

DOCKETED

Docket Number:	03-AFC-02C
Project Title:	Los Esteros Phase II Compliance
TN #:	268416
Document Title:	Data Response Set 2A Tanager BESS
Description:	Data Response Set 2A Tanager BESS
Filer:	Jeffery D. Harris
Organization:	Climate Edge Law Group
Submitter Role:	Applicant Representative
Submission Date:	1/30/2026 3:49:53 PM
Docketed Date:	1/30/2026

**Petition for Modification
Tanager Battery Energy Storage System Project**

Data Response Set 2A

**Los Esteros Critical Energy Facility
03-AFC-02C**

Submitted to
California Energy Commission

Submitted by
Los Esteros Critical Energy Facility, LLC

January 2026

LOS ESTEROS CRITICAL ENERGY FACILITY (03-AFC-02C)

Petition for Modification- Tanager BESS Project

DATA RESPONSE SET 2

Los Esteros Critical Energy Facility, LLC, on behalf of Tanager Power, LLC, provides the following responses to the California Energy Commission (“CEC”) Staff’s Data Request Set 2. These responses address Data Requests A42 through A49, A53 through A58, and A63 for the Tanager Battery Energy Storage System (“BESS”) Project (“Project”).

The responses are grouped by individual discipline or topic area. Within each discipline area, the responses are presented in the same order as presented in CEC Staff’s Data Request Set 2¹ and are keyed to the Data Request numbers.

TRANSMISSION SYSTEM ENGINEERING

DATA REQUESTS

A42. Please provide the California Independent System Operator (California ISO) Queue Cluster 12 Phase II Interconnection Study Report. Please include the Area report, all the appendices, and attachments.

Response: The California Independent System Operator (“CAISO”) Queue Cluster 12 Phase II Interconnection Study Report contains confidential critical energy/electricity infrastructure information. The Project Owner will work with CEC Staff and the CAISO to arrange review of this information.

A43. Please provide any sensitivity studies (charging and discharging battery storage) conducted due to the interconnection of the battery storage.

Response: The CAISO determined that no sensitivity studies were required for the charge and discharge of the Tanager BESS Project.

A44. Please provide the existing generator tie-line information, including conductor type, current-carrying capacity, and any additional relaying systems for protection, as well as the necessary structures for integrating the battery storage.

Response: A new generation tie-line will be designed and constructed for the Tanager BESS Project. Pacific Gas and Electric (“PG&E”) will design the generation tie-line, which will connect the Tanager BESS Project to the 230kV side of the PG&E-owned substation.

A45. Please provide details of the Remedial Actions Schemes or Special Protection Schemes, if any, that are planned to be utilized due to the integration of the battery project.

Response: There are no Remedial Action Schemes or Special Protection Schemes that are planned to be utilized for the Tanager BESS Project.

A46. Please provide a detailed one-line diagram of the Los Esteros Substation after the interconnection of the proposed Tanager BESS project. Show all equipment

¹ TN: 267573.

LOS ESTEROS CRITICAL ENERGY FACILITY (03-AFC-02C)

Petition for Modification- Tanager BESS Project

DATA RESPONSE SET 2

ratings, including bay arrangement of the breakers, disconnect switches, and buses.

Response: A detailed one-line diagram of the Los Esteros Substation after the interconnection of the proposed Tanager BESS Project has been submitted under an Application for Confidential Designation as Confidential Attachment DR-A46.

A47. The project PTA proposed that a portion of the gen-tie line should be built underground past the Silicon Valley Power (SVP) switchyard. Please provide the routing information of the underground segment, the detailed duct bank information, cable sizes, and their current capacity

Response: The generation tie-line will be built underground from the northeast corner of the Los Esteros Critical Energy Facility site, turn east into Microsoft-owned property, and then turn west into PG&E property. PG&E will design and install the generation tie-line to match their specifications. As of now, the gen-tie line design has not been finalized; however, it will be designed and installed in compliance with all applicable laws, ordinances, regulations, and standards.

A48. Please provide any letters of approval that the SVP has issued, if any.

Response: No approval letters from SVP are necessary as the generation tie-line will fully avoid SVP property.

AIR QUALITY, PUBLIC HEALTH AND GREENHOUSE GAS EMISSIONS

OPERATIONAL IMPACTS ANALYSIS

DATA REQUEST

A49. Please provide a schedule for all construction, commissioning, and operation phases. This schedule should include a start and end date for all phases.

Response: The proposed schedule for construction, commissioning, and operation of the facility is provided in Table A49 below.

Table A49. Proposed Project Schedule

Project Phase	Start Date	End Date
Construction		
1) Site Preparation	12/1/2026	12/10/2026
2) Grading (site preparation, mass grading and excavation of detention basin)	12/11/2026	3/4/2027
3) Concrete and Battery Placement	3/5/2027	1/7/2028
4) Paving	1/8/2028	1/31/2028
Construction Completion		1/31/2028
Commissioning		
Operation	3/15/2028	---

LOS ESTEROS CRITICAL ENERGY FACILITY (03-AFC-02C)

Petition for Modification- Tanager BESS Project

DATA RESPONSE SET 2

BATTERY ENERGY STORAGE SYSTEM REFRIGERANT PROHIBITION

DATA REQUESTS

A50. Please provide manufacturer specifications for the BESS cooling system that detail the temperature at which the chilled fluid would exit the BESS cooling system.

Response: A response will be provided as part of Data Response Set 2B.

A51. Please demonstrate how the proposed refrigerant would comply with the HFC prohibitions stated in 17 CCR Section 95371, et seq.

Response: A response will be provided as part of Data Response Set 2B.

A52. If the proposed refrigerant does not comply with the HFC prohibitions stated in 17 CCR Section 95371, et seq., please propose an alternative refrigerant and provide an annual GHG emissions calculation due to refrigerant leakage (in metric tons of carbon dioxide equivalent).

Response: A response will be provided as part of Data Response Set 2B.

GREENHOUSE GAS THRESHOLDS OF SIGNIFICANCE

DATA REQUESTS

A53. Please describe how the project's climate impacts from GHGs would be considered less than significant when compared to the climate impact thresholds of significance listed in BAAD's 2022 CEQA Guidelines (Table 3-2, page 3-6).

Response: See response to Data Request A54 below. The Tanager BESS Project's potential climate impacts from greenhouse gas emissions ("GHGs") are less than significant when compared to the climate impact thresholds listed in Table 3-2 of the Bay Area Air District's ("Air District's") 2022 CEQA Guidelines. The Air District's 2022 climate impact thresholds were developed with California's long-term climate goal of carbon neutrality by 2045. The California Air Resources Board ("CARB") 2022 Scoping Plan provides a roadmap for California to achieve carbon neutrality by 2045 or earlier. The proposed project would be consistent with the CARB 2022 Scoping Plan goal of expanding battery energy storage to enhance grid reliability and support the integration of renewable energy sources. Please also see Attachment DR-A1, submitted as part of Data Response Set 1B (TN 267462.)

A54. If the project opts to use Option A of the climate impact thresholds of significance (Table 3-2, page 3-6 of BAAD's 2022 CEQA Guidelines) to show that climate impacts would be less than significant, please provide a description of how the project would implement each of the project design elements listed under Option A.

Response: Option A of the Air District's 2022 California Environmental Quality Act ("CEQA") Guidelines identifies two categories of design elements required for new land use projects: Buildings and Transportation.

LOS ESTEROS CRITICAL ENERGY FACILITY (03-AFC-02C)

Petition for Modification- Tanager BESS Project

DATA RESPONSE SET 2

Under the Buildings category, projects must not include natural gas appliances or natural gas plumbing in both residential and nonresidential development, and must not result in wasteful, inefficient, or unnecessary energy use. The Tanager BESS Project complies with these requirements because it would not include any natural gas appliances or natural gas infrastructure and would not result in wasteful or inefficient energy consumption. The proposed project would improve overall energy system efficiency by storing excess electricity during periods of low demand and delivering it during periods of higher demand, thereby supporting grid stability and optimizing the use of renewable energy resources.

Under the Transportation category, projects are expected to achieve a reduction in project-generated vehicle miles traveled (VMT) below the regional average in accordance with the California Climate Change Scoping Plan (currently a 15-percent reduction), or meet a locally adopted Senate Bill 743 VMT target consistent with the Governor's Office of Planning and Research's Technical Advisory: Evaluating Transportation Impacts in CEQA. Both the 2018 Technical Advisory and the City of San José's Transportation Analysis Handbook (2023) identify a small-project screening threshold of 110 daily trips, below which a detailed transportation analysis is not required and VMT impacts may be presumed to be less than significant.

The proposed project would generate fewer than two daily trips, which is substantially lower than the 110 daily trip screening threshold for detailed transportation analysis (see vehicle trip details in Data Response A63). Therefore, the project would result in a less-than-significant transportation impact. In addition, because the project does not include any off-street loading or parking spaces, CALGreen Tier 2 electric vehicle requirements do not apply.

A55. If the project opts to use Option B of the climate impact thresholds of significance (Table 3-2, page 3-6 of BAAD's 2022 CEQA Guidelines) to show that climate impacts would be less than significant, please complete the Development Compliance Checklist (Attachment A of the City of San José 2030 GHGRS) to show consistency with the City of San José 2030 GHGRS.

Response: Because the Tanager BESS Project meets the project design elements set forth in Option A of the Air District's 2022 CEQA Guidelines, further analysis of consistency with Option B is not required.

SULFUR HEXAFLUORIDE-INSULATED EQUIPMENT PHASE-OUT

BACKGROUND

According to the Amendments to the Regulation for Reducing Sulfur Hexafluoride (SF₆) Emissions from Gas Insulated Switchgear, which became effective on January 1, 2022, starting on the applicable phase-out dates, no person may acquire SF₆ gas-insulated equipment (GIE) for

LOS ESTEROS CRITICAL ENERGY FACILITY (03-AFC-02C)

Petition for Modification- Tanager BESS Project

DATA RESPONSE SET 2

use in California unless one of following provisions apply:

1. An SF₆ phase-out exemption was approved by the Executive Officer of the California Air Resources Board (CARB), or SF₆ GIE were acquired in response to a failure, pursuant to 17 CCR Section 95357.
2. The SF₆ GIE device was present in California and reported to CARB pursuant to 17 CCR Section 95355(a) for a data year prior to the applicable phase-out date listed in Table 1 or Table 2 of 17 CCR Section 95352.
3. The SF₆ GIE device was purchased by the GIE owner prior to the applicable phase-out date listed in Table 1 or Table 2 of 17 CCR Section 95352 for the relevant GIE characteristics and enters California no later than 24 months after the purchase date.
4. The SF₆ GIE manufacturer replaces a defective SF₆ GIE device under the terms of the manufacturer's warranty.

Page 2 of the petition states that proposed project would include the installation of a “new Tanager 34.5-/230kV switchyard located within the security fence of the LECEF”, but does not specify the type or number of switchgear equipment that would be installed. Staff need to confirm the type, size, and number of all SF₆ GIE proposed to be installed as part of the project to determine whether the Regulation for Reducing Sulfur Hexafluoride (SF₆) Emissions from Gas Insulated Switchgear (17 CCR Section 95350, et seq.) would be applicable to the project.

DATA REQUESTS

A56. If the project proposes to install any SF₆ GIE, please provide the voltage capacity, short-circuit current rating, and number of all SF₆ GIE proposed to be installed as part of the project

Response: Please see Data Response A6 submitted on October 3, 2025. (TN 266305.)

A57. Please confirm which of the four provisions the project owner would rely upon to comply with the current SF₆ phase-out regulation. If the project would not qualify for the exemption, please propose an alternative to SF₆.

Response: Please see Data Response A6 submitted on October 3, 2025. (TN 266305.)

A58. If the project owner intends to rely on Option 3 of the provisions shown above, please confirm whether the proposed circuit breakers and gas-insulated switchgear would be purchased prior to the applicable phase-out date and enter California no later than 24 months after the purchase date.

Response: Please see Data Response A6 submitted on October 3, 2025. (TN 266305.)

BATTERY ENERGY STORAGE SYSTEM DIRECT AND INDIRECT GREENHOUSE GAS EMISSIONS

DATA REQUESTS

A59. Please estimate the annual indirect GHG emissions (metric tons of CO₂e) resulting from energy losses due to transmission and charging/discharging cycles.

LOS ESTEROS CRITICAL ENERGY FACILITY (03-AFC-02C)

Petition for Modification- Tanager BESS Project

DATA RESPONSE SET 2

Please include assumptions that account for the degradation of round-trip efficiency over the project lifetime in the calculation of indirect GHG emissions.

Response: A response will be provided as part of Data Response Set 2B.

A60. Please estimate the annual indirect GHG emissions (metric tons of CO₂e) from auxiliary loads, such as BESS cooling. Please include assumptions that account for the BESS efficiency degradation over the project lifetime in the calculation of indirect GHG emissions.

Response: A response will be provided as part of Data Response Set 2B.

A61. If the BESS would be charged by the grid, please calculate the indirect GHG emissions associated with charging from the grid and displaced GHG emissions with discharging to the grid. Provide assumptions for the number of hours annually that the BESS could be charged by the grid, the GHG emission intensity factor from the electrical grid during charging and discharging considering carbon neutrality by 2045, and the efficiency degradation over the project lifetime in the calculation of indirect GHG emissions.

Response: A response will be provided as part of Data Response Set 2B.

A62. Please provide a copy of the spreadsheet file(s) containing the emissions calculations performed for A59, A60, and A61 with live, embedded calculations.

Response: A response will be provided as part of Data Response Set 2B.

PROJECT OPERATIONAL EMISSIONS

DATA REQUEST

A63. Please quantify all operational emissions resulting from project operational activities (including worker trips, trips from vendors and haul trucks, water usage, and any other activities expected to result in operational emissions) using the most recent version of CalEEMod and provide a JSON file containing the CalEEMod project used to quantify those operational emissions.

Response: Table A63-1 presents the estimated total and average daily emissions associated with project operational activities. Operational emissions were calculated using the most recent version of the CalEEMod, version 2022.1.1.35 (December 2, 2025). These estimates account for the vehicle trips anticipated for ongoing operations and maintenance of the proposed project. Area source emissions, such as the use of consumer products, periodic, limited architectural coatings and landscape equipment usage, were based on CalEEMod default data for the Project size. The proposed Project would not include other emissions sources, because it would not include any natural gas infrastructure or stationary sources, or result in an increase in water usage.

Daily operations are expected to require approximately six worker trips to and from the project site. Periodic maintenance activities, including maintenance of

LOS ESTEROS CRITICAL ENERGY FACILITY (03-AFC-02C)

Petition for Modification- Tanager BESS Project

DATA RESPONSE SET 2

the batteries, power conversion system, fire alarm systems, and protection and control equipment, would occur at varying intervals, ranging from semi-annual to annual, and would collectively generate approximately 440 trips per year. Assumptions and detailed modeling outputs are provided in Attachment DR-A63.

As shown in Table A63-1, the project's total annual and average daily operational emissions would be substantially below the Bay Area Air District ("Air District") thresholds of significance.

Table A63-1. Operational Total and Average Daily Emissions

Description	ROG	NOx	PM ₁₀	PM _{2.5}
Total Emissions (tons/year)	0.13	0.01	0.03	0.01
Annual Air District Threshold (tons/year)	10	10	15	10
Annual Threshold Exceedance?	No	No	No	No
Average Daily Emissions (pounds/day)	0.70	0.05	0.14	0.04
Average Daily Air District Threshold (pounds/day)	54	54	82	54
Average Daily Threshold Exceedance?	No	No	No	No

Notes: ROG = reactive organic gases; NOx = nitrogen oxides; PM₁₀ = particulate matter less than 10 micrometers in diameter; PM_{2.5} = particulate matter less than 2.5 micrometers in diameter; Air District = Bay Area Air District.

Values rounded to two decimal places. Average daily emissions estimates calculated based on 365 operational days per year.

Refer to Attachment DR-A63 for assumptions and modeling output.

Source: Air District 2022

**LOS ESTEROS CRITICAL ENERGY FACILITY (03-AFC-02C)
PETITION FOR MODIFICATION - TANGER BESS PROJECT
DATA RESPONSE SET 2**

CONFIDENTIAL ATTACHMENT DR-A46

(SUBMITTED SEPARATELY)

**LOS ESTEROS CRITICAL ENERGY FACILITY (03-AFC-02C)
PETITION FOR MODIFICATION - TANGER BESS PROJECT
DATA RESPONSE SET 2**

ATTACHMENT DR-A63

Tanager Power LLC Battery Energy Storage System Detailed Report

Table of Contents

1. Basic Project Information

1.1. Basic Project Information

1.2. Land Use Types

1.3. User-Selected Emission Reduction Measures by Emissions Sector

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

2.5. Operations Emissions by Sector, Unmitigated

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

4.3. Area Emissions by Source

4.3.1. Unmitigated

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

5.10. Operational Area Sources

5.10.1. Hearths

5.10.2. Architectural Coatings

5.10.3. Landscape Equipment

5.11. Operational Energy Consumption

5.11.1. Unmitigated

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

5.13. Operational Waste Generation

5.13.1. Unmitigated

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

5.16.2. Process Boilers

5.17. User Defined

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

6.2. Initial Climate Risk Scores

6.3. Adjusted Climate Risk Scores

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

7.2. Healthy Places Index Scores

7.3. Overall Health & Equity Scores

7.4. Health & Equity Measures

7.5. Evaluation Scorecard

7.6. Health & Equity Custom Measures

8. User Changes to Default Data

8.1. Justifications

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Tanager Power LLC Battery Energy Storage System
Operational Year	2028
Lead Agency	—
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	3.0
Precipitation (days)	31
Location	800 Thomas Foon Chew Way, San Jose, CA 95134, USA
County	Santa Clara
City	San Jose
Air District	Bay Area AQMD
Air Basin	San Francisco Bay Area
TAZ	1796
EDFZ	1
Electric Utility	Pacific Gas & Electric Company
Gas Utility	Pacific Gas & Electric
App Version	2022.1.1.35

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
User Defined Industrial	1.00	User Defined Unit	21	23,750	0.00	0.00	—	—

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	0.81	0.79	0.05	1.5	< 0.005	< 0.005	0.14	0.14	< 0.005	0.04	0.04	0.00	147	147	< 0.005	< 0.005	0.42	149
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	0.62	0.62	0.05	0.45	< 0.005	< 0.005	0.14	0.14	< 0.005	0.04	0.04	0.00	134	134	< 0.005	0.01	0.01	136
Average Daily (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	0.71	0.70	0.05	0.96	< 0.005	< 0.005	0.14	0.14	< 0.005	0.03	0.04	0.00	137	137	< 0.005	0.01	0.18	139
Annual (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	0.13	0.13	0.01	0.17	< 0.005	< 0.005	0.02	0.03	< 0.005	0.01	0.01	0.00	23	23	< 0.005	< 0.005	0.03	23

2.5. Operations Emissions by Sector, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Sector	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	0.05	0.04	0.04	0.51	< 0.005	< 0.005	0.14	0.14	< 0.005	0.04	0.04	—	143	143	< 0.005	< 0.005	0.42	145

Tanger Power LLC Battery Energy Storage System Detailed Report, 12/3/2025

Area	0.76	0.75	0.01	1.0	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	4.2	4.2	< 0.005	< 0.005	—	4.3
Energy	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Water	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Waste	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	0.81	0.79	0.05	1.5	< 0.005	< 0.005	0.14	0.14	< 0.005	0.04	0.04	0.00	147	147	< 0.005	< 0.005	0.42	149
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	0.05	0.04	0.05	0.45	< 0.005	< 0.005	0.14	0.14	< 0.005	0.04	0.04	—	134	134	< 0.005	0.01	0.01	136
Area	0.58	0.58	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Energy	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Water	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Waste	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	0.62	0.62	0.05	0.45	< 0.005	< 0.005	0.14	0.14	< 0.005	0.04	0.04	0.00	134	134	< 0.005	0.01	0.01	136
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	0.05	0.04	0.05	0.45	< 0.005	< 0.005	0.14	0.14	< 0.005	0.03	0.04	—	135	135	< 0.005	0.01	0.18	137
Area	0.67	0.66	< 0.005	0.51	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	2.1	2.1	< 0.005	< 0.005	—	2.1
Energy	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Water	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Waste	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	0.71	0.70	0.05	0.96	< 0.005	< 0.005	0.14	0.14	< 0.005	0.03	0.04	0.00	137	137	< 0.005	0.01	0.18	139
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	0.01	0.01	0.01	0.08	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	—	22	22	< 0.005	< 0.005	0.03	23
Area	0.12	0.12	< 0.005	0.09	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	0.35	0.35	< 0.005	< 0.005	—	0.35
Energy	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Water	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Waste	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	0.13	0.13	0.01	0.17	< 0.005	< 0.005	0.02	0.03	< 0.005	0.01	0.01	0.00	23	23	< 0.005	< 0.005	0.03	23

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Mobile source emissions results are presented in Sections 2.6. No further detailed breakdown of emissions is available.

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00	
Total	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00	
Total	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00	
Total	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00	

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00

4.3. Area Emissions by Source

4.3.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Source	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Consumer	0.51	0.51	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Architectural Coatings	0.07	0.07	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Landscape Equipment	0.18	0.17	0.01	1.0	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	4.2	4.2	< 0.005	< 0.005	—	4.3
Total	0.76	0.75	0.01	1.0	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	4.2	4.2	< 0.005	< 0.005	—	4.3
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Consumer Products	0.51	0.51	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Architectural Coatings	0.07	0.07	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	0.58	0.58	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Consumer Products	0.09	0.09	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Architectural Coatings	0.01	0.01	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Landscape Equipment	0.02	0.02	< 0.005	0.09	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	0.35	0.35	< 0.005	< 0.005	—	0.35
Total	0.12	0.12	< 0.005	0.09	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	0.35	0.35	< 0.005	< 0.005	—	0.35

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e

Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetation	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
------------	-----	-----	-----	----	-----	-------	-------	-------	--------	--------	--------	------	-------	------	-----	-----	---	------

Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Species	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Total all Land Uses	13	13	13	4,820	196	196	196	71,571

5.10. Operational Area Sources

5.10.1. Hearths

Land Use	Hearth Type	Unmitigated (number)	Mitigated (number)
User Defined Industrial	Wood Fireplaces	0	0
User Defined Industrial	Gas Fireplaces	0	0
User Defined Industrial	Propane Fireplaces	0	0
User Defined Industrial	Electric Fireplaces	0	0
User Defined Industrial	No Fireplaces	0	0
User Defined Industrial	Conventional Wood Stoves	0	0
User Defined Industrial	Catalytic Wood Stoves	0	0
User Defined Industrial	Non-Catalytic Wood Stoves	0	0
User Defined Industrial	Pellet Wood Stoves	0	0

5.10.2. Architectural Coatings

—	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
undefined	0.00	0.00	35,625	11,875	—

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBtu/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBtu/yr)
User Defined Industrial	0.00	204	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
User Defined Industrial	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
User Defined Industrial	0.00	0.00

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

5.16.2. Process Boilers

5.17. User Defined

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
--------------------------	----------------------	---------------	-------------

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
-----------	--------	------------------------------	------------------------------

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	12	annual days of extreme heat
Extreme Precipitation	2.6	annual days with precipitation above 20 mm
Sea Level Rise	—	meters of inundation depth
Wildfire	0.00	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about $\frac{3}{4}$ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	—
AQ-Ozone	15
AQ-PM	19

AQ-DPM	29
Drinking Water	39
Lead Risk Housing	51
Pesticides	0.00
Toxic Releases	30
Traffic	94
Effect Indicators	—
CleanUp Sites	99
Groundwater	94
Haz Waste Facilities/Generators	93
Impaired Water Bodies	92
Solid Waste	100
Sensitive Population	—
Asthma	38
Cardio-vascular	40
Low Birth Weights	99
Socioeconomic Factor Indicators	—
Education	73
Housing	24
Linguistic	—
Poverty	28
Unemployment	36

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	—
Above Poverty	65.64865905

Employed	58.03926601
Median HI	67.43231105
Education	—
Bachelor's or higher	46.42627999
High school enrollment	100
Preschool enrollment	71.06377518
Transportation	—
Auto Access	50.77633774
Active commuting	35.32657513
Social	—
2-parent households	66.12344412
Voting	58.42422687
Neighborhood	—
Alcohol availability	48.03028359
Park access	58.14192224
Retail density	62.49197998
Supermarket access	14.28204799
Tree canopy	39.85628128
Housing	—
Homeownership	46.75991274
Housing habitability	62.22250738
Low-inc homeowner severe housing cost burden	75.25984858
Low-inc renter severe housing cost burden	47.02938535
Uncrowded housing	42.73065572
Health Outcomes	—
Insured adults	53.9715129
Arthritis	0.0
Asthma ER Admissions	20.1

High Blood Pressure	0.0
Cancer (excluding skin)	0.0
Asthma	0.0
Coronary Heart Disease	0.0
Chronic Obstructive Pulmonary Disease	0.0
Diagnosed Diabetes	0.0
Life Expectancy at Birth	80.1
Cognitively Disabled	95.5
Physically Disabled	78.7
Heart Attack ER Admissions	65.7
Mental Health Not Good	0.0
Chronic Kidney Disease	0.0
Obesity	0.0
Pedestrian Injuries	96.4
Physical Health Not Good	0.0
Stroke	0.0
Health Risk Behaviors	—
Binge Drinking	0.0
Current Smoker	0.0
No Leisure Time for Physical Activity	0.0
Climate Change Exposures	—
Wildfire Risk	0.0
SLR Inundation Area	3.9
Children	55.0
Elderly	87.4
English Speaking	31.8
Foreign-born	65.1
Outdoor Workers	23.6

Climate Change Adaptive Capacity	—
Impervious Surface Cover	21.5
Traffic Density	88.2
Traffic Access	46.8
Other Indices	—
Hardship	40.7
Other Decision Support	—
2016 Voting	69.9

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	67
Healthy Places Index Score for Project Location (b)	64
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

8.1. Justifications

Screen	Justification
Land Use	Project acreage based on Section 2.2 (Project Description) of the Biological Environmental Setting Assessment, plus 0.5-mi gen-tie line with assumed 125 ft. ROW width and underground line disturbance area. Building square footage based on the size of the battery enclosures; no buildings.