half years. In essence,
- 8 industry is going to want to reduce that plug load, it is
- 9 in our best interest from a cost perspective to reduce
- 10 the plug load. And if we can somehow early on through
- 11 the energy efficiency standards somehow get compliance
- 12 credit for tradeoffs with other provisions that we may
- 13 not be able to do for the marketable home, that's going
- 14 to be very helpful. And so there is a marvelous
- 15 opportunity within just the next 24 months. So, with
- 16 that, we'd be very supportive of that kind of effort.
- 17 MR. LEAON: Thank you. Other comments in the
- 18 room?
- 19 MR. NESBITT: George Nesbitt. So plug loads have
- 20 definitely been an ever increasing problem and a
- 21 difficult one to address. Some additional items. Home
- 22 exercise equipment, of course, it's also in places people
- 23 pay to go to, to exercise, so you've got treadmills with
- 24 fans that you can obviously hear running, even though no
- 25 one is on the treadmill and hasn't been on them for a day

- 1 or more, who knows? And also, you know, we now have home
- 2 theaters in every room, so the media centers, the DVRs,
- 3 the TiVos, the satellite boxes, and one is not enough,
- 4 we've got to have one everywhere, so it's a big problem.
- 5 So we need to address it as we can from Title 20, you
- 6 know, basically anything that is plugged in shouldn't be
- 7 using energy when it's not producing anything of value.
- 8 I mean, there's just really no reason. From the
- 9 behavior, or what I sometimes try to refer to as
- 10 "operational" comes to -- none of my plug loads are
- 11 plugged in unless I'm actually doing something with them,
- 12 so if I'm not charging my cell phone, my computer, what
- 13 not, it's usually not plugged in. And that comes down to
- 14 a human choice and a human action, which is harder, but I
- 15 think there's a lot of effort in some of these feedback
- 16 things that will help.
- 17 I think lighting is in some ways residentially an
- 18 under-appreciated increasing load. My house has one
- 19 light fixture in the center of every room, I cannot go
- 20 into a house that's been remodeled that does not have a
- 21 half a dozen recessed lights in the kitchen, or the
- 22 bathroom, or the living room, or the dining room, or the
- 23 master bedroom suite. So, I think as part of the Code
- 24 update, I think there is more wattage in the average
- 25 California kitchen from the survey they did than there is

- 1 total wattage in my whole house. So, I'm 100 percent
- 2 CFL. I haven't figured out how to disable my oven light
- 3 yet, I just haven't been able to get the damn thing apart
- 4 to disable it. And through the day, people have said, to
- 5 get to net zero, we obviously need to consider more than
- 6 just the physical building, it's everything in it.
- 7 So under our definition of "Net Zero," which we
- 8 defined three years ago on HERS 2, we do include the plug
- 9 loads and the lighting. And we need to really make that
- 10 essentially the Code. I mean, we need to roll the rating
- 11 system into the full Code and include those plug loads
- 12 and the lighting and allow tradeoffs. Although,
- 13 currently you get no credit for having an energy
- 14 efficient top loading washing machine. And then we'll
- 15 have to ask the question if non-res has plug loads, but
- 16 there's nothing you can do to gain credit in it as far as
- 17 I know, so then the question will be do we need a way to
- 18 have credits. You know, what kind of technology or
- 19 systems would we allow that would generate some sort of
- 20 credit that somehow hopefully enables you to reduce your
- 21 plug loads? So that really needs to be a part of that.
- I think people think, well, Net Zero is -- it's
- 23 very abstract to everyone right now. My 1923 house
- 24 upgraded will only need about a .9 kilowatt PV system to
- 25 reach Net Zero under our definition, which is not

- 1 humongous, although to get there you've got to be at
- 2 least 50 percent above Code.
- 3 And then I think the other thing, you kind of
- 4 mentioned above Code programs. One of the difficulties I
- 5 think we have as we ratchet up the Code, we've also got
- 6 all these programs that are pushing beyond Code -- Green
- 7 rating, the new CalGreen, various REACH Codes that are
- 8 allowing jurisdictions to adopt even greater levels of
- 9 above Code, and if we're going to ratchet up the Code by
- 10 30 percent, which really means for a lot of people we're
- 11 ratcheting it up by even more, and so at some point there
- 12 is no REACH. Because, like I say, I don't think you can
- 13 get above 75 percent above, I just -- I've done enough
- 14 modeling that at the moment there's just nothing more to
- 15 throw at it to get above that, so there is a limit to how
- 16 far above our current baseline we can get. And at some
- 17 level, we have to have some room above it if we're going
- 18 to have REACH Codes, or maybe then the Code just becomes
- 19 the bare minimum again, although we've just raised the
- 20 bar real far.
- MR. LEAON: Okay, thank you.
- 22 MR. STONE: Nehemiah Stone with Benningfield
- 23 Group. Something you said, Randall, really intrigued me
- 24 because I hadn't thought about it before, but it seems
- 25 pretty obvious; to the extent that California is

- 1 prevented by preemption from going beyond the appliance
- 2 standards, the Federal Appliance Standards, it's going to
- 3 be difficult to get to Net Zero. But it also started me
- 4 thinking, we were preempted from water heater standards
- 5 years ago when it was set really low at .52 energy
- 6 factor, and what we did in the Code, in the Building
- 7 Code, was to say, "Well, yeah, you can put that in, but
- 8 if you do that, you're going to have to put a blanket, an
- 9 insulating blanket on it." And that did not change the
- 10 appliance regulation, but it effectively changed what the
- 11 minimum water heater was that people installed.
- 12 The parallel here that I'm wondering about, if we
- 13 don't ask for any higher levels of efficiency for washers
- 14 and dryers and whatever else, but we do say, "If you're
- 15 going to sell them in California, they need to have
- 16 controls in them, Smart controls that will communicate
- 17 with a building EMS," that allow you to make the choice
- 18 to have it turned off when you don't want it on, then I'm
- 19 wondering if that is not in conflict with the Federal
- 20 preemption because we're not saying anything about the
- 21 efficiency, you can still operate that same efficient
- 22 equipment, it's just in California it has to be able to
- 23 be turned off if you choose to set your system up to do
- 24 that. I'm wondering if you can respond to that, Randall,
- 25 or if that has to be punted to the Energy Commission, and

- 1 particularly maybe to the attorney that is handling
- 2 waivers and preemption issues these days.
- 3 MR. LEAON: This is Mike, yeah, I think we would
- 4 have to look at that. It's an interesting concept and I
- 5 think it's one that is definitely worth investigation.
- 6 MR. HIGA: Yeah, I'll reiterate, you know, the
- 7 example that I had before is that, you know, on task
- 8 lighting, you know, we're trying to figure out a way to
- 9 regulate task lighting in offices and it's hard to do
- 10 that as a plug-in device, but one of the things we
- 11 thought about, and I worked in an office that had this,
- 12 and that is at night time, certain outlets were swept off
- 13 which the test lights were plugged into, so we want to --
- 14 and I just think that's good practice and has been good
- 15 practice for 20 plus years, so I think if we could
- 16 facilitate that type of control in offices in the Code, I
- 17 think that would be an opportunity. So, certainly the
- 18 water heater blanket is a good example. The other one is
- 19 the economize on air-conditioners. We cannot require
- 20 homes to have anything higher than a SEER 13 or you can't
- 21 have a home -- you have to make it comply with the SEER
- 22 13 air-conditioner. And the same goes for larger air-
- 23 conditioners, there's also efficiency limits on where you
- 24 can go, but in California, we could require economizers
- 25 to put on there. So we're looking at other ways of

- 1 retrofitting. As John knows, we're looking at putting on
- 2 variable speed drives on evaporator fans and
- 3 refrigeration units, and things like that. So I think --
- 4 the point, though, is we're looking at all possible ways
- 5 to drive down energy use and not run into preemption
- 6 issues. And I think there are some creative ways we can
- 7 do that, we need to explore that more.
- 8 MR. MCHUGH: Hi. My name is Jon McHugh.
- 9 Actually, some of the things that have just been
- 10 discussed are things that we're looking at right now for
- 11 the Title 24 Standards in regards to plug load controls,
- 12 so either scheduling controls, or other controls where
- 13 you have a single point of control that controls, you
- 14 know, half the plugs in the house. And I think this goes
- 15 back to what Bob is talking about, are that there are
- 16 additional opportunities and potentially tradeoffs. And
- 17 one of the issues with having additional control that I
- 18 think impacts potentially the appliance standards,
- 19 especially for a lot of consumer electronics that are
- 20 currently not covered, is the issue of what Dr. Li
- 21 brought up earlier about the issue of the clock, and the
- 22 issue is, you historically, "Oh, we've got to keep the
- 23 juice to our microwave, otherwise I'm going to have to
- 24 reset the clock and all the settings, and the VCR, and
- 25 everything else." And so, from a perspective of

- 1 appliance standards, I think that's actually a pretty
- 2 ripe opportunity to look at sort of the interaction
- 3 between exterior controls that might be applied through a
- 4 building standard that's actually providing intermittent
- 5 electricity, or intermittent power to the device, and
- 6 that it maintains all of its functions. And my
- 7 understanding is that there is currently a proposal in
- 8 front of Title 20 that removing the standards from
- 9 lighting controls, which used to be in Title 24 into
- 10 Title 20, and those have a series of requirements about
- 11 non-volatile memory that perhaps makes sense for a much
- 12 broader range of appliances beyond just lighting
- 13 controls.
- 14 MR. LEAON: Okay, thank you. Well, we're
- 15 approaching the end here. I would just like to remind
- 16 everyone that -- oh, Pat, I'm sorry, let's get to you
- 17 before I make a closing statement.
- 18 MR. EILERT: I'll be just really quick. You
- 19 know, preemption -- I just want to emphasize this issue
- 20 -- and you look at the example Kosta threw up a little
- 21 while ago which is we're sitting on a 45 lumen per watt
- 22 standard for general service lamps in 2018, that's sort
- 23 of ridiculous, okay, that and you can name sort of a
- 24 dozen other examples where we could go to more stringent
- 25 standards for various appliances and plug loads in the

- 1 state, sooner than that. It's a huge problem long term
- 2 and, you know, sooner or later every major end use is
- 3 going to be covered at the Federal level with sort of,
- 4 again, ties our hands here in California. So, we need to
- 5 develop some sort of collaborative between the State
- 6 utilities industry to figure out what we can do here in
- 7 California to maybe figure out some sort of approach
- 8 that's actually interesting to industry by, you know,
- 9 turning California into some sort of a policy laboratory
- 10 where -- and figure out what's the value to having a
- 11 state like California step out ahead of the nation in
- 12 terms of energy efficiency in more of a general sense and
- 13 not just on a measure-by-measure sense. We need to think
- 14 a little bit more broadly about this issue because, right
- 15 now, you know, we're really stuck, we're not going to get
- 16 to Zero Net Energy in a cost-effective manner and a lot
- 17 of the other state goals are going to be a lot harder to
- 18 reach their preemption, you know, the lighting goals, as
- 19 well.
- 20 MR. LEAON: Thank you, Pat. Okay, I want to
- 21 thank our panel members today, and I want to thank the
- 22 audience, those in the room and those on the phone. I
- 23 thought it was a very productive workshop today. I would
- 24 like to encourage Stakeholders to submit written
- 25 comments, they are due July 29th. The Workshop Notice has

- 1 the directions for how to submit your written comments.
- 2 Electronic comments have to be supported by 10 copies of
- 3 written comments, so take a look at the notice on
- 4 directions on how to do that.
- 5 I would also like to provide the audience a heads
- 6 up that we are -- the Energy Commission will be moving
- 7 forward with a new Scoping Order for developing Standards
- 8 for appliances, we're wrapping up the battery charger
- 9 proceeding, and we anticipate we'll be noticing the
- 10 formal rulemaking sometime next month, start the 45-day
- 11 public comment period for that, and we are also planning
- 12 on holding a Scoping Hearing sometime in August to
- 13 discuss which appliances should be addressed next in a
- 14 proceeding for new Standards. With that, that concludes
- 15 the workshop and, again, thank you everyone for
- 16 participating and -- well, I see we have one more
- 17 question in the room here. So let's go ahead and take
- 18 that.
- 19 MR. STRAIT: Cathy, your hand is still raised.
- 20 Di you have an additional comment you wanted to make?
- MS. FOGEL: No, not me.
- 22 MR. LAEON: All right, just checking. Thank you.
- 23 Okay, that concludes the workshop. Again, thank you,
- 24 everyone, for participating, in particular our panel
- members.

1	(Adjourned	at 4:55	p.m.)	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				

REPORTER'S CERTIFICATE

I do hereby certify that the testimony in the foregoing hearing was taken at the time and place therein stated; that the testimony of said witnesses were reported by me, a certified electronic court reporter and a disinterested person, and was under my supervision thereafter transcribed into typewriting.

And I further certify that I am not of counsel or attorney for either or any of the parties to said hearing nor in any way interested in the outcome of the cause named in said caption.

IN WITNESS WHEREOF,

I have hereunto set my hand this 16th day of November, 2011.

PETER PETTY CER**D-493 Notary Public