| DOCKETED         |                                                           |  |  |  |  |  |
|------------------|-----------------------------------------------------------|--|--|--|--|--|
| Docket Number:   | 23-IEPR-03                                                |  |  |  |  |  |
| Project Title:   | Electricity and Gas Demand Forecast                       |  |  |  |  |  |
| TN #:            | 260155                                                    |  |  |  |  |  |
| Document Title:  | Presentation - 2023 Demand Scenarios Project Introduction |  |  |  |  |  |
| Description:     | N/A                                                       |  |  |  |  |  |
| Filer:           | Bryan Hsieh                                               |  |  |  |  |  |
| Organization:    | California Energy Commission                              |  |  |  |  |  |
| Submitter Role:  | Commission Staff                                          |  |  |  |  |  |
| Submission Date: | 11/19/2024 10:01:00 AM                                    |  |  |  |  |  |
| Docketed Date:   | 11/19/2024                                                |  |  |  |  |  |

# **CEC Demand Scenarios Project**



Anitha R. Rednam, P.E.

Project Manager

November 20, 2024



**AAEE** – Additional Achievable Energy Efficiency **AAFS** – Additional Achievable Fuel Substitution **Ag + WP** – Agriculture and Water Pumping **BTM** – Behind-the-meter **CAISO** – California Independent System Operator **CARB** – California Air Resources Board **CEC** – California Energy Commission **Comm** - Commercial **DER** – Distributed Energy Resource **dGen** – Distributed Generation Model **DSM**- Demand Scenarios Model **FSSAT** – Fuel Substitution Scenario Analysis Tool **GHG** – Greenhouse Gas H2 – Hydrogen

**IEPR** – Integrated Energy Policy Report Ind – Industrial **IOU** – Investor-Owned Utilities **LADWP** – Los Angeles Department of Water and Power **OGV** – Ocean-Going Vessel **PGE** – Pacific Gas & Electric **PV** – Photovoltaics (usually rooftop) **POU** – Publicly-Owned Utilities **Res** - Residential SCE – Southern California Edison **SDGE** – San Diego Gas and Electric **TE** – Transportation Electrification **TCU** – Transportation, Communications, and Utilities



- Expand CEC demand assessments using forecasting techniques
- Assess GHG associated with energy demand
- Increase collaboration and data sharing among CEC, CPUC, and CARB to reduce unnecessary uncertainty caused by data limitations.
- Gain insight for potential legislative, regulatory, or programmatic initiatives



#### **CEC Demand Forecasting**

- Electric energy and hourly loads, 15 years forward, used by CPUC and CAISO for system planning
- Natural gas forecast usage by CPUC is evolving
- Transportation fuel demand forecasts evolving to address electrification and the annual energy and hourly load implications

#### **CEC Demand Scenarios**

- Modeling addresses all fuel types and end use sectors
- CEC forecasting and load modifier tools supplemented by other models
- Explore combinations of existing, expanded, and new policies to gain insights in advance of commitments

#### **CARB Scoping Plan**

- A set of GHG emission control measures that collectively achieve statutory GHG reduction goals
- Most individual control measures are aspirational targets
- Scope includes emissions from energy consumption and state's natural and working lands domains



| Project Aspect      | Description                                                                                                                                        |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Purpose             | Longer-term project using forecasting tools to explore potential policy and planning impacts on energy demand                                      |  |  |  |  |
| Time Horizon        | To 2050                                                                                                                                            |  |  |  |  |
| Scope               | All fuel types annually and electricity demand hourly                                                                                              |  |  |  |  |
| Number of Scenarios | Three primary scenario types with various sensitivities                                                                                            |  |  |  |  |
| Methods             | Use CEC demand forecast and load modifier projection tools, augmented by a modeling tool to provide complete coverage of all fuels and all sectors |  |  |  |  |
| Outputs             | Sectoral demand projections by fuel & utility planning area with corresponding GHG emissions                                                       |  |  |  |  |



- Demand Scenarios Model Development
- Design Framework for Scenarios and Sensitivities
- Develop Scenario Projections
  - Project annual energy demand for all fuel types, and annual GHG emissions, from 2023-2050 for each scenario, sector, and planning area combinations
  - Project hourly electric load from 2023-2050 for each scenario, sector, and planning area combinations

# Primary Scenario Types of the Demand Scenarios Project

#### **Reference Scenario (Not Part of SB 100)**

CEC-adopted 2023 IEPR planning demand forecast, extended to 2050

#### **Policy Scenario**

- > New policies in development or with a development pathway
- > Impacts of federal subsidies for industrial electrification and hydrogen use
- Three sets of projections used in SB 100
  - Policy Scenario
  - Policy Scenario (High DER/DF)
  - Policy Scenario (High Hydrogen Use in Transportation)

#### Enhanced Policy Scenario (Not Part of SB 100)

- > Additional standards, programs, policies and assumptions beyond the Policy Scenario
  - Pipeline Hydrogen Sensitivity has been developed



| Sectors                                   | In                        | puts                                                     | Electricity                                | Natural Gas | Traditional Fuels<br>In Transportation          | Traditional<br>Fuels Outside<br>Transportation |
|-------------------------------------------|---------------------------|----------------------------------------------------------|--------------------------------------------|-------------|-------------------------------------------------|------------------------------------------------|
| Residential-<br>Commercial-<br>Industrial | Baseline Forecast         |                                                          | Residential-Commercial-<br>IndustrialModel |             | N/A                                             |                                                |
|                                           | Energy Efficiency Impacts |                                                          | AAEE-AAFS Programmatic Tool                |             | N/A                                             |                                                |
|                                           | Fuel<br>Substitution      | Programmatic<br>Impacts                                  | AAEE-AAFS Programmatic Tool                |             | N/A                                             | Demand<br>Scenarios Model                      |
|                                           |                           | FSSAT<br>ModelingOf<br>Combustion<br>Control<br>Measures | FSSATTool                                  |             | N/A                                             | (DSM)                                          |
| Transportation                            | Baselin                   | eForecast                                                | Transportation Models                      |             | Transportation<br>models and post<br>processing | Ocean Going<br>Vessels                         |



| Sectors                        | Inputs                    | Electricity                                  | Natural Gas      | Traditional Fuels<br>In Transportation | Traditional<br>Fuels Outside<br>Transportation |  |
|--------------------------------|---------------------------|----------------------------------------------|------------------|----------------------------------------|------------------------------------------------|--|
| Agriculture &<br>Water Pumping | Baseline Forecast         | Agricult                                     | uralModel        | N/A                                    | Demand<br>Scenarios Model                      |  |
|                                | Energy Efficiency Impacts | AAEE-AAFS P                                  | rogrammatic Tool | N/A                                    |                                                |  |
| TCU                            | Baseline Forecast         | TCU Model                                    |                  | N/A                                    | (DSM)                                          |  |
| BTM PV-Storage                 | Baseline Forecast         | dGen, Title 24, Standalone<br>Storage Models |                  | N/A                                    | N/A                                            |  |





**Note**: Electricity, pipeline gas, and transportation fuels datasets from the CEC and datasets on other fuels (from EER) are aggregated and fed into the Integrated Energy Model (DS Model). The resulting outputs are then used to run the Emissions Modeling Tool.



|                  | Agriculture | Commercial | Industrial | Oil & Gas<br>Extraction | Petroleum<br>Refining | Residential | тси | Transportation |
|------------------|-------------|------------|------------|-------------------------|-----------------------|-------------|-----|----------------|
| Electricity      | CEC*        | CEC        | CEC        | CEC                     | CEC                   | CEC         | CEC | CEC            |
| Natural Gas      | CEC         | CEC        | CEC        | CEC                     | CEC                   | CEC         | CEC | CEC            |
| Diesel           | EP          | EP         | N/A        | EP                      | N/A                   | EP          | N/A | CEC*           |
| Gasoline         | EP          | EP         | EP         | N/A                     | N/A                   | N/A         | N/A | CEC            |
| Steam            | EP          | EP         | EP         | EP                      | EP                    | N/A         | EP  | N/A            |
| Biomass/<br>Wood | N/A         | EP         | N/A        | N/A                     | N/A                   | CEC         | N/A | N/A            |
| LPG              | N/A         | EP         | EP         | EP                      | N/A                   | CEC         | N/A | N/A            |
| Coal             | N/A         | N/A        | EP         | N/A                     | N/A                   | N/A         | N/A | N/A            |
| Hydrogen         | CEC         | N/A        | CEC        | CEC                     | EP                    | CEC         | N/A | CEC*           |
| Still gas        | N/A         | N/A        | N/A        | N/A                     | EP                    | N/A         | N/A | N/A            |



- Annual energy and hourly electricity load (with losses)
- Hourly loads for four additional POU planning areas (plus forecast's three IOUs)



# **Reference Scenario Key Characteristics**

- Baseline forecasts and load modifier adjustments are taken from 2023 IEPR (2023 Planning Forecast) for electricity, pipeline gas, and transportation fuels
  - > Other fuels projected from EER's Energy Pathways model
- Adjustments for Reference Scenario
  - Reduced refinery energy demand to reflect lower transportation demand



#### **Adjustments to the Reference Scenario**

- More aggressive energy efficiency and fuel substitution program impacts in buildings
- Industrial fuel substitution from pipeline gas to electricity or hydrogen based on federal incentives and tax credits
- Aviation fuel substitution to electricity, hydrogen, and SAF
- More electrification for off-road and freight
- Locomotive Electrification from the In-Use Locomotive Regulation
- BTM PV and BTM Storage are maintained at 2023 IEPR levels



#### **Adjustments to the Policy Scenario**

- Higher energy efficiency and fuel substitution in buildings
- 100 percent electrification of new buildings
- Higher levels of industrial fuel substitution
- Higher electrification of off-road vehicles and reduced LD VMT
- Higher use of electricity and hydrogen in aviation
- Additional BTM PV & Energy Storage



### Enhanced Policy Scenario Sensitivity- Pipeline Hydrogen Characteristics

- The assumptions of the Enhanced Policy scenario is the starting point for this sensitivity
- Hydrogen pipeline routes are assumed to connect large industrial customers in three regions.
- The mix of hydrogen sent through the pipelines using renewable electrolysis is assumed to increase over time.

# **Thank You!**

Questions?



Anitha Rednam

**Energy Assessments Division** 

Anitha.Rednam@energy.ca.gov