DOCKETED	
Docket Number:	22-OII-02
Project Title:	Gas Decarbonization
TN #:	259761
Document Title:	Presentation 3 CEC Winter Reliability Overview
Description:	N/A
Filer:	Jann Mitchell
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	10/30/2024 8:24:16 AM
Docketed Date:	10/30/2024

Overview of Winter 2024-2025 California Gas Reliability Assessment

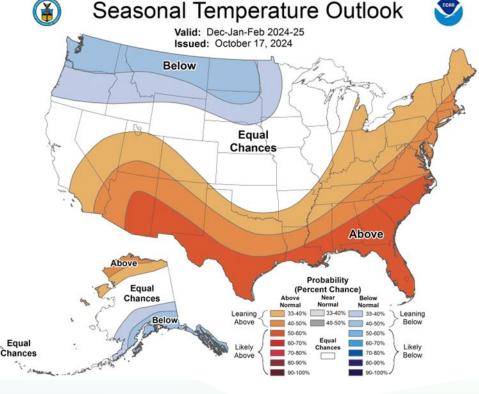
Jason Orta October 30, 2024

- PG&E and SoCalGas
 Curtailments to noncore customers
 PG&E First winter assessment
- Gas electricity system connections 37% of CA electricity supply Noncore curtailment impacts electricity reliability
- Core customers curtailment Last resort
- PG&E peak days- Independent Storage Providers (ISPs) storage withdrawals
- SoCalGas Recent restoration of capacity

Source: Northern Arizona University

- Modeling inputs and analytical tools
- PG&E and SoCalGas (different systems)
- Caveats

Unexpected events Where demand is distributed



Source: City of Santa Clarita

2024-2025 National Weather Service Forecast

- La Nina conditions
- Above and below normal temperatures across California
- Above average temperatures for Southern California

Points to mild winter conditions

Source: National Weather Service

CEC Modeling Inputs & Analytical Tools

Modeling Inputs Prepared by CEC Staff	PG&E	SoCalGas
Winter peak day forecast	\checkmark	\checkmark
Forecasts for average and cold winter months	\checkmark	\checkmark
Estimated Pipeline Capacity	\checkmark	\checkmark
Estimated Storage Field Withdrawal Capability	\checkmark	\checkmark

CEC Analytical Tools	CEC Modeling Inputs Used	PG&E	SoCalGas
Gas balance models	Peak day forecasts; Monthly forecasts; Pipeline capacity; Storage withdrawal capacity	\checkmark	\checkmark
Steady State Analysis of Hydraulic Models- Overall Capacity	Peak day forecasts; Pipeline capacity; Storage withdrawal capacity	\checkmark	\checkmark
Unsteady State Analysis of Hydraulic Models- Intraday and Linepack Assessments	Peak day forecasts; Pipeline capacity; Storage withdrawal capacity		\checkmark
Stochastic Analysis (Intraday)	Peak day forecasts	5	\checkmark

	Case 1: Cold Day	Case 2: Abnormal Peak Day Plus	
Demand, Withdrawal, and Net Shortfall	Core + Noncore 1-in-10 (MMcfd)	1-in-90 Core + Noncore 1-in-10 (MMcfd)	
Demand			
Core	2,429	2,939	
Noncore-NonEG	496	496	
EG	1,157	1,157	
Off System	+ <u>80</u>	+ <u>80</u>	
Total Demand	4,162	4,672	
Available Pipeline Capacity	- <u>2,927</u>	- <u>2,927</u>	
Needed Withdrawal	1,235	1,745	
Assumed Available Withdrawal (PG&E Storage)	- <u>794</u>	- <u>794</u>	
Net Shortfall (Does Not Include ISPs' Withdrawals)	=441	= <u>951</u>	

ISPs

- Some data not public
- PG&E can procure ISP gas to meet reliability standards
- Transactions w/marketers may not prioritize reliability
- Redwood constraint
- Some ISP withdrawals can serve local transmission systems directly

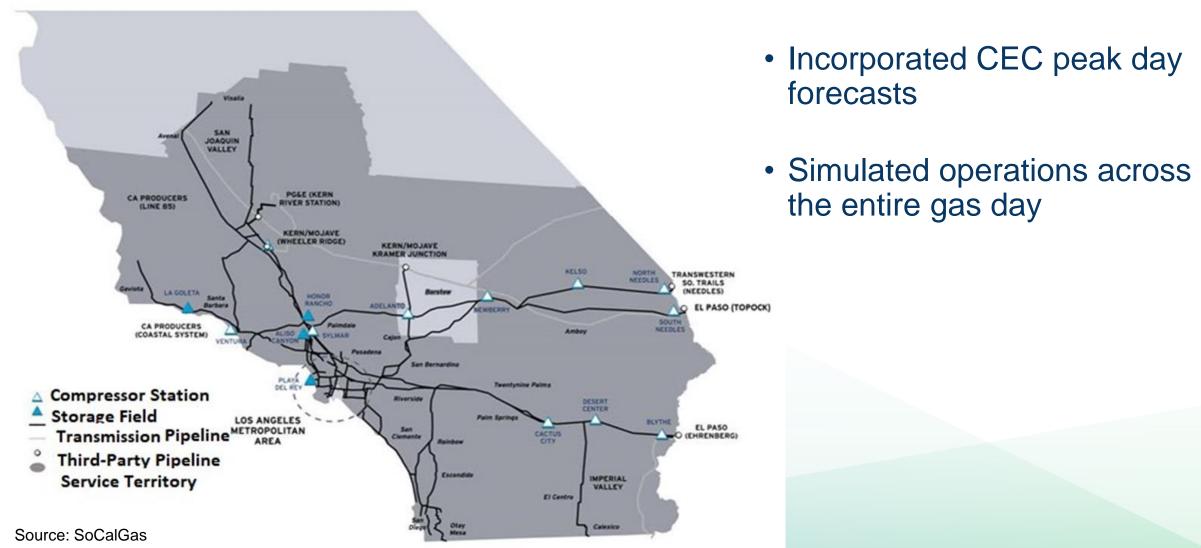
Operational Flow Orders & Emergency Flow Orders - system imbalance

 CEC peak day forecasts - hydraulic models of PG&E's Redwood & Baja systems

Withdrawals from ISPs can alleviate shortfalls

Source: CEC

- Curtailments preventable
- EG demand forecast considerations
- Withdrawals from ISPs feasible
- Significant pipe inventory at PG&E



Source: CEC

Demand Withdrawal and Nat	Case 1: Cold Day		Case 2: Extreme Peak Day Plus	
Demand, Withdrawal, and Net Shortfall	Core + Noncore (MMcfd		1-in-35 Core + Nor 10 (MMcfo	
Demand				
Core		2,834		2,987
Noncore-NonEG		595		595
EG	+	1,080	+	1,080
Total Demand		4,509		4,662
Available Pipeline Capacity	-	3,035	-	<u>3,035</u>
Needed Withdrawal		1,474		1,627
Assumed Available Withdrawal	-	1,900	-	1,900
Net Shortfall	=	0	=	0

- SoCalGas can meet demands w/o curtailments
- Pipeline and storage withdrawal capacity restorations have helped

Source: CEC

Thank you!