DOCKETED	
Docket Number:	25-IEPR-04
Project Title:	Hydrogen
TN #:	265043
Document Title:	Presentation - SB 423 Firm Zero-carbon Resources Update
Description:	3A. Chie Hong Yee Yang, CEC
Filer:	Raquel Kravitz
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	7/28/2025 3:08:02 PM
Docketed Date:	7/28/2025

SB 423 Firm Zero-carbon Resources Update

Presenter: Chie Hong Yee Yang

July 29, 2025

SB 423 Background

- Requires the CEC to assess firm zero-carbon resources
- First Report published 3/21/2025
- Requires the CEC to update the assessment in each IEPR

Firm Zero-Carbon Resource Definition

Provides steady electricity output

- No stand-alone wind or solar resources
- Zero-carbon fuels storage (e.g., hydrogen storage, reservoirs)
- Natural gas pairing with CCUS allowable (100% capture rate or partial counting for less than 100%)
- Flex fuel acceptable
- Enables multi-day operations
 - Able to operate during subsequent days of an extreme event
 - Systems must be dispatchable or baseload not necessarily 24/7

Framework for IEPR update

Technology maturity

Evaluate
 market
 readiness of
 each resource

Recent innovations

• Highlight
advancements
that improve
performance,
reduce costs, or
enhance
scalability

Policy support

• Examine the regulatory and incentive landscape that promote deployment

• Evaluate the economic, technical, and regulatory hurdles that limit adoption

• Explore
pathways for
scaling
technologies,
achieving cost
reductions

Overview of Firm Zero-carbon Resources

Resources Reviewed	Technologies
Long-Duration Energy Storage	Flow, Iron Air, Zinc, thermal storage, Compressed Air Energy Storage – must be charged with clean energy
Hydropower	Pumped Storage Hydro, Large Hydro, Small Hydro
Geothermal	Conventional Hydrothermal, Enhanced Geothermal Systems
Bioenergy	Thermochemical (Gasification and Pyrolysis), Anaerobic Digestion, and Landfills
Hydrogen	Fuel Cells, Combustion Turbines, Reciprocating Engines, Non-Combustion and Non-Fuel Cell Gas Fueled Generators, Hydrogen Storage
Generation with Carbon Capture	Point Source Capture
Fission	Small Modular Reactors
Fusion	Inertial Confinement Fusion, Magnetic Confinement Fusion

Long-Duration Energy Storage

Early commercial; pilot scale (1-10 MW)

Iron-air, zinc hybrid cathode, flow batteries, thermal storage

AB 209, CPUC Central Procurement, DOE LDES Earthshot

High capital costs, limited bankability

high potential during multi-day net-peak events or low renewables

Geothermal

Conventional – commercial; enhanced geothermal – demonstration

EGS innovations - FORGE project, horizontal drilling, reservoir monitoring

CPUC long-term procurement order, POU decarbonization mandates, DOE Geothermal Earthshot

Site geology, resource characterization and high upfront costs, long lead times (7–10 years), transmission access limits

EGS could unlock 100+ GW nationwide; significant potential in Imperial Valley

Bioenergy

RNG-steam methane reformation and landfill gas; gasification; methane pyrolysis

Biochar production, modular biomass gasifiers, co-firing potential with CCS

RPS eligibility, Cap-and-Trade, LCFS pathways, potential CCS stacking

Feedstock supply chain, air quality impacts, other uses

Net-negative carbon with CCS, flexible siting, forest and ag waste utilization

Generation with Carbon Capture

Post-combustion combined-cycle - commercial

Absorption, adsorption, membranes, cryogenic

Federal 45Q tax credits, LCFS credits, SB 1314 (capture limits), DOE CCS hubs

High cost, siting risk, public acceptance, infrastructure needs (CO2 transport)

CCS for industrial & power sectors; potential synergy with bioenergy for net-negative emissions

Small Modular Reactors

Pre-commercial; licensing or demonstration stage.

Natrium sodium-cooled design, pressurized light water SMRs

DOE ARDP funding, NRC pre-licensing pathway, federal loan support

California nuclear moratorium, waste handling, public acceptance

Modular scalability, hydrogen co-production, colocation with renewables or industry

Costs – Utility-Scale Battery Storage

Source: 2024 NREL ATB

Preliminary Takeaways

- Continue Investment in Demonstration and Early Deployment
- Certain Technologies Require Broader Coordination
- Coordinate with Permitting Authorities on Emerging Technologies

Thank you!