DOCKETED	
Docket Number:	99-AFC-08C
Project Title:	Blythe Energy Project Compliance & Blythe Transmission Line Modification
TN #:	258565
Document Title:	Blythe Energy Project - ACR, Part 1
Description:	Blythe Solar Project- 2023-2024 Annual Compliance Report, Part 1
Filer:	Ashley Gutierrez
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	8/19/2024 3:03:59 PM
Docketed Date:	8/19/2024

Annual Compliance Report Year 2023/2024 BE-GEN-07112010

David Gutierrez IV | Senior Manager, Operations & Maintenance AltaGas | Blythe Energy Inc. 760.921.1359 desk | 760.899.0565 mobile 385 North Buck Blvd Blythe, California 92225 760.921.1359 Email: david.gutierrez@altagas.ca

Ashley Gutierrez | Compliance Project Manager California Energy Commission Siting, Transmission, and Environmental Protection Division (STEP) Safety and Reliability Branch Compliance Monitoring and Enforcement Unit 715 P Street, MS-2000, Sacramento, CA 95814 Work/Cell: (916) 839-0400 Email: <u>ashley.gutierrez@energy.ca.gov</u>

Ashley Gutierrez,

Pursuant to the Commission Decision for the Blythe Energy Inc., enclosed please find the Annual Compliance Report for the reporting period July 1, 2023, through June 30, 2024.

REQUIRED DOCUMENTATION FOR ANNUAL COMPLIANCE REPORT

The items listed below correspond to required contents to be discussed in the annual compliance report and any required documentation is attached to this submittal.

Requirement #1: An updated compliance matrix which shows the status of all conditions of certification (fully satisfied and/or closed conditions do not need to be included in the matrix after they have been reported as closed);

Response: An updated compliance matrix containing the current status of all Conditions of Certification is attached.

Requirement #2: Summary of the current project operating status and an explanation of any significant changes to facility operations during the year;

Response: The Facility has had no significant changes with respect to Facility operations during the reporting period. The Facility total service hours were 5,189.67 from July 1, 2023, through June 30, 2024, with an availability factor of 83.75%. A summary of operating status for the prior year is shown in the table below.

<u>Plant</u>	Year	Month	Gross Production (MWh)	Net Production (MWh)
Blythe	2022	Jul	188,101.00	178,922.00
Blythe	2022	Aug	235,081.00	224,113.00
Blythe	2022	Sep	131,792.00	125,476.00
Blythe	2022	Oct	186,546.00	178,946.00
Blythe	2022	Nov	157,087.00	151,291.00
Blythe	2022	Dec	142,372.00	137,154.00
Blythe	2023	Jan	72,410.00	70,158.00
Blythe	2023	Feb	0	0
Blythe	2023	Mar	14,777.00	14,194.00
Blythe	2023	Apr	94,677.00	90,923.00
Blythe	2023	May	36,209.00	34,674.00
Blythe	2023	Jun	41,215.00	39,523.00

MONTHLY PRODUCTION (MWh)

MODIFICATIONS AND TESTING

The Facility completed CT12 Hot Gas Path and CT11 Combustion Inspection and ST10 Medium outages during January 22nd through March 14, 2024.

Outage projects consisted of the following

- CT 11 Minor Combustion Inspection
- CT 12 HGP Hot Gas Path
- ST Medium w/ replacement of TE and GE LP L-0 turbine blades
- BOP misc. projects, valves, pumps, motors, etc.
- CO catalyst and AIG cleaning
- SCR catalyst replacement
- Chiller system was thoroughly inspected and overhauled
- 10/11/12 Replace Obsolete Protection Relays Multi-year project
- Information Technology Upgrades
- Water Treatment Brine Concentrator routine annual maintenance

The facility conducted RATA / Compliance stack testing for on November 7 and 9, 2023. Results indicate all conditions were met; reports were submitted on December 26, 2023.

ENVIRONMENTAL HEALTH AND SAFETY

Facility staff worked 44,842 hours.

Blythe Energy is an approved Cal OSHA VPP facility. The site identifies opportunities for continuous improvement through the VPP program, examining safety policies, programs, procedures, and best practices.

Requirement #3: Documents required by specific conditions to be submitted along with the Annual Compliance Report. Each of these items must be identified in the transmittal letter, and should be submitted as attachments to the Annual Compliance Report;

Response: Required documents are submitted as attachments and are identified in the transmittal letter above.

Requirement #4: A cumulative listing of all post-certification changes approved by the Energy Commission or cleared by the CPM;

Response: None this reporting period.

Requirement #5: An explanation for any submittal deadlines that were missed, accompanied by an estimate of when the information will be provided;

Response: The 2023Q4 Quarterly Emissions Monitoring Report was submitted late. An attempt was made to submit the report prior to the 1/30/24 deadline; however, unbeknownst to Blythe, it was not transmitted due to an unexpected email related issue. MDAQMD notified Blythe that the report was not received in correspondence dated 2/26/24 and Blythe promptly submitted the report on 3/1/24.

Requirement #6: A listing of filings made to, or permits issued by, other governmental agencies during the year;

Response: The Mojave Desert Air Quality Management District (MDAQMD) issued an updated Title V Operating Permit (#130202262) on November 1st, 2023 and is attached to this submittal.

Requirement #7: A projection of project compliance activities scheduled during the next year;

Response: A projection of compliance activities anticipate to be to be conducted during the next year (i.e. July 2024 – June 2025) include the following summarized in the table below.

	Activities	Resources/Comments	Update
1	First Aid/AED Training	Training conducted in September 2023	Annual/ Next September 2024
2	Ammonia Safety training	Training for the operations and Maintenance team	3-year compliance training completed Aug 2021; Next Training is scheduled for Aug 2024
3	PSM/RMP Aqueous Ammonia 3- year compliance audits	Last 3-year audit is performed on 06/2024	Next 3-year audit is scheduled with ECE consulting on 06/2027

4	PSM/RMP Aqueous Ammonia 3- year compliance audits	Last 3-year audit is performed on 06/2024	Next 3-year audit is scheduled with ECE consulting on 06/2027
5	RATA and Compliance Testing	Montrose: November 2023	Annual event
6	Biological Monitoring Program	Submitted to: California Energy Commission.	Annual event
7	Semi-Annual Water Monitoring Report	Submitted to California Regional Water Quality Board	Semi-Annual and Annual

Requirement #8: a listing of the year s additions to the on-site compliance file, and

Response: No new additions

Requirement #9: An evaluation of the on-site contingency plan for unexpected facility closure, including any suggestions necessary for bringing the plan up to date [see General Conditions for Facility Closure addressed later in this section].

Response: The on-site contingency plan has been reviewed and administrative updates are being made to bring the plan up to date.

Requirement #10: a listing of complaints, notices of violation, official warnings, and citations received during the year; a description of the resolution of any complaints which have been resolved, and the status of any unresolved complaints.

Response: During the reporting period Blythe Energy Inc. received one Notice of Violation (NOV) for the late submittal of the 2023Q4 Emissions Monitoring Report as discussed above and found in the attached document.

Blythe Energy Inc.

th

Mike Ludwin <u>Mike.Ludwin@altagas.ca</u> Sr. Director Operations - Power, Blythe Energy Inc

Printed on 2/18/2024 11:32 AM

California Environmental Reporting System (CERS)

Blythe Energy Inc. (CERSID: 10321807)

Facility Information Submitted Feb 18, 2024

Submitted on 2/18/2024 11:22:36 AM by Jake Tilley of Blythe Energy Inc. (Blythe, CA.)

Business Activities

Business Owner/Operator Identification

Hazardous Materials Inventory Submitted Feb 18, 2024

Submitted on 2/18/2024 11:22:36 AM by Jake Tilley of Blythe Energy Inc. (Blythe, CA.)

- Hazardous Material Inventory (38)
- Site Map (Official Use Only)
 - Facility Location Map (Adobe PDF, 251KB)
 - Annotated Site Map (Official Use Only) (Adobe PDF, 1300KB)

Emergency Response and Training Plans Submitted Feb 18, 2024

Submitted on 2/18/2024 11:22:36 AM by Jake Tilley of Blythe Energy Inc. (Blythe, CA.)

- Emergency Response/Contingency Plan
 Emergency Response/Contingency Plan (Adobe PDF, 822KB)
- Employee Training Plan
 - Provided In Submital Element: Emergency Response and Training Plans

Aboveground Petroleum Storage Act Submitted Feb 18, 2024

Submitted on 2/18/2024 11:22:36 AM by Jake Tilley of Blythe Energy Inc. (Blythe, CA.)

- Aboveground Petroleum Storage Act Documentation
 - Petroleum Storage Tank Locations (detail map) (Adobe PDF, 459KB)
 - Aboveground Petroleum Storage Act Documentation (Adobe PDF, 199KB)
- APSA Facility Information

California Environmental Reporting System (CERS)

Site Identification

Blythe Energy Inc.

385 N Buck Blvd Blythe, CA 92225 County Riverside

Submittal Status

Submitted on 2/18/2024 by Jake Tilley of Blythe Energy Inc. (Blythe, CA.)

Hazardous Materials

Underground Storage Tank(s) (UST)

Does your facility have on site (for any purpose) at any one time, hazardous materials at or above 55 gallons for liquids, 500 pounds for solids, or 200 Yes cubic feet for compressed gases (include liquids in ASTs and USTs); or is regulated under more restrictive inventory local reporting requirements (shown below if present); or the applicable Federal threshold quantity for an extremely hazardous substance specified in 40 CFR Part 355, Appendix A or B; or handle radiological materials in quantities for which an emergency plan is required pursuant to 10 CFR Parts 30, 40 or 70?

Does your facility own or operate underground storage tanks?	No
Hazardous Waste	
Is your facility a Hazardous Waste Generator?	Yes
Does your facility treat hazardous waste on-site?	No
Is your facility's treatment subject to financial assurance requirements (for Permit by Rule and Conditional Authorization)?	No
Does your facility consolidate hazardous waste generated at a remote site?	No
Does your facility need to report the closure/removal of a tank that was classified as hazardous waste and cleaned on-site?	No
Does your facility generate in any single calendar month 1,000 kilograms (kg) (2,200 pounds) or more of federal RCRA hazardous waste, or generate in any single calendar month greater than 1 kg (2.2 pounds) of RCRA acute hazardous waste; or generate more than 100 kg (220 pounds) of spill cleanup materials contaminated with RCRA acute hazardous waste.	No
Is your facility a Household Hazardous Waste (HHW) Collection site?	No
Excluded and/or Exempted Materials	
Does your facility recycle more than 100 kg/month of excluded or exempted recyclable materials (per HSC 25143.2)?	No
Aboveground Petroleum Storage	
Does your facility own or operate aboveground petroleum storage tanks or containers AND: * have a total aboveground petroleum storage capacity of 1,320 gallons or more, OR * have one or more petroleum tanks in an underground area?	Yes
Regulated Substances	

Does your facility have Regulated Substances stored onsite in quantities greater than the threshold quantities established by the California Accidental Release prevention Program (CalARP)?

Additional Information

No additional comments provided.

Business Activities

CERS ID 10321807

EPA ID Number CAL000364934

Business Owner Operator

CERS ID 10321807

Facility/Site

Blythe Energy Inc.

385 N Buck Blvd Blythe, CA 92225

Submittal Status

Submitted on 2/18/2024 by Jake Tilley of Blythe Energy Inc. (Blythe, CA.)

Identification					
Blythe Energy Inc. Operator Phone (760) 921-1359	Business Phone (760) 922-9950	Business Fax (760) 922-6475	Beginning Date 2/29/2024 Dun & Bradstreet 058599884	Ending Date 3/1/2025 SIC Code 4911	Primary NAICS 221112
Facility/Site Mailing	Address		Primary Emergency	Contact	
385 N. Buck Blvd. Blythe, CA 92225			Mike Ludwin Title Senior Director Operati Business Phone (760) 921-1360	ons - Power 24-Hour Phone (760) 600-2103	Pager Number
Owner			Secondary Emergen	cy Contact	
AltaGas Ltd (760) 922-9950 385 N. Buck Blvd. Blythe, CA 92225			David Gutierrez Title Senior Manager, Opera Business Phone (760) 921-1359		Pager Number
Billing Contact			Environmental Cont	act	
Kris Kramer (760) 989-9327 385 N. Buck Blvd. Blythe, CA 92225	kris.kramer@altagas.	са	David Gutierrez (760) 921-1359 385 N. Buck Blvd. Blythe, CA 92225	david.gutierrez@al	tagas.ca
Name of Signer		Signer Title	o a constitue o Mainte	Document Prepar	er
David Gutierrez Additional Information		Senior Mar	nager, Operations & Maintena	ance Jake Tilley	
Locally-collected Fie					
Some or all of the follow	wing fields may be required	d by your local regulator(s).			
Property Owner AltaGas Ltd Phone (760) 922-9950 Mailing Address 385 N. Buck Blvd.			Assessor Parcel Number 824-101-021 Number of Employees 22 Facility ID FA0023213	r (APN)	

Blythe, CA 92225

		Hazardou	us Materials	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org. Blythe Facility Name Blythe 385 N Bu			Chemical Loca BOP Chen	tion nical Treatn	nent Area		CERS ID 10321807 Facility ID FA0023213 Status Submitted on 2/18/2024 11:22 AM			
				Quantities		Annual Waste	Federal Hazard		lazardous Component (For mixture only)	
DOT Code/Fire Haz. Class DOT: 8 - Corrosives (Liquids a Solids) Corrosive	Common Name Sodium Hypochlorite Solution CAS No 7681-52-9	Liquid A Type r	Max. Daily 6000 Storage Container Aboveground Tanl netalic Drum, Toto Days on Site: 365		Avg. Daily 4000 Pressue Ambient Temperature Ambient	Amount <u>Waste Code</u>	Categories - Physical Corrosive To Metal - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation	Component Name SODIUM HYPOCHLORI SOLUTION Water	% Wt TE 12% 85%	EHS CAS No. 7681-52-9 7732-18-5
DOT: 8 - Corrosives (Liquids a Solids) Corrosive, Water Reactive, Cl 2, Toxic, Oxidizing, Class 1	CAS No EHS	Liquid A Type	91800 Storage Container Aboveground Tanl Days on Site: 365	91800	61200 Pressue Ambient Temperature Ambient		 Physical Corrosive To Metal Health Skin Corrosion Irritation Health Serious Eye Damage Eye Irritation 	Water	7%	7332-18-5

		Hazardo	us Materials	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org. Blythe Energy Inc. Facility Name Blythe Energy Inc. 385 N Buck Blvd, Blythe 92225		ergy Inc. Chiller Area						CERS ID 10321807 Facility ID FA0023213 Status Submitted on 2/18/2024 11:22 AI		8/2024 11:22 AM
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 8 - Corrosives (Liquids an Solids) Corrosive	d Stabrex ST70 CAS No See Below	Liquid Type	400 Storage Container Tote Bin Days on Site: 365	400	300 Pressue Ambient Temperature Ambient	Waste Code	- Physical Corrosive To Metal - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation	Sodium Hypochlorite Sodium Bromide Sodium Hydroxide	6% 9% 5%	7681-52-9 7647-15-6 1310-73-2

			Hazardo	us Materials	And Waste	s Inventor	y Matrix	Report			
Facility Name Blythe End		Energy Inc. Energy Inc. uck Blvd, Blythe 92225			Chemical Location Chiller Area, BOP Chemical Treatment Area						8/2024 11:22 AM
DOT Code/Fire Haz.	Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	s EHS CAS No.
DOT: 8 - Corrosive Solids) Corrosive	s (Liquids and	3DT Trasar 3DT487 <u>CAS No</u> see below	Liquid Type	800 Storage Container Aboveground Tai metalic Drum, To Days on Site: 365	nk, Plastic/Non- ote Bin	600 Pressue Ambient Temperature Ambient	Waste Cod	Physical Corrosive To Metal Health Skin Corrosion Irritation Health Respiratory Skin Sensitization Health Serious Eye Damage Eye Irritation	Phosphoric Acid	10%	7664-38-2

		Hazardo	ous Materials A	And Wastes	s Inventory	y Matrix	Report			
CERS Business/Org. Blythe En Facility Name Blythe En 385 N Buck				Chemical Loca Chiller Bui				CERS ID Facility II Status	10321807 FA0023213 Submitted on 2/18	3/2024 11:22 AM
DOT Code/Fire Haz. Class DOT: 2.1 - Flammable Gases Corrosive, Flammable Gas, Explosive	Common Name Ammonia (Refrigerant R-717) CAS No	Unit Pounds State Gas Type	Storage Container Tank Inside Buildin	Quantities Largest Cont. 20000	Avg. Daily 55000 Pressue > Ambient Temperature	Annual Waste Amount Waste Code 141	Federal Hazard Categories - Physical Gas Under Pressure - Physical Corrosive To Metal		Hazardous Components (For mixture only) % Wt	
		Pure	Days on Site: 365		Ambient		 Health Acute Health Acute Toxicity Health Skin Corrosion Irritation Health Respiratory Skin Sensitization Health Serious Eye Damage Eye Irritation Health Aspiration Hazard Health Simple Asphyxiant 	I		

		Hazardou	s Materials A	And Waste	s Inventory	y Matrix	Report			
Facility Name Blythe B	E nergy Inc. Energy Inc. :k Blvd, Blythe 92225		Chemical Location Chiller Emerg Generator (bulk tank)				CERS ID 10321807 Facility ID FA0023213 Status Submitted on 2/18/2024 11:22 AM			
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.1 - Flammable Gases Flammable Gas	PROPANE CAS No 74-98-6	Gas A Type	10000 orage Container boveground Tank ays on Site: 365	10000	10000 Pressue > Ambient Temperature Ambient	Waste Cod	 Physical Plammable Physical Gas Under Pressure Physical Explosive Health Skin Corrosion Irritation Health Respiratory Skin Sensitization Health Serious Eye Damage Eye Irritation Health Simple Asphyxiant 			

			Hazardous	Materials	And Waste	s Inventor	y Matrix	Report			
ERS Business/Org. acility Name	Blythe E	nergy Inc. nergy Inc.			Chemical Loca Fab Shop				CERS ID Facility Status	 10321807 FA0023213 Submitted on 2/13 	8/2024 11-22 ΔΔ4
OT Code/Fire Haz.					Quantities Unit Max. Daily Largest Cont. A				Component Name	Hazardous Component (For mixture only) % Wt	
		N.O.S. (Argon/CO2) CAS No	Cu. Feet State Sto Gas Cy Type	304 brage Container linder bys on Site: 365	304	260 Pressue > Ambient Temperature Ambient	Amount Waste Code	Categories - Physical Gas - Under Pressure - Health Serious Eye Damage Eye Irritation - Health Simple Asphyxiant	Argon Carbon Dioxide	75% 25%	7440-37-1 124-38-9

		Hazardo	ous Materials	And Waste	s Inventory	y Matrix	Report			
acility Name	Blythe Energy Inc. Blythe Energy Inc. 85 N Buck Blvd, Blythe 92225			Chemical Loc Fab Shop	ation , Gas Cylindo	er Area		CERS Facilit Statu:	s Submitted on 2/1	-
				Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	
OT Code/Fire Haz. Clas		Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
DOT: 2.2 - Nonflamm Cryogen	able Gases Nitrogen/Oxygen CAS No See Below	Cu. Fee State Gas Type Mixture	et 1584 <u>Storage Container</u> Cylinder Days on Site: 365	144	1296 Pressue > Ambient Temperature Ambient	Waste Code	- Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye	Oxygen Nitrogen	22% 78%	7782-44-7 7727-37-9
DOT: 2.2 - Nonflamm	able Gases ARGON CAS No 7440-37-1	Cu. Fee State Gas <u>Type</u> Pure	et 1344 Storage Container Cylinder Days on Site: 365	336	1100 Pressue > Ambient Temperature Ambient		Irritation - Physical Gas Under Pressure - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Simple Asphyxiant			
DOT: 2.2 - Nonflamm	able Gases OXYGEN	Cu. Fee	et 2359	337	2000		- Physical Gas			
Highly Toxic, Corrosiv Class 1	7782-44-7	State Gas Type Pure	Storage Container Cylinder Days on Site: 365		Pressue > Ambient Temperature Ambient	Waste Code	 Physical Oxidize Health Skin Corrosion Irritation Health Respiratory Skin Sensitization 	er		
DOT: 2.1 - Flammable	Gases Acetylene	Cu. Fee	et 625	125	500		- Physical			
Jnstable (Reactive), (Flammable Gas	Class 2, <u>CAS No</u> 74-86-2	State Gas Type Pure	Storage Container Cylinder Days on Site: 365		Pressue > Ambient Temperature Ambient	Waste Code	Flammable - Physical Gas Under Pressure - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation			

		Hazardou	us Materials	And Waste	s Inventory	y Matrix	Report				
Facility Name Blythe E	i nergy Inc. i nergy Inc. k Blvd, Blythe 92225			Chemical Loca				CERS ID Facility II Status	1032180 FA00232 Submitted	213	8/2024 11:22 AM
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Co (For mixtu		EHS CAS No.
DOT: 3 - Flammable and Combustible Liquids Combustible Liquid, Class II	DIESEL FUEL <u>CAS No</u> 68334-30-5	Gallons State S Liquid A Type	620 Storage Container Aboveground Tar Days on Site: 365	500 nk, Can, Other	400 Pressue Ambient Temperature Ambient	Waste Cod	- Physical Flammable Carcinogenicity - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation	Fuels, diesel Fatty acids, vegetable esters	e oil, methyl	99%	68334-30-5 68990-52-3

		Hazardou	s Materials	And Waste	s Inventory	y Matrix	Report			
Facility Name Blythe	e Energy Inc. e Energy Inc. uck Blvd, Blythe 92225			Chemical Loca Gas Cyline				CERS ID Facility I Status	10321807 • FA0023213 Submitted on 2/1	8/2024 11:22 AM
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	s EHS CAS No.
DOT: 2.2 - Nonflammable G	ASES NITROGEN CAS No 7727-37-9	Gas C Type	12160 torage Container cylinder Days on Site: 365	304	8500 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas			
DOT: 2.1 - Flammable Gases Flammable Gas	Nitrogen/Carbon Monoxide CAS No See Below	Gas C Type	2880 torage Container :ylinder Days on Site: 365	144	2304 Pressue > Ambient Temperature Ambient	Waste Code	- Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation - Health Simple Asphyxiant	Carbon Monoxide Nitrogen		630-08-0 7727-37-9

			Hazardous	s Materials	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org. Facility Name	Blythe Er	nergy Inc. nergy Inc. Blvd, Blythe 92225			Chemical Loca Gas Cyline				CERS ID Facility Status	10321807 FA0023213 Submitted on 2/1	8/2024 11:22 AM
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	s EHS CAS No.
DOT: 2.3 - Toxic Ga	ses	Nitric Oxide/Nitrogen <u>CAS No</u> See Below	Cu. Feet State Sta Gas Cy Type	1728 orage Container /linder ays on Site: 365	144	1152 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas	Nitrogen Nitric Oxide	55% 45%	7727-37-9 10102-43-9

			Hazardo	ous Materials A	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org. Facility Name	Blythe En Blythe En 385 N Buck	•••			Chemical Loca Hazardou	1	CERS ID 10321807 Facility ID FA0023213 Status Submitted on 2/18/2024 11:22 AM				
DOT Code/Fire Haz. DOT: 3 - Flammab		Common Name Waste Oil (refrigeration)	Unit Gallons	Max. Daily	Quantities Largest Cont. 55	Avg. Daily 110	Annual Waste Amount	Federal Hazard Categories - Physical	Component Name Waste Petroleum Hyd	Hazardous Componen (For mixture only) % Wt Irocarbons	ts EHS CAS No. Mixture
Combustible Liqui Combustible Liqui		CAS No N/A	State Liquid Type Waste	Storage Container Steel Drum Days on Site: 365		Pressue Ambient Temperature Ambient	Waste Code 223	Flammable - Health Carcinogenicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation			
DOT: 4.1 - Flamma Flammable Solid	able Solids	Waste Oil Filters / Oily Debris CAS No N/A	Pounds State Solid	s 220 Storage Container Steel Drum	55	200 Pressue Ambient	Waste Code	- Health Skin			
DOT: 2.1 - Flamma	able Gases	Waste Aerosols	Type Waste Gallons	Days on Site: 90	55	Temperature Ambient 30		Corrosion Irritation - Physical			
Flammable Gas, Ti		CAS No NA	State Gas <u>Type</u> Waste	Storage Container Steel Drum, Other Days on Site: 365		Pressue Ambient Temperature Ambient	Waste Code	Flammable - Physical Gas Under Pressure - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Simple Asphyxiant			
DOT: 3 - Flammab Combustible Liqui Flammable Liquid,	ds	Waste Oil CAS No N/A	Gallons State Liquid Type Waste	s 465 <u>Storage Container</u> Aboveground Tank Days on Site: 365	300	150 Pressue Ambient Temperature Ambient	Waste Code	- Physical Flammable - Health Carcinogenicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization			

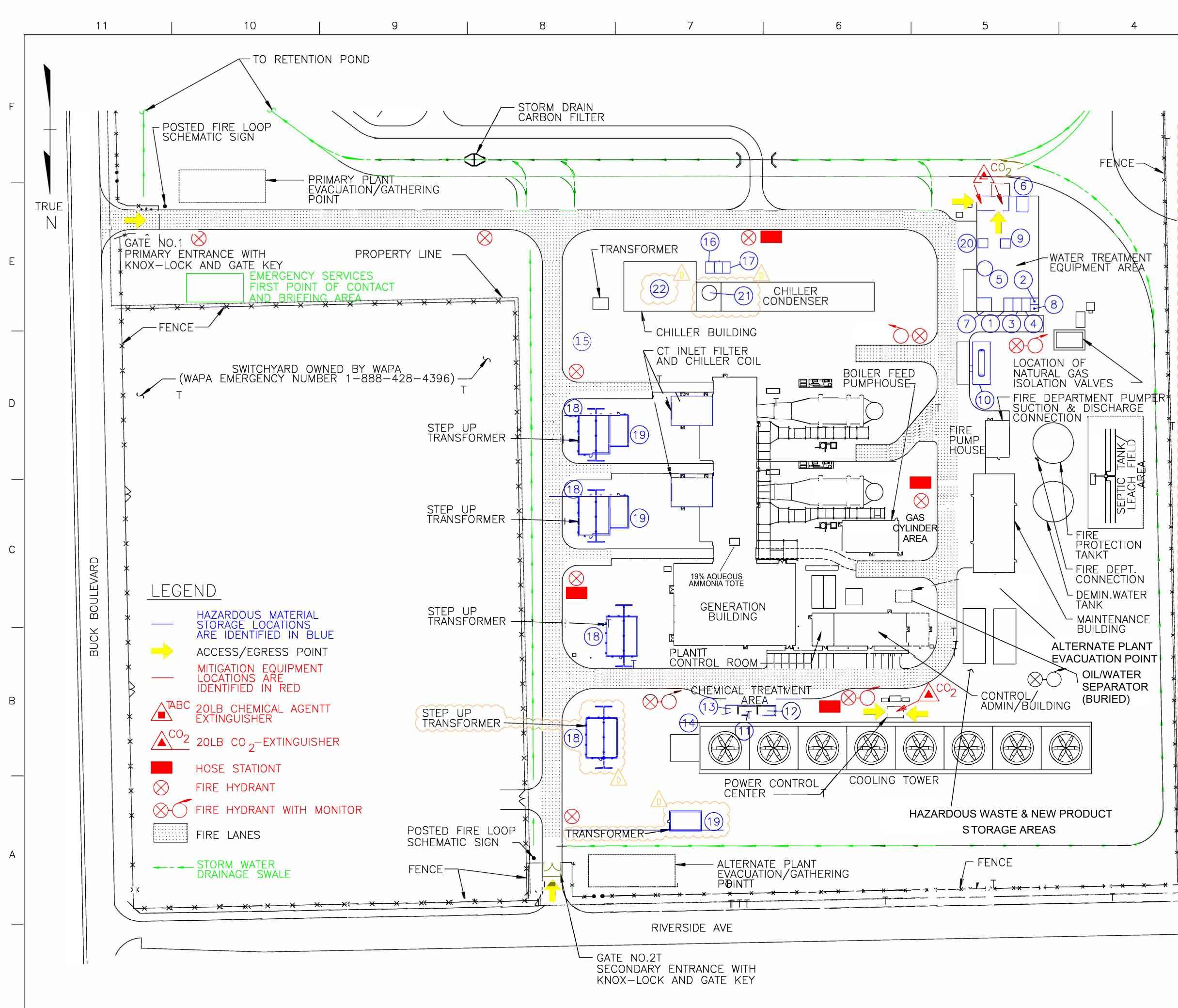
		Hazardo	ous Materials A	nd Waste	s Inventory	/ Matrix	Report			
acility Name B	lythe Energy Inc. lythe Energy Inc. 35 N Buck Blvd, Blythe 92225			Chemical Loca	ation Juct Storage	Area		Facility ID FA		12024 44 22 444
				Quantities		Annual Waste	Federal Hazard	Hazar (Fo	dous Components r mixture only)	
DOT Code/Fire Haz. Class DOT: 8 - Corrosives (Li Solids)		Gallons	s 250	Largest Cont. 250	Avg. Daily 200	Amount	Categories - Physical Corrosive To	Component Name Water	% Wt 90%	EHS CAS No. 7732-18-5
Corrosive	CAS No See Below	<u>State</u> Liquid <u>Type</u> Mixture	Storage Container Plastic/Non-metalic Days on Site: 365	Drum	Pressue Ambient Temperature Ambient	Waste Code		Sodium Hydroxide	10%	1310-73-2
DOT: 8 - Corrosives (Li Solids) Corrosive	quids and T-Chlor 12.5% CAS No See Below	Gallons State Liquid Type Mixture	s 165 <u>Storage Container</u> Plastic/Non-metalic Days on Site: 365	55 Drum	110 Pressue Ambient Temperature Ambient	Waste Code	- Physical Corrosive To	Sodium Hypochlorite Water	13% 88%	7681-52-9 7732-18-5
	LAB Enzyme Producing Bacteria	Gallons		55	300		- Health Skin Corrosion	Benzenesulfonic acid, C10- Derivatives, sodium salts	16-alkyl 5%	68081-81-2
	CAS No	<u>State</u> Liquid <u>Type</u> Mixture	Storage Container Plastic/Non-metalic Days on Site: 365	Drum	Pressue Ambient Temperature Ambient	Waste Code		Alcohols, C6-12, Ethoxylate Propoxylated Cinnamic Aldehyde Ethylene Glycol Monobuty Tetrasodium EDTA	0%	689374-66-6 104-55-2 111-76-2 64-02-8
DOT: 3 - Flammable ar Combustible Liquids Combustible Liquid, Cl		Gallons State Liquid Type Mixture	s 1600 Storage Container Aboveground Tank Days on Site: 365	60	800 Pressue Ambient Temperature Ambient	Waste Code	- Physical Flammable - Health Serious Eye Damage Eye Irritation	Synthetic Hydrocarbon Bas		varies
DOT: 3 - Flammable ar Combustible Liquids	nd FES #1 Refrigeration Oil	Liquid Type	storage Container Steel Drum Days on Site: 365	55	165 Pressue Ambient Temperature Ambient		- Physical Flammable - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation	FES #1 Refrigeration oil		N/A

			Hazardo	ous Materials	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org. Facility Name	Blythe Ene Blythe Ene 385 N Buck E	••			Chemical Loca New Prod	uct Storage	e Area Annual Waste	Federal Hazard	Status	10321807 FA0023213 Submitted on 2/1 Hazardous Component (For mixture only)	
DOT Code/Fire Haz. (DOT: 8 - Corrosive: Solids)		Common Name Permaclean PC-87 (Nalco) CAS No	Unit Gallons State Liquid Type Mixture	Max. Daily 5 55 Storage Container Can Days on Site: 365	Largest Cont. 5	Avg. Daily 55 Pressue Ambient Temperature Ambient	Amount Waste Cod	Categories - Health Skin Corrosion - Irritation - Health Serious Eye Damage Eye Irritation	Component Name Phosphoric Acid	% Wt 10%	EHS CAS No. 7664-38-2
		Permaclean PC-98 (Nalco)	Gallons State Liquid Type Mixture	s 55 <u>Storage Container</u> Can Days on Site: 365	5	55 Pressue Ambient Temperature Ambient	Waste Cod	- Health Skin e Corrosion Irritation - Health Serious Eye Damage Eye Irritation			

		Hazardou	s Materials A	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org. Blythe End Facility Name Blythe End 385 N Buck E				Chemical Loca Outside o		atment E	quipment Area	Facility ID FA0		18/2024 11:22 AM
DOT Code/Fire Haz. Class DOT: 8 - Corrosives (Liquids and	Common Name Aqueous Ammonia	Unit Pounds	Max. Daily 104400	Quantities Largest Cont. 116000	Avg. Daily 90000	Annual Waste Amount	Federal Hazard Categories - Physical		nixture only) % Wt 30%	EHS CAS No. 1336-21-6
Solids) Corrosive	CAS No CHS 1336-21-6	State St Liquid A Type	torage Container boveground Tank		Pressue > Ambient Temperature Ambient	Waste Code	Corrosive To			

		Hazardou	s Materials A	nd Waste	s Inventory	y Matrix	Report			
CERS Business/Org. Facility Name	Blythe Energy Inc. Blythe Energy Inc. 385 N Buck Blvd, Blythe 92225			Chemical Loca Step Up T	ation ransformer	Pads		Facility ID	10321807 FA0023213 Submitted on 2/1	8/2024 11:22 AM
DOT Code/Fire Haz. (Class Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	На	zardous Componen (For mixture only) % Wt	EHS CAS No.
DOT: 9 - Misc. Haza Materials		ing Oil) Gallons State St Liquid A Type	70320 orage Container boveground Tank ays on Site: 365	16800	70320 Pressue Ambient Temperature Ambient	Waste Code	- Physical Flammable	Hydrotreated Light Nap Distillate 2,6-ditertiary Butyl-4-M	thenic 99%	64742-53-6 128-37-0

			Hazardou	us Materials A	And Waste	s Inventory	/ Matrix	Report				
Facility Name	Blythe Ene Blythe Ene 385 N Buck Bl		Chemical Location Turbine Building A						CERS ID 10321807 Facility ID FA0023213 Status Submitted on 2/18/2024 11:22 AM			
DOT Code/Fire Haz. Clas DOT: 3 - Flammable a Combustible Liquids Combustible Liquid, C	and Class III-B	Common Name Lubrication Oil CAS No N/A	Liquid Type I Mixture I	Max. Daily 14176 Storage Container Aboveground Tank Building Days on Site: 365		Avg. Daily 10000 Pressue Ambient Temperature Ambient	Annual Waste Amount	Federal Hazard Categories - Physical Flammable - Health Serious Eye Damage Eye Irritation	(Fo Component Name Synthetic Hydrocarbon Bas		EHS CAS No. Varies	
DOT: 3 - Flammable a Combustible Liquids Combustible Liquid, C		Hydraulic Oil CAS No 55957-10-3	Liquid Type	326 Storage Container Tank Inside Buildin Days on Site: 365	166	275 Pressue Ambient Temperature Ambient	Waste Code	- Physical Flammable Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization	Highly Refined Mineral Oil: C50)	s (C15-99%	Mixture	
DOT: 8 - Corrosives (L Solids) Corrosive, Toxic	Liquids and	Aqueous Ammonia (19%) <u>CAS No</u> ✓ EHS 1336-21-6	Liquid Type	3465 Storage Container Tote Bin Days on Site: 365	3465	2500 Pressue Ambient Temperature Ambient	Waste Code	- Health Acute Toxicity - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation	AMMONIUM HYDROXIDE	19%	✓ 1336-21-6	
DOT: 6.1 - Toxic Subs	stances	Nalco 5711 CAS No mixture	Liquid Type	300 Storage Container Tote Bin Days on Site: 365	400	250 Pressue Ambient Temperature Ambient	Waste Code	- Health Acute	Ammonia Monoethanolamine	20% 15%	✓ 7664-41-7 141-43-5	


			ŀ	lazardo	ous Materials Ar	nd Waste	s Inventory	/ Matrix	Report			
Facility Name	Blythe Energ Blythe Energ 385 N Buck Blvc	gy Inc.	5			Chemical Loca Water Tre	tion atment Are	a		CERS ID Facility I Status	10321807 • FA0023213 Submitted on 2/1	8/2024 11:22 AM
OOT Code/Fire Haz. Clas		ommon Name		Unit		Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Componen (For mixture only) % Wt	EHS CAS No.
DOT: 3 - Flammable a Combustible Liquids	<u>C.</u> N	Permatreat AS No IA		State Liquid Type	s 120 <u>Storage Container</u> Steel Drum, Tote Bin Days on Site: 365	120	120 Pressue Ambient Temperature Ambient	Waste Code	- Health Respiratory Skin Sensitization	Mixture		N/A
DOT: 8 - Corrosives (I Solids) Corrosive, Water Rea 2		ulfuric Acic <u>AS No</u> 664-93-9	✓ EHS	Pounds State Liquid Type Pure	26000 <u>Storage Container</u> Aboveground Tank Days on Site: 365	30600	20700 Pressue Ambient Temperature Ambient	" <u>Waste Code</u>	 Physical Corrosive To Metal Health Carcinogenicity Health Acute Toxicity Health Skin Corrosion Irritation Health Respiratory Skin Sensitization Health Serious Eye Damage Eye Irritation Health Specific Target Organ Toxicity 			
DOT: 8 - Corrosives (I Solids) Corrosive, Toxic, Wat Class 1	<u>C</u>	odium Hyd A <u>S No</u> 310-73-2		Туре	s 120 Storage Container Aboveground Tank, F metalic Drum Days on Site: 365	120 Plastic/Non-	70 Pressue Ambient Temperature Ambient	Waste Code	 Physical Flammable Health Skin Corrosion Irritation Health Respiratory Skin Sensitization Health Serious Eye Damage Eye Irritation 	SODIUM HYDROXIDE LIQUID, BASIC, ORGA	·	1310-73-2

		ł	lazardo	ous Materials A	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org. Facility Name	Blythe Ener Blythe Ener 385 N Buck Bly				Chemical Loca Water Tre	tion atment Are	ea		CERS ID Facility ID Status	10321807 FA0023213 Submitted on 2/1	8/2024 11:22 AM
DOT Code/Fire Haz. C DOT: 6.1 - Toxic Sul		Common Name Permaclean PC-11	Unit Gallons	-	Quantities Largest Cont. 110	Avg. Daily 60	Annual Waste Amount	Federal Hazard Categories - Physical	Component Name Polyethylene Glycol	lazardous Component (For mixture only) % Wt 60% 30%	s EHS CAS No. 25322-68-3 10222-01-2
Toxic, Corrosive		CAS No See Below	State Liquid Type Mixture	Storage Container Aboveground Tank Days on Site: 365		Pressue Ambient Temperature Ambient	Waste Code	Corrosive To Metal - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation	2,2-Dibromo-3- nitrilopropionamide Sodium Bromide Dibromoacetonitrile	30% 5% 1%	10222-01-2 7647-15-6 3252-43-5
DOT: 8 - Corrosives Solids) Corrosive		SODIUM HYPOCHLORITE (12.5%) CAS No 7681-52-9	Liquid Type	s 120 Storage Container Plastic/Non-metalio Days on Site: 365	120 c Drum	60 Pressue Ambient Temperature Ambient	Waste Code	 Physical Corrosive To Metal Health Skin Corrosion Irritation Health Respiratory Skin Sensitization Health Serious Eye Damage Eye Irritation 	SODIUM HYPOCHLORI SOLUTION	TE 13%	7681-52-9

Hazardous Materials And Wastes Inventory Matrix Report											
CERS Business/Org. Blythe Energy Inc. Facility Name Blythe Energy Inc. 385 N Buck Blvd, Blythe 92225					Chemical Location Water Treatment Equipment Area				CERS ID 10321807 Facility ID FA0023213 Status Submitted on 2/18/2024 11:22 AM		
DOT Code/Fire Haz.	Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 9 - Misc. Haz Materials	ardous	Snow White Calcium Sulfate CAS No 7778-18-9	Solid B Type	10020 torage Container Bag Days on Site: 180	60	7200 Pressue Ambient Temperature Ambient	Waste Cod	- Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation			

Blythe Energy Inc. – Facility Location Map

NOTES

3

1.TFOR INDOOR STORAGE OF HAZARDOUS MATERIAL ANDT MITIGATION EQUIPMENT LOCATIONS, ALSO SEET DRAWINGS HMMP-2,3,4,5,6 & 7.T

2

	HAZA <u>IDENTI</u> FIC	ARDOUS MAT <u>Ation and</u>	ERIAL I <u>NVENTOR</u> Y					
REF NO.	DESCRIPTION	MAXIMUM QUANTITY-TYPE OF STORAGE	CHEMICAL COMMON NAME	HAZARD CLASS				
1	Permaclean PC-11	100 GAL TANK		CR				
2	NOT USED	NOT USED	NOT USED	NOT USED				
3	SODIUM HYDROXIDE, 25% CONCENTRATION	100 GAL TANK	SODIUM HYDROXIDE	CR				
4	PERMATREAT-191	100 GAL TANKT	ANTI-SCALANT	IR				
5	NOT USED	NOT USED	NOT USED	NOT USED				
6	CALCIUM SULFATE, 100% CONCENTRATION	TO,000 LBS. BAGS	GYPSUM	IR;OHH				
7	SULFURIC ACID, 93–97%T CONTCENTRATION	2,000T GAL. TANK	SULFURIC ACID	CR;TX;WR2; OHH				
8	SODIUM HYPRCHLORITE,T 12% CONCENTRATION	100 GAL. TANK	BLEACH	IR;CR;OX2				
9	LUBE OIL	100 GAL. T RESERVOIR	MINERAL OIL	C3B;IR				
10	AMMONIUM HYDROXIDE,T 29.5% CONCENTRATION		AQUEOUS AMMONIA	CR;TX				
(11)	SULFURIC ACID, 93-97% CONCENTRATION	6,000 GAL. TANK	SULFURIC ACID	CR;TX;WR2; OHH				
$\underbrace{)}{12}$	SODIUM HYPRCHLORITE,T 12% CONCENTRATION		BLEACH	IR;CR;OX2				
(13)	3D TRASAR 3DT 487	300 GAL TOTE	CORROSIONT INHIBITOR	CR:SN:OHH				
(14)	NOT USED	NOT USED	NOT USED	NOT USED				
15	BULK PROPANE	10,000 cubic ft	PROPANE	FLAMM; CL3B				
(16)	NALÇO STABREX ST 70	300 GAL TOTE	ANTI-SCALANT	IR:CR:TX				
(17)	T 3D TTRASAR 3DT 487	300 GAL TOTE	Corrosion Inhibitor	CR:SN:OHH				
18	INSULATINGTOILT	15,7900 GAL. RESERVOIR	MINERAL OIL	C3B;IR				
19	INSULATINGTOIL	1,560 GAL. Reservoir	MINERAL OIL	C3B;IR				
20	NOT USED	NOT USED	NOT USED	NOT USED				
21	CALCITE	TWO TANKS 76,000 POUNDS EACH	CALCIUM CARBONATE	IR				
22	ANHYDROUS AMMONIA	55,000 POUNDS	AMMONIA LIQUID GAS	IR:CR:TX				
~~~	HAZARD IR CR TX SN CL3	– TOXICT – SENSITIZER		BLE:				
WR2 – WATER REACTIVET OX2 – OXIDIZER OHH – OTHER HEALTH HAZARD								
	BLYTHE ENERGY PROJECT OWNER: BLYTHE ENERGY LLC.T (385 N. BUCK BLVD., BLYTHE, CA 92225) PLANT OUTDOOR AND							
	COOLING TOWER POWER CONTROL CENTER							
	HAZ	ARDOUS MATER EQUIPMENT L	CATION PLAN					
ī	HMBP-1 DATE: 2/18/24 REVISION F							

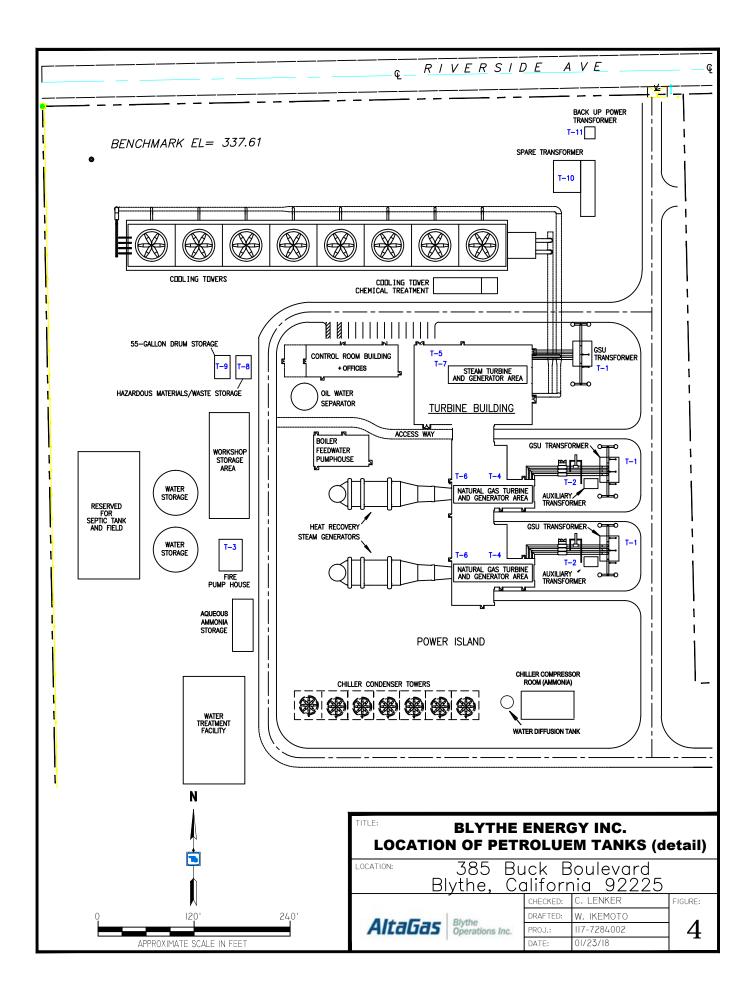
2425-001/HMMP-1

# CALIFORNIA ENVIRONMENTAL REPORTING SYSTEM (CERS) **CONSOLIDATED EMERGENCY RESPONSE / CONTINGENCY PLAN** *Prior to completing this Plan, please refer to the INSTRUCTIONS FOR COMPLETING A CONSOLIDATED CONTINGENCY PLAN*

FACILITY ID #	Т	Π	Т		Π	Τ	Γ	Γ	A1.	CERS	S ID #	A2.	DATE OF PLAN PR (MM/DD/YYYY)	EPARATION/REVISION	A3.
BUSINESS NAME (Sa	ame as	Facilit	y Nan	ie or DE	BA - Da	oing B	usine	ess A	ls)				(1111)		A4.
BUSINESS SITE ADDRESS AS								A5.							
								A7.							
													CA		
TYPE OF BUSINESS	(e.g., I	Painting	g Cont	ractor)						A8.	INCIDEN	TAL OPERA	ATIONS (e.g., Fleet Ma	intenance)	A9.
THIS PLAN COVERS					·			~	JAK	ES INV	OLVING (C	Theck all that a	apply):		A10.
1. HAZARDOUS	MATE	RIALS	; 🗆	2. HAZ	AKDU	105 W	/A51	ES							
INTERNAL FACILIT	Y EME	RGEN	CY R	ESPON	SE WI	LL O	CCU	R B	Y (C	heck all	that apply):				B1.
□ 1. CALLING PUBI □ 2. CALLING HAZ	ARDO	US WA	ASTE	CONTR	ACTO	R									
3. ACTIVATING I	N-HOU	JSE EN	AERG	ENCY	RESPO	ONSE	TEA	M							
In the event of an emergent in the event of an emergent in the event of an emergent in the event of the event in the event of the event in the event of the even	nnel an ncy resp fied Pro	d evacu ponders ogram A	ate if by ca Agenc	necessa alling 9- y (UPA)	ry in ao 1-1; ) at the	corda	ince v	with	the	Emerge				lations \$3220);	
is an imminent or actua of facility and type of ro 1. Title 22 California C 2. Title 22 California C 3. Title 40 Code of Fed 4. Title 22 California C hazardous waste in a Following notification and the local fire depart 1. Provide for proper st the facility; and	l emerge elease i Code of Code of leral Ro Code of any cale and be tment's torage a	gency si nvolve Regula Regulation Regulation Regulation Regulation fore fact hazarci and disp	ituatio d: ations ons §3 ations onth. cility of lous n posal	n such a §66265. §66265. 02.6. No §66262 operationaterials of recov	56. En 196. R tificat 2.34(d) ns are 1 progra ered w	espon (2) an essum (2) an resum m, if	on, fi icy P ise to quire d Tit ed in neces conta	re, c roce Lea mer ile 4 are ssar min	or relation relatio relation relation relation relation relation relation relation r	ease, the s for ge r Spills r a relea de of F the faci t the faci soil or s	e Emergency nerators of 1 and Disposit ise of a hazar ederal Regu lity affected cility is in co urface water	Coordinator ,000 kilogram ion of Leakin rdous substam lations §262.3 by the incide mpliance with c, or any other	must follow the approp as or more of hazardous g or Unfit-for-Use Tan ce equal to or greater th 84(d)(5)(ii) for generate nt, the Emergency Coo h requirements to: • material that results fr	esponse agencies. Whenever riate requirements for the cat s waste in any calendar month k Systems. an the reportable quantity. ors of less than 1000 kilogra rdinator shall notify the local om an explosion, fire, or rele fected by the incident until cl	tegory h. ums of I UPA case at
procedures are comp			DIU	NCE					CUD			-		9-1-1	-
EMERGENCY RESPC PHONE NUMBERS:	INSE			,											
										,	,			. (800) 424-8802	
														. (800) 222-1222	
													business hours)		C1.
				Specify		UKAI	M AC	JEIN		UPA).	<u></u>		C2	•	C3.
NEAREST MEDICAL	FACII												C4		C5.
AGENCY NOTIFICAT	ΓΙΟN F	HONE	NUN	BERS:	С	ALIF	ORN	IIA	DEP	T. OF T	OXIC SUBS	STANCES CO	ONTROL (DTSC)	(916) 255-3545	
					R	EGIO	NAL	. W.	ATE	R QUA	LITY CONT	ROL BOARI	D (RWQCB)		C6.
					U	.s. El	NVIR	RON	MEN	NTAL P	ROTECTIO	N AGENCY	(US EPA)	. (800) 300-2193	
					C	ALIF	ORN	IIA	DEP	T. OF F	ISH AND W	ILDLIFE (CI	DFW)	. (916) 358-2900	
					U	.S. C0	DAS	ΤG	UAR	D (USC	CG)			(202) 267-2180	
					C	AL O	SHA							(916) 263-2800	
					C	AL F	IRE (	OFF	ICE	OF TH	E STATE FI	RE MARSHA	AL (OSFM)		
					С	THE	R (Sp	oecif	y):				C7		C8.
					С	THE	R (Sp	oecif	y):				C9		C10.

CERS Consolidated Emergency Response / Contingency Plan

INTERNAL FACILITY EMERGENCY COMMUNICATIONS OR ALARM N	NOTIFICATION WILL OCCU	JR BY (Check all that apply):	C11.
□ 1. VERBAL WARNINGS; □ 2. PUBLIC ADDRESS OR INT	FERCOM SYSTEM;	$\Box$ 3. TELEPHONE;	
A. PAGERS; 5. ALARM SYSTEM; NOTIFICATIONS TO NEIGHBORING FACILITIES THAT MAY BE AFFEC	TED BY AN OFF-SITE REI	6. PORTABLE RADIO	C12.
$\Box$ 1. VERBAL WARNINGS; $\Box$ 2. PUBLIC ADDRESS OR INT		$\square$ 3. TELEPHONE;	
☐ 4. PAGERS;		6. PORTABLE RADIO	
EMERGENCY COORDINATOR CONTACT INFORMATION:			C13.
PRIMARY EMERGENCY COORDINATOR NAME:	PHONE NO .:	PHONE NO .:	
ALTERNATE EMERGENCY COORDINATOR NAME:	PHONE NO .:	PHONE NO .:	
Check if additional Emergency Coordinator contact and address information		ng PHONE NO.:	
Note: If more than one alternate emergency coordinator is designated, attach a			
D. EMERGENCY CONTAINMI			
Check the applicable boxes to indicate your facility's procedures for containing	spills and preventing and miti	gating releases, fires and/or explosions.	D1.
1. MONITOR FOR LEAKS, RUPTURES, PRESSURE BUILD-UP, ETC.;		、 、	
<ul> <li>□ 2. PROVIDE STRUCTURAL PHYSICAL BARRIERS (e.g., Portable spill</li> <li>□ 3. PROVIDE ABSORBENT PHYSICAL BARRIERS (e.g., Pads, spill pigs</li> </ul>	,	erms);	
4. COVER OR BLOCK FLOOR AND/OR STORM DRAINS;	s, spin pinows),		
$\Box$ 5. LINED TRENCH DRAINS AND/OR SUMPS;			
☐ 6. AUTOMATIC FIRE SUPPRESSION SYSTEM;			
7. ELIMINATE SOURCES OF IGNITION FOR FLAMMABLE HAZARI	DS;		
8. STOP PROCESSES AND/OR OPERATIONS;			
<ul> <li>□ 9. AUTOMATIC / ELECTRONIC EQUIPMENT SHUT-OFF SYSTEM;</li> <li>□ 10. SHUT OFF WATER, GAS, ELECTRICAL UTILITIES;</li> </ul>			
□ 11. CALL 9-1-1 FOR PUBLIC EMERGENCY RESPONDER ASSISTANC	E AND/OR MEDICAL AID;		
☐ 12. NOTIFY AND EVACUATE PERSONS IN ALL THREATENED AND			
☐ 13. ACCOUNT FOR EVACUATED PERSONS IMMEDIATELY AFTER I			
□ 14. PROVIDE PROTECTIVE EQUIPMENT FOR ON-SITE EMERGENCY	RESPONSE TEAM;		
15. REMOVE CONTAINERS AND/OR ISOLATE AREAS;			
☐ 16. HIRE LICENSED HAZARDOUS WASTE CONTRACTOR; (HCI E: ☐ 17. USE ABSORBENT MATERIAL FOR SPILL CONTAINMENT;	nvironmental)		
□ 17. USE ABSORBENT MATERIAL FOR SPILL CONTAINMENT; □ 18. VACUUM SUCTION USING APPROPRIATE VACUUM (e.g., Intrins)	ically safe) FOR SPILL CON	TROL AND/OR CLEANUP:	
☐ 19. DECONTAMINATE PERSONNEL AND EQUIPMENT WITHIN DES			ASTE;
20. PROVIDE SAFE TEMPORARY STORAGE OF HAZARDOUS WAST			D2.
21. OTHER (Specify):			D2.
E. FACILIT	Y EVACUATION		
THE FOLLOWING ALARM SIGNAL(S) WILL BE USED TO BEGIN EVAC	UATION OF THE FACILITY	Y (Check all that apply):	E1. E2.
$\Box 1. BELLS;$ $\Box 2. HORNS/SIRENS;$			E2.
$\Box$ 3. VERBAL (i.e., Shouting);			
4. OTHER (Specify):		~	F2
THE FOLLOWING LOCATION(S) WILL BE USED FOR AN EMERGENCY	Y ASSEMBLY AREA(S) (e.g.	, Parking lot, street corner):	E3.
Note: The Emergency Coordinator must account for all onsite employees and vi EVACUATION ROUTE S AND ALTERNATE EVACUATION ROUTES AR		<i>u</i> e.	E4.
EVACUATION ROUTES AND ALTERNATE EVACUATION ROUTES AR	E DESCRIDED AS FOLLOW	vs:	24.
□ 1. WRITTEN PROCEDURES DESCRIBING ROUTES, EXITS, AND ASS			
2. EVACUATION MAP(S) DEPICTING ROUTES, EXITS, AND ASSEMI	BLY AREAS;		
3. OTHER (Specify):		E5.	
Note: Evacuation procedures and/or maps should be posted in visible facility loc	cations and must be included in	n the Contingency Plan.	
F. ARRANGEMENTS FO	OR EMERGENCY	SERVICES	
ADVANCE ARRANGEMENTS FOR LOCAL EMERGENCY SERVICES (CI	heck one of the following):		F1.
□ 1. HAVE BEEN DETERMINED NOT NECESSARY;			F2.
2. THE FOLLOWING ARRANGEMENTS HAVE BEEN MADE (Specify	):		г∠.


contractors should be made for your facility, if necessary. Large Quantity Generators must describe arrangements in the Contingency Plan.

Chook the a	applicable boxes to list emergency response equipment avai	GENCY EQUIPMENT	have the equipment is kent, and indicate th
	s capability, if applicable.	nable at the facility, identify the location(s) w	nere the equipment is kept, and indicate th
ТҮРЕ	EQUIPMENT AVAILABLE G1.	LOCATION G2.	<b>CAPABILITY</b> G
EXAMPLE	$\boxtimes CHEMICAL PROTECTIVE GLOVES$	SPILL RESPONSE KIT	SINGLE USE, OIL RESISTANT ONLY
Safety	1. CHEMICAL PROTECTIVE SUITS, APRONS,		
and	AND/OR VESTS 2. CHEMICAL PROTECTIVE GLOVES		
First Aid	2. CHEMICAL PROTECTIVE GLOVES		
	3. CHEMICAL PROTECTIVE BOOTS		
	4. SAFETY GLASSES, GOGGLES, AND FACE SHIELDS		
	5. HARD HATS		
	6. 🔲 AIR-PURIFYING RESPIRATORS		
	7. SELF-CONTAINED BREATHING APPARATUS (SCBA)		
	8. FIRST AID KITS	Control Room, Admin Bldg, Maint Shop, in trucks	
	9. PLUMBED EYEWASH FOUNTAIN AND/OR		
	SHOWER 10.  PORTABLE EYEWASH KITS AND/OR		
	STATION	Haz Waste, Batt. Area (4), Fire Pump House, shop	
	11. 🗌 OTHER		
Fire Fighting	12.  PORTABLE FIRE EXTINGUISHERS		
righting	13. FIXED FIRE SUPPRESSION SYSTEMS AND/		
	OR SPRINKLERS		
	15. OTHER		
Spill	16. 🔲 ALL-IN-ONE SPILL KIT		
Control	17. 🔲 ABSORBENT MATERIAL		
and Clean-Up			
cicuii op	18. CONTAINER FOR USED ABSORBENT		
	19. BERM AND/OR DIKING EQUIPMENT		
	20. 🔲 BROOM		
	21. SHOVEL		
	22. 🗌 VACUUM		
	23. 🗌 EXHAUST HOOD		
	24. SUMP AND/OR HOLDING TANK		
	25. CHEMICAL NEUTRALIZERS		
	26. 🔲 GAS CYLINDER LEAK REPAIR KIT		
	27. 🔲 SPILL OVERPACK DRUMS		
	28. OTHER		
Communi-	29. TELEPHONES (e.g., Cellular)		
cations and	30. 🔲 INTERCOM AND/OR PA SYSTEM		
Alarm Systems	31.  PORTABLE RADIOS		
•	32. AUTOMATIC ALARM CHEMICAL MONITORING EQUIPMENT		
Other	33. OTHER		
	34. OTHER	<u> </u>	

H. EARTHQUAKE VULN	ERABILITY
Identify areas of the facility that are vulnerable to hazardous materials releases due to seismic mo	
VULNERABLE AREAS (Check all that apply):       HI.         I. HAZARDOUS MATERIALS AND/OR WASTE STORAGE AREAS       2. PROCESS LINES AND PIPING         3. LABORATORY       4. WASTE TREATMENT AREA	LOCATIONS (e.g., Shop, outdoor shed, lab): H2.
	an avatama nagyina immadiata inclation and increastion
Identify mechanical systems vulnerable to releases / spills due to earthquake-related motion. The         VULNERABLE SYSTEMS AND/OR EQUIPMENT (Check all that apply):         H3.         1. SHELVES, CABINETS AND/OR RACKS         2. TANKS AND SHUT-OFF VALVES         3. PORTABLE GAS CYLINDERS         4. EMERGENCY SHUT-OFF AND/OR UTILITY VALVES         5. SPRINKLER SYSTEMS         6. STATIONARY PRESSURIZED CONTAINERS (e.g., Propane tank)	LOCATIONS: H4.
I. EMPLOYEE TRA	INING
<ul> <li>Employee training is required for all employees and/or contractors handling hazardous materials Most facilities will need to submit a separate Training Plan. However, your CUPA may accept th Employee training plans may include the following content: <ul> <li>Applicable laws and regulations;</li> <li>Emergency response plans and procedures;</li> <li>Safety Data Sheets;</li> <li>Hazard communication related to health and safety;</li> <li>Methods for safe handling of hazardous substances;</li> <li>Hazards of materials and processes (e.g., fire, explosion, asphyxiation);</li> <li>Hazard mitigation, prevention and abatement procedures;</li> <li>Coordination of emergency response actions;</li> <li>Notification procedures for local emergency responders, CUPA, Cal OES, and onsite personnel;</li> </ul> </li> </ul>	and/or hazardous wastes during normal and/or emergency operations. his section as the Training Plan for some small facilities. Communication and alarm systems; Personal protective equipment; Use and maintenance of emergency response equipment and supplies (e.g. Fire extinguishers, respirators, spill control materials); Decontamination procedures; Evacuation procedures and evacuation staging locations; Identification of facility areas, equipment, and systems vulnerable to earthquakes and other natural disasters. OTHER (Specify):
Check the applicable boxes below to indicate how the employee training program is administere	d.
□ 1. FORMAL CLASSROOM □ 2. VIDEOS □ 3. SAFETY MEETIN	
<ul> <li>5. OTHER (Specify):</li> <li>6. NOT APPLICABLE SINCE FACILITY HAS NO EMPLOYEES</li> <li>7. CHECK IF A SEPARATE EMPLOYEE TRAINING PLAN IS USED AND UPLOADEI</li> <li>8. CHECK IF EMPLOYEE TRAINING IS COVERED BY THE ABOVE REFERENCED OF</li> </ul>	D TO CERS AS A PDF DOCUMENT ^{13.} CONTENT AND OTHER DOCUMENTS ONSITE ^{14.}
<ul> <li>EMPLOYEE TRAINING FREQUENCY AND RECORDKEEPING TRAINING MUST B</li> <li>Provided initially for new employees as soon as possible following the date of hire. New hazardous materials handling and/or hazardous waste management without proper training;</li> <li>Provided within six months from the date of hire for new employees at a large quantity genera.</li> <li>Ongoing and provided at least annually;</li> <li>Amended prior to a change in process or work assignment;</li> <li>Given upon modification to the Emergency Response/Contingency Plan.</li> </ul>	employees should not work in an unsupervised position that involves
<ul> <li>Large Quantity Generator Training: Large quantity generators (1,000 kg or more) must retain</li> <li>A written description of the type and amount of both initial and ongoing training that will be give waste management and/or emergency response.</li> <li>The name, job title and job description for each position at the facility related to hazardous wa</li> <li>Current employee training records must be retained until closure of the facility and former entermination of employment.</li> </ul>	en to persons filling each job position having responsibility for hazardous aste management.
<b>Small Quantity Generator Training:</b> Small quantity generators (less than 1,000 kg) must procedures but a written employee training plan and training records are not required. In order training requirement, an employee training plan and training records may be made available.	
Hazardous Materials Business Plan Training: Businesses must provide initial and annual emp may be based on the job position and training records must be made available for a period of at l	
J. LIST OF ATTACH	MENTS
Check one of the following:	Л.
□ 1. NO ATTACHMENTS ARE REQUIRED; or □ 2. THE FOLLOWING DOCUMENTS ARE ATTACHED:	J2.

Blythe Energy Inc. maintains a full Emergency Action Plan at the facility. Please refer to the EAP for more details of the emergency procedures, evacuation plan, and emergency contact information.

California Environmental R	eporting System (CERS)	Aboveground Petroleum Storage Act - Facility Information Report				
Facility/Site						
Blythe Energy Inc. 385 N Buck Blvd		CERS ID 10321807				
Blythe, CA 92225		CAL000364934				
Submittal Status						
Submitted on 2/18/2024 by <i>Jake Tilley</i> o	f Blythe Energy Inc. (Blythe, CA.)					
APSA Facility Information						
Conditionally Exempt APSA Tank Facility N						
Date Of SPCC Plan Certification or Date of 5-Y 3/27/2023	'ear Review					
Total Aboveground Storage Capacity of Petroleum	Number of Tanks in Underground Area(s)					
86643	0					



	Petroleum Storage Tank Locations						
Tank ID	Oil Products	Volume (Gallons)	Use	Storage/Use Area			
T-1	Nitro 10 GBXT	16,500 (x3)	GSU Transformers	Electrical Equipment			
T-2	Nitro 10 GBXT	1,620 (x2)	Auxiliary Transformers	Electrical Equipment			
T-3	Diesel	500	Fire Pump Fuel Tank	Fire Pump Building			
T-4	Lubrication Oil	3,600 (x2)	Combustion Turbine Lubrication	Turbine Building			
T-5	Lubrication Oil	6650 gallons	Steam Turbine Lubrication	Turbine Building			
T-6	Hydraulic Oil	80 (x2)	Combustion Turbine Hydraulics	Turbine Building			
T-7	Hydraulic Oil	166	Steam Turbine Hydraulics	Turbine Building			
T-8	Used Oil	250-gallon tank	Hazardous Materials Storage	Haz Mat Area			
T-9	Lubrication Oil	55 (x30)	Refilling Lubrication Tanks	55-Gallon Drum Area			
T-10	Nitro 10 GBXT	16,500	Spare Transformer - In Case of Emergency	Electrical Equipment @ Spare Transformer			
T-11	Nitro 10 GBXT	827	Back up Transformer for Emergency Loss of Power	Electrical Equipment Northeast of Spare Transformer			

### * See also the APSA Tank Statement included in this HMBP

### ABOVEGROUND PETROLEUM STORAGE ACT: TANK FACILITY STATEMENT

#### I. IDENTIFICATION

FACILITY NAME (Same as BUSINESS NAME or DBA – Doing Business As):

FACILITY PHONE:	
FACILITY ADDRESS:	
FACILITY CITY:	_STATE: CA_ZIP CODE:
CONTACT NAME:	
CONTACT PHONE:	

### **II. TOTAL FACILITY STORAGE CAPACITY**

Tank facility's total aboveground petroleum storage capacity (in gallons) for all tanks and containers, including tanks in an underground area, with a shell capacity *greater than or equal to* 55 gallons (see instructions for details):

_____ gallons

### **III. TANK AND CONTAINER DETAILS**

Details of each aboveground petroleum storage tank or container *greater than* 10,000 gallons in shell capacity (attach additional forms if needed)

Tank 1:

Tank or Containe	ID Number:
Contents (Gas, D	esel, etc.):
Shell Capacity (in	gallons):
Location of Tank	r Container:
Tank 2:	
Tank or Containe	ID Number:
Contents (Gas, D	esel, etc.):

## **APSA - TANK FACILITY STATEMENT (con't)**



	Shell Capacity (in gallons):
	Location of Tank or Container:
Та	nk 3:
	Tank or Container ID Number:
	Contents (Gas, Diesel, etc.):
	Shell Capacity (in gallons):
	Location of Tank or Container:
Та	nk 4:
	Tank or Container ID Number:
	Contents (Gas, Diesel, etc.):
	Shell Capacity (in gallons):
	Location of Tank or Container:
Та	nk 5:
	Tank or Container ID Number:
	Contents (Gas, Diesel, etc.):
	Shell Capacity (in gallons):
	Location of Tank or Container:
Та	nk 6:
	Tank or Container ID Number:
	Contents (Gas, Diesel, etc.):
	Shell Capacity (in gallons):
	Location of Tank or Container:
Та	nk 7:
	Tank or Container ID Number:
	Contents (Gas, Diesel, etc.):
	Shell Capacity (in gallons):
	Location of Tank or Container:

## APSA - TANK FACILITY STATEMENT (con't)



Tank	x 8:
	Tank or Container ID Number:
	Contents (Gas, Diesel, etc.):
	Shell Capacity (in gallons):
	Location of Tank or Container:
Tank	9:
	Tank or Container ID Number:
	Contents (Gas, Diesel, etc.):
	Shell Capacity (in gallons):
	Location of Tank or Container:
Tank	10:
	Tank or Container ID Number:
	Contents (Gas, Diesel, etc.):
	Shell Capacity (in gallons):
	Location of Tank or Container:
Tank	
	Tank or Container ID Number:
	Contents (Gas, Diesel, etc.):
	Shell Capacity (in gallons):
	Location of Tank or Container:
Tank	
	Tank or Container ID Number:
	Contents (Gas, Diesel, etc.):
	Shell Capacity (in gallons):
	Location of Tank or Container:

### ABOVEGROUND PETROLEUM STORAGE ACT: Tank Facility Statement Instructions

A tank facility is subject to the Aboveground Petroleum Storage Act (APSA) if any of the following apply:

- a. The tank facility is subject to the oil pollution prevention regulations specified in the Code of Federal Regulations, Title 40, Part 112 (commencing with section 112.1); OR
- b. The tank facility has a storage capacity of 1,320 gallons or more of petroleum; **OR**
- c. The tank facility has a storage capacity of less than 1,320 gallons of petroleum <u>AND</u> has one or more tanks in an underground area meeting the conditions specified in the Health and Safety Code (HSC) Section 25270.2(o)(1). If this subdivision is applicable, only tanks meeting the conditions specified in HSC Section 25270.2(o)(1) shall be included as storage tanks and subject to APSA.

Each owner or operator of a tank facility that is subject to APSA is required to submit a Tank Facility Statement annually into the California Environmental Reporting System (CERS). A Hazardous Materials Business Plan (HMBP) submittal into CERS satisfies the requirement to file the Tank Facility Statement.

### I. FACILITY INFORMATION

FACILITY NAME – Enter the full legal name of the tank facility. (Same as BUSINESS NAME or DBA-Doing Business As.)

FACILITY PHONE – Enter the phone number, area code first, and any extension.

FACILITY ADDRESS – Enter the street address where the tank facility is located. No post office box numbers are allowed. This information must provide a means to locate the facility geographically.

CITY – Enter the city or unincorporated area in which the tank facility is located.

ZIPCODE – Enter the zip code of the tank facility. The extra 4-digit zip code may also be added.

CONTACT NAME – Enter the name of the person, who receives aboveground storage tank correspondences, for the tank facility.

CONTACT PHONE – Enter the phone number of the person who receives aboveground storage tank correspondences for the tank facility, area code first, and any extension.

### **II. TOTAL FACILITY STORAGE CAPACITY**

TOTAL FACILITY STORAGE CAPACITY – Enter the facility's total aboveground petroleum storage tank capacity (in gallons). Add the <u>shell capacity</u> of each aboveground petroleum storage tank and container, including each tank in an underground area, greater than or equal to 55 gallons. Do not enter the actual volume stored in the tank or container. To calculate the capacity of 55 gallon drums on site, use the **maximum** number of drums that would typically be stored at your facility.

### **III. TANK AND CONTAINER DETAILS**

Provide details of each aboveground petroleum storage tank and container greater than 10,000 gallons in shell capacity (attach additional forms if needed) at your facility. If your facility does not have an aboveground storage tank or container with shell capacity greater than 10,000 gallons, you can skip the data fields in this section of the Tank Facility Statement.

TANK OR CONTAINER ID NUMBER – Enter a unique identification number for each aboveground petroleum storage tank and container at your facility. You may create your own numbering system.

CONTENTS – Enter the contents (i.e. DIESEL, GASOLINE, OIL, etc.) of each aboveground petroleum storage tank and container at your facility.

SHELL CAPACITY – Enter the shell capacity (in gallons) of each aboveground petroleum storage tank and container at your facility.

LOCATION OF TANK OR CONTAINER – Enter the general location of each aboveground petroleum storage tank or container at your facility (e.g., at north end of facility; inside maintenance shop).

### DEFINITIONS

TANK FACILITY – Any one or more aboveground storage tanks, including any piping that is integral to the tanks that <u>contain petroleum</u> and that are used by an owner or operator at a single location or site.

ABOVEGROUND STORAGE TANK (AST) – A tank (or container) with the capacity to store 55 gallons or more of petroleum that is substantially or totally above the surface of the ground, including a tank in an underground area. Some AST exceptions exist; they are specified in HSC section 25270.2(a). An AST includes drums, totes, oil-filled operational or manufacturing equipment, etc.

PETROLEUM – Crude oil, or a fraction thereof, that is liquid at 60°F temperature and 14.7 pounds per square inch absolute pressure. Petroleum includes gasoline, diesel, E85, motor oil, waste oil, etc., but does NOT include antifreeze, propane, or natural gas.

STORAGE – Containment, handling, or treatment of petroleum, for any period, including standby storage, seasonal storage, and temporary storage.

STORAGE CAPACITY (of a tank facility) – The aggregate shell capacity of each AST (including containers 55 gallons and greater) at a tank facility. For example, if a facility has two 500-gallon capacity diesel ASTs and a 600-gallon capacity waste oil AST, but only keeps each AST half full, then the storage capacity for this facility is 1,600 gallons (calculated by adding the shell capacity of each tank/container).

CODE	SECTION	CONDITION	VERIFICATION	Compliance	COMPLIANCE STATUS
	L	AIR QUALITY (AQ) THE FOLLOWING CONDITIONS OF CERTIFICATION APPLY TO THE TWO IN	L DIVIDUAL GAS TURBINE GENERATORS (DISTRICT PERMIT NUMBERS: B007953, B007954)	1	1
AQ-T1	Air Quality	Operation of the turbines shall be conducted in compliance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.	The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (ARB), the United States Environmental Protection Agency (U.S. EPA) and Energy Commission.	Site Complies with AQ-T1	Ongoing: Blythe Energy documents facility-wide operations and maintains records for identification of breakdown conditions. Operation of this equipment is conducted in compliance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted.
AQ-T2	Air Quality	The turbines shall be exclusively fueled with pipeline quality natural gas with a sulfur content not exceeding 0.5 grains per 100 dscf on a twenty-four hour basis and not exceeding 0.25 grains per 100 dscf on a rolling twelve month average basis. The turbines shall be operated and maintained in strict accord with the recommendations of its manufacturer or supplier and/or sound engineering principles.	The project owner shall incorporate into the Quarterly Operations Report either a monthly laboratory analysis showing the fuel sulfur content, a monthly fuel sulfur content report from the fuel supplier(s), or the results from a custom fuel monitoring schedule approved by USEPA for compliance with the fuel monitoring provisions of 40 CFR 60 Subpart GG.	Site Complies with AQ-T2	Ongoing: Blythe Energy conducts monthly analysis of the natural gas. Analysis is performed by an independent lab and results are logged an submitted in quarterly reports.
AQ-T4	Air Quality	<ul> <li>Emissions from the turbines (including the associated duct burners) shall not exceed the following emission limits at any firing rate, except for CO, NOx and VOC during periods of startup, shutdown and malfunction:</li> <li>a. Hourly rate, computed every 15 minutes, verified by CEMS and annual compliance tests:</li> <li>i. NOx as NO2 — the most stringent of 19.80 lb/hr or 2.5 ppmvd corrected to 15% O2 and averaged over one hour).</li> <li>ii. NOx as NO2 — effective May 7, 2016, 2.0 ppmvd corrected to 15% O2 and averaged over a rolling 12 month period.</li> <li>iii. CO — the most stringent of 17.5 lb/hr or 4.0 ppmvd corrected to 15% O2 and averaged over 3 hours.</li> <li>iv. CO – 10 lb/hr averaged over a rolling 12-month period</li> <li>b. Hourly rates, verified by annual compliance tests or other compliance methods in the case of SOx:</li> <li>i. VOC as CH4 — 2.9 lb/hr (based on 1 ppmvd corrected to 15% O2).</li> <li>ii. SOx as SO2 — 2.7 lb/hr (based on 0.5 grains/100 dscf fuel sulfur).</li> <li>iii. PM10 — 6.2 lb/hr.</li> </ul>	The project owner shall submit the following in each Quarterly Operations Report: All continuous emissions data reduced and reported in accordance with the District approved CEMS protocol; a list of maximum hourly, maximum daily, monthly, total quarterly, total calendar year, and rolling 12-month emissions of NOx, CO, PM10, VOC and SOx (including calculation protocol); total monthly and rolling 12-month fuel use in the gas turbines and duct burners; average NO2 concentration and average CO mass emission rate, for all operating periods except during startup, shutdown and malfunction, for each gas turbine and associated duct burner, calculated on a rolling 12-month basis; a log of all excess emissions, including the information regarding malfunctions/breakdowns required by District Rule 430; operating parameters of emission control equipment, including but not limited to ammonia injection rate, NOx emission rate and ammonia slip; any maintenance to any air pollutant control system (recorded on an as-performed basis); and any permanent changes made in the plant process or production that could affect air pollutant emissions, and when the changes were made.		Ongoing: Emissions from the Gas Turbines including Duct burners are verified by CEMS and annual compliance tests. Quarterly reports are submitted in accordance with the District approved CEMS protocol.
AQ-T5	Air Quality	Emissions of CO and NOx from the turbines shall only exceed the limits contained in AQ-T4 during startup and shutdown periods as follows: a. Startup is defined as the period beginning with ignition and lasting until either the equipment complies with all condition AQ-T4 operating permit limits for two consecutive 15-minute averaging periods or four hours after ignition, whichever occurs first. Shutdown is defined as the period beginning with the lowering of equipment from base load and lasting until fuel flow is completely off and combustion has ceased. b. The emissions from each startup and shutdown event shall not exceed the following, verified by CEMS: i. NOX — 376 lb. ii. CO — 3600 lb. c. Effective May 7, 2016, the CO emissions from all startup and shutdown events at both power blocks, averaged over a rolling 12-month period, shall not exceed 750 lb/event, verified by CEMS.	Operations Report. Each record shall include, but not be limited to: duration; fuel consumption; total emissions of NOx and CO; average CO emissions from all startups and shutdowns of the gas turbines on a per event basis calculated on a rolling 12-month basis; and the date and time of the beginning and end of each startup and shutdown event. Additionally, the project owner shall report the total plant operation time (hours), number of startups, hours in startup and shutdown, and average plant operation schedule	Site Complies with AQ-T5	Ongoing: Blythe Energy uses CEMS to verify emissions and maintains records of startup and shutdown periods. Quarterly reports are submitted with detailed record of each startup and shutdown event.
AQ-T6	Air Quality	Aggregate emissions from the turbines, including the duct burner, shall not exceed the following emission limits, based on a calendar day summary: a. NOX — 5762 lb/day, verified by CEMS. b. CO — 8004 lb/day, verified by CEMS. c. VOC as CH4 — 239 lb/day, verified by compliance tests and hours of operation in steady-state, pre-mix mode. d. SOX as SO2 — 130 lb/day, verified by fuel sulfur content and fuel use data. e. PM10 — 298.5 lb/day, verified by compliance tests and hours of operation.	The project owner shall submit the following in each Quarterly Operations Report: All continuous emissions data reduced and reported in accordance with the District approved CEMS protocol; a list of maximum hourly, maximum daily, total quarterly, and total calendar year emissions of NOx, CO, PM10, VOC and SOx (including calculation protocol); a log of all excess emissions, including the information regarding malfunctions/breakdowns required by District Rule 430; operating parameters of emission control equipment, including but not limited to ammonia injection rate, NOx emission rate and ammonia slip; any maintenance to any air pollutant control system (recorded on an as-performed basis); and any permanent changes made in the plant process or production that could affect air pollutant emissions, and when the changes were made.	Site Complies with AQ-T6	Ongoing: Blythe Energy uses CEMS, fuel content recordkeeping, and annual compliance tests to verify Daily emissions and maintains records. Quarterly reports are submitted in accordance with the District approved CEMS protocol.
AQ-T7	Air Quality	Emissions from all units at this facility, including the cooling towers, shall not exceed the following emission limits, based on a rolling 12 month summary: a. NOx —97 tons/year, verified by CEMS. b. CO —175 tons/year, verified by CEMS. c. VOC as CH4 — 24 tons/year, verified by compliance tests and hours of operation in steady-state, pre-mix mode. d. SOx as SO2 — 12 tons/year, verified by fuel sulfur content and fuel use data. e. PM10 —56.9 tons/year, verified by compliance tests and hours of operation. These limits shall apply to all emissions from all units at this facility, and shall include emissions during all modes of operation, including startup, shutdown and malfunction.	The project owner shall submit the following in each Quarterly Operations Report: All continuous emissions data reduced and reported in accordance with the District approved CEMS protocol; a list of maximum hourly, maximum daily, monthly, total quarterly, total calendar year, and rolling 12-month emissions of NOx, CO, PM10, VOC and SOx (including calculation protocol); total monthly and rolling 12-month fuel use in the gas turbines and duct burners; average NO2 concentration and average CO mass emission rate for all operating periods except during startup, shutdown and malfunction for each gas turbine and associated duct burner, calculated on a rolling 12-month basis; a log of all excess emissions, including the information regarding malfunctions/breakdowns required by District Rule 430; operating parameters of emission control equipment, including but not limited to ammonia injection rate, NOx emission rate and ammonia slip; any maintenance to any air pollutant control system (recorded on an as-performed basis); and any permanent changes were made.	AQ-T7	Ongoing: Blythe Energy maintains emissions dat to demonstrate compliance with rolling 12 mon limits. Quarterly reports are submitted in accordance with the District approved CEMS protocol.

#### AltaGas Blythe Energy BE-GEN-07112010 Master Compliance Matrix Active Conditions of Certification

CODE	SECTION	CONDITION	VERIFICATION	Compliance	COMPLIANCE STATUS
AQ-T8	Air Quality	Particulate emissions from this equipment shall not exceed opacity equal to or greater than twenty percent (20%) for a period aggregating more than three (3) minutes in any one (1) hour, excluding uncombined water vapor.	The project owner shall make the site available for inspection by representatives of the District, ARB, U.S. EPA and Energy Commission.	Site Complies with AQ-T8	Ongoing: Compliance with opacity limit is determined by annual EPA Method 9 testing. The site is made available for inspection.
AQ-T10	Air Quality	The project owner shall not operate the turbines after the initial commissioning period without the selective catalytic NOx reduction system with valid District permit, as well as the oxidation catalyst with valid District permit installed and fully functional.	The project owner shall make the site available for inspection by representatives of the District, ARB, U.S. EPA and the Energy Commission.	Site Complies with AQ-T10	Ongoing: The combustion turbines are not operated without the fully functional selective catalytic NOx reduction system with valid District permit C007959/60, as well as the oxidation catalyst with valid District permit C010832/33. The site is made available for inspection.
AQ-T11	Air Quality	The project owner shall provide stack sampling ports and platforms necessary to perform source tests required to verify compliance with District rules, regulations and permit conditions. The location of these ports and platforms shall be subject to District approval.	The project owner shall make the site available for inspection by representatives of the District, ARB, EPA and the CEC.	Site Complies with AQ-T11	Ongoing: Blythe Energy stacks have installed sampling ports and platforms necessary to perform source tests required to verify compliance. The site is made available for inspection.
AQ-T12	Air Quality	Emissions of NOx, CO, oxygen and ammonia slip shall be monitored using a Continuous Emissions Monitoring System (CEMS). Each CEMS shall be operational whenever the associated combustion turbine generator is in operation, including during periods of startup, shutdown and malfunction. Turbine fuel consumption shall be monitored using a continuous monitoring system. Stack gas flow rate shall be monitored using either a Continuous Emission Rate Monitoring System (CERMS) meeting the requirements of 40 CFR Part 75 Appendix A or a stack flow rate calculation method. The operator shall install, calibrate, maintain, and operate these monitoring systems according to a District approved monitoring plan and MDAQMD Rule 218, and they shall be installed prior to initial equipment startup. Six (6) months prior to installation the operator shall submit a monitoring plan for District review and approval.	The project owner shall make the site available for inspection by representatives of the District, ARB, EPA and the CEC.	Site Complies with AQ-T12	Ongoing: Emissions of NOx, CO, oxygen and ammonia slip are monitored using a Continuous Emissions Monitoring System (CEMS) and 40 CFR 75 Appendix D (fuel metering and fuel sampling and analysis). The facility installs, calibrates, maintains, and operates these monitoring systems according to District-approved monitoring plan and MDAQMD Rule 218. The site is made available for inspection. An updated Title V Operating Permit was issued on 11/1/2023 where respective conditions were updated to better reflect the monitoring practices used by Blythe which now differ slightly than the "Condition" listed in the CEC Permit. The CEC permit should be updated to reflect the Title V Operating Permit.
AQ-T13	Air Quality		Thirty (30) days prior to the compliance/certification tests the operator shall provide a written test plan for District review and approval. Written notice of the compliance/certification test shall be provided to the District ten (10) days prior to the tests so that an observer may be present. A written report with the results of such compliance/certification tests shall be submitted to the District within forty-five (45) days after testing.	Site Complies with AQ-T13	Ongoing: Blythe Energy conducts testing in accordance with a District-approved test plan and provides the District with notice of test date(s) and a test report within applicable deadlines.
AQ-T14	Air Quality	The project owner shall perform the following annual compliance tests in accordance with the MDAQMD Compliance Test Procedural Manual. The test report shall be submitted to the District no later than six weeks prior to the expiration date of this permit. The following compliance tests are required: a. NOx as NO2 in ppmvd at 15% O2 and lb/hr (measured per U.S. EPA Reference Methods 19, 20, or 7E). If testing is performed at 90%-100% of rated capacity, then the annual calibration RATA associated with the NOx CEMS in use on these units may be used in lieu of the required annual U.S. EPA Reference Method 20, as long as all of the requirements of prior test notification, proper test result submittal, etc., are followed. b. VOC as CH4 in ppmvd at 15% O2 and lb/hr (measured per U.S. EPA Reference Methods 25A and 18). c. SOx as SO2 in ppmvd at 15% O2 and lb/hr. d. CO in ppmvd at 15% O2 and lb/hr. d. CO in ppmvd at 15% O2 and lb/hr (measured per U.S. EPA Reference Method 10). e. PM10 in mg/m3 at 15% O2 and lb/hr (measured per U.S. EPA Reference Methods 5 and 202 or CARB Method 5). f. Flue gas flow rate in dscfm. g. Opacity (measured per U.S. EPA reference Method 9). h. Ammonia slip in ppmvd at 15% O2.	The annual source test report shall be submitted to the District and CPM no later than six (6) weeks prior to the expiration date of the District permit.	Site Complies with AQ-T14	Ongoing: Blythe Energy performs annual compliance tests in accordance with the MDAQMD Compliance Test Procedural Manual. An updated Title V Operating Permit was issued on 11/1/2023 which removes reference to the "six (6) weeks prior to expiration date of this permit". The CEC permit should be updated to reflect the Title V Operating Permit.

#### Updated: 07-25-24

#### AltaGas Blythe Energy BE-GEN-07112010 Master Compliance Matrix Active Conditions of Certification

CODE	SECTION	CONDITION	VERIFICATION	Compliance	COMPLIANCE STATUS
AQ-T15		VOC emissions during startup and shutdown periods will be calculated by the CEMS using the following factors: For Permit B007953 (CT1) only: a. startup events: 0.0048 lb/mmBtu b. shutdown events: 0.0220 lb/mmBtu For Permit B007954 (CT2) only: a. startup events: 0.0056 lb/mmBtu b. shutdown events: 0.0107 lb/mmBtu	The calculated emission factors shall be reported in each Quarterly Operations Report, which is required by AQ-T17.	Site Complies with AQ-T15	Ongoing: VOC emissions are calculated using emission factors during periods of startup and shutdown.
AQ-T16		Continuous monitoring systems shall meet the following acceptability testing requirements from 40 CFR 60 Appendix B: a. For NOx, Performance Specification 2. b. For O2, Performance Specification 3. c. For CO, Performance Specification 4. d. For stack gas flow rate, Performance Specification 6 (if CERMS is installed.) e. For ammonia, a District approved procedure that is to be submitted by the project owner.		Site Complies with AQ-T16	Ongoing: Blythe Energy Continuous monitoring systems meet the acceptability testing requirements. An updated Title V Operating Permit was issued on 11/1/2023 where respective conditions wer updated to better reflect the monitoring practices used by Blythe which now differ slight than the "Condition" listed in the CEC Permit. T CEC permit should be updated to reflect the Tit V Operating Permit.
AQ-T17		reported information for the previous year. This information shall be maintained on site for a minimum of five (5) years and shall be provided to District	January 30, April 30, July 30 and October 30 of each year. The January 30 report shall include an annual summary of the Quarterly Operations Reports for the preceding year. The reports shall be submitted to the Mojave Desert Air Pollution Control District (District), the United States Environmental Protection Agency (U.S. EPA) and the California Energy Commission Compliance Project Manager (CPM).	Site Complies with AQ-T17	Ongoing: Quarterly reports containing the required information were submitted on time f the 2023Q2, 2023Q3, and 2024Q2 reporting periods. The 2023Q4 Quarterly Emissions Monitoring Report was submitted late. An attempt was made to submit the report prior to the 1/30/24 deadline; however, unbeknownst t Blythe, it was not transmitted due to an unexpected email related issue. MDAQMD notified Blythe that the report was not received in correspondence dated 2/26/24 and Blythe promptly submitted the report on 3/1/24.
AQ-T18		Effective May 7, 2016, total fuel use in the two gas turbines and two duct burners (Permit #B007953 combustion turbine generator power block (CT1), Permit #B007954 combustion turbine generator power block (CT2), Permit #B007955 duct burner unit 1 and Permit #B007956 duct burner unit 2)shall not exceed 31,852,800 MMBtu in any rolling 12-month period.	The project owner shall submit the total monthly and rolling 12-month fuel use in the gas turbines and duct burners in each Quarterly Operations Report.	Site Complies with AQ-T18	Ongoing: Quarterly reports are submitted with total monthly and rolling 12-month fuel use dat
I		The following Conditions of Certification apply to duct burner unit 1 (District Permi	ا it Number: B007955) and duct burner unit 2 (District Permit Number: B007956)	1	1
AQ-DB1	Air Quality	Operation of the duct burners shall be conducted in accordance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.		Site Complies with AQ-DB1	Ongoing: The site is made available for inspection.

AltaGas Blythe EnergyBE-GEN-07112010Master Compliance Matrix

#### Active Conditions of Certification

CODE	SECTION	CONDITION	VERIFICATION	Compliance	COMPLIANCE STATUS
AQ-DB2	Air Quality	The duct burners shall be exclusively fueled with natural gas and shall be operated and maintained in strict accord with the recommendations of its manufacturer or supplier and/or sound engineering principles.	The project owner shall make the site available for inspection by representatives of the District, ARB, U.S. EPA and Energy Commission.		Ongoing: The duct burners are exclusively fuele with natural gas and shall be operated and maintained in strict accord with the recommendations of its manufacturer or suppli and/or sound engineering principles.
AQ-DB3	Air Quality	The duct burners shall not be operated unless the combustion turbine generator with valid District permit B007953 (or B007954), selective catalytic reduction system with valid District permit C007959 (or C007960), and oxidation catalyst C010832 (or C010833) are in operation.	A summary of fuel use and equipment operation for each duct burner shall be included in each Quarterly Operations Report.	Site Complies with AQ-DB3	Ongoing: A summary of fuel use and equipment operation for each duct burner is included in quarterly reports.
AQ-DB4	Air Quality	Fuel use by duct burners shall be recorded and maintained on site for a minimum of five (5) years and shall be provided to District, ARB, Energy Commission or U.S. EPA personnel on request	The above information shall be recorded and maintained on site for a minimum of five (5) years and shall be provided to District or Energy Commission personnel on request.	Site Complies with AQ-DB4	Ongoing: Files are stored for 5 years and availab upon request.
		The following Conditions of Certification apply to the two individual selective catal	vtic NOx reduction systems (SCR) (District Permit Numbers: C007959, C007960.)		1
AQ-SCR1	Air Quality	Operation of the SCR units shall be conducted in accordance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.	The project owner shall make the site available for inspection by representatives of the District, ARB, U.S.	Site Complies with AQ-SCR1	Ongoing: The site is made available for inspection.
AQ-SCR2	Air Quality	The SCR Units shall be operated and maintained in strict accord with the recommendations of its manufacturer or supplier and/or sound engineering principles.	A summary of significant operation and maintenance events for each selective catalytic reduction system shall be included in the Quarterly Operations Reports.	Site Complies with AQ-SCR2	
AQ-SCR3	Air Quality	The SCR Units shall be operated concurrently with the combustion turbine generator with valid MDAQMD permit B007953 (or B007954).	The project owner shall make the site available for inspection by representatives of the District, ARB, U.S. EPA and Energy Commission.	Site Complies with AQ-SCR3	Ongoing: SCR Units are operated concurrently with the combustion turbines. The site is made available for inspection.
AQ-SCR4	Air Quality	Ammonia shall be injected whenever the selective catalytic reduction system has reached or exceeded 550 degree Fahrenheit. Except during periods of startup and shutdown, ammonia slip shall not exceed 10 ppmvd (corrected to 15% O2), averaged over three hours.	The project owner shall maintain a log of the SCR temperatures and the commencement of ammonia injection times. This information shall be recorded and maintained on site for a minimum of five (5) years and shall be provided to District and Energy Commission personnel on request.	Site Complies with AQ-SCR4	Ongoing: Files are stored for 5 years and availal upon request.
AQ-SCR5		Ammonia injection by the SCR units in pounds per hour shall be recorded and maintained on site for a minimum of five (5) years and shall be provided to District, ARB, Energy Commission or U.S. EPA personnel on request.	The project owner shall maintain a log of the SCR temperatures and the commencement of ammonia injection times. This information shall be recorded and maintained on site for a minimum of five (5) years and shall be provided to District and Energy Commission personnel on request.	Site Complies with AQ-SCR5	Ongoing: Files are stored for 5 years and availal upon request.
		The following Conditions of Certification apply to the two oxidation	catalyst (OC) units (District Permit Numbers: C010832, C010833)		
AQ-OC1	Air Quality	Operation of the OC units shall be conducted in compliance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.	The project owner shall make the site available for inspection by representatives of the District, ARB, U.S. EPA and Energy Commission.	Site Complies with AQ-OC1	Ongoing: The site is made available for inspection.
AQ-OC2	Air Quality	The OC Units shall be operated and maintained in strict accord with the recommendations of its manufacturer or supplier and/or sound engineering principles.	A summary of significant operation and maintenance events for each oxidation system unit shall be included in the Quarterly Operations Reports.	AQ-0C2	Ongoing: OC Units are operated and maintained in strict accord with the recommendations of its manufacturer or supplier and/or sound engineering principles.
AQ-OC3	Air Quality	The OC Units shall be operated concurrently with the combustion turbine generator with valid MDAQMD permit B007953 (or B007954).	The project owner shall make the site available for inspection by representatives of the District, ARB, U.S. EPA and Energy Commission.	Site Complies with AQ-OC3	Ongoing: The site is made available for inspection.
		The following Conditions of Certification apply to main cooling tower (District Permi	t Number: B007957) and chiller cooling tower (District Permit Number: B007958)		
AQ-CT1	Air Quality	Operation of the cooling towers shall be conducted in compliance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.	The project owner shall make the site available for inspection by representatives of the District, ARB, U.S.	Site Complies with AQ-CT1	Ongoing: The site is made available for inspection.
AQ-CT2	Air Quality	The cooling towers shall be operated and maintained in strict accord with the recommendations of their manufacturer or supplier and/or sound engineering principles.	A summary of significant operation and maintenance events for each cooling tower shall be included in the Quarterly Operations Reports.	Site Complies with AQ-CT2	Ongoing: Cooling Towers are operated and maintained in strict accord with the recommendations of its manufacturer or suppl and/or sound engineering principles.
AQ-CT3	Air Quality	The drift rate shall not exceed 0.0006 percent with a maximum circulation rate of 146,000 gallons per minute (gpm) for the Main Cooling Tower and 22,000 gpm for the Chiller Cooling Tower. The maximum hourly PM10 emission rate shall not exceed 0.546 pounds per hour from both cooling towers, as calculated per the written District approved protocol.	Compliance documentation in accordance with the written District approved protocol shall be submitted to the District and the CPM.	Site Complies with AQ-CT3	Ongoing: Cooling Towers are operated in accordance with District approved protocol.

Master Compliance Matrix Active Conditions of Certification

CODE SECTION CONDITION VERIFICATION AQ-CT4 Air Quality Whenever the power plant is in operation, the operator shall perform tests of the blow-down water quality once in every seven day period at a A summary of the results of the weekly blow-down water quality tests and the results ninimum; to clarify, if at any time during that same seven day period the power plant has run, then the owner operator shall perform blow-down water rate calculations shall be submitted in the Quarterly Operations Report. guality tests. The operator shall maintain a log that contains the date and result of each blow-down water guality test, and the resulting mass emission rate. This log shall be maintained on site for a minimum of five (5) years and shall be provided to District, ARB, Energy Commission or U.S. EPA personnel on request. AQ-CT5 Air Quality The operator shall conduct all required cooling tower water quality tests in accordance with a District-approved test and emissions calculation protocol. Thirty (30) days prior to the first such test the operator shall provide a written test and Thirty (30) days prior to the first such test the operator shall provide a written test and emissions calculation protocol for District review and approval. protocol for District and CPM review. AQ-CT6 Air Quality A maintenance procedure shall be established that states how often and what procedures will be used to ensure the integrity of the drift eliminators. The project owner shall make the site available for inspection by representatives of the This procedure shall be submitted to the District for approval at least thirty (30) days prior to construction and shall be kept on-site and available to EPA and Energy Commission District personnel on request. The following Conditions of Certification apply to the non-certified diesel IC engine, emergency fire pump (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permit Number: E007961), propane IC engine, emergency generator (District Permi AQ-IC1 Air Quality The IC engines shall be installed, operated and maintained in strict accord with those recommendations of the manufacturer/supplier and/or sound A summary of significant operation and maintenance events for the IC engines shall be engineering principles which produce the minimum emissions of contaminants. Unless otherwise noted, the IC engines shall also be operated in Quarterly Operations Reports. accordance with all data and specifications submitted with the application for this permit. AQ-IC2 Air Quality The diesel IC engines shall only be fired on ultra-low sulfur diesel fuel, whose sulfur concentration is less than or equal to 0.0015% (15 ppm) on a weight The above information shall be maintained on-site for a minimum of five (5) years and per weight basis per CARB Diesel or equivalent requirements. The propane IC engine shall only be fired on propane (LPG). District and/or Energy Commission personnel on request. AO-IC3 Air Quality A non-resettable hour meter with a minimum display capacity of 9,999 hours shall be installed and maintained on the IC engines to indicate elapsed The above information shall be maintained on-site for a minimum of five (5) years and District and/or Energy Commission personnel on request. engine operating time. AO-IC4 Air Ouality The diesel IC engines shall be limited to use for emergency power, defined as in response to a fire or due to low fire water pressure. In addition, the The above information shall be maintained on-site for a minimum of five (5) years and diesel IC engine (permit #E007961) shall be operated no more than 20 hours per year for testing and maintenance, excluding compliance source testing. District and/or Energy Commission personnel on request. Time required for source testing will not be counted toward the 20 hour per year limit. The propane IC engine shall be limited to use for emergency power, defined as in response to a fire or when commercially available power has been interrupted. In addition, the propane IC engine shall be operated no more than 100 hours per year for testing and maintenance, excluding compliance source testing. Time required for source testing will not be counted toward the 100 hour per year limit. AQ-IC5 Air Quality The requirements of section 93115.6 and 93116 of Airborne Toxic Control Measure for Stationary Compression Ignition Engines (ATCM) (Effective The above information shall be maintained on-site for a minimum of five (5) years and October 18, 2007), the hour limits indicated in AQ-IC4, do not apply to in-use emergency fire pump assemblies that are driven directly by stationary diesel-District and/or Energy Commission personnel on request. fueled CI engines and only operated the number of hours necessary to comply with the testing requirements of National Fire Protection Association (NFPA) 25 "Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems," 2002 edition, which is incorporated herein by reference. AQ-IC6 Air Quality The project owner shall maintain an operations log for the IC engines current and onsite, either at the engine location or at an on-site location, for a The above information shall be maintained on-site for a minimum of five (5) years and ninimum of five (5) years, and provide to District, ARB, Energy Commission or U.S. EPA personnel upon request. The log shall include, at a minimum, the District and/or Energy Commission personnel on request. information specified below: a. Date of each use and duration of each use (in hours), using the engines hour meter; b. Reason for use (testing & maintenance, emergency, required emission testing); . Monthly and calendar year operation in terms of fuel consumption (in gallons) and total hours; d. Monthly and rolling 12-month total CO, NOx and PM10 emissions, calculated based on monthly fuel use and District-approved emission factors; and e. For diesel IC engines, fuel sulfur concentration (the project owner may use the supplier's certification of sulfur content if it is maintained as part of this AQ-IC7 Air Quality The project owner shall conduct inspections in accord with the following schedule. All inspections must occur at least annually regardless of operating The above information shall be maintained on-site for a minimum of five (5) years and District and/or Energy Commission personnel on request. hours. a. Change oil and filter every 500 hours of operation or annually, whichever comes first, or use an oil change analysis program to extend oil change frequencies per the requirements in 40 CFR 63.6625(i); b. For diesel IC engines, inspect air cleaner every 1,000 hours of operation or annually, whichever comes first. For propane IC engine, inspect spark plugs every 1,000 hours of operation or annually, whichever comes first; and c. inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. AQ-IC8 Air Quality The project owner shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for The above information shall be maintained on-site for a minimum of five (5) years and appropriate and safe loading of the engine, not to exceed 30 minutes. District and/or Energy Commission personnel on request.

	Compliance	COMPLIANCE STATUS
s of the mass emission	Site Complies with AQ-CT4	Ongoing: Blow-down water quality test results are included in Quarterly reports.
d emissions calculation	Site Complies with AQ-CT5	Ongoing: water sampling is taken daily when the tower is in service.
he District, ARB, U.S.	Site Complies with AQ-CT6	Ongoing: The site is made available for inspection.
nit Number: E009492)	•	
e included in the	Site Complies with AC-IC1	Ongoing: IC engines are installed, operated and maintained in strict accord with those recommendations of the manufacturer/supplier and/or sound engineering principles which produce the minimum emissions of contaminants.
d shall be provided to	Site Complies with AC-IC2	Ongoing: Files are stored for 5 years and available upon request.
d shall be provided to	Site Complies with AC-IC3	Ongoing: Files are stored for 5 years and available upon request.
d shall be provided to	Site Complies with AC-IC4	Ongoing: Files are stored for 5 years and available upon request.
d shall be provided to	Site Complies with AC-IC5	Ongoing: Files are stored for 5 years and available upon request.
d shall be provided to	Site Complies with AC-IC6	Ongoing: Files are stored for 5 years and available upon request.
d shall be provided to	Site Complies with AC-IC7	Ongoing: Files are stored for 5 years and available upon request.
d shall be provided to	Site Complies with AC-IC8	Ongoing: Files are stored for 5 years and available upon request.

tive Conditi	ions of Certificat	tion		1
CODE	SECTION	CONDITION	VERIFICATION	Compliance COMPLIANCE STATUS
AQ-IC9	Air Quality	The diesel IC engine (permit #E007961) is subject to the requirements of the Airborne Toxic Control Measure (ATCM) for Stationary Compression Ignition Engines Title 17 CCR 93115 and 40 CFR 63 Subpart ZZZZ (RICE NESHAPs).	The above information shall be maintained on-site for a minimum of five (5) years and shall be provided to District and/or Energy Commission personnel on request.	Site Complies with         Ongoing: Files are stored for 5 years and availa           AC-IC9         upon request.
		The propane IC engine is subject to the requirements of 40 CFR 63 Subpart ZZZZ (RICE NESHAPs).		
		In the event of conflict between conditions and the referenced regulatory citations, the more stringent requirements shall govern.		
	•	HAZARDOUS MATERIALS HANDLING	G CONDITIONS OF CERTIFICATION	
Haz-1	Hazardous Materials Handling	The project owner shall not use any hazardous material in reportable quantities, as specified in Title 40, C. F.R. Part 355, Subpart J, section 355.50, not listed in Appendix B of the AFC, or in Table 5.11-1 of the Petition for Post-Certification Amendment, unless approved in advance by the CPM.	The project owner shall provide to the CPM, in the Annual Compliance Report, a list of hazardous materials contained at the facility in reportable quantities.	Site Complies with Ongoing: Annual reports are submitted on tim Haz-1
		WASTE MANAGEMENT COND	L DITIONS OF CERTIFICATION	
		Upon becoming aware of any impending waste management-related enforcement action, the project owner shall notify the CPM of any such action	The project owner shall notify the CPM in writing within 10 days of becoming aware of an impending	Site Complies with Ongoing: No violations during this reporting
WASTE-2		taken or proposed to be taken against it, or against any waste hauler or disposal facility or treatment operator with which the owner contracts.	enforcement action.	WASTE-2 period
WASTE-3	Waste Mgmt.	Prior to the start of construction and prior to the start of operation, the project owner shall prepare and submit to the CEC CPM, for review and	No less than Thirty (30) days prior to the start of construction, or a lesser time period mutually agreed upon	Site Complies with Ongoing: No violations during this reporting
		comment, a waste management plan for all wastes generated during construction and operation of the facility, respectively. The plans shall contain, at a minimum, the following:	the project owner shall submit the construction waste management plan to the CPM for review. The operation waste management plan shall be submitted no less than 30 days prior to the start of project	WASTE-3 period
		<ul> <li>A description of all expected waste streams, including projections of frequency and hazard classifications; and</li> </ul>	operation. The project owner shall submit any required revisions within 30 days of notification by the CPM	
		Methods of managing each waste, including treatment methods and companies contracted with for treatment services, waste testing methods to	(or mutually agreed upon date).	
		assure correct classification, methods of transportation, disposal requirements and sites, and recycling and waste minimization/reduction plans.	In the Annual Compliance Reports, the project owner shall document the actual waste management methods used during the year compared to planned management methods.	
	1	LAND		
LAND-2	Land Use	The proposed water conservation offset program shall not permanently retire lands in the Palo Verde Valley (Priority 1 lands) designated as Prime	At least 60 days prior to implementation of the Water Conservation Offset Program (WCOP), the project	Site Complies with Ongoing: No Change
		Farmlands or Farmlands of Statewide Importance as defined by the Department of Conservation, or lands included in a Williamson Act Preserve. Following or retirement of farmlands shall not violate any provision of a Williamson Act Contract. Lands selected for retirement on the Mesa shall not	owner shall submit detailed information to the CPM regarding the lands involved in the WCOP, including: 1 location and assessor parcel number, 2) Department of Conservation Important Farmland Program	LAND-2
		include lands currently involved in active orchard crop production.	Classification, 3) crop and cultivation history, and 4) Williamson Act Preserve and contract status. If the	
			program will fallow or retire any lands under Williamson Act contract, the project owner shall provide	
			documentation that such fallowing or retirement has been reviewed and approved by Riverside County	
			Planning Department and does not violate any provision of a Williamson Act contract. Any WCOP	
			agreements that are altered or added to the program shall be submitted to the CPM at least 30 days prior to taking effect.	
DISE				
NOISE-2	Noise	Throughout the construction and operation of the project, the project owner shall document, investigate, evaluate, and attempt to resolve all project-	Within 30 days of receiving a noise complaint, the project owner shall file a copy of the Noise Complaint	Site Complies with Ongoing : No complaints during this reporting
		related noise complaints.	Resolution Form, or similar instrument approved by the CPM, with the City of Blythe (or applicable Agency),	NOISE-2 period
			and with the CPM, documenting the resolution of the complaint. If mitigation is required to resolve a complaint, and the complaint is not resolved within a 30-day period, the project owner shall submit an	
			updated Noise Complaint Resolution Form when the mitigation is finally implemented.	
		BIOLOGICAL R	I RESOURCES	11
BIO-3	Biological	The CPM approved Designated Biologist shall perform the following during project construction and operation:	During project construction, the Designated Biologist shall maintain written records of the tasks described	Site Complies with Ongoing during current operations.
	Resources	1. Advise the project owner's Construction Manager on the implementation of the Biological Resource Conditions of Certification;	above, and summaries of these records shall be submitted along with the Monthly Compliance Reports to	BIO-3
		2. Supervise or conduct mitigation, monitoring and other biological resources compliance efforts, particularly in areas requiring avoidance or containing	the CPM. During project operation, the Designated Biologist shall submit record summaries in the Annual	
		sensitive biological resources, such as, wetlands and special status species; and	Compliance Report.	
		3. Notify the project owner and the CPM of non-compliance with any Biological Resources Condition of Certification.		
BIO-6		The evaporation ponds shall be monitored by plant personnel for bird and wildlife losses (see BIO-1). If a substantial number of bird and wildlife are	In the Annual Compliance Report, the project owner shall submit records of all monitoring dates, data	Site Complies with Ongoing: See Biologist annual report
	Resources	found dead during any year, as determined by the CPM or Designated Biologist, then measures shall be identified and implemented that will substantially	collected, annual report, and any corrective actions taken in the Annual Compliance Report to the CPM.	BIO-6
		reduce or eliminate the problem. This monitoring shall continue for the first three years of plant operations, and depending on the results, could be		
		discontinued at that time.		
BIO-8	Biological	The water quality in the evaporation ponds shall be monitored monthly for the first three years of operation. Collections of invertebrates shall be taken	In the Annual Compliance Report, the project owner shall submit records of all monitoring dates, data	Site Complies with Ongoing: See Biologist annual report
	Resources	from the evaporation ponds at the same time, and these samples preserved (e.g., alcohol and water in sealed glass containers labeled with date and location).	collected, annual report, and any corrective actions taken in the Annual Compliance Report to the CPM.	BIO-8
	Î.			<u>                                      </u>
BIO-9	Biological	The project owner shall conduct maintenance monitoring of the desert tortoise exclusion fencing on a monthly basis and complete repairs within one	The project owner shall submit records of all monitoring dates, identify the locations that required repair	Site Complies with Ongoing: See Biologist annual report
BIO-9	Biological Resources	The project owner shall conduct maintenance monitoring of the desert tortoise exclusion fencing on a monthly basis and complete repairs within one week of a problem being identified. Temporary fencing must be installed at any gaps opened in the project site fence if those gaps will be left open	The project owner shall submit records of all monitoring dates, identify the locations that required repair, and any corrective actions taken or temporary fence installed in the Annual Compliance Report.	Site Complies with Ongoing: See Biologist annual report BIO-9

#### AltaGas Blythe Energy BE-GEN-07112010 Master Compliance Matrix

Active Conditions of Certification

Active Conditi	ions of Certifica	tion		
CODE	SECTION	CONDITION	VERIFICATION	Compliance COMPLIANCE STATUS
BIO-10	Biological Resources	A comprehensive exotic control program for California Department of Agriculture List A, List B, and Red Alert weeds, shall be implemented at the 76-acre power plant site. This program should be implemented until such time that the adjacent land use on the north and west sides is no longer a natural community or agriculture, or until the plant is permanently closed. At the Colorado River, this exotic control program should be implemented as feasible until the Caltrans ROW is replanted and established. The natural vegetation adjacent to the BEP site shall be monitored to determine if it has been modified or degraded, if so, these changes to the adjacent sites should be documented by the project's Designated Biologist in a report which includes photos of the adjacent land uses.	document changes (as needed) to the surrounding areas in the Annual Compliance Report.	Site Complies with Ongoing: See Biologist annual report BIO-10
BIO-11	Biological Resources		The Designated Biologist shall supervise the selection and installation of landscaping material and inform the CPM of any non-conforming plantings within 2 weeks of the action. If a state (Caltrans) mandated plant palette is on record, then these species can be used in lieu of the Blythe General Plan species. The success of the landscaping shall be monitored for 5 years after installation and corrective actions taken to sustain a survivorship rate of greater than 60% for all plantings. The Designated Biologist shall submit records of all monitoring dates, identify areas needing repair, and any corrective actions taken in the Annual Compliance Report	Site Complies with Ongoing: See Biologist annual report BIO-11
BIO-15	Biological Resources	The project owner shall implement an Interim Weed and Erosion Prevention Program for the applicable portion of the 66-acre expansion area to mitigate any potential outbreak of noxious weeds on all bare ground sites for the three (3) years (1095 days) following final grading. The Interim Weed and Erosion Prevention Program shall propose a technique that prevents erosion, reduces dependence on herbicides, and prevents the germination of weed seed to the highest level possible. If the 66-acre expansion area remains undeveloped for the entire three (3) year period, and there is no permitted project for the site, then the project owner shall implement a long-term plan to re-establish regionally native vegetation on the site within one year, and remove portions of the desert tortoise proof fencing to allow wildlife to return to the site.	the expected completion of grading to the CPM for approval. The Interim Weed and Erosion Prevention Program should: 1. evaluate at least two weed prevention techniques,	Site Complies with BIO-15
		SOIL & WATER	PECOLIPCES	
SOILS AND WATER 4		The project owner will record on a monthly basis the amount of groundwater pumped by the project. This information will be supplied to the Energy Commission, the Palo Verde Irrigation District, and the United States Bureau of Reclamation.		Site Complies with Ongoing - Included in report. SOIL AND WATER 4
SOIL & WATER 8		The project owner shall measure groundwater levels in the on-site monitoring well on a monthly basis for the first six months following the project start up and thereafter on a quarterly basis.	The project owner shall submit a quarterly report of the groundwater level monitoring to the CEC CPM on a quarterly basis.	Site Complies with Ongoing: Quarterly reports are submitted on SOIL AND WATER time 8
SOILS & WATER 10		The Applicant will provide the results of an annual analysis of groundwater from the Northeast and Southeast monitoring wells (as identified in the BEP response to Staff Data Request 212), and from at least one of the wells constructed to supply the project with groundwater. The analytes will include the volatile and semi-volatile organic compounds reported in the response to Staff Data Request 212. If there is a significant increase in the concentration of groundwater contaminants, the need for additional pretreatment of water will be reassessed. The need for pretreatment of groundwater prior to use by the project would be based on incompatibility with the WDRs, exceedances of air emissions standards, worker safety standards, or standards of exposure of downwind receptors.	operation on the anniversary date the BEP begins operation and continuing for a total of 5-years. The need	

#### Updated: 07-25-24

## **Blythe Energy Project**

## 2023-24 Annual Report (Summer 2023 through Spring 2024) for Biological Resources

Submitted to:

David Gutierrez Blythe Energy Center P.O. Box 1210 Blythe, California 92226

Submitted by:

Alio Etal

Alice E. Karl, Ph.D Blythe Energy Project Designated Biologist P.O. Box 74006 Davis, California 95617

02 August 2024

#### TABLE OF CONTENTS

BAC	CKGROUND	Page 1
		<b>D</b>
CO	NDITIONS OF CERTIFICATION	Page 2
2.1	BIO-6	Page 2
	2.1.1 Methods Used at BEP to Achieve Compliance with	-
	Conditions of Certification	Page 2
	2.1.2 Results and Recommendations	Page 2
2.2	BIO-7	Page 2
	2.2.1 Methods Used at BEP to Achieve Compliance with	C
	Conditions of Certification	Page 3
	2.2.2 Results and Recommendations	Page 4
2.3	BIO-9	Page 7
	2.3.1 Methods Used at BEP to Achieve Compliance with	C
	Conditions of Certification	Page 7
	2.3.2 Results and Recommendations	Page 8
2.4	BIO-11	Page 8
	2.4.1 Methods Used at BEP to Achieve Compliance with	C C
	Conditions of Certification	Page 8
	2.4.2 Results and Recommendations	Page 9
2.5	BIO-15	Page 10
	2.5.1 Methods Used at BEP to Achieve Compliance with	C
	Conditions of Certification	Page 10
	2.5.2 Results and Recommendations	Page 12
SUN	1MARY	Page 12
	ACT CON 2.1 2.2 2.3 2.4 2.5	<ul> <li>2.1.1 Methods Used at BEP to Achieve Compliance with Conditions of Certification</li></ul>

#### LIST OF FIGURES

## FIGURE 1. Example of Brine "Island" Accumulation in the Western Pond ......Page 4

#### LIST OF TABLES

<b>TABLE 1.</b>	Average Number of Birds per Count per Survey-Day, by SpeciesPage 5
TABLE 2.	Number of Survey-Days When Each Species Was ObservedPage 6

#### APPENDICES

APPENDIX 1.	Monthly bird countsP	age 13
-------------	----------------------	--------

#### BLYTHE ENERGY PROJECT 2023-24 ANNUAL REPORT (SUMMER 2023 THROUGH SPRING 2024) FOR BIOLOGICAL RESOURCES

#### 1.0 BACKGROUND

Blythe Energy Project (BEP or Project) became operational December 29, 2003. The California Energy Commission's (CEC's) licensing of BEP identified several Conditions of Certification that would occur after operation began¹. For the operations period, the following biological Conditions of Certification are applicable:

- **BIO-6** BEP personnel monitor evaporation ponds for bird and wildlife losses
- **BIO-7** The Designated Biologist monitors evaporation ponds for bird use
- **BIO-8** Monitor water quality in the evaporation ponds
- **BIO-9** Conduct maintenance monitoring of the plant's tortoise exclusion fencing
- **BIO-11** Implement an exotic weed control program to control invasions on adjacent lands
- **BIO-15** BEP's Amendment to Add 66 Acre Area for Deposit of Excess Sediments (August 14, 2002), incorporated an Interim Weed and Erosion Prevention Program (IWEPP)². Implement an exotic weed control program for this 66-acre site ("Blythe 1B") and adjacent 10-acre cultural exclusion site in order to mitigate any potential outbreak of noxious weeds on all bare ground sites for three years; eliminate weed seeds from the soil stockpile for future revegetation potential

Information related to **BIO-8** is addressed elsewhere in the Project's annual report to the CEC. Activities relating to the remaining biological conditions are reported here for the period from July 2023 through June 2024. A report on activities from the prior period can be found in the 2022-23 Annual Report on Biological Resources³ as well as earlier annual reports.

¹ California Energy Commission. 2001, Commission Decision, Application for Certification, Blythe Energy Project, Docket No. 99-AFC-8, March 2001.

² Karl, A. E. 2003. Blythe Energy Project. Interim Weed and Erosion Prevention Program. Submitted to the California Energy Commission, Sacramento, CA. 10 pp plus attachments.

³ Karl, A. E. 2023. Blythe Energy Project 2022-23 Annual Report for Biological Resources. Submitted to Blythe Energy Center, Blythe, CA. 29 pp.

# 2.0 ACTIONS AND RECOMMENDATIONS RELATING TO CONDITIONS OF CERTIFICATION

#### 2.1 BIO-6

Condition of Certification **BIO-6** reads:

"The evaporation ponds shall be monitored by plant personnel for bird and wildlife losses (see **BIO-1**). If a substantial number of bird and wildlife are found dead during any year, as determined by the CPM or Designated Biologist, then measures shall be identified and implemented that will substantially reduce or eliminate the problem. This monitoring shall continue for the first three years of plant operations, and depending on the results, could be discontinued at that time."

# 2.1.1 Methods Used at BEP to Achieve Compliance with Conditions of Certification

Evaporation ponds and the immediate area around the ponds are checked daily, during bird hazing and other maintenance activities. Any dead birds are removed from the pond and the Designated Biologist contacted and provided pictures and information for determination of species and mortality factors. Following this, the birds are labeled and frozen for examination during Designated Biologist site visits to further elucidate cause of death. The exception is a listed species, which the Designated Biologist immediately reports to the CEC, and also the U.S. Fish and Wildlife Service (FWS) if a federally listed species.

#### 2.1.2 **Results and Recommendations**

No dead birds were reported for this period⁴.

Based on the very low ongoing mortality rate, the recommendation is to continue the current monitoring activities.

#### 2.2 BIO-7

Condition of Certification **BIO-7** reads:

"The evaporation ponds (following start of operation when liquid is in the ponds) shall be monitored twice monthly (once every two weeks – two weeks apart) by the Designated Biologist or another biologist or person familiar with and who can identify birds of the area and is approved by the CPM.

⁴ D. Gutierrez, Senior Manager, Operations and Maintenance, AltaGas/Blythe Energy Inc. 19 July 2024 email to A. Karl.

Records shall be made of the type of birds (e.g. waterfowl, shorebird, etc.), number of birds and behavior. This monitoring shall continue for the first three years of plant operations, and depending on the results, could be discontinued at that time or continued, as needed."

# 2.2.1 Methods Used at BEP to Achieve Compliance with Conditions of Certification

The project became operational December 29, 2003. Intensive monitoring of pond use by birds began in late June 2003 and continued through December 2007. Reports documenting bird use of the ponds were submitted every six months during this period, with the final monitoring report was submitted in February 2008⁵. All reports are on file at BEP.

Based on the potentially hazardous levels of selenium and sodium in the evaporation pond water, BEP implemented a program in March 2005 to minimize the risk of elevated levels of selenium and sodium in the evaporation ponds. The program included a bird-deterrent program, continued monitoring of bird use at the ponds and supplementary water monitoring.

As Designated Biologist, I developed a bird deterrent program focused on two premises: (1) making resources provided by the ponds less available (i.e., habitat elimination) and (2) making these resources less attractive (i.e., hazing). Removal of nesting habitat for shorebirds was achieved by (1) removing rainwater puddles from ponds when they were not in use, and (2) raising the water level in the ponds to eliminate the shoreline. Emergent vegetation was not permitted to grow in the ponds. These habitat modifications also rendered the sediment less available to wading species for foraging. As an ancillary benefit, salinity decreased when fresh water was added to raise the water level to remove the shoreline. Further, Charlyn Mosely, former Environmental Compliance Officer, and I developed an integrated system of negative stimuli to haze birds, including cannons, flags across the pond, and hourly walking/driving on the pond levees.

Because of decreased staffing, AltaGas (the current owner) modified this program and currently adheres to the following, reduced hazing methods:

- ◊ AltaGas added large, static "eye" balloons along the upper berm edges in 2016 in an attempt to replace the flags, which require at least annual replacement.
- ◊ 15 March through 14 September The pond berms are driven several times a day. The bird "cannon" is fired at random times throughout the day and moved to different locations around the pond at least daily. Birds present at

⁵ Karl, A. E. 2008. Blythe Energy Project. Semiannual summary of bird use of the evaporation ponds: Summer and Fall 2007. Submitted to Blythe Energy, LLC, Blythe, CA. 11 pp.

the ponds are counted, identified if possible, and behaviors recorded; all data are recorded on monitoring logs.

- ♦ 15 September through 14 March Before 0800 daily, the condition of the eye balloons is inspected. Birds present at both ponds are counted, identified if possible, and behaviors recorded; all data are recorded on monitoring logs.
- Areas surrounding the ponds and between the east and west ponds are surveyed once a day for predators and predation and annotated in the log. Any carcass remnants are removed and discarded unless there are sufficient remains for species identification. These are frozen for inspection by the Designated Biologist.

Any nests observed are recorded. Non-disturbance zones are clearly marked at sufficient distance from the nest to avoid disturbing the parents and young.

#### 2.2.2 Results and Recommendations

The eastern pond was emptied for cleaning and to make any necessary repairs to the liner beginning in Summer 2019. It remained empty in Summer/Fall 2023, but was approximately ¹/₄ full in Spring 2024. There were substantial brine accumulation "islands" along the shoreline. The western pond was about half to two-thirds full over the last year with a brine sludge shelf along most of the eastern shoreline (Figure 1). No vegetation is growing in either pond. It's very possible that the



FIGURE 1. Example of Brine "Island" Accumulation in the Western Pond. Photo taken May 2023.

Month	Avocet	Pipit	Bufflehead	Killdeer	Black- necked Stilt	Cinnamon Teal	Other Teals	Phalarope	Eared Grebe	Sandpiper	Northern Shoveler	# of Survey Days
July	0.5	0.4	0.2		0.1							31
August	0.5	0.4			0.2			0.1				31
September			0.5									26
October		0.1					0.04					28
November												30
December												31
January												25
February					0.04							28
March				0.1	0.04			0.04				27
April						0.04						27
May			0.1	0.1								28
June				0.3								30
Total	1.0	0.9	0.8	0.5	0.4	0.04	0.04	0.1	0.0	0.0	0.0	342
Average	0.08	0.08	0.07	0.04	0.03	0.003	0.003	0.01	0.00	0.00	0.00	

**TABLE 1.** Average Number of Birds per Count per Survey-Day, by Species.Sandpiper and northern shoveler are included in this table for comparison to earlier<br/>years, when they were present in small numbers.

Month	Avocet	Killdeer	Pipit	Black- necked Stilt	Phalarope	Bufflehead Duck	Cinnamon Teal	Other Teals	# of Survey Days
July (2023)	4		5	1		2			31
August	6		2	3	1				31
September						3			26
October								Х	28
November									30
December									31
January (2024)									25
February				1					28
March		2		1	1				27
April							1		27
May		2				1			28
June		5							30
Total	10	9	7	6	2	6	1	0	342

 TABLE 2. Number of Survey-Days When Each Species Was Observed, for Those Species Observed. Birds are grouped by taxa (shorebirds, ducks).

water conditions inhibit plant growth since TDS is substantial: 130,000 mg/L in the eastern pond and 110,000 in the western in 2019⁶. Whatever the reason, the general lack of vegetation provides no habitat for secretive birds that require cover.

As in prior years, there was little bird use of the ponds, and presence was almost entirely transient. The higher average daily counts of avocets and buffleheads (Table 1) were largely due to flocks visiting in mid to late summer (Table 2). Outside of these pulses, shorebirds (pipits, killdeer and black-necked stilts) were the most frequently observed taxa in spring and summer (Tables 1 and 2), consistent with previous years. Notably however, black-necked stilts, a species usually observed at the ponds in spring and frequently observed nesting on the pond liner, were absent from April through June and no nests were seen. In fact, few birds of any species were observed in April and May compared to prior years. Only three birds were observed on a single day and 1-2 killdeer were observed in May on two days. By comparison, nine species were observed mostly on multiple days in both April and May 2023. Unlike earlier years, no eared grebes or sandpipers were observed during the entire year, and ducks were largely absent.

Killdeer was the only species that nested. Only a single nest was observed and it likely failed, as the parent bird was rarely observed in May after the eggs were discovered, and only observed one day in early June.

In summary, the bird deterrents and continual efforts to minimize sludge islands (nesting habitat) seem to be working, based on the absence of mortalities and nesting.

#### 2.3 BIO-9

Condition of Certification **BIO-9** reads:

"The project owner shall conduct maintenance monitoring of the desert tortoise exclusion fencing on a monthly basis and complete repairs within one week of a problem being identified.

The project owner shall submit records of all monitoring dates, identify the locations that required repair, and any corrective actions taken in the Annual Compliance Report."

# 2.3.1 Methods Used at BEP to Achieve Compliance with Conditions of Certification

⁶ Eurofins TestAmerica, Irvine. 2019. Analytical report for samples collected on 14 April 2019. Laboratory Job ID: 440-238964-1. Submitted to R. DeLaParra, Northstar Environmental Remediation, Lake Forest, CA. 23 pp.

Blythe Energy Project /2023-24 Annual Report-Biology/A.E. Karl

Over time, sand accumulates on the southern property fence, thereby compromising the exclusion utility of the tortoise fence. Alta Gas keeps sand cleared from the fence. The fences are monitored weekly, with repairs made as necessary (D. Guttierez, pers. comm. to A. Karl). Alta Gas maintains records of all monitoring dates and remedial actions, if any.

#### 2.3.2 **Results and Recommendations**

My recommendation is to continue to monitor the fences, and repair as necessary, to ensure that they remain functional. Any gaps that suggest that tortoises may have entered the site could result in a site clearance survey.

#### 2.4 BIO-11

Condition of Certification **BIO-11** reads:

"A comprehensive exotic weed control program for California Department of Agriculture List A, List B, and Red Alert weeds, shall be implemented at the 76-acre power plant site. This program shall be implemented until such time that the adjacent land use on the north and west sides is not longer a natural community or agriculture, or until the plant is permanently closed. ... The natural vegetation adjacent to the BEP site shall be monitored to determine if it has been modified or degraded, if so, these changes to the adjacent sites should be documented by the project's Designated Biologist in a report which includes photos of the adjacent land uses.

The project owner shall provide a progress/activity report regarding exotic weed control efforts and document changes (as needed) to the surrounding areas in the annual Compliance report.

# 2.4.1 Methods Used at BEP to Achieve Compliance with Conditions of Certification

In 2009, based on my recommendations, the project owner began spraying all potential growth areas for Sahara mustard and Russian thistle (e.g., swales, berm edges, stockpiles, fencelines) with a pre-emergent herbicide in early fall, prior to seed germination. The spraying of pre-emergent herbicide has been consistently successful (see earlier annual reports). Prior to the implementation of pre-emergent spraying in 2009, weeds had consistently grown along fencelines and the stockpiles. Since spraying with a pre-emergent, there has been very little to no mustard or other weeds growing along the fencelines, despite a robust and persistent population of those weeds in all of the surrounding lands.

The habitat immediately surrounding the entire BEP and IB site (collectively termed the "Project"), including the 10-acre cultural exclusion area abutting Blythe

1B's northern border, has been surveyed annually for introduction of any weeds resulting from Project construction and operations activities. In practice this includes the entire fenceline, the temporary road on the western fenceline that was constructed to build the fence, and the shoulder of Buck Blvd. I also survey all surfaces, especially non-compacted surfaces (e.g., ditches, berms, stockpile edges) and places where water would collect (detention basins) inside the Project site. Generally these surveys, or at least those along the fence, occur in late January/early February before seed set by the most invasive and offensive weed species found at BEP: Sahara mustard (*Brassica tournefortii*); Russian thistle (*Salsola tragus*); and tamarisk (*Tamarix* sp.). In 2024, the surveys will be conducted in September/October, at which point residual plants, even dried, will be detectable.

During each year's surveys, I uproot or direct the removal of scattered mustard and Russian thistle plants under fencelines and inside the Project, as needed, and discard them into the enclosed BEP trash bins for disposal. Again, this generally occurs at the appropriate time of year to minimize population spread – i.e., following germination but prior to seed set, generally in early to mid-February. Dense groupings are mapped and directed to the Environmental Compliance Officer to be sprayed with glyphosate (Roundup[©]) or excavated and removed (bagged and disposed of in BEP bins) by BEP personnel or their herbicide contractor. These activities by BEP personnel are always to be accomplished immediately, prior to seed set. Based on several years of diligent herbicide application at the appropriate times, surveys were confidently postponed in 2024 until autumn. Residual plants will be easily identifiable even then, but they are unexpected due to the herbicide program.

#### 2.4.2 Results and Recommendations

AltaGas sprayed a pre-emergent on 02 November 2023⁴. All surfaces on the power plant site, plus the switchyard, the 66-acre soil stockpile to the west (Blythe II), and the perimeter were sprayed. This was followed on 29 April 2024 by post-emergent spraying on all of these areas. As a result, sprayed surfaces remain largely devoid of any plant growth, including weeds, except for a few perennial and/or herbaceous subshrubs, primarily in the diversion channel and in the 66-acre set-aside ditch. The landscaping around the project is being well maintained on the eastern and southern fencelines. It appears that irrigation is limited on the northern border - shrubs are a little dry.

Both Sahara mustard and seeds are likely to continue to invade BEP from lands around BEP, due to existing seed banks and the potential for soil instability north of Riverside Avenue. Several of the Project's site features - the fencelines, slopes and depressions, and ditches - provide favorable microsites that enhance germination and growth and could contribute to the spread of noxious weeds, Sahara mustard in particular. However, our methods of pre-emergent spraying and post-emergent weed removal have prevented the spread or increased populations of these noxious, highly invasive weeds on all of the Project site except the 10-acre cultural set-aside in the northwestern corner. That area has been heavily invaded by mustard from the infested lands to the north and northwest (prevailing winds). This set-aside has native habitat, so herbicide spraying is not an option and manual removal is impractical.

The current weed abatement program should be maintained. The following successful measures have been and will continue to be recommended for controlling weed populations specifically associated with the Project:

- ♦ Continue to monitor fences, roads, and other features that may enhance weed populations.
- ♦ Apply a pre-emergent herbicide (e.g., Diuron 4L) in October, prior to the first winter rains, to prevent germination of weeds the following winter and spring.
- ♦ As needed, each spring continue to manually remove and/or use postemergent herbicides (e.g., glyphosate [Roundup[©]] or mustard-specific herbicides) to eliminate all weed individuals. Ensure that this activity is done prior to seed set by identifying plant phenological condition, checking the Project site at sufficient intervals in the event that weather patterns result in multiple flushes of germination, and submitting dates of plant removal and spraying.
- Re-apply dust palliatives as necessary on BEP and the stockpiles, to minimize the accumulation of sand (hospitable germination sites for weeds) and weed seeds.

#### 2.5 BIO-15

Condition of Certification **BIO-15** for this amendment reads.

**BIO-15** - "The project owner shall implement an Interim Weed and Erosion Prevention Program for the applicable portion of the 66-acre expansion area to mitigate any potential outbreak of noxious weeds on all bare ground sites for the three (3) years (1095 days) following final grading. The Interim Weed and Erosion Prevention Program shall propose a technique that prevents erosion, reduces dependence on herbicides, and prevents the germination of weed seed to the highest level possible. If the 66-acre expansion area remains undeveloped for the entire three (3) year period, and there is no permitted project for the site, then the project owner shall implement a long-term plan to re-establish regionally native vegetation on the site within one year, and remove portions of the desert tortoise proof fencing to allow wildlife to return to the site."

#### 2.5.1 Methods to Achieve Compliance with Conditions of Certification

The approved IWEPP for the BEP Amendment established a three-year program to manage the stockpile, in the event that Blythe II (now Sonoran Energy Project) was not permitted. The program objective was to produce a stockpile that was weed-seed free for use in subsequent revegetation. The IWEPP program began in Fall 2003, following completion of stockpile development and contouring. In accordance with the IWEPP, a pre-emergent herbicide was applied to the stockpile on 14 October 2003, following final contouring of the stockpiles⁷. The dust suppressant, "Envirotac" was applied, as needed, to minimize airborne dust.

The second and third years of the program were designed to eliminate the weed seed bank in the stockpiles by farming the weeds. This program was to include actively germinating weed seeds in the soil stockpile, applying supplemental irrigation as necessary, and then eliminating the weeds prior to seed set, through the use of herbicides. Exceptionally high winter rainfall the second year obviated the need for supplementary irrigation. The negligible response of weeds following that winter of high rainfall suggested that there were few viable seeds in the stockpile that were available for germination, so no supplemental irrigation was applied in Year 3. (There was precipitation in Year 3, but it was sub-average.)

The Sonoran Energy Project, which proposed to occupy the 66-acre expansion area, was permitted as Blythe II on 14 December 2005. Based on this permitting and the apparent lack of a viable weed seed bank in the stockpiles (see above), on April 4, 2007, Blythe Energy requested a suspension of that portion of the IWEPP program that included actively farming the weed seeds on the stockpile and subsequently using the stockpile soils for revegetation⁸. The CEC approved this request⁹. In its place, weed populations have been monitored and generally either removed manually or sprayed with glyphosate annually since 2003, in association with **BIO-11**. This has occurred at the appropriate time of year to minimize population spread – i.e. -following germination but prior to seed set, generally in early to mid-February. The stockpiles are also sprayed, typically annually, with the pre-emergent herbicide in fall, prior to seed germination associated with fall/early winter storms.

This program of weed inspection, prevention and removal will continue until Blythe II construction begins.

⁸ Karl, A. E. 2007. Letter to Steve Munro, Project Manager, California Energy Commission, to request suspension of the IWEPP. April 4, 2007. 2 pp.

Blythe Energy Project /2023-24 Annual Report-Biology/A.E. Karl

⁷ Karl, A.E. 2004. Blythe Energy Project: Annual report for biological compliance issues, June 2003 through June 2004. Submitted to FPL Energy, Blythe Energy Project, Blythe, CA. 7 pp plus appendices.

⁹ Munro, S. 2007. E-mail to Alice Karl. June 28, 2007.

#### 2.5.2 **Results and Recommendations**

See Section 2.4.2 in **BIO-11**, above, for results.

#### 3.0 SUMMARY

The methods to achieve compliance have all been in place for several years and have functioned very successfully, with no issues. AltaGas reported no biological issues at the site over this report's time period⁴. They are doing an excellent job of minimizing the attraction of the ponds to birds. They are keeping the project weed free. They are maintaining the quality of the tortoise exclusion fences. They always readily and thoroughly complied with any requests I have made.

My recommendation is to continue with the current, very successful methods, incorporating appropriate changes should the need arise.

Appendix 1. Monthly Bird Counts

	Daily Average by Species													
Day of Month - July 2023	Eared Grebe	Black-necked Stilt	Other Teals	Cinnamon Teal	Phalarope	Pipit	Killdeer	Avocet	Sandpiper	Snowy Plover	California Gull	Bufflehead Duck	Northern Shoveler	Daily Count Effort
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
7	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	4
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
11	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
12	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	3
20	0.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
21	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
22	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0	0.0	0.0	0.0	0.0	3
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	4
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	5
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	4
31	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
Total	0.0	2.0	0.0	0.0	0.0	12.0	0.0	14.0	0.0	0.0	0.0	7.0	0.0	94.0
Average # Birds per Day	0.0	0.1	0.0	0.0	0.0	0.4	0.0	0.5	0.0	0.0	0.0	0.2	0.0	

Notes Re Flocks and Nesting: Flock of 27 avocet on July 27

	Daily Average by Species													
Day of Month-August	Eared Grebe	Black-necked Stilt	Other Teals	Cinnamon Teal	Phalarope	Pipit	Killdeer	Avocet	Sandpiper	Snowy Plover	California Gull	Bufflehead Duck	Northern Shoveler	Daily Count Effort
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
3	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
8	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
9	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
10	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	3
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
17	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	4
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	5
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
26	0.0	0.0	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	3
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	4
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	4
31	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
Total	0.0	6.0	0.0	0.0	2.0	12.0	0.0	16.0	0.0	0.0	0.0	0.0	0.0	106.0
Average # Birds per Day	0.0	0.2	0.0	0.0	0.1	0.4	0.0	0.5	0.0	0.0	0.0	0.0	0.0	
Total Number of Survey Days	31													

Notes Re Flocks and Nesting: Flock of 6 avocet on August 30

	Daily Average by Species													
Day of Month - September	Eared Grebe	Black-necked Stilt	Other Teals	Cinnamon Teal	Phalarope	Pipit	Killdeer	Avocet	Sandpiper	Snowy Plover	California Gull	Bufflehead Duck	Northern Shoveler	Daily Count Effort
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	1
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0	1
Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	13.0	0.0	47.0
Average # Birds per Day	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	(

Notes Re Flocks and Nesting: Flock of 07 bufflehead on September 30

	Daily Average by Species													
Day of Month- October	Eared Grebe	Black-necked Stilt	Other Teals	Cinnamon Teal	Phalarope	Pipit	Killdeer	Avocet	Sandpiper	Snowy Plover	California Gull	Bufflehead Duck	Northern Shoveler	Daily Count Effort
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
4	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
23	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
25	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
31	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
Total	0.0	0.0	1.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	31.0
Average # Birds per Day	0.0	0.0	0.04	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Number of Survey Days	28													

Notes Re Flocks and Nesting None

	Daily Average by Species													
Day of Month - November	Eared Grebe	Black-necked Stilt	Other Teals	Cinnamon Teal	Phalarope	Pipit	Killdeer	Avocet	Sandpiper	Snowy Plover	California Gull	Bufflehead Duck		Daily Count Effort
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	82.0
Average # Birds per Day	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Notes Re Flocks and Nesting: None

	Daily Average by Species													
Day of Month - December	Eared Grebe	Black-necked Stilt	Other Teals	Cinnamon Teal	Phalarope	Pipit	Killdeer	Avocet	Sandpiper	Snowy Plover	California Gull	Bufflehead Duck	Northern Shoveler	Daily Count Effort
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
31	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	84.0
Average # Birds per Day	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Number of Days	31													

Notes Re Flocks and Nesting

None

							Daily Avera	ge by Specie	es					
Day of Month - January 2024	Eared Grebe	Black-necked Stilt	Other Teals	Cinnamon Teal	Phalarope	Pipit	Killdeer	Avocet	Sandpiper	Snowy Plover	California Gull	Bufflehead Duck	Northern Shoveler	Daily Count Effort
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
31	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26.0
Average # Birds per Day	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Number of Survey Days	25													

Notes Re Flocks and Nesting

None

		Daily Average by Species												
Day of Month - February	Eared Grebe	Black-necked Stilt	Other Teals	Cinnamon Teal	Phalarope	Pipit	Killdeer	Avocet	Sandpiper	Snowy Plover	California Gull	Bufflehead Duck	Northern Shoveler	Daily Count Effort
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
25	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
Total	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28.0
Average # Birds per Day	0.0	0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Notes Re Flocks and Nesting: None

						Daily Average by Species													
Day of Month - March	Eared Grebe	Black-necked Stilt	Other Teals	Cinnamon Teal	Phalarope	Pipit	Killdeer	Avocet	Sandpiper	Snowy Plover	California Gull	Bufflehead Duck	Northern Shoveler	Daily Coun Effor					
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0					
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0					
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3					
17	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	4					
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3					
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2					
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2					
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0					
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3					
26	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3					
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
28	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	3					
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0					
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3					
31	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
Total		1.0	0.0	0.0	1.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	44.					
Average # Birds per Day	0.0	0.04	0.0	0.0	0.04	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0						

Notes Re Flocks and Nesting None

	Daily Average by Species													
Day of Month- April	Eared Grebe	Black-necked Stilt	Other Teals	Cinnamon Teal	Phalarope	Pipit	Killdeer	Avocet	Sandpiper	Snowy Plover	California Gull	Bufflehead Duck	Northern Shoveler	Daily Count Effort
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
21	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
Total		0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	55.0
Average # Birds per Day otal Number of Survey Days		0.0	0.0	0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Notes Re Flocks and Nesting None

						Daily Average by Species													
Day of Month - May	Eared Grebe	Black-necked Stilt	Other Teals	Cinnamon Teal	Phalarope	Pipit	Killdeer	Avocet	Sandpiper	Snowy Plover	California Gull	Bufflehead Duck	Northern Shoveler	Dai Cou Effo					
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4					
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2					
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2					
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2					
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1					
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2					
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0						
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
20	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0						
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
31	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0						
Total	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	3.0	0.0	6					
Average # Birds per Day	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.1	0.0						

Notes Re Flocks and Nesting May 7, Eggs found on east roadway of east pond

							Daily Avera	ge by Speci	es					
Day of Month - June	Eared Grebe	Black-necked Stilt	Other Teals	Cinnamon Teal	Phalarope	Pipit	Killdeer	Avocet	Sandpiper	Snowy Plover	California Gull	Bufflehead Duck	Northern Shoveler	Daily Count Effort
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
2	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	5
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
27	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	5
28	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	5
29	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	5
30	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	5
Total	0.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	128.0
Average # Birds per Day	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	

Notes Re Flocks and Nesting Eggs found on east roadway of east pond in May are gone

Emergency Ba Ford Emergen	-			-				Blythe Energy Inc.
date	run-time meter start	run-time meter stop	duration (hr)	fuel use (gal)	NOx emissions (lb/hr)	CO emissions @1.55 lb/hr (lb/hr)	PM-10 emissions (lb/hr)	Comments
eff 05/0	7/15 - Title	V Regs en	nissions fac	tors	1.67 lb/hr	1.55 lb/hr	0.06 lb/hr	
06/08/23	200.57	200.71	0.14	1.68	0.23	0.22	0.01	Monthly test run
07/11/23	200.71	200.88	0.17	2.04	0.28	0.26	0.01	Monthly test run
08/13/23	200.88	201.99	1.11	13.32	1.85	1.72	0.07	Loss of power
09/14/23	201.99	202.16	0.17	2.04	0.28	0.26	0.01	Monthly test run
10/10/23	202.16	202.32	0.16	1.92	0.27	0.25	0.01	Monthly test run
11/11/23	202.32	202.45	0.13	1.56	0.22	0.20	0.01	Monthly test run
12/12/23	202.45	202.62	0.17	2.04	0.28	0.26	0.01	Monthly test run
			duration (hr)	fuel use (gal)	NOx emissions (Ib/hr)	CO emissions @1.55 lb/hr (lb/hr)	PM-10 emissions (lb/hr)	
2023	Totals YTD	)	2.05	24.60	3.42	3.18	0.12	

# Diesel - Emergency Fire Pump - Operations Log Fire Backup Pump / Model # 6081HF001 - 14 gal/hr @ 1800 rpm

	nergency F p Pump / I	-	-	-	@ 1800 rpm			Blythe Energy Inc.
date	run-time meter start	run-time meter stop	duration (hr)	fuel use (gal)	NOx emissions (lb/hr)	CO emissions @1.55 lb/hr (lb/hr)	PM-10 emissions (lb/hr)	Comments
eff 0	5/07/15 - Titl	le V Regs e	missions fa	ctors	4.60 lb/hr	5.70 lb/hr	0.05 lb/hr	
01/06/24	510.30	510.60	0.30	1.25	1.38	1.71	0.02	weekly auto start test
01/13/24	510.60	510.90	0.30	1.25	1.38	1.71	0.01	weekly auto start test
01/20/24	510.90	511.10	0.20	0.83	0.92	1.14	0.01	weekly auto start test
01/24/24	511.10	511.40	0.30	1.25	1.38	1.71	0.01	Annual Capacity test
01/28/24	511.40	511.50	0.10	0.42	0.46	0.57	0.01	weekly auto start test
02/03/24	511.50	511.70	0.20	0.83	0.92	1.14	0.01	weekly auto start test
02/09/24	511.70	511.90	0.20	0.83	0.92	1.14	0.01	weekly auto start test
02/17/24	511.90	512.00	0.10	0.42	0.46	0.57	0.01	weekly auto start test
02/23/24	512.00	512.30	0.30	1.25	1.38	1.71	0.01	weekly auto start test
03/03/24	512.30	512.50	0.20	0.83	0.92	1.14	0.01	weekly auto start test
03/10/24	512.50	512.80	0.30	1.25	1.38	1.71	0.01	weekly auto start test
03/16/24	512.80	513.10	0.30	1.25	1.38	1.71	0.02	weekly auto start test
03/24/24	513.10	513.30	0.20	0.83	0.92	1.14	0.01	weekly auto start test
03/30/24	513.30	513.50	0.20	0.83	0.92	1.14	0.01	weekly auto start test
04/06/24	513.50	513.80	0.30	1.25	1.38	1.71	0.01	weekly auto start test
04/13/24	513.80	514.00	0.20	0.83	0.92	1.14	0.01	weekly auto start test
04/20/24	514.00	514.30	0.30	1.25	1.38	1.71	0.01	weekly auto start test
04/27/24	514.30	514.50	0.20	0.83	0.92	1.14	0.01	weekly auto start test
05/04/24	514.50	514.80	0.30	1.25	1.38	1.71	0.01	weekly auto start test
05/11/24	514.80	515.00	0.20	0.83	0.92	1.14	0.01	weekly auto start test
05/18/24	515.00	515.30	0.30	1.25	1.38	1.71	0.01	weekly auto start test
05/25/24	515.30	515.60	0.30	1.25	1.38	1.71	0.02	weekly auto start test
06/01/24	515.60	515.90	0.30	1.25	1.38	1.71	0.01	weekly auto start test
06/08/24	515.90	516.20	0.30	1.25	1.38	1.71	0.02	weekly auto start test
06/15/24	516.20	516.50	0.30	1.25	1.38	1.71	0.01	weekly auto start test
06/22/24	516.50	516.70	0.20	0.83	0.92	1.14	0.01	weekly auto start test
06/29/24	516.70	517.00	0.30	1.25	1.38	1.71	0.01	weekly auto start test
			duration	fuel use	NOx	CO	PM-10	
			(hr)	(gal)	emissions	emissions	emissions	
202	4 Totals YT	D	6.70	27.94	30.82	38.19	0.34	

	nergency F Ip Pump / I	-	-	-	@ 1800 rpm			Blythe Energy Inc.
date	run-time meter start	run-time meter stop	duration (hr)	fuel use (gal)	NOx emissions (lb/hr)	CO emissions @1.55 lb/hr (lb/hr)	PM-10 emissions (lb/hr)	Comments
eff 0	5/07/15 - Tit	le V Regs e	missions fa	ctors	4.60 lb/hr	5.70 lb/hr	0.05 lb/hr	
06/10/23	502.50	502.70	0.20	0.83	0.92	1.14	0.01	weekly auto start test
06/16/23	502.70	502.70	0.00	0.00	0.00	0.00	0.00	Motor Vibration Analysis
06/29/23	503.00	503.20	0.20	0.83	0.92	1.14	0.01	weekly auto start test
07/01/23	503.20	503.60	0.40	1.67	1.84	2.28	0.02	weekly auto start test
07/08/23	503.60	503.80	0.20	0.83	0.92	1.14	0.01	weekly auto start test
07/15/23	503.80	504.10	0.30	1.25	1.38	1.71	0.02	weekly auto start test
07/22/23	504.10	504.30	0.20	0.83	0.92	1.14	0.01	weekly auto start test
07/29/23	504.30	504.60	0.30	1.25	1.38	1.71	0.02	weekly auto start test
08/05/23	504.60	504.90	0.30	1.25	1.38	1.71	0.01	weekly auto start test
08/12/23	504.90	505.10	0.20	0.83	0.92	1.14	0.01	weekly auto start test
08/19/23	505.10	505.40	0.30	1.25	1.38	1.71	0.01	weekly auto start test
08/26/23	505.40	505.70	0.30	1.25	1.38	1.71	0.02	weekly auto start test
09/02/23	505.70	505.90	0.20	0.83	0.92	1.14	0.01	weekly auto start test
09/09/23	505.90	506.20	0.30	1.25	1.38	1.71	0.02	weekly auto start test
09/16/23	506.20	506.50	0.30	1.25	1.38	1.71	0.02	weekly auto start test
09/23/23	506.50	506.70	0.20	0.83	0.92	1.14	0.01	weekly auto start test
09/30/23	506.70	507.00	0.30	1.25	1.38	1.71	0.02	weekly auto start test
10/07/23	507.00	507.30	0.30	1.25	1.38	1.71	0.02	weekly auto start test
10/17/23	507.30	507.50	0.20	0.83	0.92	1.14	0.01	weekly auto start test
10/21/23	507.50	507.80	0.30	1.25	1.38	1.71	0.02	weekly auto start test
10/27/23	507.80	507.90	0.10	0.42	0.46	0.57	0.00	Vibration test
11/4//23	507.90	508.30	0.40	1.67	1.84	2.28	0.02	weekly auto start test
11/11/23	508.30	508.50	0.20	0.83	0.92	1.14	0.01	weekly auto start test
11/18/23	508.50	508.80	0.30	1.25	1.38	1.71	0.02	weekly auto start test
11/26/23	508.80	509.10	0.30	1.25	1.38	1.71	0.02	weekly auto start test
12/02/23	509.10	509.30	0.20	0.83	0.92	1.14	0.01	weekly auto start test
12/09/23	509.30	509.50	0.20	0.83	0.92	1.14	0.01	weekly auto start test
12/16/23	509.50	509.80	0.30	1.25	1.38	1.71	0.02	weekly auto start test
12/23/23	509.80	510.01	0.21	0.88	0.97	1.20	0.01	weekly auto start test
12/30/23	510.01	510.30	0.29	1.21	1.33	1.65	0.01	weekly auto start test
			duration (hr)	fuel use (gal)	NOx emissions	CO emissions	PM-10 emissions	
202	3 Totals Y1	ſD	7.50	31.28	34.50	42.75	0.38	

mergency Ba ord Emergen	-			-				Blythe Energy Inc.
date	run-time meter start	run-time meter stop	duration (hr)	fuel use (gal)	NOx emissions (lb/hr)	CO emissions @1.55 lb/hr (lb/hr)	PM-10 emissions (lb/hr)	Comments
eff 05/0	7/15 - Title	V Regs en	nissions fac	tors	1.67 lb/hr	1.55 lb/hr	0.06 lb/hr	
01/08/24	202.62	203.08	0.46	5.52	0.77	0.71	0.03	Loss of power (Black Plant)
01/17/24	203.08	203.25	0.17	2.04	0.28	0.26	0.01	Monthly test run
01/22/24	203.25	203.34	0.09	1.08	0.15	0.14	0.01	Loss of Power (switching)
03/07/24	203.34	203.53	0.19	2.28	0.32	0.29	0.01	Loss of Power (switching)
03/09/24	203.53	203.70	0.17	2.04	0.28	0.26	0.01	Loss of Power (switching)
03/15/24	203.70	204.40	0.70	8.40	1.17	1.09	0.04	Loss of Power (switching)
04/09/24	204.40	204.58	0.18	2.16	0.30	0.28	0.01	Monthly test run
05/19/24	204.58	204.75	0.17	2.04	0.28	0.26	0.01	Monthly test run
06/19/24	204.75	204.91	0.16	1.92	0.27	0.25	0.01	Monthly test run
			duration (hr)	fuel use (gal)	NOx emissions (lb/hr)	CO emissions @1.55 lb/hr (lb/hr)	PM-10 emissions (lb/hr)	
2024	Totals YTD	)	2.29	27.48	3.82	3.55	0.14	



4/2/2024

#### **Blythe Energy**

385 N. Buck Blvd Blythe Ca 92226 Attn: David Gutierrez David.Gutierrez@altagas.ca

Ref: 302609 CA

Dear Mr. Gutierrez

Amertech Tower Services LLC. Like to thank you for the opportunity to perform the PM's and inspection on your Cooling Tower manufacture by Hamon, Model HUC 5645 Eight (8) cells counterflow cooling tower.

All cells were available at the same time for the internal component inspection including the cold water basin and base anchoring.

We inspected the structure conditions of the fan deck, plenum, mechanicals including oil changes, distribution system, DE's, film fill, air inlet area, CWB base anchoring, enclosure casing, access stairways and cage ladder.

During the inspection we found critical fan damages and gear box which we received your approval for replacement before the end of your outage.

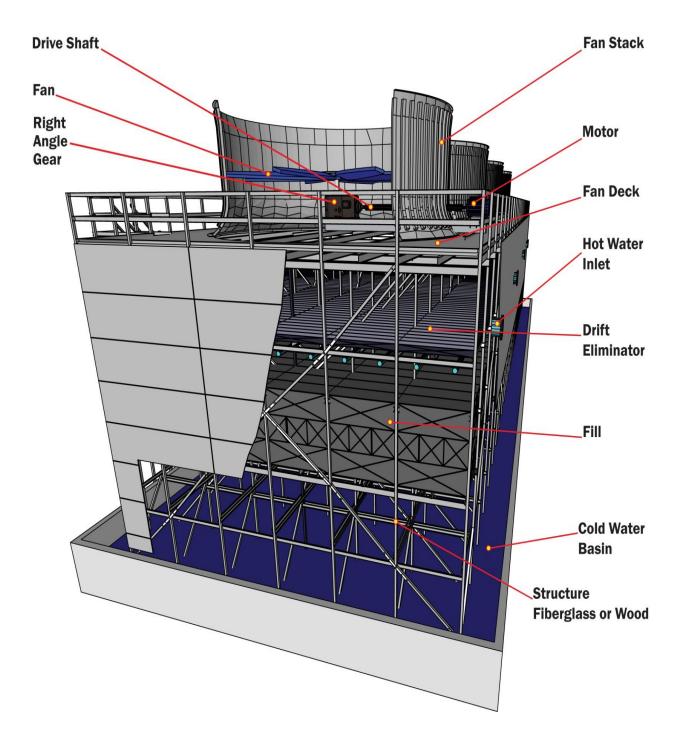
We prepared a report with findings and other recommendations including photos that illustrates the conditions found in your tower

If there are any questions after your review please do not hesitate to call me at the numbers below.

Sincerely,

Jesse F. Garcia Amertech Tower Services LLC. Technical Service Manager (QA&QC) jgarcia@amertechtower.com

Cell (602) 686-0578




## **Tower profile**

Reference No.	ATS Ref: # 302609-CA / Manufacturer by Hamon # HUC 5645
Design Conditions	121,296 GPM/ HW 102.9/CW 83.5 / WB 76/ 8 Counter Flow cells
Tower Dimensions	52.6 L x 59-3/4 T x 31.8H
Motor	200 HP/ 1785 RPM / 460V/60 Hz/ 3 Phase/Frame 445T
Fan Stack frp Velocity Recover	32 Diameter/10' Height lap Joint
Drive Shaft	Addax SS 316 / DBSE 168"
Gear Box	Amarillo Model 1712 / Ratio 16.0:1 (see each cell Alignments reports)
Fan Assembly	Hudson T30H/ 32' Diameter / 8 fan blades Cells #1#3#4#5#6#7#8 and Cell #2 Hudson Fan T-30K 12 Blades
Plenum	10' Height
Air Inlet	11' Longitudinal walls (Close endwalls)
Structure	Pultruded fiber glass /Angle Ties, 3x3 bracing, SS Hardware
Fan Deck	J Groove Style 2" T&G /Transverse direction
Partition walls	Fire wall ¹ / ₂ " Plywood with mid supports and SS hardware
Wind-walls	4.2 corrugated 12 Oz frp panels, mid vertical supports and SS hardware
Enclosure Casing	FRP 4.2 Corrugated 12 Oz fr and SS hardware
Fill Media	5' Depth Film Fill/ Evaptech Tech Clean
Drift Eliminators	CF 80 MAx/with additional step over DE's on the main header/ supported over with lateral pipes
Distribution System	30" Header /6" PVC Lateral -3 per bay /French style nozzles









### **Inspection Summary**

The purpose of the inspection on the Hamon Cooling Tower Model HUC 5645 was to determine the conditions of the internal structure and heat rejection components including the mechanical rotating equipment with the intention to extend the best performance, life and safe operation of the tower.

We begin the inspection on the outside of the cooling tower while tower was being drain and then we proceed doing the oil changes one (1) cell at the time including the preventive maintenance (PM's) continuing with the inspection with entire Equipment:

- Mechanical Rotating Equipment
- Drift eliminators (DE's)
- Distribution System
- Film Fill
- Partition & Wind-walls including repairs per T&M
- Fiber Glass Structure (Plenum and Air Inlet areas)
- Base Anchoring

After the entire towers was inspected and data collected, we develop scope of recommended repairs for your considerations on your next outage

Work based on the most critical components that need immediate attention

### **Inspection Summary:**

#### STRUCTURE AND INTERNAL COMPONENTS INSPECTION-

FAN DECK	The Fiber glass Fan deck is a Non-skid 2" J Type deck supported with a C-6 frp channels joist and a one single mid-bay I Beam center support from below and a C-6 frp channel joist sub-support bolted at every two meters.
	• Fan Deck was found with a very minor crack on the north side due to improper unloading of heavy materials over the deck
	• The perimeter hand and knee rails are losing their top protection veil exposing the frp fibers and damaging the integrity of the Hand rails
	ATS Recommend: Apply a Urethane safety yellow coating on your next outage to extend the life of the H/K rails and safe conditions.



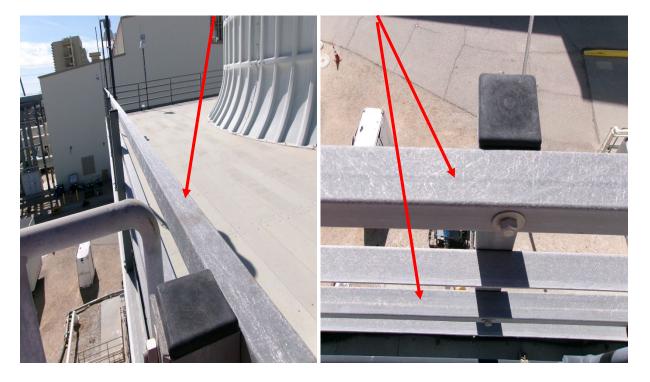
FIBER GLASS STRUCTURE	The upper pultruded fiber glass structure at plenum, distribution and air inlet areas are compose of 3x3 vertical post tubing bolted to a horizontal tie lines L3 and brace with 3x3 frp tubing on the side of structure bents					
	All frp structure were found in GOOD conditions					
PARTITION FIRE WALLS	The partition <b>fire wall</b> compose of ¹ / ₂ " treated double sided plywood materials, secured with SS hardware to columns and mid-supports This were found in good conditions					
	Fire Wall Partition are overall are in Good Conditions					
WIND-WALLS	Wind-walls compose of 4.2 corrugated frp 12 Oz panels secured with SS hardware to columns and mid supports by air inlet along the center longitudinally of the tower					
	Wind wall overall are in Good conditions					
DRIFT	The Drift Eliminators Model CF80 are supported over the existing					
ELIMINATORS	distribution Lateral pipes and step-up framing over the main header pipe					
	<b>Overall the Drift Eliminators are in GOOD conditions</b>					
FILL MEDIA	The film fill was installed previously by Evaptech 5' Depth, Tech Clean					
	ATS-Recommendations: Monitor fill every outage, there are some indications on the end cells for possible fouling conditions					
FILL SUPPORTS	Fill sub-supports compose of C-6 bolted at 2 mts and Two single I-6" Beam per each bay over the sub-supports C-6					
	Overall supports are in GOOD conditions					
DISTRIBUTION SYSTEM	<ul> <li>The Distribution system compose of 30" frp Header and PVC lateral 6 pipes 3 per bay with French style Nozzles each with 4" extensions</li> <li>The perimeter nozzles were found plugged up with mud and rus debris mainly along the walls</li> <li>Found a substantial amount of broken nozzles mainly at end cell</li> </ul>					
	All missing and broken nozzles were replace during the outage also nozzles were clean along the longitudinal walls					
	<ul><li>ATS Recommend the following for you next outage:</li><li>a. Clean perimeter nozzles on next outage</li><li>b. Design supply and install a 4" drain valve at the end of each main header so a periodic flushing can be done during</li></ul>					



	operation preventing from plugging up nozzles in the near future									
ENCLOSURE FRP CASING	Casing enclosure compose of 12 Oz 4.2 V-beam FR									
	• Casing was found in GOOD conditions with some leaks at random location									
	ATS recommend the following:									
	• Clean & Remove calcium built up around leaks and re-seal									
	with mastic as required									
MECHANICAL	Torque Tube Mechanical Supports									
EQUIPMENT	• The supports in all cells are in GOOD conditions									
	Gear Boxes									
	• Gear Boxes oil was replaced in all cells as part of the PM service with customer supplied oil and dispose into customer barrels									
	<ul> <li>Gear Box Cell #8 was found in a poor conditions extensive</li> </ul>									
	corrosion and backlash way over the allowable limits, ATS									
	replaced gear box from their warehouse surplus all T&M Work									
	• Gear Box Input Seals was replace as part of the PM service in									
	seven cells (Cells 1-2-3-4-5-6-7)									
	ATS Recommendations: Do Not over filled oil sight gauges maintain									
	proper oil levels, continued checking for leaks input and output shafts seals including checking input backlash.									
	Fan Assemblies									
	<ul> <li>Fan Assemblies were found in very poor conditions the fan clamps were not able to withstand the torque verifications per the OEM recommendations of 125 lbs. Blade clamps begin crushing or crumbling. ATS was able to locate Three new Hubs and authorized to supply reusing fan blades, Blythe Energy provide Three full fan assemblies from their warehouse surplus</li> <li>All work was perform during the outage under T&amp;M terms The following is the final fan replacement per each cell Cell: 1 <i>Reused</i> Complete fan assembly (8 Blades) Cell: 2 <i>Reused</i> complete fan assembly (12 Blades) Cell: 3 <i>New Hub</i> / Reuse blades (8 Blades) Cell: 4 <i>New Hub</i> / Reuse blades (8 Blades) Cell: 5 <i>New Hub</i> / Reuse blades (8 Blades) Cell: 6 <i>New Complete</i> Fan Assembly (8 Blades) Cell: 7 <i>New Complete</i> Full Fan Assembly (8 Blades) Cell: 8 <i>New Complete</i> Fan Assembly (8 Blades)</li> </ul>									



	ATS Recommendations: Monitor fan blades condition on cells 1 though 5 closely on every outage mainly for any visible cracks or wear and tear and external delamination coating							
	<ul> <li>Electric Motor <ul> <li>The Motor found in GOOD conditions</li> </ul> </li> <li>Drive Shafts <ul> <li>Drive shafts look in GOOD conditions</li> </ul> </li> <li>ATS Recommendations: Verify coupling alignments and flex elements conditions for wear and tear on every outage</li> </ul>							
	<ul> <li>Fan Stacks</li> <li>Fan Stack were found in GOOD conditions</li> <li>Hurricane blocks in place and secured on main structure</li> <li>All hold down bolts tight</li> <li>All vertical stitch bolts tight</li> </ul>							
	ATS Recommendations: Inspect all accessible hardware every outage mainly hurricane blocks and hold down bolting							
LIGHTNING PROTECTION	Perimeter Fan Deck Lightning protection         • Missing connections due to fan stack vibration         • Some areas cabling is hanging down already         • Lighting cable at bottom of tower broken at random							
	ATS Recommendations: Repair broken cable areas on fan stack and at the bottom of the cooling tower along the wall to basin curb							
CABLE TRAY FAN DECK	Cable tray over the fan deck lost a substantial amount of covers protecting the electrical wiring							
COLD WATER BASIN	ATS Recommends: Install new coversDuring our visual inspection on the structure base anchoring we found a substantial amount of concrete cracks more than 1/8" wide for 10' plus in length at random locations							
	ATS Recommends: To reseal cracks as required with an epoxy coating (SIKA 62)							




### PHOTOS ILLUSTRATING CONDITION FOUND

Fan Deck good safe conditions



Fan Deck Perimeter Hand & Kee Rails UV damaged expose fiber





Fiber Glass structure plenum area, post, tie lines and braces good conditions



Air inlet Fiber Glass structure post, tie Lines, fill joist and braces good conditions





### Partition Fire Walls by plenum area good Conditions

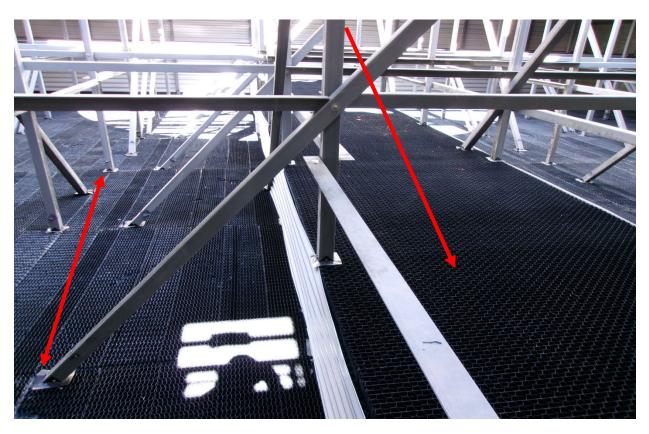


Fire wall partition walls by air inlet area good conditions

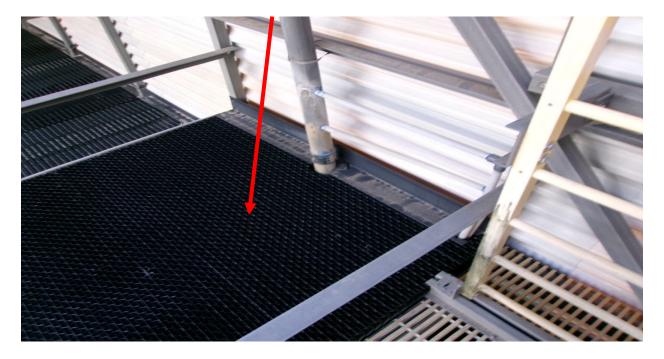




### Wind-wall by air inlet in good conditions




Wind wall and framing good conditions






### Drift Eliminators covering header and Dri seals good conditions

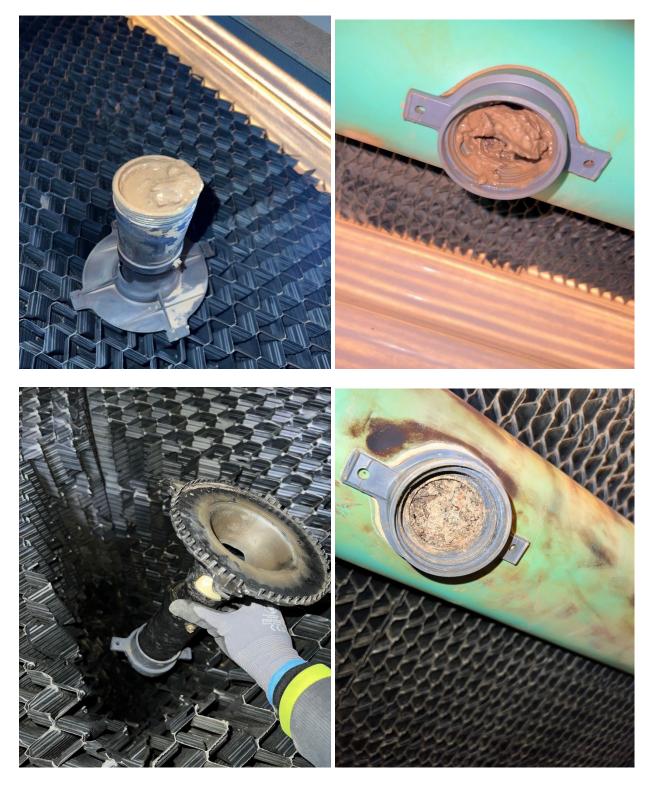



Other view of the DE per OEM design to enclose header properly





Fill Supports Joist and sub-support Joist bottom area good conditions




Fill showing possible beginning of fouling conditions end cells





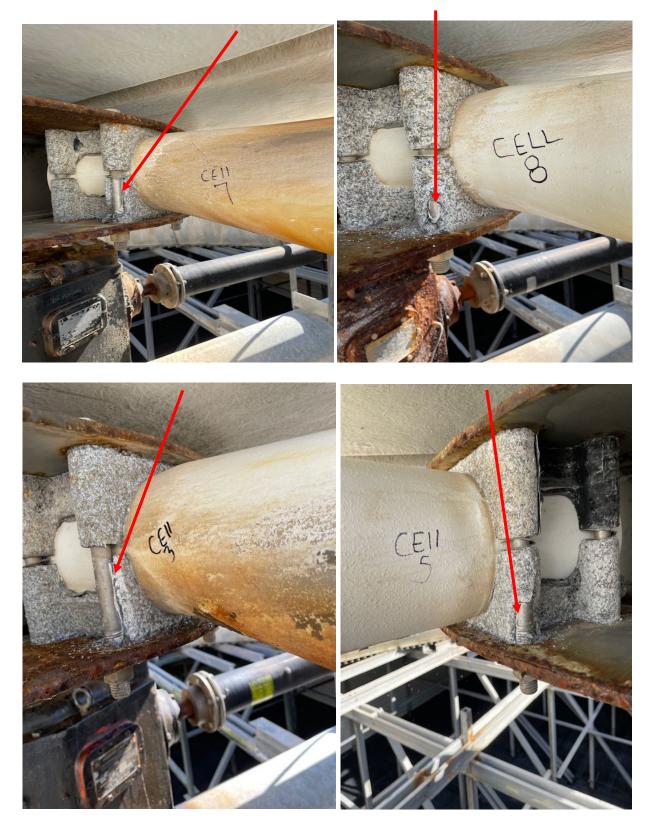
### Nozzles found Plugged up and some areas broken or missing



Condition found were repaired, replaced and corrected during the outage

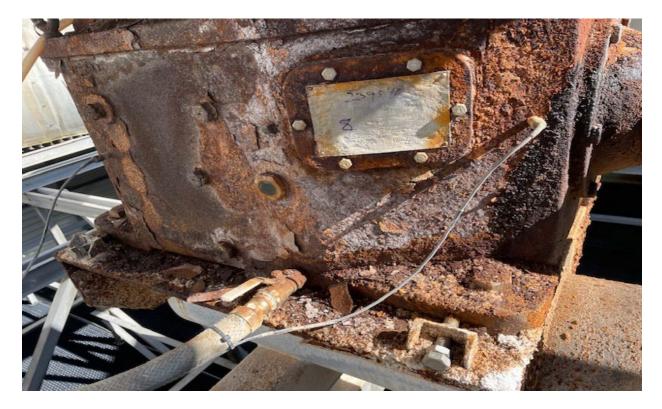


### Enclosure casing leaks at random

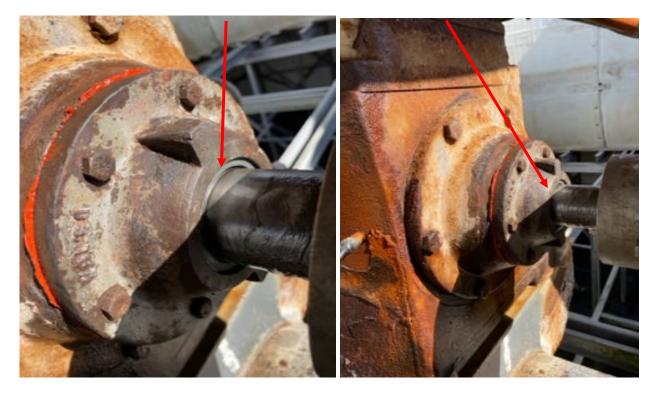



Enclosure casing leaks at random and calcium build up






### Damaged fan assemblies all corrected during the outage total Six cells






Gear Box Cell #8 excessive corrosion and damaged input bearing was replaced during outage



Gear Box Input Seals Replaced in Seven cells





### Fan Stack good conditions





### Tower access stairway and emergency ladder all in good conditions







### Fan Stacks lightning protection cable and rods missing or broken at random



Cable Trays damaged and missing covers





### Cold Water Basin concrete cracks at random





#### **REPAIR RECOMMENDATIONS FOR ALL 8 CELLS**

#### 1. Fan Deck

- Monitor cracks and Re-seal with epoxy resin as needed
- Monitor and Secure deck screws as needed on the entire fan deck
- Apply a Urethane coating over the hand &Knee Rails

#### 2. Distribution System

- Remove and clean the perimeter nozzles on each cell
- Install a 4" drain system at the end of each header down to Cold water basin curb with a valve to open periodically during operations for flushing mud from header

#### 3. Enclosure casing

• Clean & Remove calcium build up around leaks and re-seal with mastic as required all cells

#### 4. Film Fill Media

- Monitor film fill for excessive build up in between fill layers
- Remove one bay of fill to check for fouling condition every other year
- Mainly end cells

#### 5. Mechanical Equipment

- Provide a Preventive Maintenance Service for the existing condition record all rotating equipment, Motor, Fan assembly, Drive shaft & Fan stack hold down bolts
- Monitor corrosion over the toque tube supports, Clean and paint with Coal Tar Epoxy over the rusty areas as needed
- Monitor fan blades on cells 1 through 5 replace as necessary between 3 to 5 years

#### 6. Recommended repairs by OTHERS

- a. Repair cable trays cover
- b. Repairs Lightning cabling and rods on the perimeter fan deck
  - Repair broken Lightning cabling at bottom of the tower by CWB curb
- c. Repair & Seal CWB Concrete cracks including expansion joints random

Natural Gas	Blvthe							
Analytical D	Blythe Energy Inc.							
sample date	report date	analytical lab	results, grains / 100 ft ³	method	Comments			
07/14/22	07/26/22	Texas Oil Tech	0.030	ASTM D 5504	No sample taken due to insufficiant run time			
08/02/22	08/12/22	Texas Oil Tech	0.040	ASTM D 5504	No sample taken due to insufficiant run time			
09/01/22	09/16/22	Texas Oil Tech	0.100	ASTM D 5504				
10/05/22	10/13/22	Texas Oil Tech	0.080	ASTM D 5504				
11/01/22	11/17/22	Texas Oil Tech	0.070	ASTM D 5504				
12/01/22	12/14/22	Texas Oil Tech	0.032	ASTM D 5504				
01/04/23	01/13/23	Texas Oil Tech	0.080	ASTM D 5504				
02/28/23	02/28/23	Texas Oil Tech	0.000	ASTM D 5504	No sample taken due to insufficiant run time			
03/14/23	03/29/23	Texas Oil Tech	0.050	ASTM D 5504				
04/05/23	04/24/23	Texas Oil Tech	0.100	ASTM D 5504				
05/02/23	05/12/23	Texas Oil Tech	0.100	ASTM D 5504				
06/07/23	06/19/23	Texas Oil Tech	0.030	ASTM D 5504				

Natural Gas	Blvthe				
Analytical D	Blythe Energy Inc.				
sample date	report date	analytical lab	results, grains / 100 ft ³	method	Comments
06/07/23	06/19/23	Texas Oil Tech	0.030	ASTM D 5504	
01/18/24	03/22/24	Texas Oil Tech	0.010	ASTM D 5504	
02/29/24	02/29/24	Texas Oil Tech	0.000	ASTM D 5504	No sample taken due to insufficiant run time
03/31/24	03/31/24	Texas Oil Tech	0.000	ASTM D 5504	No sample taken due to insufficiant run time
04/27/24	05/01/24	Texas Oil Tech	0.060	ASTM D 5504	
05/11/24	05/21/24	Texas Oil Tech	0.080	ASTM D 5504	
06/10/24	06/19/24	Texas Oil Tech	0.020	ASTM D 5504	

#### Title : Blythe Monthly Report (Jul 2023 to Jun 2024)

															PriBurnQuantity - (Short			
Plant	Unit	Year	Month	SH	AH	EOH	FOH	RS	EAF	AF	FOF	EFOR	GAG	NAG	tons, Barrels, Cubic Feet)	NHR BTU	GHR BTU	NCF
Blythe	Unit 1	2023	Jul	711.95	744.00	0.00	0.00	32.05	97.31	100.00	0.00	0.00	188101.00	178922.00	1348000000.00	7744.96	7367.02	46.25
Blythe	Unit 1	2023	Aug	734.85	740.63	0.00	3.37	5.78	94.77	99.55	0.45	2.56	235081.00	224113.00	1691000000.00	7764.11	7401.87	57.93
Blythe	Unit 1	2023	Sep	561.67	672.37	0.00	47.63	110.70	90.87	93.38	6.62	7.82	131792.00	125476.00	951050000.00	7792.52	7419.07	33.51
Blythe	Unit 1	2023	Oct	699.23	744.00	0.00	0.00	44.77	97.31	100.00	0.00	0.00	186546.00	178946.00	1339900000.00	7661.45	7349.32	46.25
Blythe	Unit 1	2023	Nov	650.23	719.35	0.00	1.65	69.12	99.47	99.77	0.23	0.37	157087.00	151291.00	1125360000.00	7592.35	7312.22	40.35
Blythe	Unit 1	2023	Dec	648.83	744.00	0.00	0.00	95.17	99.81	100.00	0.00	0.00	142372.00	137154.00	1015330000.00	7594.58	7316.24	35.45
Blythe	Unit 1	2024	Jan	305.47	504.12	0.00	0.00	198.65	67.76	67.76	0.00	0.00	72410.00	70158.00	509280000.00	7498.59	7265.38	18.13
Blythe	Unit 1	2024	Feb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Blythe	Unit 1	2024	Mar	90.93	331.43	0.00	0.62	240.50	44.52	44.61	0.08	0.67	14777.00	14194.00	12900000.00	9279.20	8913.11	3.67
Blythe	Unit 1	2024	Apr	437.75	720.00	0.00	0.00	282.25	97.22	100.00	0.00	0.14	94677.00	90923.00	691520000.00	7750.82	7443.50	24.28
Blythe	Unit 1	2024	May	161.07	744.00	0.00	0.00	582.93	97.31	100.00	0.00	0.00	36209.00	34674.00	252590000.00	7444.97	7129.36	8.96
Blythe	Unit 1	2024	Jun	187.68	720.00	0.00	0.00	532.32	97.31	100.00	0.00	0.00	41215.00	39523.00	302710000.00	7827.58	7506.24	10.56
Blythe	Unit 1	2023		4006.76	4364.35	0.00	52.65	357.59	96.59	98.78	1.22	1.79	1040979.00	995902.00	7470640000.00	7691.66	7360.96	43.29
Blythe	Unit 1	2024		1182.90	3019.55	0.00	0.62	1836.65	67.35	68.73	0.01	0.14	259288.00	249472.00	1885100000.00	6633.53	6376.27	10.93
<b>Blythe Tota</b>	<mark>ıl July 2023 -</mark>	June 2024		5189.66	7383.90	0.00	53.27	2194.24	81.97	83.76	0.62	0.96	1300267.00	1245374.00	9355740000.00	7162.59	6868.61	27.11

### ON-SITE CONTINGENCY PLAN FOR UNEXPECTED TEMPORARY AND PERMANENT FACILITY CLOSURE BLYTHE ENERGY PROJECT BLYTHE, CALIFORNIA

Submitted by:

Blythe Energy Inc. 385 N. Buck Blvd. Blythe, California 92225

Submitted to:

California Energy Commission 1516 Ninth Street Sacramento, California 95814

July 31, 2024

# Table of Contents

1.0 INTRODUCTION	I
2.0 NOTIFICATION PROCEDURES	2
3.0 PLANT SHUT DOWN PROCEDURE	5
4.0 SITE SECURITY AND EMERGENCY RESPONSE	6
5.0 HAZARDOUS MATERIAL AND WASTE REMOVAL	7
6.0 INSURANCE COVERAGE	9
<u>7.0</u> UNEXPECTED TEMPORARY CLOSURE	
<ul> <li><u>8.0</u> PERMANENT CLOSURE</li></ul>	11 12 12 12 12 12

# LIST OF TABLES

Table 1	Agencies to be Notified
Table 2	Waste Transporters

# LIST OF FIGURES

Figure 1	Site Location
Figure 2	Site Plan

# **APPENDICES**

Appendix A	Emergency Response Plan/HMMP (included in HMMP submittal)
Appendix B	Chemical Unloading Procedure/Waste Management Plan (included in
	HMMP submittal)
Appendix C	Aqua Ammonia Risk Management Pla (included in HMMP submittal)

# 1.0 INTRODUCTION

The Blythe Energy Project (BEP) is in Blythe, California, on 180 acres, at 385 N. Buck Blvd. (Figure 1). BEP is a 520 MW natural gas-fired, combustion turbine combined cycle plant. BEP's technical configuration consists of a two times one combined cycle plant utilizing two Siemens Westinghouse KWU model F-class V84.3A(2) combustion turbines, two Vogt- NEM Harp-design heat recovery steam generators (HRSGs), and a single condensing Siemens Westinghouse Series K-N steam turbine generator. The project will be interconnected to the Western Area Power Administration's Blythe substation.

A common water treatment plant is provided to process makeup water for boiler losses and to process water from the eight cell cooling tower. Wastewater produced on-site from the water treatment operation, is treated and the brine waste is sent to an onsite, double-lined evaporation pond. All rainwater trapped on-site will be directed to an on-site storm water retention pond.

In the event of an unexpected temporary and/or permanent facility closure, this On-Site Contingency Plan for Unexpected Temporary and Permanent Facility Closure has been prepared in accordance with the California Energy Commission's (CBC) Commission Decision Docket Number 99-AFC-8, Section IV - General Conditions for Closure Plan. This document is also a requirement of the Public Resources Code section 25532.

Blythe Energy Project (BEP) personnel will use this plan in the event of an unexpected temporary or permanent closure of the facility. "Unexpected temporary" closure is defined by the CEC as:

"This unplanned unexpected temporary closure occurs when the facility is closed suddenly and/or unexpectedly, on a short-term basis, due to unforeseen circumstances such as a natural disaster, or an emergency".

"Unexpected permanent closure" is defined as:

"This unplanned unexpected permanent closure occurs if the project owner closes the facility suddenly and/or unexpectedly, on a permanent basis. This includes both when an owner is implementing the on-site contingency plan, and when the project owner has abandoned the project."

The purpose of this plan is to provide an on-site contingency plan in the event if an unexpected temporary or permanent closure of the facility is warranted. The plan is designed such that public health and safety and the environment are protected from adverse impacts. The plan covers additional procedures concerning site security, hazardous materials and waste removal, and insurance and warranty coverage.

# 2.0 NOTIFICATION PROCEDURES

In the event of an unexpected temporary or permanent closure, the Plant General Manager or alternate designated by the Plant General Manager shall notify the CEC's Compliance Project Manager (CPM) and other responsible agencies listed on Table 1 within 24 hours and take all necessary steps to implement this Plan. The General Manager shall also keep the CPM informed of the circumstances of closure and the expected duration.

If a temporary closure is determined to likely be permanent, or for the duration of more than twelve consecutive months, a closure plan consistent with the CBC requirements for a planned closure shall be developed and submitted to the CPM within 90 days of the CPMs determination, or some other period of time mutually agreed to by the owner and the CPM.

# TABLE 1 AGENCIES TO BE NOTIFIED

#### California Energy Commission (CEC)

Ms. Ashley Gutierrez 1516 9th Street, MS-200 Sacramento, CA 95814 (916) 839-0400 ashley.gutierrez@energy.ca.gov

#### California Department of Occupational Health & Safety (Cal/OSHA)

464 West 4th Street Suite 332 San Bernardino, CA 92401 **909-383-4321** 

#### **City of Blythe Fire Department**

Station #43 140 West Bernard Street Blythe, CA 92225 **911 or 760-921-7822** 

**County of Riverside Fire Department** 

Station# 45 - Blythe Air Base 17280 West Hobsonway Blythe, CA 92225 **760-921-7825** 

### Regional Water Quality Control Board - Colorado River Basin Region (RWQCB)

73 - 720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260 **760-346-7491** info7@waterboards.ca.gov

Mojave Desert Air Quality Management District (MDAQMD)

14306 Park Avenue Victorville, CA 92392 **760-245-1661** 

# TABLE 1AGENCIES TO BE NOTIFIED (continued)

#### County of Riverside - Community Health Agency

Supervising EHS 47950 Arabia Street Suite A Indio, CA 92201 **760-863-8976** 

#### U.S. Environmental Protection Agency - Region IX (EPA)

24 - Hour Environmental Emergencies – **800-424-8802** 

#### California Department of Fish & Game

Environmental Response Branch P.O. Box 949209 Sacramento, CA 94244-2090 **916-375-8500** 

#### City of Blythe Police Department

240 North Spring Street Blythe, CA. 92225 **911 or 760-922-6111** 

#### National Response Center

National Coast Guard Response Center 800-424-8802 nrc@usgc.mil

#### U.S. Coast Guard - Marine Response

National Command Center - Emergencies Only 202-372-2100

In the event of an unexpected temporary or permanent plant closure, BEP personnel will shut down all operating equipment that is not necessary to respond to an emergency in accordance with plant operating procedures. In the event of an emergency shutdown (e.g., earthquake, fire, or explosion), BEP personnel should consult the Emergency Response Plan (ERP and HMMP) (Appendix A).

The ERP for the BEP has been developed to provide procedures for the continual development and implementation of the Emergency Action Plan (EAP and HMMP). The EAP is an interactive document and is intended to protect facility personnel, the public, the environment, and property should an emergency occur at the facility. The HMMP is the site Hazardous Material Management Plan and contains specific site hazardous material response information.

The ERP/HMMP provides emergency response guidelines so that BEP shift and management personnel can adequately evaluate and respond to issues affecting the protection of plant personnel, company resources, and the environment. The ERP/HMMP includes information on the organization, equipment, instructions, and requirements necessary to enable a rapid and effective response to an emergency situation at the BEP. The plan is divided into several subsections that address areas of responsibility and actions to be taken immediately during and after an accident or emergency.

Specifically, the ERP/HMMP provides guidelines for emergencies including personal injuries, fire, leaks and or spills of hazardous materials, sabotage, civil disturbance, severe weather, and earthquakes. The appropriate response to each of these emergency situations, including evacuation, is outlined in Section 5.3.7, "Initial Response Procedures" of the ERP (Appendix A).

In the event of an emergency, BEP Production Leaders are responsible for the operation of the facility and will assume the duties of Emergency Coordinator (EC) until the Production Manager arrives on site. Upon notification of an incident, the Production Manager or an alternate designated by the EC assumes the functions of the facility EC. The EC will exercise command and control over the response actions of the facility organization. The EC is also responsible for ensuring that local emergency response agencies and appropriate emergency response contractors are notified of an incident (Table 1).

# 4.0 SITE SECURITY AND EMERGENCY RESPONSE

The Blythe Energy Project (BEP) is in Blythe, California, on 180 acres, at 385 N. Buck Blvd (Figure 1). The main entrance to the plant is located on the west side of Buck Boulevard, north of Hobsonway. A security audio/video surveillance system monitors entry to the Plant 24 hours per day, 365 days per year. An eight-foot-high chain-link fence surrounds the plant. Entry is controlled through an automatic gate, which is activated remotely by the Control Room, or by a unique card key system. BEP authorized personnel carry ID/gate key cards.

All gate activity, personnel entry/exit data is maintained in a PLC database which is an integral part of the security system.

In the event of an unexpected closure, BEP will inspect and ensure that the plant fence is intact. In addition, BEP will use an onsite guard (or other private security services) to maintain site security, if necessary.

In the event of a personal injury, fire, hazardous materials emergency or similar situation, the EC will notify the City of Blythe Fire Department. The Fire Department will have access to the site through the main gate and will also have access to copies of the following documents:

- Emergency Response Plan/HMMP (Appendix A)
- Chemical Unloading Procedure/Waste Management Plan (Appendix B)
- Aqua Ammonia Risk Management Plan (Appendix C)
- Spill Prevention Control and Countermeasures Plan

The information contained in these documents will help enable the Fire Department to respond to any emergency situation in the event that site personnel have evacuated the premises.

# 5.0 HAZARDOUS MATERIAL AND WASTE REMOVAL

Handling and disposal of all hazardous materials and wastes shall be performed in accordance with all applicable laws and ordinances as outlined in the Waste Management Plan (WMP) (Appendix B). The locations of all hazardous materials routinely present at BEP are shown in the HMMP. In the event of an unexpected temporary closure, not all hazardous materials may require removal. In such an event, BEP will conduct a visual inspection of all hazardous material storage vessels to assess tank integrity.

The objectives of the Waste Management Plan is to ensure that all hazardous materials at BEP are used and handled in the safest manner possible, to prevent/minimize employee exposure to hose materials, and to minimize the effects of an accidental release of those materials, in compliance with applicable laws and regulations. In the event of an unexpected temporary closure, the Waste Management Plan (Appendix B) will be consulted if it is necessary to remove any hazardous material or waste.

The largest quantities of potentially hazardous liquid chemicals used at BEP are for water treatment. These chemicals include concentrated sulfuric acid and sodium hydroxide. These chemicals are stored in aboveground tanks in the water treatment area and piped throughout the water treatment facility.

Potentially hazardous gasses at BEP include anhydrous ammonia (liquid phase), aqueous ammonia (vapor phase), and natural gas. Aqueous Ammonia is used as part of the air emission control system. The aqueous ammonia is stored in one tank north of the Water Treatment Plant. The anhydrous ammonia is stored on an ammonia skid south of the Power Block (east of the aqueous ammonia tank). While stored as a liquid, anhydrous ammonia will change to a gas if released into the atmosphere.

Whenever practical, hazardous materials will be returned to the vender or transferred to another entity that may have use for the material(s). The following waste transporters or other qualified waste transporters will be used if it is deemed necessary to remove any hazardous wastes from the site:

# TABLE 2 WASTE TRANSPORTERS

#### **HCI Environmental & Engineering**

Corporate Office: 800.988.4424 24/7 Live Operator customerservice@hcienv.com

If the unexpected temporary closure also results in_a release of hazardous materials or waste, plant personnel will consult the Emergency Response Plan/HMMP (Appendix A), Chemical Unloading Procedure/WMP (Appendix B), and/or the Risk Management Plan (Appendix C).

These plans address release prevention and emergency policies in place at BEP, a hazardous materials inventory including Material Safety Data Sheets (MSDS), applicable employee training, the location of safety equipment and main utility shutoff valves, notification methods, and accident investigation procedures.

The BEP is a zero-discharge facility meaning that there is no offsite runoff from the site. Spilled materials are therefore contained onsite. The BEP filed for an exemption with the California Regional Water Quality Control Board - Colorado River Basin Region (RWQCB), from requirements of the Storm Water Pollution Prevention Plan. The Spill Prevention Control and Countermeasures Plan (SPCCP) describes the engineered controls and necessary actions to contain 'spilled petroleum products, and the ERP/HMMP describes the methods to be employed to respond to any released material. The SPCCP and ERP/HMMP documents are available to responders at the facility.

Best Management Practices (BMPs), both structural and non-structural, are utilized at the site to reduce pollutants in storm water discharge. Structural BMPs include such measures as berms, and a storm water retention pond used to hold or divert storm water. Non-structural BMPs include such measures as regular inspections, good housekeeping practices, proper initial training and subsequent annual training, and specific procedures for storing and/or loading and unloading of hazardous materials and wastes.

BEP personnel will consult the ERP/HMMP (Appendix A), Waste Management Plan (WMP) (Appendix B), Risk Management Plan (RMP) (Appendix C), and the Spill Prevention Control and Countermeasures Plan[•] (SPCCP) prior to handling any hazardous material or conducting waste removal.

# 6.0 INSURANCE COVERAGE

All supplied equipment including the combustion turbine generators are under warranty for one year after provisional acceptance of the plant by BEP. BEP is currently insured under an "All-· Risk" Builders Risk policy provided by the Plant Construction Contractor for property damage and business interruption. This policy will remain in place until provisional acceptance of the plant by BEP, after which time equivalent insurance will be provided under a policy provided by BEP or its affiliates for property damage and business interruption.

BEP or its affiliates maintains insurance in forms and to limits appropriate for BEP operations, including All Risk Property insurance for property damage.

# 7.0 UNEXPECTED TEMPORARY CLOSURE

In the event that BEP is closed temporarily, there are additional tasks to be performed including notification procedures and development of contingency plans for areas of transmission line engineering and biological resources.

## 7.1 Transmission Line Engineering

Prior to electrical generation, BEP must sign a Generator Facility Interconnection Agreement SCE and the Cal ISO that establishes procedures for planned or unexpected temporary and/or permanent closure. These procedures define communication between BEP and SCE that is necessary to ensure that plant closure will comply with all applicable laws, ordinances, regulations and standards (LORS), and that system safety and reliability will not be jeopardized.

### 7.2 Biological Resources

In the case of temporary closure, measures to protect biological resources. will be needed only if there is a potential for surface disturbances or releases of hazardous materials. If such an event occurs, BEP will consult with the California Department of Fish and Game and US Department of Fish and Wildlife to help plan clean up and mitigation of impacts to biological resources.

# 8.0 PERMANENT CLOSURE

In the event that BEP is closed permanently, there are additional tasks that need to be performed including preparing a facility closure plan, notifying agencies, ensuring site security, removing hazardous materials and wastes and providing for closure of the evaporation pond(s).

# 8.1 Facility Closure Plan

In order to ensure that permanent closure does not create adverse impacts, a closure process will be undertaken by BEP that provides for careful consideration of available options, applicable LORS, and local plans in existence at the time of closure. BEP will meet with the CEC, RWQCB and other agencies as necessary prior to the development of the closure plan to establish elements of the plan. In accordance with CEC provisions, the plan, at minimum, will include the following:

- 1. Future plans for the site (i.e., redevelopment etc.).
- 2. Information required by specific CEC Conditions of Certification.
- 3. A plan for the removal of hazardous materials stored on site. If hazardous waste or contamination exists, or if there is a potential for contamination to exist, a plan to conduct an environmental site assessment and remediation, where applicable, shall be prepared. The plan will be submitted to the Department of Toxic Substances Control (DTSC), the RWQCB, or other appropriate agency with jurisdiction over the remediation.
- 4. A schedule of activities for closure of the power plant site, transmission line corridor, gas meter station, evaporation pond(s), and all other facilities included as part of the plant site.
- 5. A discussion of potential impacts and mitigation to address significant adverse impacts associated with the proposed closure activities, and to address facilities or other plant-related equipment that will remain on site following closure. A list of the facilities and equipment intended to remain on site following closure, including the reason it must remain on site and its intended future use, if any, should also be included.
- 6. A discussion on conformance of the plan with all applicable LORS, local and/or regional plans in existence at the time of plant closure and applicable conditions of certification.

The facility closure plan will be submitted to the CECs CPM, City of Blythe, Riverside County, and RWQCB for review and approval at least 12 months, or other mutually agreed upon time, prior to commencing permanent closure activities.

### 8.2 Agency Notification

Additional notification may be necessary in the event of a permanent closure including renotifying each of the agencies listed in Table 1. The closure plan will also be sent to those appropriate agencies with which BEP has a current permit.

### 8.3 Site Security

Prior to permanent closure, the Plant General Manager or designee will notify the City of Blythe, Riverside County Fire Department and Riverside County Sheriff's Department giving them notice that the existing level of site security and/or surveillance will not be in effect. This will enable these agencies to respond appropriately in the event of a fire or disturbance. It may be necessary for BEP to provide site security for a period of time following permanent closure. The Plan Production Manager or designee will determine the need for such interim security and will address it in the closure plan, where appropriate.

### 8.4 Removal of Hazardous Materials and Waste

As required by the CECs Commission Decision, BEP is responsible for the removal of all hazardous materials and wastes from the site as part of permanent site closure. If BEP intends to redevelop the site, other requirements may need to be met to remove or store materials at a different site location. A detailed removal plan will be included in the closure plan.

# 8.5 Biological, Cultural, and Paleontological Resources

When a permanent closure plan is prepared, it will include the mitigation requirements in effect at the time for species that would be impacted. The plan will also include the removal of the transmission facilities when they are no longer used, and reclamation of areas where facilities would be removed. This may include ripping of soil, contouring of disturbed areas, implementation of erosi0n control measures, re-vegetation, and other actions deemed appropriate or necessary at the time the closure plan is developed.

Compliance reporting of biological resources for closure activities would likely include preactivity survey reports, biological monitoring during reclamation, and a final report describing the closure activities and any follow-up/add-on mitigation work that would be required.

The permanent closure plan will include a description regarding the potential of the closure activities to impact cultural and paleontological resources. The closure requirements are to be based upon the Cultural Resources and Paleontological Resources final reports. If no activities are proposed that would potentially impact either of these resources, no mitigation measures will be required.

### 8.6 Closure of the Evaporation Pond(s)

In the event of permanent closure, BEP is required to close and abandon the evaporation pond(s) as outlined in the Waste Discharge Requirement (WDR) and Monitoring and Reporting Program (MRP) Board Order Number R7-2002-0012 and as required by Title 27. The site WDRs require that BEP submit a final closure and post-closure maintenance plan including a seismicity study one 'year prior to anticipated closure. For an unexpected temporary closure that appears will result in a permanent closure this schedule may be met. However, in the event of an unexpected permanent closure, BEP will work with the RWQCB and CEC to establish a mutually agreeable schedule.

BEP will attempt the Mandatory Clean-Closure of the pond(s) as required under Title 27, Chapter 3, Subchapter 5, Article 3, Section 21400, or applicable regulations in effect at the time of closure. Clean closure will consist of the removal and offsite disposal or re-use of all pond construction materials, accumulated sludge, and liquid wastes. The pond(s) area will be graded following removal of all materials.

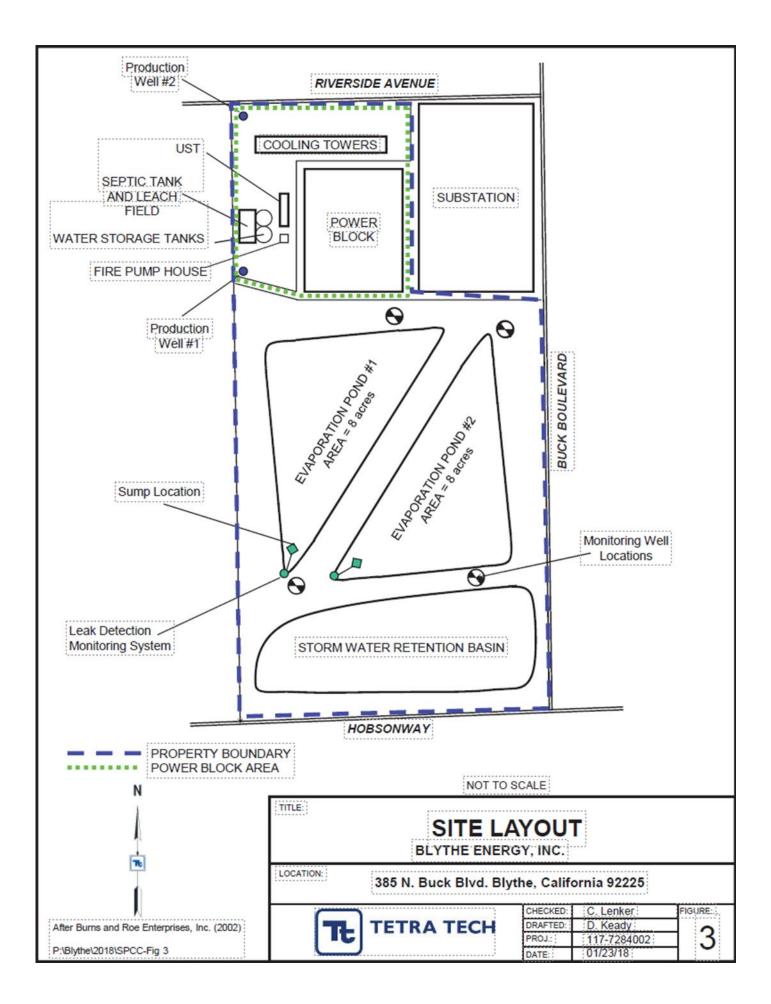
# **REVISION HISTORY**

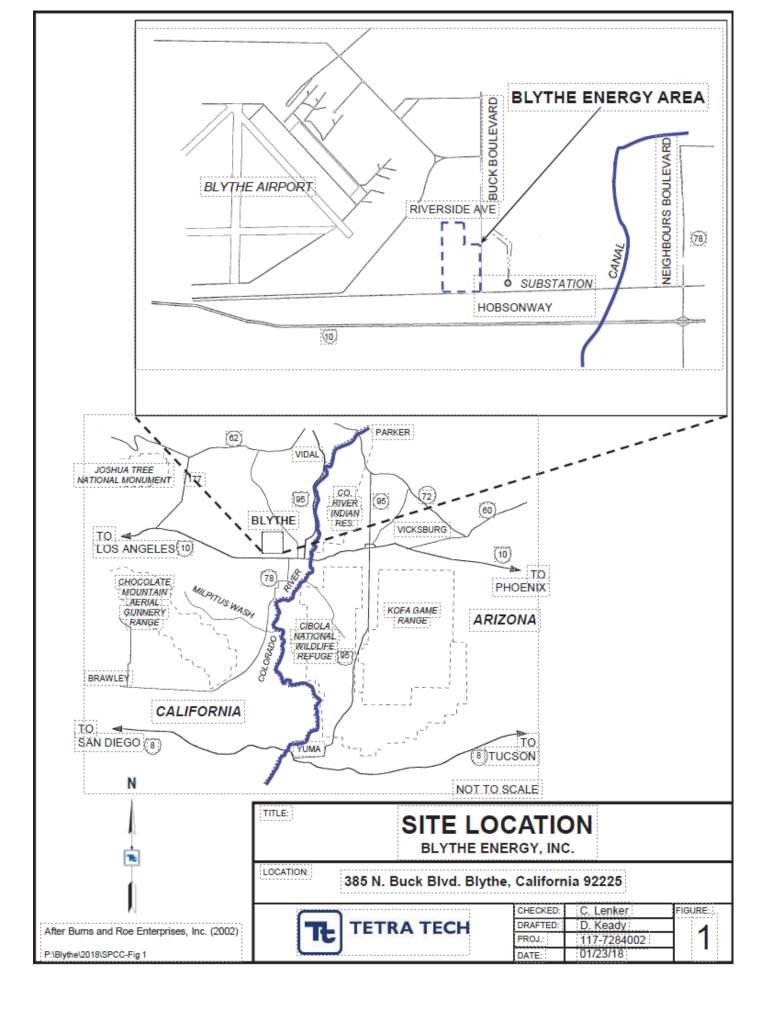
Rev #	Revision Description	Approval Title	Approval Signature	Effective Date
00	Initial implementation	Blythe Energy LLC	Blythe Energy LLC	2003.03.12
01	Revised verbiage removing previous owner FPL. Updated figures to latest drawings	Sr. O&M Manager	David Gatierrez	2024.07.2024

# **UPDATE NOTICE**

To all holders of the "On-Site Contingency Plan for Unexpected or Temporary. and Permanent Facility Closure" for the Plant:

 Revision Number:
 R e v 0 1


 Date:
 07/31/2024


Attached are revised pages for the "On-Site Contingency Plan for Unexpected or Temporary and Permanent Facility Closure" that has been assigned to you. Please remove pages in your book and replace with these revisions. When this is done, record the revisions on the "Record of Revisions" page of your manual.

Remove Old Pages	Replace with Revised Pages
(None)	(Revised verbiage removing
	previous owner FPL. Updated

figures to latest drawings)

FIGURES





# APPENDIX A

# EMERGENCY RESPONSE PLAN/HMMP (included in HMMP Submittal)

# APPENDIX B

# CHEMICAL UNLOADING PROCEDURE/WASTE MANAGEMENT PLAN (included in HMMP submittal)

# APPENDIX C

AQUA AMMONIA RISK MANAGEMENT PLAN (included in HMMP submittal)

# FIRST SEMI-ANNUAL 2024 MONITORING REPORT BLYTHE ENERGY PROJECT BLYTHE, CALIFORNIA



Submitted by: Blythe Energy Inc. 385 North Buck Boulevard Blythe, California 92225 (760) 922-9950

Submittal to: The California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, California 92260



# **JULY 2024**

July 31, 2024

California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, California 92260

- Attention: Mr. Scot Stormo Engineering Geologist
- Subject: First Semi-Annual 2024 Monitoring Report Monitoring and Reporting Program Board Order No. R7-2002-0012 Blythe Energy Project Blythe, California

Dear Mr. Stormo:

Blythe Energy Inc. is pleased to present this report containing field data, laboratory analytical results, and statistical analysis for sampling conducted during the first and second quarters of 2024 at our Blythe, California facility. Field sampling was performed under the terms of the California Regional Water Quality Control Board – Colorado River Basin Region (RWQCB) Board Order Number R7-2002-0012. Field sampling was performed by Northstar Environmental Remediation (Northstar) of Lake Forest, California.

Data within this report summarizes the sampling activities that occurred during the first and second quarters of 2024. Laboratory data sheets and chain-of-custody records are also included as an appendix to this report.

If you should have any questions regarding this report, please contact David Gutierrez IV, Manager Operations at (760) 921-1359.

Sincerely,

Blythe Energy Inc.

Mike Ludwin Interim Plant General Manager Sr. Director Operations-Power

cc: David Gutierrez IV (Blythe Energy Inc.) CDFW USFWS

# **\\\$**])

#### FIRST SEMI-ANNUAL 2024 MONITORING REPORT BLYTHE ENERGY INC. BLYTHE, CALIFORNIA

July 31, 2024

Prepared for:

Blythe Energy Inc. 385 North Buck Boulevard Blythe, California 92225

Prepared by:

WSP USA Environment and Infrastructure Inc. 3560 Hyland Avenue, Ste. 100 Costa Mesa, California 92626 (949) 642-0245

Project No. NB11160982

CERTIFIED HYDROGEOLOGIST

Duane G. Paul, PG 6336, CHG 414 Principal Hydrogeologist

#### FIRST SEMI-ANNUAL 2024 MONITORING REPORT BLYTHE ENERGY INC. BLYTHE, CALIFORNIA

Submitted by:

Blythe Energy Inc. 385 North Buck Boulevard Blythe, California 92225

Mike Ludwin Interim Plant General Manager Sr. Director Operations - Power Agent For Blythe Energy Inc.

# ****\$|)

# TABLE OF CONTENTS

- 1. Facility Information and Declaration
- 2. Monitoring
- 3. Reference Maps
- 4. Quarterly Potentiometric Surface Maps
- 5. Analytical Summary Tables
- 6. Statistical Analysis
- 7. Lysimeter Test Records
- 8. Evaporation Pond Sampling Records
- 9. Well Sampling Records
- 10. Leachate Collection and Recovery System (LCRS) & Weekly Lysimeter Records

# **APPENDIX**

Appendix A Laboratory Analytical Data Sheets

# ****\}])

FIRST SEMI-ANNUAL 2024 MONITORING REPORT

SECTION 1 FACILITY INFORMATION AND DECLARATION

# **\\\$**])

# FACILITY INFORMATION

## Facility Contact:

David Gutierrez IV Senior Manager, Operations & Maintenance Blythe Energy Inc.

#### Telephone:

(760) 921-1359

#### Address:

Blythe Energy Inc. 385 North Buck Boulevard Blythe, California 92225

### Monitoring and Reporting Program:

California Regional Water Quality Control Board Order No. R7-2002-0012

First Semi-Annual 2024 Monitoring Report Blythe Energy Inc. Blythe, California July 31, 2024

#### DECLARATION

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information. I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Mike Ludwin Interim Plant General Manager Sr. Director Operations - Power Agent For Blythe Energy Inc.

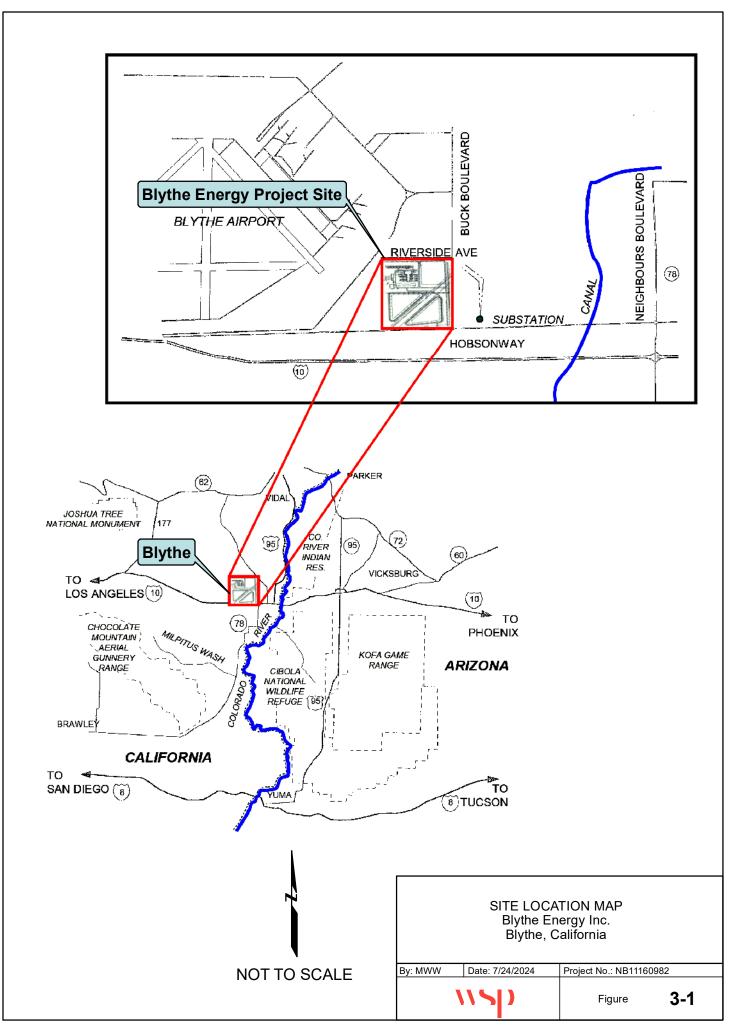
# **\\\$**])

#### FIRST SEMI-ANNUAL 2024 MONITORING REPORT

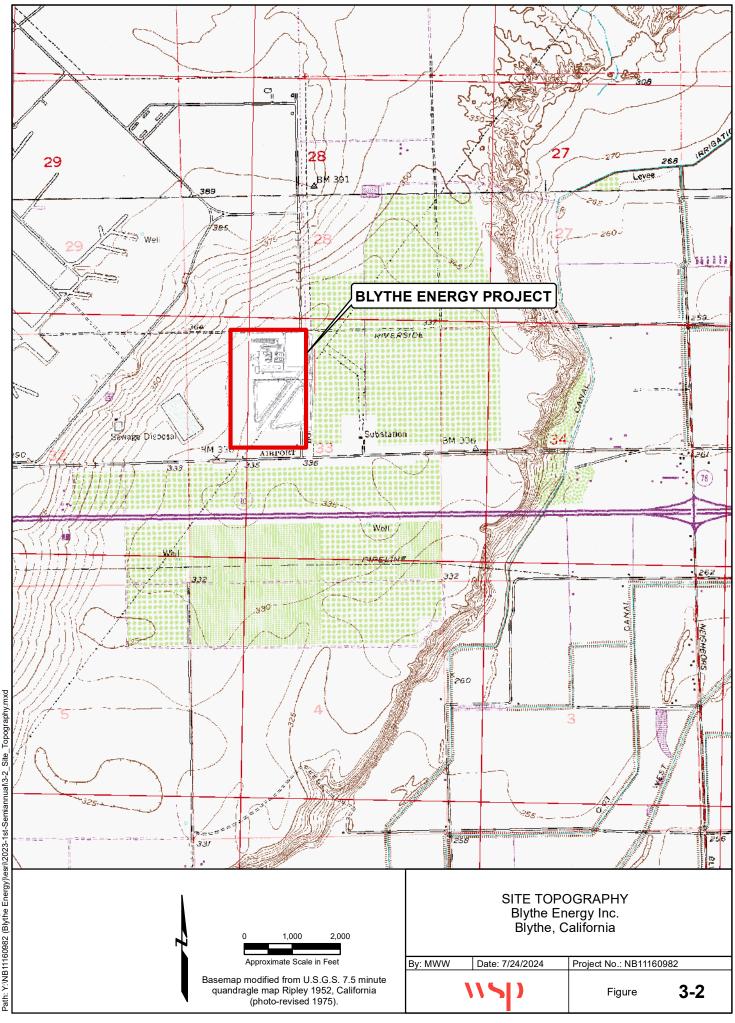
SECTION 2 MONITORING First Semi-Annual 2024 Monitoring Report Blythe Energy Inc. Blythe, California July 31, 2024

# **\\\$**])

## MONITORING


The First Semi-Annual 2024 monitoring event was conducted in compliance with the California Regional Water Quality Control Board- Lahontan Region (RWQCB) Board Order No. R7-2002-012 Waste Discharge Requirements (WDRs) and associated Monitoring and Reporting Program (MRP). First and second quarter 2024 groundwater monitoring was performed by Northstar Environmental Remediation (Northstar) of Lake Forest, California on March 27 and May 15, respectively.

Site reference maps and first and second quarter 2024 potentiometric surface maps are included in Sections 3 and 4. Groundwater quality laboratory analytical data is presented in Section 5 and the statistical analysis is presented in Section 6. The records for the lysimeter, evaporation pond, monitoring well, and the leakage collection recovery sump (LCRS) are presented in Sections 7 through 10. Laboratory analytical data sheets and chain-of-custody reports are also included in Appendix A.

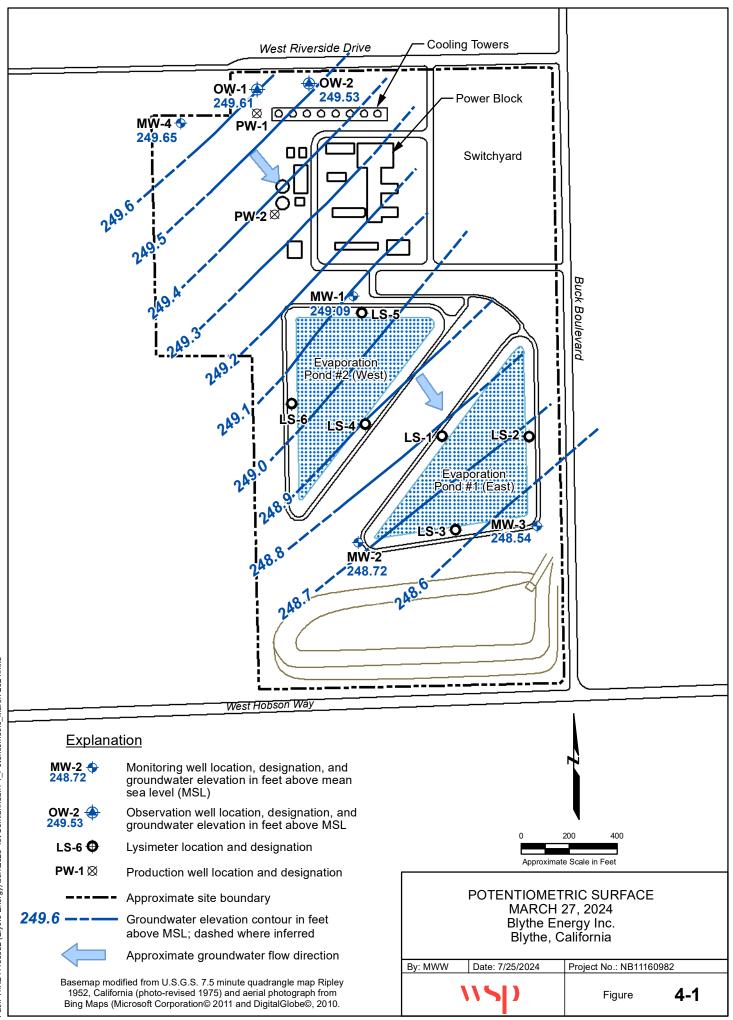

# **\\\$**])

FIRST SEMI-ANNUAL 2024 MONITORING REPORT

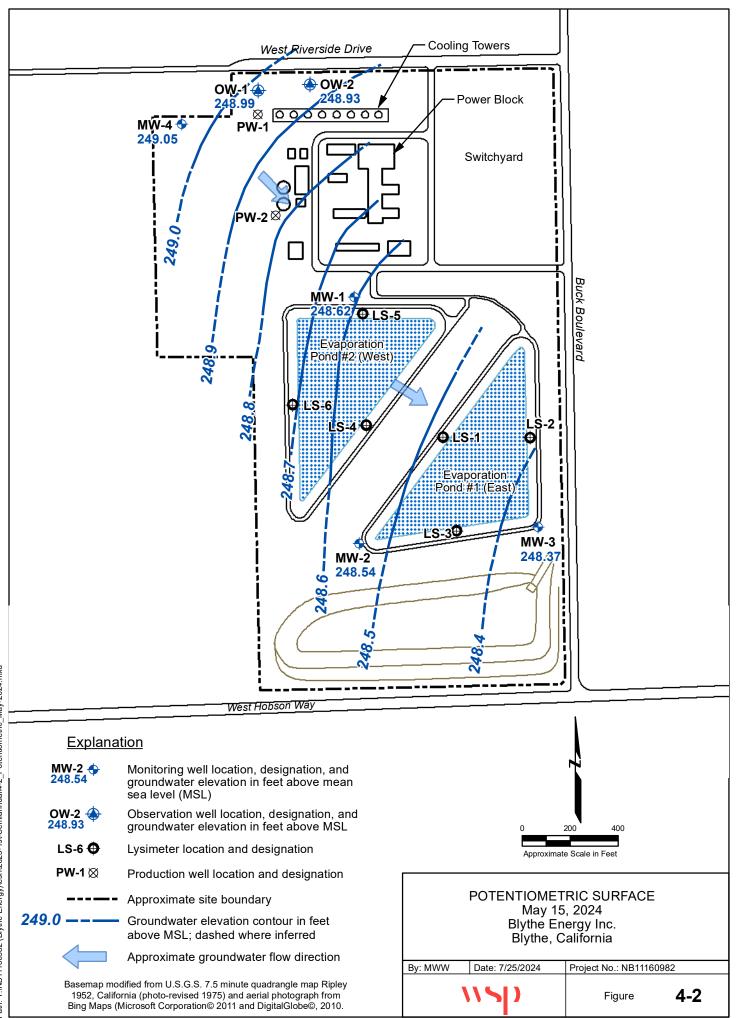
SECTION 3 REFERENCE MAPS



Date: 7/24/2024 Printed by: USMW719917 Path: Y:\NB11160982 (Blythe Energy)\ssr\i2023-1st-Semiannua\\3-1_Site_Location_Map.mxd




Date: 71/24/2024 Printed by: USMW719917 Path: Y:\NB11160982 (Blythe Energy)\esr\2023-1st-Semiannua\\3-2_Site_Topography.mxd


# **\\\$**])

# FIRST SEMI-ANNUAL 2024 MONITORING REPORT

SECTION 4 QUARTERLY POTENTIOMETRIC SURFACE MAPS



Date: 7/25/2024 Printed by: USMW719917 Path: Y:\NB11160982 (Blythe Energy)lesri\2023-1st-Semiannua\\4-1_Potentiometric_March-2024.mxd



7/25/2024 Printed by: USMW719917 Y:\\NB11160982 (Blythe Energy)\ser\i2023-1st-Semiannua\\4-2_Potentiometric_May-2024.mxd Date: Path:

## FIRST SEMI-ANNUAL 2024 MONITORING REPORT

SECTION 5 ANALYTICAL SUMMARY TABLES

## TABLE 5-1 SUMMARY OF FIRST SEMI-ANNUAL 2024 WEST EVAPORATION POND WATER LABORATORY ANALYTICAL RESULTS

Laboratory Analyte	Method	Detection Limit (mg/L)	Result (mg/L)
Antimony	EPA 200.7	2.5	ND
Arsenic	EPA 200.7	2.5	ND
Barium	EPA 200.7	0.10	0.13
Cadmium	EPA 200.7	0.25	ND
Total Chromium	EPA 200.7	1.3	ND
Cobalt	EPA 200.7	1.3	ND
Copper	EPA 200.7	1.3	ND
Lead	EPA 200.7	1.3	ND
Mercury	EPA 245.1	0.00020	ND
Nickel	EPA 200.7	1.3	ND
Selenium	EPA 200.7	1.0	ND
Zinc	EPA 200.7	6.3	ND
Sulfate	EPA 300.0	1,000	80,000
Chloride	EPA 300.0	1,000	78,000
Fluoride	EPA 300.0	5.0	32
Total Dissolved Solids	SM2540C	2,000	240,000
Specific Conductance	SM2510B	1.0 µmhos/cm	170,000
pH	SM4500-H,B	0.100 pH units	NA

Parameters (Field)	Units	Value
Water Temperature	Degrees Celsius	35.1
рН	pH Units	8.01
Specific Conductance	ms/cm	>20.00

Water sample collected on May 15, 2024, from the West Pond. The East Pond was dry.

## Notes:

mg/L = milligrams per liter

ND = Not detected at method detection limit indicated

ms/cm = Millisiemens per centimeter

µmhos/cm = Micromhos per centimeter

NA = Not Available

## TABLE 5-2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FIRST QUARTER 2024

Analyte	EPA Method	Reporting	MW-1	MW-2	MW-3	MW-4	DUP
Allalyte	EPA Wethod	Limit (mg/L)*	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Chloride	300.0	10	190	130	160	320	160
Sulfate	300.0	10	430	410	420	360	420
Selenium	200.7	0.10	ND	ND	ND	ND	ND
Total Dissolved Solids	SM2540C	10	1,200	1,100	1,200	1,200	1,300
Specific Conductance							
(umhos/cm)	SM2510B	1.0	1,900	1,700	1,800	2,000	1,800

Field Parameters	Units	MW-1	MW-2	MW-3	MW-4	DUP
Static Water Level	Feet Below Measuring Point	88.18	89.05	89.68	92.85	NA
Stabilized pH	pH Units	7.11	7.03	6.68	7.20	NA
Stabilized Water Temperature	Degrees Celsius	30.4	29.8	24.7	32.0	NA

Groundwater samples collected on March 27, 2024.

Notes:

mg/L = milligrams per liter

NA = Not applicable

ND = Not detected

- Dup = Duplicate sample of MW-3
- * = Except where noted on laboratory analytical data sheets

## TABLE 5-2 (Cont.) SUMMARY OF GROUNDWATER ANALYTICAL RESULTS SECOND QUARTER 2024

Amelute		Reporting	MW-1	MW-2	MW-3	MW-4	DUP
Analyte	EPA Method	Limit (mg/L)*	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Chloride	300.0	10	180	130	150	310	180
Sulfate	300.0	10	450	390	410	340	450
Selenium	200.7	0.10	ND	ND	ND	ND	ND
Total Dissolved Solids	SM2540C	20	1,300	1,200	1,200	1,200	1,300
Specific Conductance							
(umhos/cm)	SM2510B	1.0	2,000	1,700	1,800	2,000	2,000

Field Parameters	Units	MW-1	MW-2	MW-3	MW-4	DUP
Static Water Level	Feet Below Measuring Point	88.65	89.25	89.85	93.45	NA
Stabilized pH	pH Units	7.16	7.02	6.68	7.22	NA
Stabilized Water Temperature	Degrees Celsius	30.3	30.2	24.7	33.8	NA

Groundwater samples collected on May 15, 2024.

## Notes:

- mg/L = milligrams per liter
- NA = Not applicable
- ND = Not detected
- Dup = Duplicate sample of MW-2
- * = Except where noted on laboratory analytical data sheets

## FIRST SEMI-ANNUAL 2024 MONITORING REPORT

SECTION 6 STATISTICAL ANALYSIS

## ****\|)

## STATISTICAL ANALYSIS - SECOND SEMI-ANNUAL 2023 MONITORING

Statistical analysis is used as an additional method for the detection of leakage from the surface impoundments. The statistical methods used for this program are those specified in the RWQCB Waste Discharge Requirements (WDR) and Monitoring and Reporting Programs (MRPs) of Order Number R7-2002-0012. Statistical analysis of groundwater quality data is based on intra-well rather than inter-well comparisons. The following section presents the technical approach and results of the statistical analysis for the First Semi-Annual 2024 sampling event and the intra-well statistical analysis.

## APPROACH AND RESULTS

The Upper Tolerance Limit (UTL) is recalculated for each well based on historical data. Concentrations from subsequent quarterly groundwater samples collected from each well are compared to the corresponding UTLs. An UTL was calculated for each of the four groundwater monitoring wells sampled during the first and second quarters of 2024. Calculations of UTLs are presented in Table 6-1.

As shown in Table 6-2, there was an UTL exceedance for chloride in the water sample collected from well MW-4 during the first quarter 2024 sampling event. There was also an UTL exceedance for TDS from the water sample collected from well MW-2 in the second quarter 2024. Based on evaluation of the raw data, the UTL exceedances were determined not to be caused by rounding of the laboratory results. The higher chloride concentration reported at MW-4 during the first quarter 2024 is consistent with those reported in the first, second, and third quarter 2023 sample results. The higher TDS concentration reported from well MW-2 exceeded the UTL but did not exceed the range of previous TDS sample results for MW-2.

As described in the second semi-annual 2023 monitoring report, the quarterly groundwater elevation and flow interpretations since the first quarter 2023 have shown consistent groundwater flow from northwest to southeast beneath the site, with MW-4 as generally the most upgradient-most well at the site. As such, it is likely that the higher reported concentrations observed at MW-4 in 2023 and the first quarter 2023 are attributed to groundwater movement from areas north to northwest of the site flowing onto (beneath) the site and not attributed to operations at the facility.

					Table 6-1: Calcu	lation for M	ean and Stan	dard Deviation (Tot	al Dissolved Solids						
	<u>MW1</u>				<u>MW2</u>				<u>MW3</u>				<u>MW4</u>		
Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)
0	3Q-02	1170	7.0648	0	3Q-02	1180	7.0733	0	3Q-02	1120	7.0211				
270	2Q-03	1160	7.0562		2Q-03	1050	6.9565		2Q-03	947	6.8533				
450	1Q-04	1100	7.0031	450	1Q-04	1000	6.9078		1Q-04	1000	6.9078				
540	2Q-04	1200	7.0901	540	2Q-04	960	6.8669		2Q-04	1100	7.0031				
630	3Q-04	1100	7.0031	630	3Q-04	1000	6.9078		3Q-04	1000	6.9078				
720	4Q-04	1100	7.0031 ²⁷⁰	720	4Q-04	1000	6.9078 ²⁷⁰	)	4Q-04	1100	7.0031				
810	1Q-05	1100	7.0031	810	1Q-05	1100	7.0031 ⁴⁵⁰	)	1Q-05	1100	7.0031				
900	2Q-05	1170	7.0648	900	2Q-05	1090	6.9939 ⁵⁴⁰		2Q-05	1080	6.9847				
990	3Q-05	1080	6.9847	990	3Q-05	985	6.8926 ⁶³⁰		3Q-05	1000	6.9078				
1080	4Q-05	1100	7.0031	1080	4Q-05	1000	6.9078 ⁷²⁰		4Q-05	1200	7.0901				
1170	1Q-06	1070	6.9754	1170	1Q-06	999	6.9068 ⁸¹⁰		1Q-06	1040	6.9470				
1260	2Q-06	1100	7.0031	1260	2Q-06	1000	6.9078 ⁹⁰⁰	)	2Q-06	1100	7.0031				
1350	3Q-06	1100	7.0031	1350	3Q-06	1100	7.0031990	)	3Q-06	1100	7.0031				
1440	4Q-06	1100	7.0031	1440	4Q-06	1000	7.0031 ⁹⁹⁰ 6.9078 6.9078	30	4Q-06	1100	7.0031				
1530	1Q-07	1100	7.0031	1530	1Q-07	1000	6.9078 7.0031		1Q-07	1100	7.0031				
1620	2Q-07	1100	7.0031	1620	2Q-07	1100	7.0031	50	2Q-07	1200	7.0901				
	RA-07	1200	7.0901		RA-07	1100	7.0031 7.0031 13 7.0031 14 7.0031		RA-07	1200	7.0901				
1710	3Q-07	1100	7.0031		3Q-07	1100	7.0031	ŧU	3Q-07	1100	7.0031				
1800	4Q-07	1200	7.0901	1800	4Q-07	1100	7.0031		4Q-07	1500	7.3132				
1867	12/7/2007	1200	7.0901	1867	12/7/2007	1100	7.0031	1867	12/7/2007	1400	7.2442				
1890	1Q-08	1200	7.0901	0	1Q-08	1100	7.0031	10	1Q-08	1300	7.1701				
1966	2Q-08	1200	7.0901	1966	2Q-08	1100	7.0031		2Q-08	1700	7.4384				
2068	3Q-08	1100	7.0031	2068	3Q-08	1100	7.0031		3Q-08	1600	7.3778				
2178	4Q-08	1100	7.0031	2178	4Q-08	1100	7.0031 7.0031 7.0031 7.0031	0	4Q-08	1400	7.2442				
2349	1Q-09	1100	7.0031	2349	1Q-09	1100	7.0031		1Q-09	1200	7.0901				
2473	2Q-09	1200	7.0901	2473	2Q-09	1100	7.0031	29 29	2Q-09	1100	7.0031				
2571	3Q-09	1100	7.0031	2571	3Q-09	1100	7.0031 ²⁰⁶ 21	2571	3Q-09	1400	7.2442	0	3Q-09	1200	7.0901
									10/30/09	1300	7.1701	34	10/30/09	1100	7.0031
2652	4Q-09	1200	7.0901	2652	4Q-09	1100	7.0031 ²³⁴ 7.0031 ²⁴⁷	2652	4Q-09	1500	7.3132	81	4Q-09	1200	7.0901
2718	1Q-10	1200	7.0901	2718	1Q-10	1100	7.003124	2718	1Q-10	1800	7.4955	116	1Q-10	1200	7.0901
								2753	4/2/2010	1800	7.4955				
2800	2Q-10	1200	7.0901	2800	2Q-10	1100	7.0031	2800	2Q-10	2300	7.7407	198	2Q-10	1200	7.0901
2828	6/18/2010	1200	7.0901	2828	6/18/2010	1100	7.0031	2828	6/18/2010	2400	7.7832	226	6/18/2010	1200	7.0901
2895	3Q-10	1100	7.0031	2895	3Q-10	1100	7.0031	2895	3Q-10	2500	7.8240	293	3Q-10	1100	7.0031
								2922	9/20/2010R	2200	7.6962				
3014	4Q-10	1200	7.0901	3014	4Q-10	1100	7.0031	3014	4Q-10	1500	7.3132	412	4Q-10	1200	7.0901
3086	1Q-11	1200	7.0901	3086	1Q-11	1100	7.0031	3086	1Q-11	1600	7.3778	576	1Q-11	1200	7.0901
3179	2Q-11	1100	7.0031	3179	2Q-11	1100	7.0031	3179	2Q-11	1800	7.4955	669	2Q-11	1100	7.0031
3286	3Q-11	1200	7.0901	3286	3Q-11	1100	7.0031	3286	3Q-11	1500	7.3132	776	3Q-11	1100	7.0031
3372	4Q-11	1200	7.0901	3372	4Q-11	1100	7.0031	3372	4Q-11	1400	7.2442	862	4Q-11	1200	7.0901
3472	1Q-12	1200	7.0901	3472	1Q-12	1100	7.0031	3472	1Q-12	1500	7.3132	962	1Q-12	1100	7.0031

# ****\}])

## Table 6-1: Calculation for Mean and Standard Deviation (Total Dissolved Solids)

								ard Deviation (1 ot		5/					
	<u>MW1</u>				<u>MW2</u>				<u>MW3</u>				<u>MW4</u>		
Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)
3572	2Q-12	1100	7.0031	3572	2Q-12	1100	7.0031	3572	2Q-12	1400	7.2442	1062	2Q-12	1100	7.0031
3638	3Q-12	1200	7.0901	3638	3Q-12	1100	7.0031	3638	3Q-12	1200	7.0901	1128	3Q-12	1100	7.0031
3741	4Q-12	1200	7.0901	3741	4Q-12	1100	7.0031	3741	4Q-12	1100	7.0031	1231	4Q-12	1100	7.0031
3840	1Q-13	1100	7.0031	3840	1Q-13	1000	6.9078	3840	1Q-13	1100	7.0031	1330	1Q-13	1000	6.9078
3904	2Q-13	1200	7.0901	3904	2Q-13	1100	7.0031	3904	2Q-13	1200	7.0901	1394	2Q-13	1100	7.0031
4013	3Q-13	1200	7.0901	4013	3Q-13	1100	7.0031	4013	3Q-13	1000	6.9078	1507	3Q-13	1100	7.0031
4088	4Q-13	1200	7.0901	4088	4Q-13	1100	7.0031	4088	4Q-13	1100	7.0031	1583	4Q-13	1100	7.0031
4202	1Q-14	1200	7.0901	4202	1Q-14	1100	7.0031	4202	1Q-14	1100	7.0031	1697	1Q-14	1100	7.0031
4316	2Q-14	1200	7.0901	4316	2Q-14	1100	7.0031	4316	2Q-14	1100	7.0031	1811	2Q-14	1100	7.0031
4395	3Q-14	1200	7.0901	4395	3Q-14	1100	7.0031	4395	3Q-14	1100	7.0031	1890	3Q-14	1100	7.0031
4472	4Q-14	1200	7.0901	4472	4Q-14	1100	7.0031	4472	4Q-14	1000	6.9078	1967	4Q-14	1100	7.0031
4579	1Q-15	1200	7.0901	4579	1Q-15	1100	7.0031	4579	1Q-15	970	6.8773	2074	1Q-15	1000	6.9078
4765	2Q-15	1200	7.0901	4765	2Q-15	1100	7.0031	4765	2Q-15	1000	6.9078	2260	2Q-15	1100	7.0031
4848	3Q-15	1300	7.1701	4848	3Q-15	1100	7.0031	4848	3Q-15	1000	6.9078	2343	3Q-15	1100	7.0031
4938	4Q-15	1200	7.0901	4938	4Q-15	1100	7.0031	4938	4Q-15	1000	6.9078	2433	4Q-15	1100	7.0031
5055	1Q-16	1200	7.0901	5055	1Q-16	1100	7.0031	5055	1Q-16	1000	6.9078	2550	1Q-16	1100	7.0031
5122	2Q-16	1200	7.0901	5122	2Q-16	1100	7.0031	5122	2Q-16	1000	6.9078	2617	2Q-16	1100	7.0031
5213	3Q-16	1300	7.1701	5213	3Q-16	1100	7.0031	5213	3Q-16	1000	6.9078	2708	3Q-16	1100	7.0031
5305	4Q-16	1100	7.0031	5305	4Q-16	1100	7.0031	5305	4Q-16	920	6.8244	2800	4Q-16	1100	7.0031
5397	1Q-17	1300	7.1701	5397	1Q-17	1100	7.0031	5397	1Q-17	980	6.8876	2892	1Q-17	1100	7.0031
5487	2Q-17	1200	7.0901	5487	2Q-17	1100	7.0031	5487	2Q-17	1000	6.9078	2982	2Q-17	1100	7.0031
5563	3Q-17	1200	7.0901	5563	3Q-17	1100	7.0031	5563	3Q-17	970	6.8773	3058	3Q-17	1200	7.0901
5672	4Q-17	1300	7.1701	5672	4Q-17	1100	7.0031	5672	4Q-17	950	6.8565	3167	4Q-17	1200	7.0901
5782	1Q-18	1200	7.0901	5782	1Q-18	1100	7.0031	5782	1Q-18	1100	7.0031	3277	1Q-18	1200	7.0901
5850	2Q-18	1200	7.0901	5850	2Q-18	1100	7.0031	5850	2Q-18	1100	7.0031	3345	2Q-18	1200	7.0901
5960	3Q-18	1300	7.1701	5960	3Q-18	1100	7.0031	5960	3Q-18	1100	7.0031	3455	3Q-18	1100	7.0031
6007	10/30/2018	1200	7.0901												
6041	4Q-18	1200	7.0901	6041	4Q-18	1100	7.0031	6041	4Q-18	1100	7.0031	3536	4Q-18	1100	7.0031
6136	1Q-19	1200	7.0901	6135	1Q-19	1100	7.0031	6135	1Q-19	1200	7.0901	3631	1Q-19	1000	6.9078
6233	2Q-19	1200	7.0901	6233	2Q-19	1100	7.0031	6233	2Q-19	1100	7.0031	3728	2Q-19	1100	7.0031
6330	3Q-19	1300	7.1701	6330	3Q-19	1100	7.0031	6330	3Q-19	1100	7.0031	3825	3Q-19	1100	7.0031
6311	4Q-19	1300	7.1701	6311	4Q-19	1100	7.0031	6311	4Q-19	1200	7.0901	3806	4Q-19	1100	7.0031
6417	1Q-20	1200	7.0901	6417	1Q-20	1100	7.0031	6417	1Q-20	1300	7.1701	3912	1Q-20	1100	7.0031
6494	2Q-20	1300	7.1701	6494	2Q-20	1100	7.0031	6494	2Q-20	1300	7.1701	3989	2Q-20	1100	7.0031
6606	3Q-20	1300	7.1701	6606	3Q-20	1200	7.0901	6606	3Q-20	1300	7.1701	4101	3Q-20	1200	7.0901
6678	4Q-20	1200	7.0901	6678	4Q-20	1200	7.0901	6678	4Q-20	1300	7.1701	4173	4Q-20	1100	7.0031
6769	1Q-21	1200	7.0901	6769	1Q-21	1100	7.0031	6769	1Q-21	1200	7.0901	4264	1Q-21	980	6.8876
6851	2Q-21	1300	7.1701	6851	2Q-21	1100	7.0031	6851	2Q-21	1200	7.0901	4346	2Q-21	1100	7.0031
7033	3Q-21	1300	7.1701	7033	3Q-21	1100	7.0031	7033	3Q-21	1000	6.9078	4528	3Q-21	1100	7.0031
7131	4Q-21	1100	7.0031	7131	4Q-21	1000	6.9078	7131	4Q-21	1100	7.0031	4626	4Q-21	990	6.8977
7223	1Q-22	1200	7.0901	7223	1Q-22	1100	7.0031	7223	1Q-22	1100	7.0031	4718	1Q-22	1100	7.0031
7298	2Q-22	1200	7.0901	7298	2Q-22	1100	7.0031	7298	2Q-22	1100	7.0031	4793	2Q-22	1100	7.0031
7388	3Q-22	1300	7.1701	7388	3Q-22	1100	7.0031	7388	3Q-22	1200	7.0901	4883	3Q-22	1100	7.0031

				т	able 6-1: Cal	culation for Me	an and Sta	ndard Deviation (Total D	issolved Soli	ids)					
	<u>MW1</u>				<u>MW2</u>				<u>MW3</u>				<u>MW4</u>		
Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)
7480	4Q-22	1300	7.1701	7480	4Q-22	1200	7.0901	7480	4Q-22	1300	7.1701	4975	4Q-22	1400	7.2442
7582	1Q-23	1300	7.1701	7582	1Q-23	1100	7.0031	7582	1Q-23	1200	7.0901	5077	1Q-23	1300	7.1701
7670	2Q-23	1200	7.0901	7670	2Q-23	1100	7.0031	7670	2Q-23	1300	7.1701	5165	2Q-23	1300	7.1701
7785	3Q-23	1300	7.1701	7785	3Q-23	1100	7.0031	7785	3Q-23	1300	7.1701	5280	3Q-23	1200	7.0901
7877	4Q-23	1300	7.1701	7877	4Q-23	1100	7.0031	7877	4Q-23	1300	7.1701	5372	4Q-23	1200	7.0901
7989	1Q-24	1200	7.0901	7989	1Q-24	1100	7.0031	7989	1Q-24	1200	7.0901	5484	1Q-24	1200	7.0901
8038	2Q-24	1300	7.1701	8038	2Q-24	1200	7.0901	8038	2Q-24	1200	7.0901	5533	2Q-24	1200	7.0901
Standard Deviation =		68.3218	0.0570	Standard Deviation =		38.5175	0.0408	Standard Deviation =		318.5425	0.2122	Standard Deviatior	ן =	74.7374	0.0648
Mean =		1190.2299	7.0803	Mean =		1089.1163	6.9923	Mean =		1249.1798	7.1055	Mean =		1129.0164	7.0270
n =		87	87	n =		86	86	n =		89	89	n =		61	61
(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95}) =		1.662	1.662	(t{n-1, 0.95}) =		1.670	1.670
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	(1 + 1/n) ^½ =			1.008
$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.673	$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.673	$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.671	$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.684
UTL = Mean + St.Dev.*	ς =		7.1757	UTL = Mean + St.De	v.*k =		7.0606	UTL = Mean + St.Dev.*	k =		7.4602	UTL = Mean + St.[	Dev.*k =		7.1361
Concentration Significar	nt?		No	Concentration Signifi	cant?		No	Concentration Signification	nt?		No	Concentration Sigr	nificant?		No
Standard Deviation =		68.5069	0.0575	Standard Deviation =		44.9797	0.0419	Standard Deviation =		312.5222	0.2110	Standard Deviation	ן =	74.6685	0.0647
Mean =		1191.4773	7.0813	Mean =		1090.3908	6.9934	Mean =		1248.6333	7.1053	Mean =		1130.1613	7.0280
n =		88	88	n =		87	87	n =		90	90	n =		62	62
(t{n-1, 0.95}) =		1.662	1.662	(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95}) =		1.662	1.662	(t{n-1, 0.95}) =		1.670	1.670
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.008
$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.671	$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.673	$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.671	$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.683
UTL = Mean + St.Dev.*	( =		7.1775	UTL = Mean + St.De	v.*k =		7.0635	UTL = Mean + St.Dev.*	k =		7.4580	UTL = Mean + St.[	Dev.*k =		7.1370
Concentration Significar	nt?		No	Concentration Signifi	cant?		Yes	Concentration Significat	nt?		No	Concentration Sigr	nificant?		No

## ********])

					Table 6-1 (	Cont.): Calo	culation for Me	an and Standard	d Deviation (Sulfate)						
	<u>MW1</u>				<u>MW2</u>				<u>MW3</u>				<u>MW4</u>		
Days	Date	SO4	In(SO₄)	Days	Date	SO4	In(SO₄)	Days	Date	SO4	In(SO₄)	Days	Date	SO4	In(SO₄)
0	3Q-02	348	5.8522	0	3Q-02	419	6.0379	0	3Q-02	403	5.9989				
270	2Q-03	409	6.0137	270	2Q-03	427	6.0568	270	2Q-03	404	6.0014				
450	1Q-04	370	5.9135	450	1Q-04	360	5.8861	450	1Q-04	340	5.8289				
540	2Q-04	330	5.7991	540	2Q-04	340	5.8289	540	2Q-04	330	5.7991				
630	3Q-04	360	5.8861	630	3Q-04	360	5.8861	630	3Q-04	350	5.8579				
720	4Q-04	380	5.9402	720	4Q-04	370	5.9135	720	4Q-04	380	5.9402				
810	1Q-05	350	5.8579	810	1Q-05	360	5.8861	810	1Q-05	340	5.8289				
900	2Q-05	326	5.7869	900	2Q-05	331	5.8021	900	2Q-05	303	5.7137				
990	3Q-05	451	6.1115	990	3Q-05	450	6.1092	990	3Q-05	440	6.0868				
1080	4Q-05	360	5.8861	1080	4Q-05	360	5.8861	1080	4Q-05	330	5.7991				
1170	1Q-06	379	5.9375	1170	1Q-06	369	5.9108	1170	1Q-06	358	5.8805				
1260	2Q-06	390	5.9661	1260	2Q-06	370	5.9135	1260	2Q-06	370	5.9135				
1350	3Q-06	370	5.9135	1350	3Q-06	400	5.9915	1350	3Q-06	380	5.9402				
1440	4Q-06	370	5.9135	1440	4Q-06	380	5.9402	1440	4Q-06	380	5.9402				
1530	1Q-07	380	5.9402	1530	1Q-07	380	5.9402	1530	1Q-07	360	5.8861				
1620	2Q-07	460	6.1312	1620	2Q-07	470	6.1527	1620	2Q-07	450	6.1092				
	RA-07	385	5.9532		RA-07	365	5.8999		RA-07	360	5.8861				
1710	3Q-07	370	5.9135	1710	3Q-07	380	5.9402	1710	3Q-07	380	5.9402				
1800	4Q-07	360	5.8861	1800	4Q-07	360	5.8861	1800	4Q-07	420	6.0403				
1867	12/7/2007	380	5.9402		12/7/2007	360	5.8861	1867	12/7/2007	385	5.9532				
1890	1Q-08	380	5.9402	1890	1Q-08	380	5.9402	1890	1Q-08	390	5.9661				
1966	2Q-08	380	5.9402	1966	2Q-08	370	5.9135	1966	2Q-08	480	6.1738				
2068	3Q-08	390	5.9661 ₁₈₆₇	7 2068	3Q-08	400	5.9915	2068	3Q-08	480	6.1738				
2178	4Q-08	400	5.9915	2178	4Q-08	410	6.0162	2178	4Q-08	460	6.1312				
2349	1Q-09	380	5.9402	2349	1Q-09	390	5.9661	2349	1Q-09	360	5.8861				
2473	2Q-09	390	5.9661	2473	2Q-09	390	5.9661	2473	2Q-09	340	5.8289				
2571	3Q-09	370	5.9135	2571	3Q-09	350	5.8579	2571	3Q-09	560	6.3279	0	3Q-09	380	5.9402
								2618	10/30/09	430	6.0638	34	10/30/09	350	5.8579
2652	4Q-09	370	5.9135	2652	4Q-09	380	5.9402	2652	4Q-09	500	6.2146	81	4Q-09	350	5.8579
2718	1Q-10	370	5.9135	2718	1Q-10	400	5.9915	2718	1Q-10	610	6.4135	116	1Q-10	370	5.9135
								2753	4/2/2010	620	6.4297				
2800	2Q-10	390	5.9661	2800	2Q-10	420	6.0403	2800	2Q-10	620	6.4297	198	2Q-10	380	5.9402
2828	6/18/2010	330	5.7991	2828	6/18/2010	360	5.8861	2828	6/18/2010	690	6.5367	226	6/18/2010	340	5.8289
2895	3Q-10	380	5.9402	2895	3Q-10	370	5.9135	2895	3Q-10	700	6.5511	293	3Q-10	370	5.9135
								2922	9/20/2010R	750	6.6201				
3014	4Q-10	340	5.8289	3014	4Q-10	380	5.9402	3014	4Q-10	510	6.2344	412	4Q-10	380	5.9402
3086	1Q-11	360	5.8861	3086	1Q-11	370	5.9135	3086	1Q-11	490	6.1944	576	1Q-11	340	5.8289
3179	2Q-11	400	5.9915	3179	2Q-11	410	6.0162	3179	2Q-11	640	6.4615	669	2Q-11	370	5.9135
3286	3Q-11	380	5.9402	3286	3Q-11	410	6.0162	3286	3Q-11	510	6.2344	776	3Q-11	360	5.8861
3372	4Q-11	390	5.9661	3372	4Q-11	410	6.0162	3372	4Q-11	500	6.2146	862	4Q-11	370	5.9135

## ****\}])

					Table 6-1 (0	Cont.): Cale	culation for Me	an and Standard I	Deviation (Sulfate)						
	<u>MW1</u>				<u>MW2</u>				<u>MW3</u>				<u>MW4</u>		
Days	Date	SO4	In(SO ₄ )	Days	Date	SO₄	In(SO₄)	Days	Date	SO₄	In(SO₄)	Days	Date	SO4	In(SO₄)
3472	1Q-12	340	5.8289	3472	1Q-12	360	5.8861	3472	1Q-12	510	6.2344	962	1Q-12	300	5.7038
3572	2Q-12	500	6.2146	3572	2Q-12	420	6.0403	3572	2Q-12	480	6.1738	1062	2Q-12	350	5.8579
3638	3Q-12	380	5.9402	3638	3Q-12	400	5.9915	3638	3Q-12	420	6.0403	1128	3Q-12	320	5.7683
3741	4Q-12	410	6.0162	3741	4Q-12	420	6.0403	3741	4Q-12	390	5.9661	1231	4Q-12	340	5.8289
3840	1Q-13	400	5.9915	3840	1Q-13	410	6.0162	3840	1Q-13	370	5.9135	1330	1Q-13	330	5.7991
3904	2Q-13	380	5.9402	3904	2Q-13	390	5.9661	3904	2Q-13	350	5.8579	1394	2Q-13	300	5.7038
4013	3Q-13	390	5.9661	4013	3Q-13	420	6.0403	4013	3Q-13	330	5.7991	1507	3Q-13	310	5.7366
4088	4Q-13	420	6.0403	4088	4Q-13	410	6.0162	4088	4Q-13	340	5.8289	1583	4Q-13	310	5.7366
4202	1Q-14	420	6.0403	4202	1Q-14	440	6.0868	4202	1Q-14	450	6.1092	1697	1Q-14	330	5.7991
4316	2Q-14	410	6.0162	4316	2Q-14	480	6.1738	4316	2Q-14	400	5.9915	1811	2Q-14	360	5.8861
4395	3Q-14	440	6.0868	4395	3Q-14	410	6.0162	4395	3Q-14	370	5.9135	1890	3Q-14	310	5.7366
4472	4Q-14	340	5.8289	4472	4Q-14	360	5.8861	4472	4Q-14	290	5.6699	1967	4Q-14	270	5.5984
4579	1Q-15	390	5.9661	4579	1Q-15	360	5.8861	4579	1Q-15	290	5.6699	2074	1Q-15	270	5.5984
4765	2Q-15	370	5.9135	4765	2Q-15	360	5.8861	4765	2Q-15	280	5.6348	2260	2Q-15	270	5.5984
4848	3Q-15	430	6.0638	4848	3Q-15	410	6.0162	4848	3Q-15	330	5.7991	2343	3Q-15	320	5.7683
4938	4Q-15	410	6.0162	4938	4Q-15	410	6.0162	4938	4Q-15	330	5.7991	2433	4Q-15	320	5.7683
5055	1Q-16	370	5.9135	5055	1Q-16	380	5.9402	5055	1Q-16	340	5.8289	2550	1Q-16	310	5.7366
5122	2Q-16	390	5.9661	5122	2Q-16	420	6.0403	5122	2Q-16	330	5.7991	2617	2Q-16	310	5.7366
5213	3Q-16	420	6.0403	5213	3Q-16	390	5.9661	5213	3Q-16	300	5.7038	2708	3Q-16	310	5.7366
5305	4Q-16	400	5.9915	5305	4Q-16	420	6.0403	5305	4Q-16	330	5.7991	2800	4Q-16	360	5.8861
5397	1Q-17	450	6.1092	5397	1Q-17	400	5.9915	5397	1Q-17	310	5.7366	2892	1Q-17	340	5.8289
5487	2Q-17	440	6.0868	5487	2Q-17	400	5.9915	5487	2Q-17	330	5.7991	2982	2Q-17	340	5.8289
5563	3Q-17	430	6.0638	5563	3Q-17	400	5.9915	5563	3Q-17	310	5.7366	3058	3Q-17	330	5.7991
5672	4Q-17	400	5.9915	5672	4Q-17	380	5.9402	5672	4Q-17	290	5.6699	3167	4Q-17	310	5.7366
5782	1Q-18	390	5.9661	5782	1Q-18	400	5.9915	5782	1Q-18	390	5.9661	3277	1Q-18	340	5.8289
5850	2Q-18	390	5.9661	5850	2Q-18	380	5.9402	5850	2Q-18	360	5.8861	3345	2Q-18	310	5.7366
5960	3Q-18	430	6.0638	5960	3Q-18	390	5.9661	5960	3Q-18	380	5.9402	3455	3Q-18	300	5.7038
6007	10/30/2018	410	6.0162											000	
6041	4Q-18	380	5.9402	6041	4Q-18	380	5.9402	6041	4Q-18	380	5.9402	3536	4Q-18	280	5.6348
6136	1Q-19	370	5.9135	6135	1Q-19	370	5.9135	6135	1Q-19	390	5.9661	3631	1Q-19	270	5.5984
6233	2Q-19	450	6.1092	6233	2Q-19	400	5.9915	6233	2Q-19	400	5.9915	3728	2Q-19	290 300	5.6699
6330	3Q-19	440	6.0868	6330	3Q-19	400	5.9915	6330	3Q-19	390	5.9661	3825	3Q-19	300	5.7038
6311	4Q-19	390	5.9661	6311	4Q-19	370	5.9135	6311	4Q-19	390	5.9661	3806	4Q-19	270	5.5984
6417	1Q-20	390	5.9661	6417	1Q-20	370	5.9135	6417	1Q-20	410	6.0162	3912	1Q-20	260	5.5607
6494	2Q-20	430	6.0638	6494	2Q-20	390	5.9661	6494	2Q-20	400	5.9915	3989	2Q-20	280	5.6348
6606	3Q-20	210	5.3471	6606	3Q-20	380	5.9402	6606	3Q-20	430	6.0638	4101	3Q-20	280	5.6348
6678	4Q-20	420	6.0403	6678	4Q-20	390 200	5.9661	6678	4Q-20	440	6.0868	4173	4Q-20	280	5.6348
6769	1Q-21	440	6.0868	6769	1Q-21	390	5.9661	6769	1Q-21	440	6.0868	4264	1Q-21	280	5.6348
6851 7022	2Q-21	450 440	6.1092	6851 7022	2Q-21	400	5.9915	6851 7022	2Q-21	410	6.0162 5.7001	4346	2Q-21	300	5.7038
7033	3Q-21	440	6.0868	7033	3Q-21	380	5.9402	7033	3Q-21	330	5.7991	4528	3Q-21	280	5.6348

					Table 6-	1 (Cont.): Calcı	ulation for M	lean and Standard I	Deviation (Sulfat	te)					
	<u>MW1</u>				<u>MW2</u>				<u>MW3</u>				<u>MW4</u>		
Days	Date	SO₄	In(SO₄)	Days	Date	SO₄	In(SO₄)	Days	Date	SO₄	In(SO ₄ )	Days	Date	SO₄	In(SO₄)
7131	4Q-21	380	5.9402	7131	4Q-21	390	5.9661	7131	4Q-21	430	6.0638	4626	4Q-21	280	5.6348
7223	1Q-22	420	6.0403	7223	1Q-22	400	5.9915	7223	1Q-22	380	5.9402	4718	1Q-22	300	5.7038
7298	2Q-22	450	6.1092	7298	2Q-22	390	5.9661	7298	2Q-22	380	5.9402	4793	2Q-22	290	5.6699
7388	3Q-22	450	6.1092	7388	3Q-22	390	5.9661	7388	3Q-22	390	5.9661	4883	3Q-22	310	5.7366
7480	4Q-22	450	6.1092	7480	4Q-22	380	5.9402	7480	4Q-22	400	5.9915	4975	4Q-22	380	5.9402
7582	1Q-23	440	6.0868	7582	1Q-23	380	5.9402	7582	1Q-23	410	6.0162	5077	1Q-23	390	5.9661
7670	2Q-23	410	6.0162	7670	2Q-23	380	5.9402	7670	2Q-23	390	5.9661	5165	2Q-23	370	5.9135
7785	3Q-23	470	6.1527	7785	3Q-23	410	6.0162	7785	3Q-23	450	6.1092	5280	3Q-23	360	5.8861
7877	4Q-23	430	6.0638	7877	4Q-23	390	5.9661	7877	4Q-23	430	6.0638	5372	4Q-23	320	5.7683
7989	1Q-24	430	6.0638	7989	1Q-24	410	6.0162	7989	1Q-24	420	6.0403	5484	1Q-24	360	5.8861
8038	2Q-24	450	6.1092	8038	2Q-24	390	5.9661	8038	2Q-24	410	6.0162	5533	2Q-24	340	5.8289
Standard Deviation	n =	40.5558	0.1113	Standard Deviatio	n =	25.9061	0.0653	Standard Deviation	=	94.3123	0.2069	Standard Deviatio	n =	35.8884	0.1116
Mean =		395.6092	5.9747	Mean =		390.3605	5.9649	Mean =		411.1573	5.9965	Mean =		322.2951	5.7694
n =		87	87	n =		86	86	n =		89	89	n =		61	61
(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95}) =		1.662	1.662	(t{n-1, 0.95}) =		1.670	1.670
(1 + 1/n) ^½ =			1.006	(1 + 1/n) ^{1/2} =			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	(1 + 1/n) ^{1/2} =			1.008
k = t(1 + 1/n) ^½ =			1.673	$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.673	$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.671	$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.684
UTL = Mean + St.I	Dev.*k =		6.1609	UTL = Mean + St.	Dev.*k =		6.0741	UTL = Mean + St.E	)ev.*k =		6.3422	UTL = Mean + St.	Dev.*k =		5.9572
Concentration Sig	nificant?		No	Concentration Sig	nificant?		No	Concentration Sign	ificant?		No	Concentration Sig	nificant?		No
Standard Deviation	n =	40.7368	0.1114	Standard Deviatio	n =	25.7551	0.0649	Standard Deviation	=	93.7811	0.2057	Standard Deviatio	n =	35.6640	0.1109
Mean =		396.2273	5.9762	Mean =		390.3563	5.9650	Mean =		411.1444	5.9967	Mean =		322.5806	5.7703
n =		88	88	n =		87	87	n =		90	90	n =		62	62
(t{n-1, 0.95}) =		1.662	1.662	(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95}) =		1.662	1.662	(t{n-1, 0.95}) =		1.670	1.670
(1 + 1/n) ^{1/2} =			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.008
$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.671	$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.673	$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.671	$k = t(1 + 1/n)^{\frac{1}{2}} =$			1.683
UTL = Mean + St.I	Dev.*k =		6.1625	UTL = Mean + St.	Dev.*k =		6.0735	UTL = Mean + St.E	)ev.*k =		6.3405	UTL = Mean + St.	Dev.*k =		5.9570
Concentration Sig	nificant?		No	Concentration Sig	nificant?		No	Concentration Sign	ificant?		No	Concentration Sig	nificant?		No

					Table 6-1 (C	ont.): Calcu	Ilation for Mea	n and Standard	<b>Deviation (Chloride)</b>						
	<u>MW1</u>				<u>MW2</u>				<u>MW3</u>				<u>MW4</u>		
Days	Date	CI	In(CI)	Days	Date	CI	In(CI)	Days	Date	CI	In(CI)	Days	Date	CI	In(CI)
0	3Q-02	294	5.6836	0	3Q-02	225	5.4161	0	3Q-02	202	5.3083				
270	2Q-03	272	5.6058	270	2Q-03	209	5.3423	270	2Q-03	117	4.7622				
450	1Q-04	200	5.2983	450	1Q-04	180	5.1930	450	1Q-04	110	4.7005				
540	2Q-04	220	5.3936	540	2Q-04	190	5.2470	540	2Q-04	120	4.7875				
630	3Q-04	200	5.2983	630	3Q-04	180	5.1930	630	3Q-04	120	4.7875				
720	4Q-04	210	5.3471	720	4Q-04	180	5.1930	720	4Q-04	210	5.3471				
810	1Q-05	230	5.4381	810	1Q-05	180	5.1930	810	1Q-05	130	4.8675				
900	2Q-05	182	5.2040	900	2Q-05	158	5.0626	900	2Q-05	109	4.6913				
990	3Q-05	255	5.5413	990	3Q-05	211	5.3519	990	3Q-05	156	5.0499				
1080	4Q-05	230	5.4381	1080	4Q-05	180	5.1930	1080	4Q-05	130	4.8675				
1170	1Q-06	219	5.3891	1170	1Q-06	189	5.2417	1170	1Q-06	149	5.0039				
1260	2Q-06	210	5.3471	1260	2Q-06	190	5.2470	1260	2Q-06	160	5.0752				
1350	3Q-06	210	5.3471	1350	3Q-06	190	5.2470	1350	3Q-06	180	5.1930				
1440	4Q-06	210	5.3471	1440	4Q-06	190	5.2470	1440	4Q-06	210	5.3471				
1530	1Q-07	230	5.4381	1530	1Q-07	190	5.2470	1530	1Q-07	200	5.2983				
1620	2Q-07	210	5.3471	1620	2Q-07	210	5.3471	1620	2Q-07	230	5.4381				
	RA-07	220	5.3936		RA-07	205	5.3230		RA-07	240	5.4806				
1710	3Q-07	250	5.5215	1710	3Q-07	190	5.2470	1710	3Q-07	190	5.2470				
1800	4Q-07	230	5.4381	1800	4Q-07	180	5.1930	1800	4Q-07	300	5.7038				
1867	12/7/2007	270	5.5984	1867	12/7/2007	190	5.2470	1867	12/7/2007	270	5.5984				
1890	1Q-08	250	5.5215	1890	1Q-08	190	5.2470	1890	1Q-08	280	5.6348				
1966	2Q-08	230	5.4381	1966	2Q-08	200	5.2983	1966	2Q-08	350	5.8579				
2068	3Q-08	250	5.5215	2068	3Q-08	200	5.2983	2068	3Q-08	400	5.9915				
2178	4Q-08	240	5.4806	2178	4Q-08	180	5.1930	2178	4Q-08	320	5.7683				
2349	1Q-09	230	5.4381	2349	1Q-09	190	5.2470	2349	1Q-09	230	5.4381				
2473	2Q-09	230	5.4381	2473	2Q-09	170	5.1358	2473	2Q-09	220	5.3936				
2571	3Q-09	230	5.4381	2571	3Q-09	220	5.3936	2571	3Q-09	370	5.9135	0	3Q-09	270	5.5984
								2618	10/30/09	220	5.3936	34	10/30/09	250	5.5215
2652	4Q-09	220	5.3936	2652	4Q-09	170	5.1358	2652	4Q-09	250	5.5215	81	4Q-09	250	5.5215
2718	1Q-10	230	5.4381	2718	1Q-10	170	5.1358	2718	1Q-10	360	5.8861	116	1Q-10	260	5.5607
								2753	4/2/2010	400	5.9915				
2800	2Q-10	260	5.5607	2800	2Q-10	180	5.1930	2800	2Q-10	580	6.3630	198	2Q-10	280	5.6348
2828	6/18/2010	250	5.5215	2828	6/18/2010	170	5.1358	2828	6/18/2010	660	6.4922	226	6/18/2010	250	5.5215
2895	3Q-10	220	5.3936	2895	3Q-10	220	5.3936	2895	3Q-10	670	6.5073	293	3Q-10	260	5.5607
								2922	9/20/2010R	460	6.1312				
3014	4Q-10	220	5.3936	3014	4Q-10	160	5.0752	3014	4Q-10	200	5.2983	412	4Q-10	260	5.5607
3086	1Q-11	210	5.3471	3086	1Q-11	160	5.0752	3086	1Q-11	240	5.4806	576	1Q-11	250	5.5215
3179	2Q-11	200	5.2983	3179	2Q-11	160	5.0752	3179	2Q-11	340	5.8289	669	2Q-11	260	5.5607
3286	3Q-11	190	5.2470	3286	3Q-11	160	5.0752	3286	3Q-11	190	5.2470	776	3Q-11	250	5.5215
3372	4Q-11	230	5.4381	3372	4Q-11	170	5.1358	3372	4Q-11	180	5.1930	862	4Q-11	270	5.5984
3472	1Q-12	210	5.3471	3472	1Q-12	160	5.0752	3472	1Q-12	220	5.3936	962	1Q-12	280	5.6348
3572	2Q-12	270	5.5984	3572	2Q-12	160	5.0752	3572	2Q-12	190	5.2470	1062	2Q-12	260	5.5607

7480

4Q-22

180

5.1930

7480

	Table 6-1 (Cont.): Calculation for Mean and Standard Deviation (Chloride)										
	<u>MW1</u>				<u>MW2</u>				<u>MW3</u>		
Days	Date	CI	In(CI)	Days	Date	CI	In(CI)	Days	Date	СІ	In(CI)
3638	3Q-12	220	5.3936	3638	3Q-12	150	5.0106	3638	3Q-12	140	4.9416
3741	4Q-12	230	5.4381	3741	4Q-12	170	5.1358	3741	4Q-12	160	5.0752
3840	1Q-13	220	5.3936	3840	1Q-13	160	5.0752	3840	1Q-13	140	4.9416
3904	2Q-13	200	5.2983	3904	2Q-13	140	4.9416	3904	2Q-13	120	4.7875
4013	3Q-13	240	5.4806	4013	3Q-13	160	5.0752	4013	3Q-13	120	4.7875
4088	4Q-13	210	5.3471	4088	4Q-13	150	5.0106	4088	4Q-13	120	4.7875
4202	1Q-14	250	5.5215	4202	1Q-14	180	5.1930	4202	1Q-14	170	5.1358
4316	2Q-14	240	5.4806	4316	2Q-14	180	5.1930	4316	2Q-14	140	4.9416
4395	3Q-14	240	5.4806	4395	3Q-14	160	5.0752	4395	3Q-14	130	4.8675
4472	4Q-14	240	5.4806	4472	4Q-14	150	5.0106	4472	4Q-14	110	4.7005
4579	1Q-15	210	5.3471	4579	1Q-15	140	4.9416	4579	1Q-15	110	4.7005
4765	2Q-15	210	5.3471	4765	2Q-15	140	4.9416	4765	2Q-15	110	4.7005
4848	3Q-15	220	5.3936	4848	3Q-15	150	5.0106	4848	3Q-15	110	4.7005
4938	4Q-15	220	5.3936	4938	4Q-15	150	5.0106	4938	4Q-15	120	4.7875
5055	1Q-16	230	5.4381	5055	1Q-16	140	4.9416	5055	1Q-16	120	4.7875
5122	2Q-16	230	5.4381	5122	2Q-16	150	5.0106	5122	2Q-16	120	4.7875
5213	3Q-16	210	5.3471	5213	3Q-16	150	5.0106	5213	3Q-16	110	4.7005
5305	4Q-16	250	5.5215	5305	4Q-16	160	5.0752	5305	4Q-16	120	4.7875
5397	1Q-17	200	5.2983	5397	1Q-17	140	4.9416	5397	1Q-17	110	4.7005
5487	2Q-17	210	5.3471	5487	2Q-17	140	4.9416	5487	2Q-17	110	4.7005
5563	3Q-17	190	5.2470	5563	3Q-17	140	4.9416	5563	3Q-17	100	4.6052
5672	4Q-17	190	5.2470	5672	4Q-17	140	4.9416	5672	4Q-17	120	4.7875
5782	1Q-18	220	5.3936	5782	1Q-18	140	4.9416	5782	1Q-18	140	4.9416
5850	2Q-18	220	5.3936	5850	2Q-18	140	4.9416	5850	2Q-18	140	4.9416
5960	3Q-18	220	5.3936	5960	3Q-18	150	5.0106	5960	3Q-18	150	5.0106
6007	10/30/2018	200	5.2983	0000	00-10	100	0.0100	0000	00-10	100	0.0100
6041	4Q-18	230	5.4381	6041	4Q-18	150	5.0106	6041	4Q-18	140	4.9416
6136	1Q-19	230	5.4381	6135	1Q-19	140	4.9416	6135	1Q-19	140	4.9416
6233	2Q-19	200	5.2983	6233	2Q-19	150	5.0106	6233	2Q-19	140	5.0106
6330	3Q-19	200	5.3936	6330	3Q-19	160	5.0752	6330	3Q-19	160	5.0752
6311	4Q-19	220	5.3936	6311	4Q-19	140	4.9416	6311	4Q-19	140	4.9416
6417	1Q-20	150	5.0106	6417	1Q-20	130	4.8675	6417	1Q-20	170	5.1358
6494	2Q-20	180	5.1930	6494	2Q-20	130	4.8675	6494	2Q-20	150	5.0106
6606	3Q-20	90	4.4998	6606	3Q-20	130	4.8675	6606	3Q-20	170	5.1358
6678	4Q-20	220	5.3936	6678	4Q-20	150	5.0106	6678	4Q-20	180	5.1930
6769	4Q-20 1Q-21	220	5.2983	6769	4Q-20 1Q-21	130	4.9416	6769	4Q-20 1Q-21	160	5.0752
6851	2Q-21	200	5.2983	6851	2Q-21	140	5.0106	6851	2Q-21	150	5.0106
7033	3Q-21	200	5.2983	7033	3Q-21	140	4.9416	7033	3Q-21	130	4.8675
7033	4Q-21	200 130	5.2963 4.8675	7033	4Q-21	140	4.9416	7033	4Q-21	130	4.8675 5.1358
7223	1Q-22	180 170	5.1930	7223	1Q-22	140	4.9416	7223	1Q-22	140	4.9416
7298	2Q-22	170	5.1358	7298	2Q-22	130	4.8675	7298	2Q-22	130	4.8675
7388	3Q-22	170	5.1358	7388	3Q-22	130	4.8675	7388	3Q-22	130	4.8675

4Q-22

130

4.8675

7480

4Q-22

150

5.0106

## ********]

	<u>MW4</u>		
Days	Date	СІ	In(CI)
1128	3Q-12	260	5.5607
1231	4Q-12	270	5.5984
1330	1Q-13	270	5.5984
1394	2Q-13	250	5.5215
1507	3Q-13	270	5.5984
1583	4Q-13	260	5.5607
1697	1Q-14	300	5.7038
1811	2Q-14	300	5.7038
1890	3Q-14	290	5.6699
1967	4Q-14	270	5.5984
2074	1Q-15	260	5.5607
2260	2Q-15	260	5.5607
2343	3Q-15	280	5.6348
2433	4Q-15	270	5.5984
2550	1Q-16	270	5.5984
2617	2Q-16	280	5.6348
2708	3Q-16	260	5.5607
2800	4Q-16	290	5.6699
2892	1Q-17	270	5.5984
2982	2Q-17	270	5.5984
3058	3Q-17	260	5.5607
3167	4Q-17	270	5.5984
3277	1Q-18	270	5.5984
3345	2Q-18	270	5.5984
3455	3Q-18	280	5.6348
0500	10.10	000	F F007
3536	4Q-18	260	5.5607
3631	1Q-19	270	5.5984
3728	2Q-19	290	5.6699
3825	3Q-19	290	5.6699
3806	4Q-19	260	5.5607
3912	1Q-20	250	5.5215
3989	2Q-20	260	5.5607
4101	3Q-20	270 280	5.5984 5.6348
4173 4264	4Q-20 1Q-21	280 280	5.6348
4264 4346	1Q-21 2Q-21	280 190	5.6348 5.2470
4528	2Q-21 3Q-21	280	5.6348
4626	4Q-21	280	5.5984
4020	4Q-21 1Q-22	270	5.6699
4718	2Q-22	290 270	5.5984
4883	3Q-22	270	5.5984 5.5984
4883	4Q-22	330	5.7991
4313	+\ <u>-</u> -22	550	5.7331

					Table 6-1	(Cont.): Calcula	ation for Me	ean and Standard D	eviation (Chloric	de)					
	<u>MW1</u>				<u>MW2</u>				<u>MW3</u>				<u>MW4</u>		
Days	Date	CI	In(CI)	Days	Date	CI	In(CI)	Days	Date	CI	In(CI)	Days	Date	CI	In(CI)
7582	1Q-23	170	5.1358	7582	1Q-23	130	4.8675	7582	1Q-23	150	5.0106	5077	1Q-23	320	5.7683
7670	2Q-23	200	5.2983	7670	2Q-23	130		7670	2Q-23	150		5165	2Q-23	330	
7785	3Q-23	180	5.1930	7785	3Q-23	130	4.8675	7785	3Q-23	160	5.0752	5280	3Q-23	330	5.7991
7877	4Q-23	200	5.2983	7877	4Q-23	130 4.867	4.8675	7877	4Q-23	150 160 ^{5.010}	5.0106	5372	4Q-23	290 320 ^{5.799[.]}	5.6699
7989	1Q-24	190	5.2470	7989	1Q-24	130	⁵ 4.8675	7989	1Q-24	160	5.0752	5484	1Q-24	320	5.7683
8038	2Q-24	180	5.1930	8038	2Q-24	130	4.8675	8038	2Q-24	150	5.0106	5533	2Q-24	310	5.7366
Standard Deviation =		30.1198	0.1592	Standard Deviation	=	25.4475	0.1530	Standard Deviation	=	112.7276	0.4297	Standard Deviation	=	22.6822	0.0840
Mean =		215.5402		Mean =		162.7558		Mean =		196.6235		Mean =		272.9508	
n =		87		n =		86		n =		89		n =		61	
(t{n-1, 0.95}) =		1.663 ^{5.3}	618	(t{n-1, 0.95}) =		1.663 ^{5.0}	0805	(t{n-1, 0.95}) =		1.662 ^{5.1}	683	(t{n-1, 0.95}) =		1.670 ^{5.6}	059
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.008
$k = t(1 + 1/n)^{\frac{1}{2}} =$		87.66	₃ 1.673	$k = t(1 + 1/n)^{\frac{1}{2}} =$		80.66	3 1.673	k = t(1 + 1/n) ^{1/2} =		89.66	2 1.671	$k = t(1 + 1/n)^{\frac{1}{2}} =$		61.670	1.684
UTL = Mean + St.Dev	.*k =	01.000	5.6281	UTL = Mean + St.D	ev.*k =	04.00	5.3364	UTL = Mean + St.D	)ev.*k =	04.00	5.8865	UTL = Mean + St.D	ev.*k =	0 4.070	5.7473
Concentration Signific	ant?		No	Concentration Sign	ficant?		No	Concentration Sign	ificant?		No	Concentration Sign	ificant?		Yes
Standard Deviation =		30.1849	0.1593	Standard Deviation	=	25.5417	0.1538	Standard Deviation	ı =	112.1917	0.4276	Standard Deviation	=	22.9823	0.0850
Mean =		215.1364	5.3599	Mean =		162.3793	5.0781	Mean =		194.2556	5.1610	Mean =		273.5484	5.6080
n =		88	88	n =		87	87	n =		90	90	n =		62	62
(t{n-1, 0.95}) =		1.662		(t{n-1, 0.95}) =		1.663		(t{n-1, 0.95}) =		1.662		(t{n-1, 0.95}) =		1.670	
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.008
$k = t(1 + 1/n)^{\frac{1}{2}} =$		1.662	2 1.671	$k = t(1 + 1/n)^{\frac{1}{2}} =$		1.66	з 1.673	$k = t(1 + 1/n)^{\frac{1}{2}} =$		1.66	2 1.671	$k = t(1 + 1/n)^{\frac{1}{2}} =$		1.670	1.683
UTL = Mean + St.Dev	.*k =	1.00/	5.6262	UTL = Mean + St.D	ev.*k =	1.00	5.3353	UTL = Mean + St.D	)ev.*k =	1.00	5.8756	UTL = Mean + St.D	ev.*k =	1.070	5.7510
Concentration Signific	ant?		No	Concentration Sign	ficant?		No	Concentration Sign	ificant?		No	Concentration Sign	ificant?		No

## ****\}])

# ********])

				Q1 2024				Q2 2024	
WELL	PARAMETER	RESULT	In(RESULT)	UPPER TOLERANCE LIMIT	UTL EXCEEDED (YES/NO)	RESULT	In(RESULT)	UPPER TOLERANCE LIMIT	UTL EXCEEDED (YES/NO)
	TDS	1200	7.0901	7.1757	No	1300	7.1701	7.1775	No
MW-1	SO4	440	6.0868	6.1609	No	450	6.1092	6.1625	No
	Cl ₂	190	5.2470	5.6281	No	180	5.1930	5.6262	No
	TDS	1100	7.0031	7.0606	No	1200	7.0901	7.0635	Yes
MW-2	SO4	410	6.0162	6.0741	No	390	5.9661	6.0735	No
	Cl ₂	130	4.8675	5.3364	No	130	4.8675	5.3353	No
	TDS	1200	7.0901	7.4602	No	1200	7.0901	7.4580	No
MW-3	SO4	420	6.0403	6.3422	No	410	6.0162	6.3405	No
	Cl ₂	160	5.0752	5.8865	No	150	5.0106	5.8756	No
	TDS	1200	7.0901	7.1361	No	1200	7.0901	7.1370	No
MW-4	SO4	360	5.8861	5.9572	No	340	5.8289	5.9570	No
	Cl ₂	320	5.7683	5.7473	Yes	310	5.7366	5.7510	No

 $^1\mbox{Upper tolerance limit (UTL) calculated using 95% distribution and 95% probability$ 

## FIRST SEMI-ANNUAL 2024 MONITORING REPORT

SECTION 7 LYSIMETER TEST RECORDS

# ****\|)

## LYSIMETER TEST RECORD

Project Name/Client: Blythe Energy Inc.	Site Name: Blythe Energy Project
Project No. NB11160982	Date: March 27, 2024
Weather Conditions: Sunny 75° F	Sampler: Ralph De La Parra

EAST POND	
	Notes: *
Lysimeter No.: 1	
TEST RESULTS: Dry	
Lysimeter No.: 2	Notes: *
TEST RESULTS: Dry	
Lysimeter No.: 3	Notes: *
TEST RESULTS: Dry	
WEST POND	Notes: *
WEST POND Lysimeter No.: 4	Notes: *
	Notes: *
Lysimeter No.: 4	Notes: * Notes: *
Lysimeter No.: 4 TEST RESULTS: Dry	
Lysimeter No.: 4 TEST RESULTS: Dry Lysimeter No.: 5	

## LYSIMETER TEST RECORD

Project Name/Client: Blythe Energy Inc.	Site Name: Blythe Energy Project
Project No. NB11160982	Date: May 15, 2024
Weather Conditions: Sunny	Sampler: Ralph De La Parra
EAST POND	Notes: *
Lysimeter No.: 1	
TEST RESULTS: Dry	
Lysimeter No.: 2	Notes: *
TEST RESULTS: Dry	
Lysimeter No.: 3	Notes: *
TEST RESULTS: Dry	
WEST POND	Notes: *
Lysimeter No.: 4	
TEST RESULTS: Dry	
Lysimeter No.: 5	Notes: *
TEST RESULTS: Dry	
Lysimeter No.: 6	Notes: *
TEST RESULTS: Dry	

FIRST SEMI-ANNUAL 2024 MONITORING REPORT

SECTION 8 EVAPORATION POND SAMPLING RECORDS

# ********])

## **EVAPORATION POND SAMPLING RECORD**

Project Name/Client: Blythe Energy Inc.	Site Name: Blythe Energy Project
Project No.: NB11160982	Date: March 27, 2024
Weather Conditions: Warm, Sunny	Sampler: Ralph De La Parra
Pond No./Designation: #1 East	Comments: Dry.
Time: N/A	
Color/Clarity: N/A	
Temp.: N/A	
pH: N/A	
Ec: N/A	
Pond No./Designation: #2 West	Comments: Contains Brine Shrimp
Time: 11:20	
Color/Clarity: slightly green	
Temp.: 26.3°C	
рН: 8.49	
Ec: >20.00 ms/cm	

Notes:

- Temperature reported in degrees Celsius
- pH reported in pH units
- Ec reported in millisiemens per centimeter (ms/cm)

# ********])

71

## **EVAPORATION POND SAMPLING RECORD**

Project Name/Client: Blythe Energy Inc.	Site Name: Blythe Energy Project
Project No.: NB11160982	Date: May 15, 2024
Weather Conditions: Warm, Sunny	Sampler: Ralph De La Parra
Pond No./Designation: #1 East Time: N/A Color/Clarity: N/A Temp.: N/A pH: N/A Ec: N/A	Comments: Dry
Pond No./Designation: #2 West Time: 13:05 Color/Clarity: slightly green Temp.: 35.1°C pH: 8.01 Ec: >20.00 ms/cm	Comments:

Notes:

- Temperature reported in degrees Celsius
- pH reported in pH units
- Ec reported in millisiemens per centimeter (ms/cm)

FIRST SEMI-ANNUAL 2024 MONITORING REPORT

SECTION 9 WELL SAMPLING RECORDS

## **\\S**[]

## WELL SAMPLING/DEVELOPMENT RECORD

Project:	Blythe En		Energy Inc.	Project No:	NB11160982	2		
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra		
Well No.:	MW-1	_ Date:	March 27, 2024	Sampler:	Ralph De La Pa	arra		
Elevation of Me	asuring Po	int (MP)			337.27	ft. (a)		
Elevation of Gro	ound Surfa	ce			337.76	ft. (b)		
Well Depth (be	low MP)				120.00	ft. (c)		
Casing Inside E	Diameter				4.0	in. (d)		
		C	ALCULATION OF CASI	NG VOLUME				
Depth of Water	Below MP				88.18	ft. (e)		
Water Level Ele	evation (a-e	:)			249.09	ft. (f)		
Height of Water in Well			<u> </u>		31.82	ft.		
Volume of Wate	er in Casing	9			31.82x 0.66 = 21.00	gal.		
Sampling/Deve Purging Appara		rstem (High-lig	ht) Whale pump electric	Dedicated submersible	Non-dedicated $$			
Sampling Appa	ratus: Type	e	Sampled through pump					
Cleaning Metho	ods		Alconox and potable water wash, double distilled water					
rinse								
			FIELD OBSERVAT	IONS				
Weather Condi	tions	Clear, warm						
Well Head Con	ditions	Dry, good						
Comments								

Blythe Energy Inc.

Project Name/Client



March 27, 2024

			FIE	ELD MEAS	SUREMENTS	
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Clarity/Color
12:10	2	10	30.1	7.08	1.92	Clear, odorless
12:20	2	20	30.2	7.10	1.93 Clear, odorless	
12:30	2	30	30.2	7.11	1.93 Clear, odorless	
12:40	2	40	30.3	7.11	1.94 Clear, odorless	
12:50	2	50	30.3	7.11	1.94 Clear, odorless	
13:05	2	65	30.4	7.11	1.94	Clear, odorless
Total Vo	ol. Purged	-	65	(gal)	Casing Vol.	Purged3.09
Final W	ater Level	After Purging			ft. Be	elow MP; Time
Fate of Water	Purged	Discharged to g	round			

Well Number

MW-1

Date

## SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-1	13:05	2	Quarterly	Ν	NA	1L poly

F = Filtered (Y,N), P = Preservative (Type)

## **\\S**D

## WELL SAMPLING/DEVELOPMENT RECORD

Project:	Blythe Energy Inc.			Project No:	NB11160982	
Location:	E	Bythe, C	alifornia	Logged by:	Ralph De La Pa	arra
Well No.: MV	V-2 Date	c	March 27, 2024	Sampler:	Ralph De La Pa	arra
Elevation of Measurir	ig Point (MP	)			337.77	ft. (a)
Elevation of Ground	Surface	_			337.17	ft. (b)
Well Depth (below M	^{&gt;} )	_			120.00	ft. (c)
Casing Inside Diame	er	-			4.0	in. (d)
		CA	LCULATION OF CASIN	IG VOLUME		
Depth of Water Below	v MP	-			89.05	ft. (e)
Water Level Elevation	ו (a-e)	-			248.72	ft. (f)
Height of Water in W	əll	-			30.95	ft.
Volume of Water in C	asing	-			30.95 x 0.66 = 20.42	gal.
Sampling/Developme Purging Apparatus:		ligh-light	t) Whale pump electric	Dedicated submersible	Non-dedicated $$	
	Гуре	ligh-light		submersible	Non-dedicated $$	
Purging Apparatus:	Гуре	ligh-light - -	Whale pump electric	submersible np		
Purging Apparatus: Sampling Apparatus:	Гуре	ligh-lighi - -	Whale pump electric Sampled through pur	submersible np		
Purging Apparatus: Sampling Apparatus: Cleaning Methods	Гуре	ligh-light - - -	Whale pump electric Sampled through pur	submersible np		
Purging Apparatus: Sampling Apparatus: Cleaning Methods	Гуре	High-light - - -	Whale pump electric Sampled through pur	submersible np water wash, doub		
Purging Apparatus: Sampling Apparatus: Cleaning Methods	Гуре Туре	-	Whale pump electric Sampled through pur Alconox and potable	submersible np water wash, doub		
Purging Apparatus: Sampling Apparatus: Cleaning Methods <u>rinse</u>	Гуре Туре Clear,	warm	Whale pump electric Sampled through pur Alconox and potable	submersible np water wash, doub		
Purging Apparatus: Sampling Apparatus: Cleaning Methods <u>rinse</u> Weather Conditions Well Head Conditions	Гуре Туре Clear,	warm	Whale pump electric Sampled through pur Alconox and potable	submersible np water wash, doub		
Purging Apparatus: Sampling Apparatus: Cleaning Methods <u>rinse</u> Weather Conditions	Гуре Туре Clear,	warm	Whale pump electric Sampled through pur Alconox and potable	submersible np water wash, doub		

Blythe Energy Inc.

Project Name/Client



March 27, 2024

			FIE	ELD MEAS	SUREMENTS				
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Clarity/Color			
10:50	1	10	29.7	7.02	1.70	Clear, odorless			
11:00	1	20	29.8	7.03	1.70	Clear, odorless			
11:10	1	30	29.8	7.03	1.70	Clear, odorless			
11:20	1	40	29.8	7.03	1.70	Clear, odorless			
11:30	1	50	29.8	7.03	1.70 Clear, odorless				
11:45	1	65	29.8	7.03	1.70 Clear, odorless				
Total Vo	ol. Purged	-	65	(gal)	Casing Vol.	Purged <u>3.1</u>			
Final W	ater Level	After Purging		ft. Below MP; Time					
Fate of Water	Purged	Discharged to g	round						

Well Number

MW-2

Date

## SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-2	11:45	2	Quarterly	Ν	NA	1L poly

F = Filtered (Y,N), P = Preservative (Type)

## **\\S**D

## WELL SAMPLING/DEVELOPMENT RECORD

Project:		Blythe E	nergy Inc.	Project No:	NB11160982	NB11160982		
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra		
Well No.:	MW-3	Date:	March 27, 2024	Sampler:	Ralph De La Pa	arra		
Elevation of Me	asuring Po	int (MP)			338.22	ft. (a)		
Elevation of Gro	ound Surfac	ce			336.28	ft. (b)		
Well Depth (bel	low MP)				115.00	ft. (c)		
Casing Inside E	Diameter				4.0	in. (d)		
		С	ALCULATION OF CASIN	IG VOLUME				
Depth of Water	Below MP				89.68	ft. (e)		
Water Level Ele	evation (a-e	)			248.54	ft. (f)		
Height of Water	r in Well				25.32	ft.		
Volume of Wate	er in Casing	)			25.32 x 0.66 = 16.21	gal.		
Sampling/Deve Purging Appara		rstem (High-ligl	nt) Whale pump electric	Dedicated submersible	Non-dedicated $$			
Sampling Appa	ratus: Type	Э	Sampled through put	mp				
Cleaning Metho	ods		Alconox and potable	water wash, doub	ole distilled water			
Rinse								
			FIELD OBSERVAT	IONS				
Weather Condi	tions	Clear, warm						
Well Head Con		Dry, good						
Comments	_							

Blythe Energy Inc.

Project Name/Client



March 27, 2024

	FIELD MEASUREMENTS								
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Clarity/Color			
9:40	1	10	24.6	6.54	1.81	Clear, odorless			
9:50	1	20	24.7	6.67	1.75	Clear, odorless			
10:00	1	30	24.7	6.68	1.74	Clear, odorless			
10:10	1	40	24.7	6.68	1.74	Clear, odorless			
10:20	1	50	24.7	6.68	1.74	Clear, odorless			
10:30	1	60	24.7	6.68	1.74	Clear, odorless			
Total Vo	ol. Purged	-	60	_ (gal)	Casing Vol. Purged				
Final W	ater Level	After Purging			ft. Be	elow MP; Time			
Fate of Water	Purged	Discharged to g	round						

Well Number

MW-3

Date

## SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-3	10:30	4	Quarterly	Ν	NA	Duplicate Collected (DUP)

F = Filtered (Y,N), P = Preservative (Type)

## **\\S**D

## WELL SAMPLING/DEVELOPMENT RECORD

Project:		Blythe E	inergy Inc.	Project No:	NB11160982	NB11160982		
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra		
Well No.:	MW-4	_ Date:	March 27, 2024	Sampler:	Ralph De La Pa	arra		
Elevation of Me	asuring Po	int (MP)			342.50	ft. (a)		
Elevation of Gr	ound Surfa	ce			339.95	ft. (b)		
Well Depth (be	low MP)				118.95	ft. (c)		
Casing Inside E	Diameter				4.0	in. (d)		
		С	ALCULATION OF CASIN	NG VOLUME				
Depth of Water	Below MP				92.85	ft. (e)		
Water Level Ele	evation (a-e	e)			249.65	ft. (f)		
Height of Wate	r in Well				26.1	ft.		
Volume of Wate	er in Casing	9			26.1 x 0.66 = 17.22	gal.		
Sampling/Deve Purging Appara		vstem (High-lig	ht) Whale pump electric	Dedicated submersible	Non-dedicated $$			
Sampling Appa	ratus: Typ	е	Sampled through put	mp				
Cleaning Metho	ods		Alconox and potable	water wash, doub	le distilled water			
Rinse								
			FIELD OBSERVAT	IONS				
Weather Condi	tions	Clear, warm						
Well Head Con	-	Dry, good						
Comments	_	-						

Blythe Energy Inc.

Project Name/Client



March 27, 2024

			FIE	ELD MEAS	SUREMENTS				
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Clarity/Color			
13:30	2	10	30.9	718	1.97	Clear, odorless			
13:40	2	20	31.8	7.19	1.97	Clear, odorless			
13:50	2	30	31.9	7.20	1.97	Clear, odorless			
14:00	2	40	31.9	7.20	1.97	Clear, odorless			
14:10	2	50	31.9	7.20	1.97	Clear, odorless			
14:15	2	55	32.0	7.20	1.97 Clear, odorless				
Total Vo	ol. Purged	-	55	(gal)	Casing Vol.	Purged <u>3.1</u>			
Final W	ater Level	After Purging		ft. Below MP; Time					
Fate of Water	Purged	Discharged to g	round						

Well Number

MW-4

Date

### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-4	14:15	2	Quarterly	Ν	NA	

F = Filtered (Y,N), P = Preservative (Type)

Depth to Water Readings: OW-1 = 91.08 feet OW-2 = 87.90 feet

## **\\S**D

## WELL SAMPLING/DEVELOPMENT RECORD

Project:		Blythe	Energy Inc.	Project No:	NB11160982		
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra	
Well No.:	MW-1	Date:	May 15, 2024	Sampler:	Ralph De La Pa	arra	
Elevation of Me	asuring P	oint (MP)			337.27	ft. (a)	
Elevation of Gro	ound Surfa	асе			337.76	ft. (b)	
Well Depth (bel	low MP)				120.0	ft. (c)	
Casing Inside D	Diameter				4.0	in. (d)	
		(	CALCULATION OF CASI	NG VOLUME			
Depth of Water	Below MF	2			88.65	ft. (e)	
Water Level Ele	evation (a-	e)			248.62	ft. (f)	
Height of Water	r in Well				31.35	ft.	
Volume of Wate	er in Casir	ıg			31.35 x 0.66 = 20.69	gal.	
Sampling/Deve Purging Appara			ght) Whale pump electric	Dedicated	Non-dedicated $$		
Sampling Appa	ratus: Typ	с	Sampled through pu	Imp			
Cleaning Metho	ods		Alconox and potable	e water wash, doub	ole distilled water		
rinse							
			FIELD OBSERVA	TIONS			
Weather Condi	tions	Clear, warm					
Well Head Con	ditions	Dry, good					
Comments	-						

Blythe Energy Inc.

Project Name/Client



May 15, 2024

FIELD MEASUREMENTS Pump Cumulative Spec. Cond. Temp Vol. Removed pН (ms/cm Particulates/Odor/Clarity/Color Time Rate (°C) (GPM) at 25 °C) (gal) 2 10:40 10 29.9 7.21 1.95 Clear, odorless 20 10:50 2 30.0 7.17 1.93 Clear, odorless 11:00 2 30 30.1 7.16 1.93 Clear, odorless 11:10 2 40 30.2 7.16 1.93 Clear, odorless 2 11:35 65 30.3 7.16 1.93 Clear, odorless Total Vol. Purged Casing Vol. Purged 65 (gal) 3.14 Final Water Level After Purging ft. Below MP; Time Fate of Purged **Discharged to ground** Water

Well Number

MW-1

Date

### SAMPLE INVENTORY

Label	Time e	Number	Arabia	-		Demeric
Label	lime	of Bottles	Analysis	F	Р	Remarks
MW-1-5-15-24	11:35	4	Quarterly	Ν	NA	DUP-5-15-24

F = Filtered (Y,N), P = Preservative (Type)

## **\\S**D

## WELL SAMPLING/DEVELOPMENT RECORD

Project:	Blythe Energy Inc.			Project No:	ct No: <b>NB11160982</b>	
Location:		Blythe,	California	Logged by:	Ralph De La Parra	
Well No.:	MW-2	Date:	May 15, 2024	/ 15, 2024 Sampler: Ralph De La P		arra
Elevation of Measuring Point (MP)					337.77	ft. (a)
Elevation of Ground Surface					337.17	ft. (b)
Well Depth (below MP)					120.00	ft. (c)
Casing Inside Diameter					4.0	in. (d)
CALCULATION OF CASING VOLUME						
Depth of Water	Below MP	,			89.25	ft. (e)
Water Level Ele	evation (a-	e)			248.52	ft. (f)
Height of Wate	r in Well				30.25	ft.
Volume of Water in Casing					30.25 x 0.66 = 20.29	gal.
Sampling/Deve Purging Appara	-		ht) Whale pump electric	Dedicated submersible	Non-dedicated $$	
Sampling Apparatus: Type			Sampled through pump			
Cleaning Methods			Alconox and potable water wash, double distilled water			
rinse						
			FIELD OBSERVAT	IONS		
Weather Conditions <b>Clear, warm</b>						
Well Head Con	ditions	Dry, good				
Comments	_					

First Semi-Annual 2024 Monitoring Report Blythe Energy Inc. Blythe, California July 31, 2024

Blythe Energy Inc.

Project Name/Client



May 15, 2024

FIELD MEASUREMENTS Pump Cumulative Spec. Cond. Temp Vol. Removed pН (ms/cm Particulates/Odor/Clarity/Color Time Rate (°C) (GPM) at 25 °C) (gal) 9:15 10 29.8 7.01 1.71 Clear, odorless 1 20 7.02 9:25 1 30.2 1.71 Clear, odorless 9:35 1 30 30.2 7.02 1.71 Clear, odorless 9:45 1 40 30.2 7.02 1.71 Clear, odorless 10:10 1 65 30.2 7.02 1.71 Clear, odorless Total Vol. Purged Casing Vol. Purged 3.20 65 (gal) Final Water Level After Purging ft. Below MP; Time Fate of Purged **Discharged to ground** Water

Well Number

MW-2

Date

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-2-5-15-24	10:10	2	Quarterly	Ν	NA	

F = Filtered (Y,N), P = Preservative (Type)

# **\\S**D

#### WELL SAMPLING/DEVELOPMENT RECORD

Project:		Blythe E	Energy Inc.	Project No:	NB11160982	2
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra
Well No.:	MW-3	Date:	May 15, 2024	Sampler:	Ralph De La Pa	arra
Elevation of Me	easuring Po	pint (MP)			338.22	ft. (a)
Elevation of Gr	ound Surfa	ice			336.28	ft. (b)
Well Depth (be	low MP)				115.00	ft. (c)
Casing Inside [	Diameter				4.0	in. (d)
		C	ALCULATION OF CASI	NG VOLUME		
Depth of Water	Below MF	)	<u> </u>		89.85	ft. (e)
Water Level Ele	evation (a-	e)			248.37	ft. (f)
Height of Wate	r in Well		<u>.</u>		25.15	ft.
Volume of Wat	er in Casin	g			25.15 x 0.66 = 16.59	gal.
Sampling/Deve Purging Appara	-		ht) Whale pump electric	Dedicated	Non-dedicated $$	
Sampling Appa	aratus: Typ	e	Sampled through pu	mp		
Cleaning Metho	ods		Alconox and potable	e water wash, dout	ole distilled water	
rinse						
			FIELD OBSERVAT	ΓIONS		
Weather Condi	tions	Clear, warm				
Well Head Con	ditions	Dry, good				
Comments	-					

First Semi-Annual 2024 Monitoring Report Blythe Energy Inc. Blythe, California July 31, 2024

Blythe Energy Inc.

Project Name/Client



May 15, 2024

			FIE	ELD MEAS	UREMENTS			
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Cl	arity/Color	
8:10	1	10	24.9	6.63	1.80	Clear, odorle	SS	
8:20	1	20	24.7	6.62	1.75	Clear, odorless		
8:30	1	30	24.7	6.68	1.72	Clear, odorless		
8:40	1	40	24.7	6.68	1.72	Clear, odorless		
8:55	1	55	24.7	6.68	1.72	Clear, odorless		
Total V	ol. Purged	-	55	_ (gal)	Casing Vol. F	Purged	3.31	
Final W	/ater Level	After Purging			ft. Bel	ow MP; Time		
Fate of Water	Purged	Discharged to g	round					

Well Number

MW-3

Date

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-3-5-15-24	8:55	2	Quarterly	Ν	NA	

F = Filtered (Y,N), P = Preservative (Type)

# **\\S**D

#### WELL SAMPLING/DEVELOPMENT RECORD

Project:		Blythe E	nergy Inc.	Project No:	NB11160982	2
Location:		Blythe, (	California	Logged by:	Ralph De La Pa	arra
Well No.:	MW-4	Date:	May 15, 2024	Sampler:	Ralph De La Pa	arra
Elevation of Me	asuring Poi	int (MP)			342.50	ft. (a)
Elevation of Gro	ound Surfac	ce			337.76	ft. (b)
Well Depth (bel	low MP)				118.95	ft. (c)
Casing Inside D	Diameter				4.0	in. (d)
		C/	ALCULATION OF CASI	NG VOLUME		
Depth of Water	Below MP				93.45	ft. (e)
Water Level Ele	evation (a-e	)			249.05	ft. (f)
Height of Water	r in Well				25.5	ft.
Volume of Wate	er in Casing	J			25.5 x 0.66 = 16.83	gal.
Sampling/Deve Purging Appara		stem (High-ligh	nt) Whale pump electric	Dedicated	Non-dedicated $$	
Sampling Appa	ıratus: Type	Э	Sampled through pu	ımp		-
Cleaning Metho	ods		Alconox and potable	e water wash, doub	le distilled water	-
Rinse	1					-
						-
			FIELD OBSERVAT	TIONS		
Weather Condi	tions _	Clear, warm				_
Well Head Con	ditions	Dry, good				_
Comments	_					
						_
. <u> </u>						

First Semi-Annual 2024 Monitoring Report Blythe Energy Inc. Blythe, California July 31, 2024

Blythe Energy Inc.

Project Name/Client



May 15, 2024

MW-4

Date

FIELD MEASUREMENTS Pump Cumulative Spec. Cond. Temp Vol. Removed Particulates/Odor/Clarity/Color Time Rate pН (ms/cm (°C) at 25 °C) (GPM) (gal) 11:55 2 10 32.7 7.24 1.87 Clear, odorless 20 12:05 2 33.1 7.22 1.88 Clear, odorless 12:15 2 30 7.22 1.88 Clear, odorless 33.3 12:25 2 40 33.6 7.22 1.88 Clear, odorless 2 12:40 55 33.8 7.22 1.88 Clear, odorless Total Vol. Purged 55 Casing Vol. Purged 3.26 (gal) Final Water Level After Purging ft. Below MP; Time Fate of Purged **Discharged to ground** Water

Well Number

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-4-5-15-24	12:40	2	Quarterly	Ν	NA	

F = Filtered (Y,N), P = Preservative (Type)

Depth to Water Readings: OW-1 = 91.20 feet OW-2 = 88.50 feet

# **\\\$**])

#### FIRST SEMI-ANNUAL 2024 MONITORING REPORT

SECTION 10 LEACHATE COLLECTION AND RECOVERY SYSTEM (LCRS) & WEEKLY LYSIMETER RECORDS



#### LEACHATE COLLECTION AND RECOVERY SYSTEM (LCRS) & WEEKLY LYSIMETER RECORDS

Table 10-1 shows records of weekly inspections performed on the Leachate Collection and Recovery System (LCR) and Lysimeter Records

Date	East LRS Measurement in inches	East LRS pump Out Yes / No	Lysimeters checked	Water Present	East Pond Level Inches of Free Board	West LRS Measurement in inches	West LRS pump Out Yes / No	Lysimeters checked	Water Present	West Pond Level Inches of Free Board	Comments
1/7/2024	59	Ν	Y	Ν	363	56	Ν	Y	Ν	66	Weekly Inspection
1/12/2024	64	Ν	Y	Ν	363	52	Ν	Y	Ν	65	Weekly Inspection
1/21/2024	55	Ν	Y	Ν	360	36	Ν	Y	Ν	65	Weekly Inspection
1/28/2024	60	Ν	Y	Ν	140	60	Ν	Y	Ν	63	Weekly Inspection
2/3/2024	90	N	Y	Y	144	87	Ν	Y	N	68	Weekly Inspection - East LRS Pumped out - Water detected in Lysimeter determined to be rain water
2/10/2024	72	Ν	Y	Y	143	62	Y	Y	N	65	Weekly Inspection - Water detected in Lysimeter determined to be rain water
2/17/2024	84	N	Y	N	184	58	Ν	Y	N	68	Weekly Inspection
2/24/2024	76	Y	Y	N	147	65	Y	Y	Ν	66	Weekly Inspection - East and West LRS Pumped out
3/3/2024	72	Y	Y	Ν	145	52	Ν	Y	Ν	65	Weekly Inspection - West LRS Pumped out
3/10/2024	60	Ν	Y	Ν	144	48	Ν	Y	Ν	75	Weekly Inspection
3/17/2024	60	Ν	Y	Ν	134	53	Ν	Y	Ν	67	Weekly Inspection
3/24/2024	79	Ν	Y	Ν	145	66	Ν	Y	Ν	72	Weekly Inspection
3/31/2024	60	Ν	Y	Ν	144	54	Ν	Y	Ν	72	Weekly Inspection
4/7/2024	59	Ν	Y	Ν	136	49	Ν	Y	Ν	69	Weekly Inspection
4/14/2024	54	Ν	Y	N	141	48	Ν	Y	Ν	71	Weekly Inspection
4/21/2024	55	N	Y	N	141	48	N	Y	N	71	Weekly Inspection
4/28/2024	66	Ν	Y	Ν	139	56	Ν	Y	Ν	75	Weekly Inspection
5/4/2024	60	Ν	Y	Ν	150	60	Ν	Y	Ν	72	Weekly Inspection
5/12/2024	60	N	Y	N	147	51	N	Y	N	68	Weekly Inspection
5/19/2024	98	N	Y	N	155	80	N	Y	N	76	Weekly Inspection
5/26/2024	58	N	Y	N	160	60	N	Y	N	81	Weekly Inspection
6/2/2024	58	N	Y	N	157	60	N	Y	N	75	Weekly Inspection
6/9/2024	58	N	Y	N	158	60	Ν	Y	N	79	Weekly Inspection
6/16/2024	68	N	Y	N	147	60	Ν	Y	N	84	Weekly Inspection
6/23/2024	60	Ν	Y	N	145	58	Ν	Y	N	89	Weekly Inspection
6/30/2024	60	Ν	Y	N	151	54	Ν	Y	Ν	83	Weekly Inspection

#### Table 10-1 Leachate Collection and Recovery System (LCRS) & Weekly Lysimeter Results

# ****\|)

# **\\\$**])

#### FIRST SEMI-ANNUAL 2024 MONITORING REPORT

APPENDIX A

LABORATORY ANALYTICAL DATA SHEETS



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Arlin Brewster Northstar Environmental Remediation 26225 Enterprise Court Lake Forest, California 92630 Generated 4/5/2024 6:07:44 AM

JOB DESCRIPTION

Blythe Energy

# **JOB NUMBER**

570-178204-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780







# **Eurofins Calscience**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

# Authorization

Generated 4/5/2024 6:07:44 AM 5

Authorized for release by Sheri Fama, Project Manager I Sheri.Fama@et.eurofinsus.com (657)210-6368

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Lab Chronicle	10
QC Sample Results	12
QC Association Summary	15
Certification Summary	17
Method Summary	18
Chain of Custody	19
Receipt Checklists	20

### **Definitions/Glossary**

#### Client: Northstar Environmental Remediation Project/Site: Blythe Energy

TEQ

TNTC

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	<u> </u>
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	5
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	12 13
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

#### Job ID: 570-178204-1

### **Eurofins Calscience**

# Job Narrative 570-178204-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

#### Receipt

The samples were received on 3/27/2024 5:54 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.9°C.

#### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### **General Chemistry**

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

## Sample Summary

#### Client: Northstar Environmental Remediation Project/Site: Blythe Energy

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-178204-1	MW-1	Water	03/27/24 13:05	03/27/24 17:54
570-178204-2	MW-2	Water	03/27/24 11:45	03/27/24 17:54
570-178204-3	MW-3	Water	03/27/24 10:30	03/27/24 17:54
570-178204-4	MW-4	Water	03/27/24 14:15	03/27/24 17:54
570-178204-5	DUP	Water	03/27/24 00:00	03/27/24 17:54

## **Detection Summary**

#### Client: Northstar Environmental Remediation Project/Site: Blythe Energy

Client Sample ID: MW-1					Lab	Sample ID:	570-178204
Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chloride	190		10	mg/L	10	300.0	Total/NA
Sulfate	430		10	mg/L	10	300.0	Total/NA
Specific Conductance	1900		1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1200		10	mg/L	1	SM 2540C	Total/NA
Client Sample ID: MW-2					Lab	Sample ID:	570-178204
Analyte	Result	Qualifier	RL	Unit	Dil Fac	Method	Prep Type
Chloride	130	·	10	mg/L	10	300.0	Total/NA
Sulfate	410		10	mg/L	10	300.0	Total/NA
Specific Conductance	1700		1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1100		10	mg/L	1	SM 2540C	Total/NA
Client Sample ID: MW-3					Lab	Sample ID:	570-178204
 Analyte	Result	Qualifier	RL	Unit	Dil Fac	Method	Prep Type
Chloride	160		10	mg/L	10	300.0	Total/NA
Sulfate	420		10	mg/L	10	300.0	Total/NA
Specific Conductance	1800		1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1200		10	mg/L	1	SM 2540C	Total/NA
Client Sample ID: MW-4					Lab	Sample ID:	570-178204
Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chloride	320		10	mg/L	10	300.0	Total/NA
Sulfate	360		10	mg/L	10	300.0	Total/NA

<b>Client S</b>	ample	DUP

Specific Conductance

Total Dissolved Solids

#### Lab Sample ID: 570-178204-5

Total/NA

Total/NA

SM 2510B

SM 2540C

1

1

Analyte	Result Q	ualifier RL	Unit	Dil Fac	D Method	Prep Type
Chloride	160	10	mg/L	10	300.0	Total/NA
Sulfate	420	10	mg/L	10	300.0	Total/NA
Specific Conductance	1800	1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1300	10	mg/L	1	SM 2540C	Total/NA

1.0

10

umhos/cm

mg/L

2000

1200

This Detection Summary does not include radiochemical test results.

**Eurofins Calscience** 

## **Client Sample Results**

Client: Northstar Environmental Remediation Project/Site: Blythe Energy Job ID: 570-178204-1

Client Sample ID: MW-1						Lab Samp	le ID: 570-17	8204-1
Date Collected: 03/27/24 13:05								k: Water
Date Received: 03/27/24 17:54								
- Method: EPA 300.0 - Anions, Ion Cl	hromatogran	ihv						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	190		10	mg/L			03/30/24 10:38	10
Sulfate	430		10	mg/L			03/30/24 10:38	1(
Method: EPA 200.7 Rev 4.4 - Metals	s (ICP) - Tota	I Recoverable	)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.10	mg/L		03/29/24 09:07	03/29/24 19:52	
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Specific Conductance (SM 2510B)	1900		1.0	umhos/cm			04/02/24 18:21	
Total Dissolved Solids (SM 2540C)	1200		10	mg/L			04/03/24 15:03	
Client Sample ID: MW-2						Lab Samp	le ID: 570-17	8204-2
Date Collected: 03/27/24 11:45							Matrix	k: Wate
Date Received: 03/27/24 17:54								
Method: EPA 300.0 - Anions, Ion Cl	hromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
			10	mg/L			03/30/24 10:55	1
Chloride	130		10	iiig/E				
Chloride Sulfate	130 410		10	mg/L			03/30/24 10:55	1
	410	l Recoverable	10	-			03/30/24 10:55	1
Sulfate	410 s (ICP) - Tota	I Recoverable Qualifier	10	-	D	Prepared	03/30/24 10:55 Analyzed	
Sulfate Method: EPA 200.7 Rev 4.4 - Metals	410 s (ICP) - Tota		10	mg/L	_ <u>D</u>	Prepared 03/29/24 09:07		
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium	410 s (ICP) - Tota Result		10 RL	mg/L	_ <u>D</u>	· · · · · · · · · · · · · · · · · · ·	Analyzed	
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte	410 s (ICP) - Tota Result ND		10 RL	mg/L	_ <u>D</u> 	· · · · · · · · · · · · · · · · · · ·	Analyzed	Dil Fa
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry	410 s (ICP) - Tota Result ND	Qualifier	10 <b>RL</b> 0.10	mg/L Unit		03/29/24 09:07	Analyzed 03/29/24 19:55	Dil Fa
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B)	410 s (ICP) - Tota Result ND Result	Qualifier	10 <b>RL</b> 0.10 <b>RL</b>	mg/L Unit mg/L Unit		03/29/24 09:07	Analyzed 03/29/24 19:55 Analyzed	Dil Fa
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C)	410 s (ICP) - Tota Result ND Result 1700	Qualifier	10 <b>RL</b> 0.10 <b>RL</b> 1.0	mg/L Unit mg/L Unit umhos/cm		03/29/24 09:07 Prepared	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23	Dil Fa
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-3	410 s (ICP) - Tota Result ND Result 1700	Qualifier	10 <b>RL</b> 0.10 <b>RL</b> 1.0	mg/L Unit mg/L Unit umhos/cm		03/29/24 09:07 Prepared	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23 04/03/24 15:03 Ie ID: 570-17	Dil Fa Dil Fa 8204-3
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-3 Date Collected: 03/27/24 10:30	410 s (ICP) - Tota Result ND Result 1700	Qualifier	10 <b>RL</b> 0.10 <b>RL</b> 1.0	mg/L Unit mg/L Unit umhos/cm		03/29/24 09:07 Prepared	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23 04/03/24 15:03 Ie ID: 570-17	Dil Fa Dil Fa
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-3 Date Collected: 03/27/24 10:30 Date Received: 03/27/24 17:54	410 s (ICP) - Tota Result ND Result 1700 1100	Qualifier	10 <b>RL</b> 0.10 <b>RL</b> 1.0	mg/L Unit mg/L Unit umhos/cm		03/29/24 09:07 Prepared	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23 04/03/24 15:03 Ie ID: 570-17	Dil Fa Dil Fa 8204-3
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-3 Date Collected: 03/27/24 10:30 Date Received: 03/27/24 17:54	410 s (ICP) - Tota Result ND Result 1700 1100	Qualifier	10 <b>RL</b> 0.10 <b>RL</b> 1.0	mg/L Unit mg/L Unit umhos/cm		03/29/24 09:07 Prepared	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23 04/03/24 15:03 Ie ID: 570-17	Dil Fa Dil Fa 8204-3 x: Wate
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-3 Date Collected: 03/27/24 10:30 Date Received: 03/27/24 17:54 Method: EPA 300.0 - Anions, Ion Cl	410 s (ICP) - Tota Result ND Result 1700 1100	Qualifier	10 <b>RL</b> 0.10 <b>RL</b> 1.0 10	mg/L Unit mg/L Unit umhos/cm mg/L	_ <u>D</u>	03/29/24 09:07 Prepared Lab Samp	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23 04/03/24 15:03 Ie ID: 570-177 Matrix	Dil Fa Dil Fa 8204-3 k: Wate Dil Fa
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-3 Pate Collected: 03/27/24 10:30 Pate Received: 03/27/24 17:54 Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride	410 s (ICP) - Tota Result ND Result 1700 1100 hromatograp Result	Qualifier	10 <b>RL</b> 0.10 <b>RL</b> 1.0 10 <b>RL</b> 	mg/L Unit Unit Unit Unit Unit Unit	_ <u>D</u>	03/29/24 09:07 Prepared Lab Samp	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23 04/03/24 15:03 Ie ID: 570-17 Matrix	Dil Fa Dil Fa 8204-3 k: Wate Dil Fa
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-3 Date Collected: 03/27/24 10:30 Date Received: 03/27/24 17:54 Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate	410 s (ICP) - Tota Result ND Result 1700 1100 hromatograp Result 160 420	Qualifier	10 <b>RL</b> 0.10 <b>RL</b> 1.0 10 <b>RL</b> 10 10 10 10 10 10 10 1	mg/L Unit mg/L Unit umhos/cm mg/L Unit umhos/cm mg/L	_ <u>D</u>	03/29/24 09:07 Prepared Lab Samp	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23 04/03/24 15:03 Ie ID: 570-17 Matrix Analyzed 03/30/24 11:45	Dil Fa Dil Fa 8204-3 k: Wate Dil Fa
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-3 Date Collected: 03/27/24 10:30 Date Received: 03/27/24 17:54 Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals	410 s (ICP) - Tota <u>Result</u> 1700 1100 hromatograp <u>Result</u> 160 420 s (ICP) - Tota	Qualifier	10 <b>RL</b> 0.10 <b>RL</b> 1.0 10 <b>RL</b> 10 10 10 10 10 10 10 1	mg/L Unit mg/L Unit umhos/cm mg/L Unit umhos/cm mg/L	_ <u>D</u>	03/29/24 09:07 Prepared Lab Samp	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23 04/03/24 15:03 Ie ID: 570-17 Matrix Analyzed 03/30/24 11:45	Dil Fa Dil Fa 8204-3 x: Wate Dil Fa 1 1
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-3 Date Collected: 03/27/24 10:30 Date Received: 03/27/24 17:54 Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate	410 s (ICP) - Tota <u>Result</u> 1700 1100 hromatograp <u>Result</u> 160 420 s (ICP) - Tota	Qualifier	10 <b>RL</b> 0.10 <b>RL</b> 1.0 10 <b>RL</b> 10 <b>RL</b> 10 <b>RL</b> 10 <b>RL</b> 10 <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b></b>	mg/L Unit mg/L Unit umhos/cm mg/L Unit mg/L mg/L mg/L		03/29/24 09:07 Prepared Lab Samp Prepared	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23 04/03/24 15:03 Ie ID: 570-17 Matrix Analyzed 03/30/24 11:45	Dil Fa Dil Fa 8204-3 c: Wate Dil Fa
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-3 Date Collected: 03/27/24 10:30 Date Received: 03/27/24 17:54 Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte	410 s (ICP) - Tota Result ND Result 1700 1100 hromatograp Result 160 420 s (ICP) - Tota Result	Qualifier	10 <b>RL</b> 1.0 10 <b>RL</b> 1.0 10 <b>RL</b> <b>RL</b> 10 <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b>	mg/L Unit Unit Unit Umhos/cm mg/L Unit mg/L mg/L mg/L mg/L mg/L Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit		03/29/24 09:07 Prepared Prepared Prepared	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23 04/03/24 15:03 Ie ID: 570-17 Matrix Analyzed 03/30/24 11:45 03/30/24 11:45	Dil Fa Dil Fa 8204-3 x: Wate
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-3 Date Collected: 03/27/24 10:30 Date Received: 03/27/24 17:54 Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium	410 s (ICP) - Tota Result ND Result 1700 1100 hromatograp Result 160 420 s (ICP) - Tota Result ND	Qualifier	10 <b>RL</b> 1.0 10 <b>RL</b> 1.0 10 <b>RL</b> <b>RL</b> 10 <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b> <b>RL</b>	mg/L Unit Unit Unit Umhos/cm mg/L Unit mg/L mg/L mg/L mg/L mg/L Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit		03/29/24 09:07 Prepared Prepared Prepared	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23 04/03/24 15:03 Ie ID: 570-17 Matrix Analyzed 03/30/24 11:45 03/30/24 11:45	Dil Fac Dil Fac 8204-3 c: Wate Dil Fac 10 Dil Fac
Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-3 Date Collected: 03/27/24 10:30 Date Received: 03/27/24 17:54 Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry	410 s (ICP) - Tota Result ND Result 1700 1100 hromatograp Result 160 420 s (ICP) - Tota Result ND	Qualifier Qualifier Qualifier Qualifier Qualifier Qualifier	RL         0.10         RL         1.0         10         10         RL         10         10         RL         0.10	mg/L Unit mg/L Unit umhos/cm mg/L Unit mg/L mg/L mg/L Unit mg/L	_ <u>D</u>	03/29/24 09:07 Prepared Prepared Prepared 03/29/24 09:07	Analyzed 03/29/24 19:55 Analyzed 04/02/24 18:23 04/03/24 15:03 Ie ID: 570-17 Matrix Analyzed 03/30/24 11:45 03/30/24 11:45 03/30/24 11:45 03/30/24 11:45	Dil Fac Dil Fac 8204-3 c: Water Dil Fac Dil Fac

# **Client Sample Results**

Job ID: 570-178204-1

Client Sample ID: MW-4						Lab Samp	le ID: 570-17	8204-4
Date Collected: 03/27/24 14:15								c: Water
Date Received: 03/27/24 17:54								
_								
Method: EPA 300.0 - Anions, Ion Cl	hromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	_ <u>D</u>	Prepared	Analyzed	Dil Fac
Chloride	320		10	mg/L			03/30/24 12:02	10
Sulfate	360		10	mg/L			03/30/24 12:02	10
- Method: EPA 200.7 Rev 4.4 - Metals	s (ICP) - Tota	I Recoverable	)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.10	mg/L		03/29/24 09:07	03/29/24 20:04	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance (SM 2510B)	2000		1.0	umhos/cm			04/02/24 18:27	1
Total Dissolved Solids (SM 2540C)	1200		10	mg/L			04/03/24 15:03	1
Client Sample ID: DUP						Lab Samp	le ID: 570-17	8204-5
Date Collected: 03/27/24 00:00							Matrix	c: Water
Date Received: 03/27/24 17:54								
_ Method: EPA 300.0 - Anions, Ion Cl	hromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	160		10	mg/L			03/30/24 12:19	10
Sulfate	420		10	mg/L			03/30/24 12:19	10
- Method: EPA 200.7 Rev 4.4 - Metals	s (ICP) - Tota	I Recoverable	)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	ND		0.10	mg/L		03/29/24 09:07	03/29/24 20:06	1
Selenium								
Selenium General Chemistry								
_		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
General Chemistry		Qualifier	<b>RL</b> 1.0	Unit umhos/cm	_ <u>D</u>	Prepared	Analyzed 04/02/24 18:29	Dil Fac

8

#### Lab Sample ID: 570-178204-1 Matrix: Water

Lab Sample ID: 570-178204-2

Matrix: Water

#### Client Sample ID: MW-1 Date Collected: 03/27/24 13:05 Date Received: 03/27/24 17:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrume	300.0 nt ID: IC10		10	4 mL	4 mL	425775	03/30/24 10:38	UIP1	EET CAL 4
Total Recoverable	Prep	200.7			50 mL	50 mL	425461	03/29/24 09:07	JP8N	EET CAL 4
Total Recoverable	Analysis Instrume	200.7 Rev 4.4 nt ID: ICP11		1			425734	03/29/24 19:52	P1R	EET CAL 4
Total/NA	Analysis Instrume	SM 2510B nt ID: ManSciMantech		1			426916	04/02/24 18:21	ZL4M	EET CAL 4
Total/NA	Analysis Instrume	SM 2540C nt ID: BAL100		1	100 mL	1000 mL	427021	04/03/24 15:03	PK4M	EET CAL 4

#### Client Sample ID: MW-2 Date Collected: 03/27/24 11:45 Date Received: 03/27/24 17:54

#### Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 300.0 10 4 mL 4 mL 425775 03/30/24 10:55 UIP1 EET CAL 4 Instrument ID: IC10 Total Recoverable Prep 200.7 50 mL 50 mL 425461 03/29/24 09:07 JP8N EET CAL 4 425734 EET CAL 4 Total Recoverable Analysis 200.7 Rev 4.4 03/29/24 19:55 P1R 1 Instrument ID: ICP11 Total/NA Analysis SM 2510B 426916 04/02/24 18:23 ZL4M EET CAL 4 1 Instrument ID: ManSciMantech Total/NA Analysis SM 2540C 1 100 mL 1000 mL 427021 04/03/24 15:03 PK4M EET CAL 4 Instrument ID: BAL100

#### Client Sample ID: MW-3 Date Collected: 03/27/24 10:30 Date Received: 03/27/24 17:54

#### Lab Sample ID: 570-178204-3 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	4 mL	4 mL	425775	03/30/24 11:45	UIP1	EET CAL 4
	Instrume	nt ID: IC10								
Total Recoverable	Prep	200.7			50 mL	50 mL	425461	03/29/24 09:07	JP8N	EET CAL 4
Total Recoverable	Analysis	200.7 Rev 4.4		1			426170	03/29/24 20:01	Y2WS	EET CAL 4
	Instrume	nt ID: ICP11								
Total/NA	Analysis	SM 2510B		1			426916	04/02/24 18:25	ZL4M	EET CAL 4
	Instrume	nt ID: ManSciMantech								
Total/NA	Analysis	SM 2540C		1	100 mL	1000 mL	427021	04/03/24 15:03	PK4M	EET CAL 4
	Instrume	nt ID: BAL100								

**Eurofins Calscience** 

#### **Client Sample ID: MW-4** Date Collected: 03/27/24 14:15

Date Received: 03/27/24 17:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	4 mL	4 mL	425775	03/30/24 12:02	UIP1	EET CAL 4
	Instrume	nt ID: IC10								
Total Recoverable	Prep	200.7			50 mL	50 mL	425461	03/29/24 09:07	JP8N	EET CAL 4
Total Recoverable	Analysis	200.7 Rev 4.4		1			426170	03/29/24 20:04	Y2WS	EET CAL 4
	Instrume	nt ID: ICP11								
Total/NA	Analysis	SM 2510B		1			426916	04/02/24 18:27	ZL4M	EET CAL 4
	Instrume	nt ID: ManSciMantech								
Total/NA	Analysis	SM 2540C		1	100 mL	1000 mL	427021	04/03/24 15:03	PK4M	EET CAL 4
	Instrume	nt ID: BAL100								

#### **Client Sample ID: DUP** Date Collected: 03/27/24 00:00 Date Received: 03/27/24 17:54

### Lab Sample ID: 570-178204-5

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	4 mL	4 mL	425775	03/30/24 12:19	UIP1	EET CAL 4
	Instrume	nt ID: IC10								
Total Recoverable	Prep	200.7			50 mL	50 mL	425461	03/29/24 09:07	JP8N	EET CAL 4
Total Recoverable	Analysis	200.7 Rev 4.4		1			426170	03/29/24 20:06	Y2WS	EET CAL 4
	Instrume	nt ID: ICP11								
Total/NA	Analysis	SM 2510B		1			426916	04/02/24 18:29	ZL4M	EET CAL 4
	Instrume	nt ID: ManSciMantech								
Total/NA	Analysis	SM 2540C		1	100 mL	1000 mL	427021	04/03/24 15:03	PK4M	EET CAL 4
	Instrume	nt ID: BAL100								

#### Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

RL

1.0

1.0

Spike

Added

50.0

50.0

Spike

Added

50.0

50.0

Unit

mg/L

mg/L

Unit

mg/L

mg/L

Unit

mg/L

mg/L

LCS LCS

LCSD LCSD

48.3

48.4

**Result Qualifier** 

48.2

48.4

Result Qualifier

D

D

D

%Rec

%Rec

97

97

96

97

Prepared

Lab Sample ID: MB 570-425775/5

Lab Sample ID: LCS 570-425775/6

Lab Sample ID: LCSD 570-425775/7

Lab Sample ID: 570-178074-G-8 MS

Matrix: Water

Matrix: Water

Matrix: Water

Analyte

Chloride

Sulfate

Analyte

Chloride

Sulfate

Analyte

Chloride

Sulfate

Analysis Batch: 425775

Analysis Batch: 425775

Analysis Batch: 425775

Method: 300.0 - Anions, Ion Chromatography

MB MB

ND

ND

Result Qualifier

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

RPD

Λ

**Client Sample ID: Method Blank** 

Analyzed

03/30/24 06:58

03/30/24 06:58

**Client Sample ID: Lab Control Sample** 

%Rec

Limits

90 - 110

90 - 110

%Rec

Limits

90 - 110

90 - 110

Client Sample ID: Lab Control Sample Dup

Dil Fac

1

1

9

<b>Aatrix S</b>	pike	
0	10	
0	15	
0	15	

RPD

Limit

15

Client Sample ID: Matrix Spike								
Prep Type: Total/NA								

								Prep '	Type: Total/NA
Sample	Sample	Spike	MS	MS				%Rec	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2.8		50.0	52.4		mg/L		99	80 - 120	
12		50.0	63.7		mg/L		103	80 - 120	
	Result		ResultQualifierAdded2.850.0	ResultQualifierAddedResult2.850.052.4	ResultQualifierAddedResultQualifier2.850.052.40	ResultQualifierAddedResultQualifierUnit2.850.052.49mg/L	ResultQualifierAddedResultQualifierUnitD2.850.052.450.052.4mg/LD	ResultQualifierAddedResultQualifierUnitD%Rec2.850.052.499	SampleSampleSpikeMSMS%RecResultQualifierAddedResultQualifierUnitD%RecLimits2.850.052.450.052.4mg/L9980 - 120

Lab Sample ID: 570-178074-G-		Client Sample ID: Matrix Spike Duplicate									
Matrix: Water									Prep	Type: To	tal/NA
Analysis Batch: 425775											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	2.8		50.0	52.5		mg/L		99	80 - 120	0	20
Sulfate	12		50.0	63.8		mg/L		104	80 - 120	0	20

#### Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 570-425461/1-A Matrix: Water Analysis Batch: 425734	МВ									imple ID: Meth Type: Total Rec Prep Batch	overable	
Analyte	Result	Qualifier		RL		Unit		D	P	repared	Analyzed	Dil Fac
Selenium	ND			0.10		mg/L			03/2	9/24 09:07	03/29/24 19:34	1
Lab Sample ID: LCS 570-425461/2-A								Cli	ent	Sample	ID: Lab Contro	I Sample
Matrix: Water										Prep 1	ype: Total Rec	overable
Analysis Batch: 425734											Prep Batch	n: 425461
			Spike		LCS	LCS					%Rec	
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	
Selenium			0.500		0.439		mg/L		_	88	85 - 115	

**Eurofins Calscience** 

LCSD LCSD

MS MS

**Result Qualifier** 

0.442

0.434

Result Qualifier

Unit

mg/L

Unit

mg/L

Spike

Added

0.500

Spike

Added

0.500

Sample Sample

ND

Result Qualifier

Lab Sample ID: LCSD 570-425461/3-A

Lab Sample ID: 570-178216-B-2-B MS

Lab Sample ID: 570-178216-B-2-C MSD

Matrix: Water

Matrix: Water

Matrix: Water

Analyte

Selenium

Analyte

Selenium

Analysis Batch: 425734

Analysis Batch: 425734

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Job ID: 570-178204-1

Prep Batch: 425461

RPD

Prep Batch: 425461

1

**Client Sample ID: Lab Control Sample Dup** 

%Rec

%Rec

87

88

D

D

%Rec

Limits

85 - 115

%Rec

Limits

80 - 120

Prep Type: Total Recoverable

**Client Sample ID: Matrix Spike** 

Prep Type: Total Recoverable

RPD

Limit

20

20

Client Sa	mple IC	): Matrix S	pike Dup	licate
	Prep	Type: Tota	al Recove	rable
		Prep	Batch: 42	25461
		%Rec		RPD
D	%Rec	Limits	RPD	Limit

Analysis Batch: 425734									Prep l	Batch: 4	254
	Sample	Sample	Spike	MSD	MSD				%Rec		R
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Li
Selenium	ND		0.500	0.435		mg/L		87	80 - 120	0	
_ Method: SM 2510B - Cond	uctivity, S	oecific Co	nductance			-					

Lab Sample ID: MB 570-4269	916/10					C	Client Samp	le ID: Methoo	d Blank
Matrix: Water							1	Prep Type: To	otal/N/
Analysis Batch: 426916									
		MB MB							
Analyte	R	esult Qualifier	RL	Unit		D Pre	epared	Analyzed	Dil Fa
Specific Conductance		ND	1.0	umh	os/cm		04	/02/24 16:26	
- Lab Sample ID: 570-178108-	A-11 DU						Client S	ample ID: Du	plicat
Matrix: Water							1	Prep Type: To	otal/N/
Analysis Batch: 426916									
	Sample	Sample	DU	DU					RPI
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Lim
Specific Conductance	110	· · · · · · · · · · · · · · · · · · ·	105		umhos/cm			0.3	2

#### Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 570-427021/1 Matrix: Water Analysis Batch: 427021								Client	Sample ID: Metho Prep Type: ⁻	
	MB	MB								
Analyte	Result	Qualifier		RL	Unit		D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND			10	mg/l	-			04/03/24 15:03	1
Lab Sample ID: LCS 570-427021/2							Clie	ent Sample	e ID: Lab Control	Sample
Matrix: Water									Prep Type: ⁻	Total/NA
Analysis Batch: 427021										
			Spike	LC	S LCS				%Rec	
Analyte			Added	Resu	t Qualifier	Unit	I	D %Rec	Limits	
Total Dissolved Solids			1000	99	3	mg/L		100	84 - 108	

#### Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCSD 570-427 Matrix: Water Analysis Batch: 427021	021/3					Clie	ent Sam	ple ID:	Lab Contro Prep T	l Sampl ype: To	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Dissolved Solids			1000	1030		mg/L		103	84 - 108	3	10
Lab Sample ID: 570-178204-1	DU								Client San	nple ID:	MW-1
Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 427021											
	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Total Dissolved Solids	1200			1240		mg/L				0.3	10

**Eurofins Calscience** 

# **QC Association Summary**

HPLC/IC

#### Analysis Batch: 425775

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
570-178204-1	MW-1	Total/NA	Water	300.0	
570-178204-2	MW-2	Total/NA	Water	300.0	
570-178204-3	MW-3	Total/NA	Water	300.0	
570-178204-4	MW-4	Total/NA	Water	300.0	
570-178204-5	DUP	Total/NA	Water	300.0	
MB 570-425775/5	Method Blank	Total/NA	Water	300.0	
LCS 570-425775/6	Lab Control Sample	Total/NA	Water	300.0	
LCSD 570-425775/7	Lab Control Sample Dup	Total/NA	Water	300.0	
570-178074-G-8 MS	Matrix Spike	Total/NA	Water	300.0	
570-178074-G-8 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

#### **Metals**

#### Prep Batch: 425461

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-178204-1	MW-1	Total Recoverable	Water	200.7	
570-178204-2	MW-2	Total Recoverable	Water	200.7	
570-178204-3	MW-3	Total Recoverable	Water	200.7	
570-178204-4	MW-4	Total Recoverable	Water	200.7	
570-178204-5	DUP	Total Recoverable	Water	200.7	
MB 570-425461/1-A	Method Blank	Total Recoverable	Water	200.7	
LCS 570-425461/2-A	Lab Control Sample	Total Recoverable	Water	200.7	
LCSD 570-425461/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.7	
570-178216-B-2-B MS	Matrix Spike	Total Recoverable	Water	200.7	
570-178216-B-2-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7	

#### Analysis Batch: 425734

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-178204-1	MW-1	Total Recoverable	Water	200.7 Rev 4.4	425461
570-178204-2	MW-2	Total Recoverable	Water	200.7 Rev 4.4	425461
MB 570-425461/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	425461
LCS 570-425461/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	425461
LCSD 570-425461/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.7 Rev 4.4	425461
570-178216-B-2-B MS	Matrix Spike	Total Recoverable	Water	200.7 Rev 4.4	425461
570-178216-B-2-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7 Rev 4.4	425461

#### Analysis Batch: 426170

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-178204-3	MW-3	Total Recoverable	Water	200.7 Rev 4.4	425461
570-178204-4	MW-4	Total Recoverable	Water	200.7 Rev 4.4	425461
570-178204-5	DUP	Total Recoverable	Water	200.7 Rev 4.4	425461
_					

#### **General Chemistry**

#### Analysis Batch: 426916

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-178204-1	MW-1	Total/NA	Water	SM 2510B	
570-178204-2	MW-2	Total/NA	Water	SM 2510B	
570-178204-3	MW-3	Total/NA	Water	SM 2510B	
570-178204-4	MW-4	Total/NA	Water	SM 2510B	
570-178204-5	DUP	Total/NA	Water	SM 2510B	
MB 570-426916/10	Method Blank	Total/NA	Water	SM 2510B	

**Eurofins Calscience** 

#### **General Chemistry (Continued)**

#### Analysis Batch: 426916 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-178108-A-11 DU	Duplicate	Total/NA	Water	SM 2510B	
nalysis Batch: 42702 [.]	1				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-178204-1	MW-1	Total/NA	Water	SM 2540C	
570-178204-2	MW-2	Total/NA	Water	SM 2540C	
570-178204-3	MW-3	Total/NA	Water	SM 2540C	
570-178204-4	MW-4	Total/NA	Water	SM 2540C	
570-178204-5	DUP	Total/NA	Water	SM 2540C	
MB 570-427021/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 570-427021/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 570-427021/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
570-178204-1 DU	MW-1	Total/NA	Water	SM 2540C	

4/5/2024

## Accreditation/Certification Summary

#### Laboratory: Eurofins Calscience

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ority	Progra	am	Identification Number	Expiration Date
ornia	State		3082	07-31-24
• •	are included in this report, bu oes not offer certification.	t the laboratory is not certif	ed by the governing authority. This lis	t may include analytes
Analysis Method	Pren Method	Matrix	Analyte	
Analysis Method	Prep Method	Matrix	Analyte	
Analysis Method 300.0	Prep Method	Matrix Water	Analyte Chloride	
	Prep Method		··	
300.0	Prep Method	Water	Chloride	

**Eurofins Calscience** 

#### Client: Northstar Environmental Remediation Project/Site: Blythe Energy

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET CAL 4
00.7 Rev 4.4	Metals (ICP)	EPA	EET CAL 4
M 2510B	Conductivity, Specific Conductance	SM	EET CAL 4
M 2540C	Solids, Total Dissolved (TDS)	SM	EET CAL 4
00.7	Preparation, Total Recoverable Metals	EPA	EET CAL 4

#### Protocol References:

EPA = US Environmental Protection Agency


SM = "Standard Methods For The Examination Of Water And Wastewater"

#### Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

#### **Eurofins Calscience Tustin**

2841 Dow Avenue, Suite 100 Tustin, CA 92780 Phone (714) 895-5494 Chain of Custody Record



Filone (714) 050-0494										04 Ch			odv			1000	Feee	
Client Information	Sampler Ralph DeLa Pa	rra		Lab I Fam		heri		570-	1702	04 011	anto	0430	<u>ouy</u>			-	COC No: 440-210767-37	763 1
Client Information Client Contact Arlin Brewster	Phone: (949)	702-0	968	E-Ma	ail:		Det.euro	ofinsu	is.con	n		State	of Origir	n:			Page Page 1 of 1	
Arlin Brewster Company Northstar Environmental Remediation			PWSID:						٨٣	alysi			tod				Job#:	
Address:	Due Date Reques	ted A	L			1		<b>—</b>				Jues				1	Preservation Co	des:
26225 Enterprise Court		11050	nal			280					1						A - HCL	M - Hexane
City Lake Forest State, Zip:	TAT Requested (o	11	1			GEM											B ~ NaOH C - Zn Acetate	N - None O - AsNaO2 P - Na2O4S
State, Zlp: CA, 92630 Phone	Compliance Proje	NIrm ect: ∆Yes				00 00											D - Nitric Acld E - NaHSO4	Q - Na2SO3 R - Na2S2O3
Phone 949-274-1719(Tel) Email:	PO#: Blythe Energy				٦ ا	Perform MS/MSD (Yes or No) 25106 Conduct/Mb/ 2540C Caled TDS 300 OBGEM 280											F - MeOH G - Amchior H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
Email: ralphdelaparra@cox.net	WO #:				or N	Vo)										v v	I - Ice	U - Acetone V - MCAA W - pH 4-5
Project Name:	Project #: 44003897				e (Yes	as or										tainei	K - EDTA L - EDA	Y - Trizma Z - other (specify)
Blythe Energy Site: California	SSOW#;	*********************		FMIQUICH CHARGE CONTRACTOR	Field Filtered Sample (Yes or No)	SD (Ye	· · · · ·							Ì		Total Number of containers	Other [.]	
	1	T	Sample	Matrix	Ed	ISMI:										ber		energy manyor data and an Anna an An
			Туре	(W=water,	Filte	NE	de le									Nun		
Sample Identification	Sample Date	Sample Time	(C=comp, G=grab)	O=waste/oli, BT=Tissue, A=Air)	Field	Perfo	Chloride 200.7 - Se									Total	Special Ir	nstructions/Note:
	$\searrow$	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$		tion Code	X	X										$\overline{\mathbf{X}}$		
MW-1	3-27-24	1305	6	Water	K	N	XX									2		
MW-2		1145		Water		1	xx									2		
MW-3		1030		Water			XX									2		
MW-4		1415		Water	Ш	-	<u>X X</u>									2	<u>}</u>	
DUP				Water	Ш	$\underline{\mathbf{M}}$	XX				_					2		
					Ш	$\parallel$					_							
					Ц	4							_					
																	ļ	
	ļ		L	····		$\bot$												
		ļ			$\square$	_												
				Mohaosana ana aominina	Ц			]										
Possible Hazard Identification			Radiological			Sam	ple Dis []] Returi						sed if al By l		es are i	retain ] Arch	ned longer than the for	1 month) Months
Deliverable Requested I, II, III, IV, Other (specify)						Spec	cial Instr											
Empty Kit Relinquished by		Date	paranja na seri a karta na s		Tin	ne	ch torrige by to chang						Method	of Shipr	nent:			tanan any amin'ny fisika tanàna amin'ny fisika amin'ny fisika amin'ny fisika amin'ny fisika amin'ny fisika amin
Relinquished	Date/Time: 3-2	7-240	21800	Company	tas	F	Received	by	/	E .	~			Date 3	e/Time: ←27	-2	4 17:54	Company EC
Relinquished by	Date/Time:		· · · · · · · · · · · · · · · · · · ·	Company		F	Received	by.	- yr	<i>L</i>					e/Time:			Company
Relinquished by	Date/Time:			Company		F	Received	by.						Date	e/Time:		0. par juni 1904 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1	Company
Custody Seals Intact: Custody Seal No $\Delta$ Yes $\Delta$ No							Cooler Tel	mpera	ture(s)	°C and	Other F	Remark	s:		C	).7	10.9	5014

Loc: 570 **178204** 

#### Login Sample Receipt Checklist

#### Client: Northstar Environmental Remediation

#### Login Number: 178204 List Number: 1 Creator: Skinner, Alma D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 570-178204-1

List Source: Eurofins Calscience



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Arlin Brewster Northstar Environmental Remediation 26225 Enterprise Court Lake Forest, California 92630 Generated 5/22/2024 6:38:39 PM

JOB DESCRIPTION

Blythe Energy

# **JOB NUMBER**

570-184533-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780





# **Eurofins Calscience**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

# Authorization

Generated 5/22/2024 6:38:39 PM

5

Authorized for release by Sheri Fama, Project Manager I Sheri.Fama@et.eurofinsus.com (657)210-6368

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Lab Chronicle	11
QC Sample Results	14
QC Association Summary	19
Certification Summary	21
Method Summary	22
Chain of Custody	23
Receipt Checklists	24

#### Client: Northstar Environmental Remediation Project/Site: Blythe Energy

# Qualifiers

Mathal         Qualifier         Qualifier Description           **1         Initial Calibration Verification (ICV) is outside acceptance limits, high biased.           Clossary         Constraints         Constraints           Resear Recovery         Listed under the 'D' column to designate that the result is reported on a dry weight basis         Recear Recovery           CFL         Contains No Free Liquid         Contains No Free Liquid         Contains No Free Liquid           CFL         Contains No Free Liquid         Contains No Free Liquid         Contains No Free Liquid           DFA         Dilution Factor         Contains No Free Liquid         Contains No Free Liquid         Contains No Free Liquid           DFA         Dilution Factor         Dilution Factor         Contains No Free Liquid         Contains No Free Liquid           DFA         Dilution Factor         Dilution Factor         Contains No Free Liquid         Contains No Free Liquid           DFA         Dilution Factor         Dilution Factor         Contains No Free Liquid         Co	Qualifiers		3
*1+         Initial Calibration Verification (ICV) is outside acceptance limits, high biased.           Glossary           Abbreviation         These commonly used abbreviations may or may not be present in this report.           a         Listed under the "D" column to designate that the result is reported on a dry weight basis           %R         Percent Recovery           CFL         Contains Free Liquid           OWE         Colony Forming Unit           OWE         Colony Forming Unit           DIF Rec         Dilution Factor           DL         Detection Limit (DoDDDE)           DL, RA, RE, IN         Indicates a Dilution, Re-analysis, Re-extraction, or additional initial metals/anion analysis of the sample           DLC         Decision Lived Concentration (Redochemistry)           EDL         Estimated Detection Limit (DoDDDE)           LQQ         Limit of Colenthale Advection Limit (Dicolin)           UMDL         Expanditud Concentration (Redochemistry)           MDA         Minimum Detectable Activity (Reidohemistry)           MDC         Minimum Detectable Activity (Reidohemistry)           MDC         Minimum Detectable Activity (Reidohemistry)           MDC         Minimum Detectable Activity (Reidohemistry)           MDL         Method Quantitation Limit           NC         Not Calcu	Metals		
Choice         Control           Control         These commonly used abbreviations may or may not be present in this report.           a         Listed under the "D' column to designate that the result is reported on a dry weight basis           %R         Percent Recovery           CFL         Contains Free Liquid           CFL         Contains No Free Liquid           DFR         Duplicate Error Ratio (normalized absolute difference)           DI Fac         Ditution Factor           DL         Detection Limit (DoD/DCF)           DL, RA, RE, IN         Indicates a Dilution, Re-anapisis, Re-extraction, or additional initial metals/anion analysis of the sample           DLC         Detection Limit (DoD/DCF)           DL, RA, RE, IN         Indicates a Dilution, Contaminant Level"           MDA         Limit of Detection (DoD/DCF)           LO         Limit of Quantitation (DoD/DCF)           LO         Mass of Limit of Quantitation Limit (Doxin)			4
Abbreviation         These commonly used abbreviations may or may not be present in this report.           #         Listed under the "D" column to designate that the result is reported on a dry weight basis           %R         Percent Recovery           CFL         Contains Free Liquid           CFU         Colony Forming Unit           CVF         Contains No Free Liquid           DER         Duplicate Error Ratio (normalized absolute difference)           DL a         Detection Limit (DoD/DOE)           DL Betection Limit (DoD/DOE)         Estimated Detection Limit (DoD/DOE)           DL Betection Limit (DoD/DOE)         Estimated Detection Limit (DoD/DOE)           LOQ         Limit of Detection Limit (DoD/DOE)           LOQ         Limit of Detection Limit (DoD/DOE)           LOQ         Limit of Quantitation (DoD/DOE)           LOQ         Limit of Detection Limit (DoD/DOE)           LOQ         Limit of Detection Limit (DoD/DOE)           MCL         EPA recommended "Maximum Contaminant Level"           MDA         Minimum Detectable Concentration (Radiochemistry)           MDL         Method Detection Limit (Dod/DOCE)           MDL         Method Quantitation Limit           ML         Minimum Detectable Concentration (Radiochemistry)           MDL         Method Quantitation Limit <th>^1+</th> <th>Initial Calibration Verification (ICV) is outside acceptance limits, high biased.</th> <th>E</th>	^1+	Initial Calibration Verification (ICV) is outside acceptance limits, high biased.	E
a         Listed under the "D" column to designate that the result is reported on a dry weight basis           %R         Percent Recovery           CFL         Contains Fore Liquid           CFU         Colony Forming Unit           CN         Contains Fore Ratio (mormalized absolute difference)           DI Fac         Dilution Factor           DL         Delection Limit (DoD/DOE)           DL, RA, RE, IN         Indicates a Dilution, Re-enalysis, Re-extraction, or additional Initial metals/anion analysis of the sample           DL         Decision Level Concentration (Radiochemistry)           EDL         Estimated Detection Limit (DoXin)           LOQ         Limit of Detection (DoD/DOE)           MDA         Minimum Detectable Activity (Radiochemistry)           MDL         EEA recommended "Maximum Contaminant Level"           MDA         Minimum Detectable Activity (Radiochemistry)           MDL         Method Detection Limit           ML         Minimum Detectable Activity (Radiochemistry)           MDL         Method Detection Limit           NO         Not Detected at the reporting limit (or MDL or EDL if shown)           NEG         Negative / Absent           POL         Practical Quantitation Limit           PRES         Presumptive           QC	Glossary		5
%RPercent RecoveryCFLContrains UnitCFLColony Forming UnitCFLColony Forming UnitCMTContrains No Free LiquidCMTContrains No Free LiquidDFRDilution Error Ratio (normalized absolute difference)DFRDilution Error Ratio (normalized absolute difference)DFRDilution Error Ratio (normalized absolute difference)DFRDilution Reamayis, Re-extraction, or additional Initial metals/anion analysis of the sampleDLRecision Limit (DoD/DOE)CDCDecision Limit (Dioxin)EDLEstimated Decision (Radiochemistry)EDLUnit of Decision Contraintian Level"MCLMinimu Decisiable Contentiation (Radiochemistry)MDLUniter Decision Limit (Radiochemistry)MDLMinimu Decisiable Contentiation (Radiochemistry)MDLMinimu Level (Dioxin)MDLMinimu Level DioxinMDLMinimu Level (Dioxin)MDLMinimu Level (Dioxin)	Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
CFLContains Five LiquidCFUColony Forming UnitCWColony Forming UnitCWContains No Free LiquidDRUplicate Fror Ratio (nomalized absolute difference)DIF AcUplicate Fror Ratio (nomalized absolute difference)DIF AcDiston FactorDL, AR, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDL, CA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDL, AR, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDL, CAExtracted Concentration (Radiochemistry)EDLEstimated Detection (DoD/DCE)LOQLimit of Quantitation (DoD/DCE)LOQEnvire Of Maximum Contaminant LevellMDLHorinoum Detectable Activity (Radiochemistry)MDLHorinoum Detectable Activity (Radiochemistry)MDLMoltoneure Detectable Activity (Radiochemistry)MDLMoltonum Detectable Activity (Radiochemistry)MDLMoltonum Level (Dioxin)MDLNot CalculatedMDLNot CalculatedMDLNot Calculated Interporting limit (or MDL or EDL if shown)NCNot Calculated Interporting limit (or MDL or EDL if shown)NCNot Calculated Interporting limit (or MDL or EDL if shown)NCNot Calculated Interporting limit (or MDL or EDL if shown)NCNot Calculated Interporting limit (or MDL or EDL if shown)NCNot Calculated Interporting	¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
CFUColory Forming UnitCNFUColorians No Free LiquidDERDiptore Ratio (normalized absolute difference)DiffaceDiution FacbrDLDetection Limit (DoD/DOE)DL, RA, RL, NIIndicates a Diution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDLDetection Limit (DoD/DOE)DLDetection Limit (Dioxin)EDLDetection ColorDOE)LDQDetection ColorDOE)LDQLimit of Quatitation (Radiochemistry)EDLEPA recommended Maximum Contaminant Level*MDAIminum Detectable Concentration (Radiochemistry)MDAIminum Detectable Concentration (Radiochemistry)MDAMinum Detectable Concentration (Radiochemistry)MDAMinum Detectable Concentration (Radiochemistry)MDAMinum Detectable Concentration (Radiochemistry)MDAMolto Detection LimitMDAMolto Detection LimitMDAMolto Detection LimitMDAMolto Detection Limit (Radiochemistry)MDAMolto Detection Limit (Radiochemistry)MDAMolto Detection Limit (Radiochemistry)MDAMolto Detection Limit (Radiochemistry)MDANotalcatadeMDANotalcatadeMDANotalcatadeMDANotalcatadeMDANotalcatadeMDANotalcatadeMDANotalcatadeMDANotalcatadeMDANotalcatadeMDANotalcatadeNDANotalcatade <tr< td=""><td>%R</td><td>Percent Recovery</td><td></td></tr<>	%R	Percent Recovery	
CNFContains on Free LiquidDERDulcate Error Ratio (normalized absolute difference)DIF acDilution FactorDilution FactorDetection Limit (DoD/DOE)DLDetection Limit (DoD/DOE)DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDLCDetection Limit (Dod)/DOE)LDCEstimated Detection Limit (Idoxin)LDCEstimated Detection (Initi (Idoxin)LDQLimit of Detection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)LOQEPA recommended "Maximum Contaminant Level"MDLEPA recommended "Maximum Contaminant Level"MDLRehot Detection Limit (Radiochemistry)MDLMinimum Detectable Concentration (Radiochemistry)MDLMothod Detection Limit (Radiochemistry)MDLMothod Detection Limit (Radiochemistry)MDLMothod Detection Limit (Radiochemistry)MDLMothod Detection Limit (Radiochemistry)MDLMothod Quantitation Limit (Radiochemistry)MDLNot Detected at the reporting limit (or MDL or EDL if shown)NCNot Detected at the reporting limit (or MDL or EDL if shown)NCQaitive / AbsentPGLQaitive / AnsentPGLQaitive forter (Radiochemistry)RFLQaitive forter	CFL	Contains Free Liquid	
DERDuplicate Error Ratio (normalized absolute difference)DIF RADuplicon FactorDL WARector Limit (Do/DOE)DL RA, RE, INIndicates abluition, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDL RA, RE, INIndicates abluition, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDLCDecision Level Concentration (Radiochemistry)EDLEstimated Detection Limit (DioXin)LODLimit of Detection (Do/DOE)LOLIniti of Quantitation (Do/DOE)MCLEPA recommended *Maximum Contaminant Level*MDAMinimum Detectable Concentration (Radiochemistry)MDLMinimum Detectable Concentration (Radiochemistry)NDLNo Edeted at the reporting limit (or MDL or EDL if shown)NDLNo Edeted at the reporting limit (or MDL or EDL if shown)NDLPostepsi <td>CFU</td> <td>Colony Forming Unit</td> <td>0</td>	CFU	Colony Forming Unit	0
Difface         During Factor           DIFace         Detection Limit (DoD/DOE)           DL, RA, RE, IN         Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample           DLC         Decision Level Concentration (Radiochemistry)           EDL         Estimated Detection Limit (Doxin)           LOD         Limit of Delection (DoD/DOE)           LOQ         Limit of Quantitation (DoD/DOE)           LOQ         Eithring Activity (Radiochemistry)           MCL         EPA recommended "Maximum Contaminant Level"           MDA         Minimum Detectable Activity (Radiochemistry)           MDC         Minimum Detectable Concentration (Radiochemistry)           MDL         Method Detection Limit           ML         Minimum Detectable Concentration (Radiochemistry)           MDL         Method Detection Limit           ML         Minimum Detectable Concentration (Radiochemistry)           MDL         Method Quantitation Limit           NDL         Motor Social Level (Dixin)           ML         Minimum Detectable Activity (Radiochemistry)           NDL         Motor Social Level (Dixin)           NDL         Motor Social Level (Dixin)           NDL         Motor Social Level (Dixin)           NDL         No	CNF	Contains No Free Liquid	0
DLDetection Limit (DoD/DC)DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDLCDecision Level Concentration (Radiochemistry)ELEstimated Detection Limit (Dioxin)LDQEstimated Detection (DoD/DC)LOQLimit of Quantitation (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)MCLEstimated Detection Limit (Radiochemistry)MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Activity (Radiochemistry)MDLMethod Detection LimitMDLMethod Detection LimitMQLMonimum Level (Dioxin)MIMon Quantitation LimitNDLNo CalculatedMINo Calculation Limit (or MDL or EDL if shown)NDLNo Calculated at the reporting limit (or MDL or EDL if shown)NDLNo Calculated at the reporting limit (or MDL or EDL if shown)NDLPositive / PresentPOSPositive / PresentPOLPositive / PresentPOLPositive / PresentPOLQuantitation Limit (Addiochemistry)RPGRelative Error Ratio (Radiochemistry)RPGRelative Error Ratio (Radiochemistry)	DER	Duplicate Error Ratio (normalized absolute difference)	
DL, RA, RE, IN     Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample     Image: Content C	Dil Fac	Dilution Factor	9
DLCDecision Level Concentration (Radiochemistry)EDLEstimated Detection Lumit (Dioxin)LODLimit of Detection (DoD/DOE)LOQLimit of Detection (DoD/DOE)MCLEPA recommended "Maximum Contaminant Level"MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMDLMethod Detection LimitMLMost Probable NumberMQLNot Probable NumberMQLNot CalculatedNPNNot CalculatedNDLNot CalculatedNDLNot Detected at the reporting limit (or MDL or EDL if shown)NCNot Detected at the reporting limit (or MDL or EDL if shown)NCPositive / PresentPQLPractical Quantitation LimitPQLPractical Quantitation LimitPQLPractical Quantitation Limit (CalculatedPQLPractical Quantitation Limit (CalculatedPQLPractical Quantitation Limit (CalculatedPQLPractical Quantitation Limit (CalculatedPQLPractical Quantitation Limit (Radiochemistry)RESPesumptiveQCQuility ControlRERRelative Error Ratio (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RPDRelative Error Ratio (Imit Readochemistry)RPDRelative Error Ratio (Imit Readochemistry)RPDRelative Error Ratio (Imit Readochemistry)RPD <td< td=""><td>DL</td><td>Detection Limit (DoD/DOE)</td><td>-</td></td<>	DL	Detection Limit (DoD/DOE)	-
EDL     Estimated Detection Limit (Dixin)       LOD     Limit of Detection (DoD/DOE)       LOQ     Limit of Quantitation (DoD/DOE)       MCL     EPA recommended "Maximum Contaminant Level"       MDA     Minimum Detectable Activity (Radiochemistry)       MDC     Minimum Detectable Activity (Radiochemistry)       MDC     Minimum Detectable Concentration (Radiochemistry)       MDL     Method Detection Limit       ML     Minimum Level (Dixxin)       MDL     Method Quantitation Limit       ML     Most Probable Number       MQL     Motod Quantitation Limit       NC     Not Calculated       ND     Not Detected at the reporting limit (or MDL or EDL if shown)       NEG     Negative / Absent       POSL     Postive / Present       POL     Postive / Present       PQL     Parcitaal Quantitation Limit       PRES     Pesumplive       QC     Quality Control       RER     Relative Error Ratio (Radiochemistry)       RL     Reporting Limit or Requested Limit (Radiochemistry)	DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
LODLimit of Delection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)MCLEPA recommended "Maximum Contaminant Level"MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMethod Detection LimitMLMost Probable NumberMQLMethod Quantitation LimitNCNot CalculatedNQLNot Octaculated the reporting limit (or MDL or EDL if shown)NCNot CalculatedNGNegative / AbsentPOLPresumptivePQLPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RERRelative Error Ratio (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RDRelative Error Ratio (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RLRative Error Ratio (Radiochemistry)RLRative Error Ratio (Radiochemistry)RLRative Error Ratio (Ration Limit Ration Limit	DLC	Decision Level Concentration (Radiochemistry)	
LQQLimit of Quantitation (DoD/DOE)MCLEPA recommended "Maximum Contaminant Level"MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMDLMethod Detection LimitMLMinimum Level (Dioxin)MDLMoto Detection LimitMQLMoto Quantitation LimitNCNNot CalculatedNDLNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected at the reporting limit (or MDL or EDL if shown)NGNot Detected utimit (Adiochemistry)REMReality Protect Difference, a measure of the relative difference between two pointsTEFNotit	EDL	Estimated Detection Limit (Dioxin)	
MCLEPA recommended Maximum Contaminant Level"MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMethod Detection LimitMLMinimum Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation LimitNCMot CalculatedNDNot CalculatedNDNot CalculatedNDNot CalculatedNDNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNot CalculatedPQLPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RPDRelative Error Ratio (Radiochemistry)RPDRelative Procent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Quotient (Dioxin)	LOD	Limit of Detection (DoD/DOE)	
MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)MDLMinimum Level (Dioxin)MDNMost Probable NumberMQLMethod Quantitation LimitNDMot CalculatedNDNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNgative / AbsentPQLPositive / PresentPQLPractical Quantitation LimitPRSPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RDRelative Procent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent (Dioxin)	LOQ	Limit of Quantitation (DoD/DOE)	
MDCMinimum Detectable Concernation (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLProtical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RPDRelative Precent Difference, a measure of the relative difference between two pointsTEQToxicity Equivalent Factor (Dioxin)	MCL	EPA recommended "Maximum Contaminant Level"	
MDLMethod Detection LimitMLMinimun Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation LimitNQLMethod Quantitation LimitNQLNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RLDRelative Precent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	MDA	Minimum Detectable Activity (Radiochemistry)	13
MLMinimu Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation LimitNQLNet Calculation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLProtical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RLDStative Precent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	MDC	Minimum Detectable Concentration (Radiochemistry)	
MPNMost Probable NumberMQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Precent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	MDL	Method Detection Limit	
NQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPOLProtical Quantitation LimitPRESPresumptionQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit (Radiochemistry)RPDRelative Error Endlight (Radiochemistry)RPDScily Equivalent (Disport)TEFSixity Equivalent (Disport)TEFSixity Equivalent (Disport)TEQSixity Equivalent (Disport)	ML	Minimum Level (Dioxin)	
NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPositive / PresentPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLRelative Error Ratio (Radiochemistry)RPDRelative Precent Difference, a measure of the relative difference between two pointsTEFJoxiet Quality Clouxin)TEQSixiet Quality Clouxin)	MPN	Most Probable Number	
NDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit (Radiochemistry)RPDRelative Present Difference, a measure of the relative difference between two pointsTEFJointy Equivalent (Dioxin)TEQSwity Equivalent Quative (Dioxin)	MQL	Method Quantitation Limit	
NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Precent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	NC	Not Calculated	
POSPositive / PresentPQLPractical Quantitation LimitPQLPresumptiveQRQuality ControlQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicty Equivalent Factor (Dioxin)TEQToxicty Equivalent Quotient (Dioxin)	NEG	Negative / Absent	
PRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicty Equivalent Factor (Dioxin)TEQToxicty Equivalent Quotient (Dioxin)	POS	Positive / Present	
QCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	PQL	Practical Quantitation Limit	
RERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	PRES	Presumptive	
RL     Reporting Limit or Requested Limit (Radiochemistry)       RPD     Relative Percent Difference, a measure of the relative difference between two points       TEF     Toxicity Equivalent Factor (Dioxin)       TEQ     Toxicity Equivalent Quotient (Dioxin)	QC	Quality Control	
RPD     Relative Percent Difference, a measure of the relative difference between two points       TEF     Toxicity Equivalent Factor (Dioxin)       TEQ     Toxicity Equivalent Quotient (Dioxin)	RER	Relative Error Ratio (Radiochemistry)	
TEF     Toxicity Equivalent Factor (Dioxin)       TEQ     Toxicity Equivalent Quotient (Dioxin)	RL	Reporting Limit or Requested Limit (Radiochemistry)	
TEQ Toxicity Equivalent Quotient (Dioxin)	RPD	Relative Percent Difference, a measure of the relative difference between two points	
	TEF	Toxicity Equivalent Factor (Dioxin)	
TNTC Too Numerous To Count	TEQ	Toxicity Equivalent Quotient (Dioxin)	
	TNTC	Too Numerous To Count	

#### Job ID: 570-184533-1

#### **Eurofins Calscience**

#### Job Narrative 570-184533-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

#### Receipt

The samples were received on 5/15/2024 5:05 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.3°C.

#### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### Metals

Method 200.7 - Total Recoverable: The initial calibration verification (ICV) result for batch 570-443027 was above the upper control limit. The affected analytes are: Zinc. Sample results were non-detects, and have been reported as qualified data.

Method 200.7 - Total Recoverable: The following sample was diluted due to the nature of the sample matrix: EP(West)-5-15-24 (570-184533-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### **General Chemistry**

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### Sample Summary

#### Client: Northstar Environmental Remediation Project/Site: Blythe Energy

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-184533-1	MW-3-5-15-24	Water	05/15/24 08:55	05/15/24 17:05
570-184533-2	MW-2-5-15-24	Water	05/15/24 10:10	05/15/24 17:05
570-184533-3	MW-1-5-15-24	Water	05/15/24 11:35	05/15/24 17:05
570-184533-4	MW-4-5-15-24	Water	05/15/24 12:40	05/15/24 17:05
570-184533-5	DUP-5-15-24	Water	05/15/24 00:00	05/15/24 17:05
570-184533-6	EP(West)-5-15-24	Water	05/15/24 13:05	05/15/24 17:05

# **Detection Summary**

#### Client: Northstar Environmental Remediation Project/Site: Blythe Energy

lient: Northstar Environmental I	Remediation	Detec		<b>,</b>			Job ID	: 570-184533-
Project/Site: Blythe Energy								
Client Sample ID: MW-3-5-	-15-24				Lab	) San	nple ID: 5	70-184533-
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Me	thod	Prep Type
Fluoride	0.48		0.10	mg/L	1	300	0.0	Total/NA
Chloride - DL	150		10	mg/L	10	300	0.0	Total/NA
Sulfate - DL	410		10	mg/L	10	300	0.0	Total/NA
Specific Conductance	1800		1.0	umhos/cm	1	SM	12510B	Total/NA
Total Dissolved Solids	1200		10	mg/L	1	SM	1 2540C	Total/NA
Client Sample ID: MW-2-5-	-15-24				Lab	o San	nple ID: 5	70-184533-
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Me	thod	Prep Type
Fluoride	1.8		0.10	mg/L	1	- 300	0.0	
Chloride - DL	130		10	mg/L	10	300		Total/NA
Sulfate - DL	390		10	mg/L	10	300		Total/NA
Specific Conductance	1700		1.0	umhos/cm	10		1 2510B	Total/NA
Total Dissolved Solids	1200		10	mg/L	1		1 2510B 1 2540C	Total/NA
lient Sample ID: MW-1-5-	-15-24				Lab	o San	nple ID: 5	70-184533-
Anolyto	Booult	Qualifier	RL	Unit	Dil Fac	D Ma	thod	Bron Tuno
Analyte							0.0	Prep Type
	1.9		0.10	mg/L				Total/NA
Chloride - DL	180		10	mg/L	10		0.0	Total/NA
Sulfate - DL	450		10	mg/L	10	300		Total/NA
					1	SM	12510B	Total/NA
•	2000		1.0	umhos/cm				
Specific Conductance Total Dissolved Solids	2000 1300		1.0 10	umhos/cm mg/L	1		1 2540C	Total/NA
•	1300				1	SM	1 2540C	
Client Sample ID: MW-4-5	1300 - <b>15-24</b>	Qualifier			1 Lab	sм o San	1 2540C	Total/NA
Total Dissolved Solids Ilient Sample ID: MW-4-5- Analyte	1300 - <b>15-24</b>	Qualifier	10	mg/L	1 Lab	sм o San	1 2540C nple ID: 5 ethod	Total/NA
Total Dissolved Solids Ilient Sample ID: MW-4-5 Analyte Fluoride	1300 -15-24 	Qualifier	10 	mg/L	1 Lab	SM San D Me	1 2540C nple ID: 5 ethod 0.0	Total/NA 70-184533- Prep Type
Total Dissolved Solids Client Sample ID: MW-4-5- Analyte Fluoride Chloride - DL	1300 -15-24 	Qualifier	10	mg/L Unit mg/L	1 <b>Lat</b> - Dil Fac 1	SM <b>San</b> <u><b>D</b></u> <u>Me</u> <u>300</u>	1 2540C nple ID: 5 ethod 0.0 0.0	Total/NA <b>570-184533-</b> <b>Prep Type</b> Total/NA
Total Dissolved Solids Client Sample ID: MW-4-5- Analyte Fluoride Chloride - DL Sulfate - DL	1300 -15-24	Qualifier	10 <b>RL</b> 0.10 10	mg/L Unit mg/L mg/L	1 Lat Dil Fac 1 10	SM <b>D</b> San <b>D</b> Me 300 300 300	1 2540C nple ID: 5 ethod 0.0 0.0	Total/NA <b>570-184533-</b> <b>Prep Type</b> Total/NA Total/NA
Total Dissolved Solids Client Sample ID: MW-4-5 Analyte Fluoride Chloride - DL Sulfate - DL Specific Conductance	1300 -15-24 	Qualifier	10 RL 0.10 10	mg/L Unit mg/L mg/L mg/L mg/L	1 Lat - Dil Fac 1 10 10	SM <b>D</b> San <b>D</b> Me 300 300 300 SM	1 2540C nple ID: 5 ethod 0.0 0.0 0.0	Total/NA <b>570-184533-</b> <b>Prep Type</b> Total/NA Total/NA Total/NA
Total Dissolved Solids Client Sample ID: MW-4-5 Analyte Fluoride Chloride - DL Sulfate - DL Specific Conductance Total Dissolved Solids	1300 -15-24	Qualifier	10 <b>RL</b> 0.10 10 10 1.0	mg/L Unit mg/L mg/L mg/L umhos/cm	1 Lat Dil Fac 1 10 10 1 1 1	SM <b>D</b> San <b>D</b> Me 300 300 300 300 SM SM	1 2540C nple ID: 5 thod 0.0 0.0 0.0 1 2510B 1 2540C	Total/NA 570-184533- 570-184533- 570-184533- Total/NA Total/NA Total/NA Total/NA
Total Dissolved Solids Client Sample ID: MW-4-5- Analyte Fluoride Chloride - DL Sulfate - DL Specific Conductance Total Dissolved Solids Client Sample ID: DUP-5-1	1300 -15-24	Qualifier	10 <b>RL</b> 0.10 10 10 1.0	mg/L Unit mg/L mg/L mg/L umhos/cm	1 Lat Dil Fac 1 10 10 1 1 1	SM <b>D</b> San <b>D</b> Me 300 300 300 SM SM <b>D</b> San	1 2540C nple ID: 5 thod 0.0 0.0 0.0 1 2510B 1 2540C	Total/NA 570-184533- 570-184533- 570-184533- Total/NA Total/NA Total/NA Total/NA
Total Dissolved Solids Client Sample ID: MW-4-5- Analyte Fluoride Chloride - DL Sulfate - DL Specific Conductance Total Dissolved Solids Client Sample ID: DUP-5-1 Analyte	1300 -15-24		10 <b>RL</b> 0.10 10 10 1.0 10	mg/L Unit mg/L mg/L umhos/cm mg/L	1 Lak Dil Fac 1 10 10 1 1 Lak	SM <b>D</b> San <b>D</b> Me 300 300 300 SM SM <b>D</b> San	1 2540C nple ID: 5 thod 0.0 0.0 1 2510B 1 2540C nple ID: 5 thod	Total/NA 70-184533- 70-184533- Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA
Total Dissolved Solids  Ilient Sample ID: MW-4-5  Analyte  Fluoride  Chloride - DL  Sulfate - DL  Specific Conductance  Total Dissolved Solids  Ilient Sample ID: DUP-5-1  Analyte  Fluoride	1300 -15-24		10	mg/L Unit mg/L mg/L umhos/cm mg/L Unit	1 Lat Dil Fac 1 10 10 1 1 Lat Dil Fac	SM <b>D</b> Me 300 300 300 SM SM <b>D</b> San <b>D</b> Me	1 2540C nple ID: 5 ethod 0.0 0.0 1 2510B 1 2540C nple ID: 5 ethod 0.0	Total/NA  70-184533-  Prep Type Total/NA
Total Dissolved Solids Client Sample ID: MW-4-5 Analyte Fluoride Chloride - DL Sulfate - DL Specific Conductance Total Dissolved Solids Client Sample ID: DUP-5-1 Analyte Fluoride Chloride - DL	1300 -15-24		10	mg/L Unit mg/L mg/L umhos/cm mg/L Unit mg/L	1 Lab Dil Fac 1 10 10 1 1 Lab Dil Fac 1	SM           D         Me           300         300           300         300           SM         SM           D         Me           300         SM           SM         SM           D         Me           300         SM           SM         SM	1 2540C nple ID: 5 ethod 0.0 0.0 1 2510B 1 2540C nple ID: 5 ethod 0.0	Total/NA
Total Dissolved Solids Client Sample ID: MW-4-5 Analyte Fluoride Chloride - DL Sulfate - DL Specific Conductance Total Dissolved Solids Client Sample ID: DUP-5-1 Analyte Fluoride Chloride - DL Sulfate - DL Sulfate - DL	1300 -15-24		10	mg/L	1 Lab Dil Fac 1 10 10 1 1 1 Lab Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1	SM <b>D</b> San <b>D</b> Me 300 300 300 SM <b>D</b> San <b>D</b> Me 300 300 300 300 300 300 300 30	1 2540C nple ID: 5 ethod 0.0 0.0 0.0 1 2510B 1 2540C nple ID: 5 ethod 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Total/NA
Total Dissolved Solids Client Sample ID: MW-4-5 Analyte Fluoride Chloride - DL Sulfate - DL Specific Conductance Total Dissolved Solids	1300 -15-24		10 <b>RL</b> 0.10 10 10 10 10 10 10 10 10 10 10 10 10 1	mg/L Unit mg/L mg/L umhos/cm mg/L Unit mg/L mg/L mg/L mg/L	1 Lat Dil Fac 1 10 10 1 1 Lat Dil Fac 1 10 10 10 10 10 10 10 10 10	SM           D         Me           300         300           300         300           SM         SM           D         Me           300         SM           SM         SM           D         Me           300         300           300         300           300         SM	1 2540C nple ID: 5 ethod 0.0 0.0 0.0 1 2510B 1 2540C nple ID: 5 ethod 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Total/NA
Total Dissolved Solids Client Sample ID: MW-4-5 Analyte Fluoride Chloride - DL Sulfate - DL Specific Conductance Total Dissolved Solids Client Sample ID: DUP-5-1 Analyte Fluoride Chloride - DL Sulfate - DL Specific Conductance	1300 -15-24		10	mg/L Unit mg/L mg/L umhos/cm mg/L Unit mg/L mg/L mg/L mg/L umhos/cm	1 Lak Dil Fac 1 10 10 1 1 Lak Dil Fac 1 10 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1	SM           D         Me           300         300           300         300           SM         SM           D         Me           0         SM           D         SM           D         Max           300         300           300         300           300         300           300         300           300         300           SM         SM	1 2540C nple ID: 5 thod 0.0 0.0 0.0 1 2510B 1 2540C nple ID: 5 thod 0.0 0.0 0.0 0.0 1 2510B 1 2510B 1 2510B 1 2540C	Total/NA
Total Dissolved Solids Client Sample ID: MW-4-5 Analyte Fluoride Chloride - DL Sulfate - DL Specific Conductance Total Dissolved Solids Client Sample ID: DUP-5-1 Analyte Fluoride Chloride - DL Sulfate - DL Sulfate - DL Specific Conductance Total Dissolved Solids	1300 -15-24		10	mg/L Unit mg/L mg/L umhos/cm mg/L Unit mg/L mg/L mg/L mg/L umhos/cm	1 Lak Dil Fac 1 10 10 1 1 Lak 0 10 10 10 10 10 10 10 10 10	SM <b>D</b> San <b>D</b> Me 300 300 SM <b>D</b> San <b>D</b> Me 300 300 SM SM <b>D</b> San <b>D</b> Me 300 300 SM SM <b>D</b> San	1 2540C nple ID: 5 thod 0.0 0.0 0.0 1 2510B 1 2540C nple ID: 5 thod 0.0 0.0 0.0 0.0 1 2510B 1 2510B 1 2510B 1 2540C	Total/NA
Total Dissolved Solids Client Sample ID: MW-4-5- Analyte Fluoride Chloride - DL Sulfate - DL Specific Conductance Total Dissolved Solids Client Sample ID: DUP-5-1 Analyte Fluoride Chloride - DL Sulfate - DL Sulfate - DL Specific Conductance Total Dissolved Solids Client Sample ID: EP(Wes	1300 -15-24	Qualifier	10	mg/L Unit mg/L mg/L umhos/cm mg/L Unit mg/L umhos/cm mg/L mg/L umhos/cm mg/L Unit Unit	1 Lak Dil Fac 1 10 10 1 1 Lak Dil Fac Dil Fac	SM <b>D</b> San <b>D</b> Me 300 300 SM <b>D</b> San <b>D</b> Me 300 300 SM SM <b>D</b> San <b>D</b> Me 300 300 SM SM <b>D</b> San	1 2540C nple ID: 5 thod 0.0 0.0 1 2510B 1 2540C nple ID: 5 thod 1 2540C nple ID: 5 thod 1 2540C nple ID: 5 thod	Total/NA
Total Dissolved Solids	1300 -15-24	Qualifier	10	mg/L Unit mg/L mg/L mg/L umhos/cm mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L umhos/cm mg/L Unit mg/L mg/L mg/L umhos/cm mg/L Unit mg/L	1 Lak Dil Fac 1 10 10 1 1 Lak 0 10 10 10 10 10 10 10 10 10	SM           D         Me           300         300           300         300           300         300           SM         SM           D         Me           300         300           SM         SM           D         Me           300         300           SM         SM           SM         SM           SM         SM           SM         SM           SM         SM	1 2540C nple ID: 5 thod 0.0 0.0 1 2510B 1 2540C nple ID: 5 thod 1 2540C nple ID: 5 thod 1 2540C nple ID: 5 thod	Total/NA
Total Dissolved Solids  Client Sample ID: MW-4-5  Analyte  Fluoride  Chloride - DL  Specific Conductance  Total Dissolved Solids  Client Sample ID: DUP-5-1  Analyte  Fluoride  Chloride - DL  Sulfate - DL  Sulfate - DL  Specific Conductance  Total Dissolved Solids  Client Sample ID: EP(Wes  Analyte  Fluoride  Chloride - DL  Slient Sample ID: EP(Wes  Analyte  Fluoride  Chloride - DL	1300 -15-24	Qualifier	RL       0.10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10	mg/L mg/L mg/L mg/L mg/L umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1 Lak 1 1 10 10 1 1 Lak 2 1 10 10 1 1 Lak 2 1 10 10 1 1 Lak 2 1 10 10 1 1 1 Lak 2 1 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1	SM           D         Me           300         300           300         300           300         300           SM         SM           D         Me           300         300           SM         SM           D         Me           300         SM           SM         SM	1 2540C nple ID: 5 thod 0.0 0.0 0.0 1 2510B 1 2540C nple ID: 5 thod 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Total/NA
Total Dissolved Solids  Client Sample ID: MW-4-5  Analyte  Fluoride  Chloride - DL  Specific Conductance  Total Dissolved Solids  Client Sample ID: DUP-5-1  Analyte  Fluoride  Chloride - DL  Sulfate - DL  Specific Conductance  Total Dissolved Solids  Client Sample ID: EP(Wes  Analyte  Fluoride  Chloride - DL  Sulfate - DL	1300 -15-24	Qualifier	RL         0.10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         100         1000         1000	mg/L mg/L mg/L mg/L umhos/cm mg/L Unit mg/L umhos/cm mg/L Unit mg/L umhos/cm mg/L umhos/cm mg/L umhos/cm	1 Lak Dil Fac 1 10 10 1 1 Lak Dil Fac 1 10 10 1 1 Lak Dil Fac 50 1000 1000 1000	SM           D         Me           300         300           300         300           300         300           SM         SM           D         Me           300         300           SM         SM           D         Me           300         300           SM         SM           SM         SM           SM         SM           SM         SM           SM         SM	1 2540C nple ID: 5 ethod 0.0 0.0 0.0 1 2510B 1 2540C nple ID: 5 ethod 0.0 0.0 0.0 1 2510B 1 2540C nple ID: 5 ethod 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Total/NA
Total Dissolved Solids	1300 -15-24	Qualifier	RL       0.10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10	mg/L mg/L mg/L mg/L mg/L umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1 Lak 1 1 10 10 1 1 Lak 2 1 10 10 1 1 Lak 2 1 10 10 1 1 Lak 2 1 10 10 1 1 1 Lak 2 1 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1	SM           D         Me           300         300           300         300           300         300           SM         SM           D         Me           300         300           SM         SM           D         Me           300         300           SM         SM           SM         SM           SM         SM           SM         SM           SM         SM	1 2540C nple ID: 5 thod 0.0 0.0 0.0 1 2510B 1 2540C nple ID: 5 thod 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Total/NA
Total Dissolved Solids  Client Sample ID: MW-4-5  Analyte  Fluoride  Chloride - DL  Specific Conductance  Total Dissolved Solids  Client Sample ID: DUP-5-1  Analyte  Fluoride  Chloride - DL  Sulfate - DL  Sulfate - DL  Specific Conductance  Total Dissolved Solids  Client Sample ID: EP(Wes  Analyte  Fluoride  Chloride - DL  Slient Sample ID: EP(Wes  Analyte  Fluoride  Chloride - DL	1300 -15-24	Qualifier	RL         0.10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         100         1000         1000	mg/L mg/L mg/L mg/L umhos/cm mg/L Unit mg/L umhos/cm mg/L Unit mg/L umhos/cm mg/L umhos/cm mg/L umhos/cm	1 Lak Dil Fac 1 10 10 1 1 Lak Dil Fac 1 10 10 1 1 Lak Dil Fac 50 1000 1000 1000	SM           D         Me           300         300           300         300           300         300           SM         SM           D         Me           300         300           SM         SM           D         Me           300         SM           SM         SM	1 2540C nple ID: 5 ethod 0.0 0.0 0.0 1 2510B 1 2540C nple ID: 5 ethod 0.0 0.0 0.0 1 2510B 1 2540C nple ID: 5 ethod 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Total/NA

This Detection Summary does not include radiochemical test results.

**Eurofins Calscience** 

# **Client Sample Results**

Client: Northstar Environmental Remediation Project/Site: Blythe Energy Job ID: 570-184533-1

Project/Site: Blythe Energy								
Client Sample ID: MW-3-5-15-2	24					Lab Samp	le ID: 570-18	4533-1
Date Collected: 05/15/24 08:55							Matrix	x: Water
Date Received: 05/15/24 17:05								
_ Method: EPA 300.0 - Anions, Ion Cl	hromatograp	bhy						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.48		0.10	mg/L			05/17/24 20:59	1
-								
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy - DL						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	150		10	mg/L			05/17/24 22:40	10
Sulfate	410		10	mg/L			05/17/24 22:40	1(
- Method: EPA 200.7 Rev 4.4 - Metals	s (ICP) - Tota		<b>`</b>					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.10	mg/L		05/21/24 06:43	05/21/24 22:55	1
<u>-</u>				č				
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	_ <u>D</u>	Prepared	Analyzed	Dil Fac
Specific Conductance (SM 2510B)	1800		1.0	umhos/cm			05/21/24 17:35	1
Total Dissolved Solids (SM 2540C)	1200		10	mg/L			05/20/24 13:43	1
Client Sample ID: MW/ 2 5 45 2	0.4					Lab Samp	le ID: 570-18	1522 2
Client Sample ID: MW-2-5-15-2	4					Lab Samp		
Date Collected: 05/15/24 10:10 Date Received: 05/15/24 17:05							Matrix	x: Wate
Method: EPA 300.0 - Anions, Ion C Analyte	Result	bhy Qualifier	RL	Unit	D	Prepared	Analyzed	
Method: EPA 300.0 - Anions, Ion C Analyte Fluoride	Result 1.8	Qualifier	<b>RL</b>	Unit mg/L	<u>D</u>	Prepared	Analyzed 05/17/24 21:16	
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl	Result 1.8 hromatograp	Qualifier	0.10	mg/L			05/17/24 21:16	1
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte	Result 1.8 hromatograp Result	Qualifier	0.10 RL	mg/L Unit	<u>D</u>	Prepared Prepared	05/17/24 21:16 Analyzed	Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride	Result 1.8 hromatograp Result 130	Qualifier	0.10	mg/L Unit mg/L			05/17/24 21:16 Analyzed 05/17/24 22:57	Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte	Result 1.8 hromatograp Result	Qualifier	0.10 RL	mg/L Unit			05/17/24 21:16 Analyzed	Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate	Result 1.8 hromatograp Result 130 390	Qualifier	0.10	mg/L Unit mg/L			05/17/24 21:16 Analyzed 05/17/24 22:57	Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota	Qualifier	0.10	mg/L Unit mg/L			05/17/24 21:16 Analyzed 05/17/24 22:57	<b>Dil Fac</b> 10 10
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota	Qualifier bhy - DL Qualifier	0.10  RL  10  10	mg/L Unit mg/L mg/L	D	Prepared	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57	Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result	Qualifier bhy - DL Qualifier	0.10	mg/L Unit mg/L mg/L Unit	D	Prepared	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed	Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND	Qualifier hy - DL Qualifier I Recoverable Qualifier	0.10	mg/L Unit mg/L mg/L Unit Unit	D	Prepared Prepared 05/21/24 06:43	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06	Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND	Qualifier bhy - DL Qualifier	0.10	mg/L Unit mg/L Unit Unit Unit Unit	D	Prepared	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06	Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B)	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND Result 1700	Qualifier hy - DL Qualifier I Recoverable Qualifier	0.10	mg/L Unit mg/L mg/L Unit mg/L Unit Unit Unit Unit Unit	D	Prepared Prepared 05/21/24 06:43	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06 Analyzed 05/21/24 17:33	Dil Fac 10 10 Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND	Qualifier hy - DL Qualifier I Recoverable Qualifier	0.10	mg/L Unit mg/L Unit Unit Unit Unit	D	Prepared Prepared 05/21/24 06:43	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06	Dil Fac 10 10 Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C)	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND Result 1700 1200	Qualifier hy - DL Qualifier I Recoverable Qualifier	0.10	mg/L Unit mg/L mg/L Unit mg/L Unit Unit Unit Unit Unit	D	Prepared Prepared 05/21/24 06:43 Prepared	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06 Analyzed 05/21/24 17:33 05/20/24 13:43	Dil Fac 10 Dil Fac 1 Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-1-5-15-2	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND Result 1700 1200	Qualifier hy - DL Qualifier I Recoverable Qualifier	0.10	mg/L Unit mg/L mg/L Unit mg/L Unit Unit Unit Unit Unit	D	Prepared Prepared 05/21/24 06:43 Prepared	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06 Analyzed 05/21/24 17:33 05/20/24 13:43 le ID: 570-18	Dil Fac 1( 1) Dil Fac Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-1-5-15-2 Date Collected: 05/15/24 11:35	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND Result 1700 1200	Qualifier hy - DL Qualifier I Recoverable Qualifier	0.10	mg/L Unit mg/L mg/L Unit mg/L Unit Unit Unit Unit Unit	D	Prepared Prepared 05/21/24 06:43 Prepared	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06 Analyzed 05/21/24 17:33 05/20/24 13:43 le ID: 570-18	Dil Fac 1( 1) Dil Fac Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B)	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND Result 1700 1200 24	Qualifier	0.10	mg/L Unit mg/L mg/L Unit mg/L Unit Unit Unit Unit Unit	D	Prepared Prepared 05/21/24 06:43 Prepared	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06 Analyzed 05/21/24 17:33 05/20/24 13:43 le ID: 570-18	Dil Fac 10 11 Dil Fac 1 1 4533-3
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-1-5-15-2 Date Collected: 05/15/24 11:35 Date Received: 05/15/24 17:05	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND Result 1700 1200 24	Qualifier	0.10	mg/L Unit mg/L mg/L Unit mg/L Unit Unit Unit Unit Unit	D	Prepared Prepared 05/21/24 06:43 Prepared	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06 Analyzed 05/21/24 17:33 05/20/24 13:43 le ID: 570-18	Dil Fac 1( 1) Dil Fac Dil Fac 4533-3 x: Water
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-1-5-15-2 Date Collected: 05/15/24 11:35 Date Received: 05/15/24 17:05 Method: EPA 300.0 - Anions, Ion Cl	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND Result 1700 1200 24	Qualifier phy - DL Qualifier I Recoverable Qualifier Qualifier	0.10	mg/L Unit mg/L Unit mg/L Unit Unit Unit umhos/cm mg/L	D	Prepared 05/21/24 06:43 Prepared Lab Samp	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06 Analyzed 05/21/24 17:33 05/20/24 13:43 Ie ID: 570-18 Matrix	Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-1-5-15-2 Date Collected: 05/15/24 11:35 Date Received: 05/15/24 17:05 Method: EPA 300.0 - Anions, Ion Cl Analyte	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND Result 1700 1200 24 hromatograp Result 1.9	Qualifier Ohy - DL Qualifier I Recoverable Qualifier Qualifier	0.10	mg/L mg/L mg/L mg/L Unit mg/L Unit umhos/cm mg/L Unit Unit	D	Prepared 05/21/24 06:43 Prepared Lab Samp	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06 Analyzed 05/21/24 17:33 05/20/24 13:43 Ie ID: 570-18 Matrix Analyzed	Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-1-5-15-2 Date Collected: 05/15/24 11:35 Date Received: 05/15/24 17:05 Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND Result 1700 1200 24 hromatograp Result 1.9 hromatograp Result	Qualifier Ohy - DL Qualifier I Recoverable Qualifier Qualifier	0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	Prepared 05/21/24 06:43 Prepared Lab Samp	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06 Analyzed 05/21/24 17:33 05/20/24 13:43 Ie ID: 570-18 Matrix Analyzed 05/17/24 21:33	Dil Fac
Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl Analyte Chloride Sulfate Method: EPA 200.7 Rev 4.4 - Metals Analyte Selenium General Chemistry Analyte Specific Conductance (SM 2510B) Total Dissolved Solids (SM 2540C) Client Sample ID: MW-1-5-15-2 Date Collected: 05/15/24 11:35 Date Received: 05/15/24 17:05 Method: EPA 300.0 - Anions, Ion Cl Analyte Fluoride Method: EPA 300.0 - Anions, Ion Cl	Result 1.8 hromatograp Result 130 390 s (ICP) - Tota Result ND Result 1700 1200 24 hromatograp Result 1.9 hromatograp	Qualifier phy - DL Qualifier I Recoverable Qualifier Qualifier Qualifier phy Qualifier	0.10	mg/L Unit mg/L mg/L Unit mg/L Unit umhos/cm mg/L Unit umhos/cm mg/L	D	Prepared 05/21/24 06:43 Prepared Lab Samp Prepared	05/17/24 21:16 Analyzed 05/17/24 22:57 05/17/24 22:57 Analyzed 05/21/24 23:06 Analyzed 05/21/24 17:33 05/20/24 13:43 Ie ID: 570-18 Matrix Analyzed 05/17/24 21:33	1 Dil Fac 10 10 Dil Fac 1 4533-3 x: Water Dil Fac 1 1

# **Client Sample Results**

Job ID: 570-184533-1

Client Sample ID: MW-1-5-15-2 Date Collected: 05/15/24 11:35 Date Received: 05/15/24 17:05	:4					Lab Samp	le ID: 570-18 Matrix	4533-3 k: Water
- Method: EPA 200.7 Rev 4.4 - Metals	s (ICP) - Tota	I Recoverable						
Analyte	· · · ·	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.10	mg/L		05/21/24 06:43	05/21/24 23:08	1
- General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance (SM 2510B)	2000		1.0	umhos/cm		·	05/21/24 17:31	1
Total Dissolved Solids (SM 2540C)	1300		10	mg/L			05/20/24 13:43	1
lient Sample ID: MW-4-5-15-2	24					Lab Samp	le ID: 570-18	4533-4
Date Collected: 05/15/24 12:40						Lub Gump		k: Water
Date Received: 05/15/24 17:05							Watib	k. Water
Method: EPA 300.0 - Anions, Ion C	bromotogran	by						
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	1.8		0.10	mg/L			05/17/24 21:50	1
Method: EPA 300.0 - Anions, Ion C	bromotogran							
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	310		10	mg/L			05/17/24 23:31	1(
Sulfate	340		10	-			05/17/24 23:31	1(
	340		10	mg/L			05/17/24 23.31	I.
Method: EPA 200.7 Rev 4.4 - Metals	s (ICP) - Tota	I Recoverable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.10	mg/L		05/21/24 06:43	05/21/24 23:11	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance (SM 2510B)	2000		1.0	umhos/cm			05/21/24 17:29	
Total Dissolved Solids (SM 2540C)	1200		10	mg/L			05/20/24 13:43	
Client Sample ID: DUP-5-15-24						Lab Samp	le ID: 570-18	4533-5
Date Collected: 05/15/24 00:00						Lab Gamp		k: Water
Date Received: 05/15/24 17:05								
- Method: EPA 300.0 - Anions, Ion C	bromatogran	by						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	1.9		0.10	mg/L			05/17/24 22:07	1
Method: EPA 300.0 - Anions, Ion C	hromatogran	by - DI						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	180		10	mg/L			05/18/24 00:22	10
Sulfate	450		10	mg/L			05/18/24 00:22	1(
		Deenssel						
Method: EPA 200.7 Rev 4.4 - Metals			ы	Unit	~	Dronored	Apolyzad	
Analyte Selenium	ND	Qualifier	RL 0.10	Unit mg/L		Prepared 05/21/24 06:43	Analyzed 05/21/24 23:13	Dil Fa
	UVI UVI		0.10	ing/L		03/21/24 00.43	0312112423.13	
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Specific Conductance (SM 2510B)	2000		1.0 10	umhos/cm			05/21/24 17:27	

# **Client Sample Results**

Client: Northstar Environmental Remediation Project/Site: Blythe Energy

Client Sample ID: EP(West)-5- bate Collected: 05/15/24 13:05 bate Received: 05/15/24 17:05	15-24		Lab Sample ID: 570-184533 Matrix: Wat						
Method: EPA 300.0 - Anions, Ion C	hromatograg	ohy							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Fluoride	32		5.0	mg/L			05/17/24 22:24	50	
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy - DL							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	78000		1000	mg/L			05/18/24 00:38	1000	
Sulfate	80000		1000	mg/L			05/18/24 00:38	1000	
Method: EPA 200.7 Rev 4.4 - Metals	s (ICP) - Tota	l Recoverab	le						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Antimony	ND		1.0	mg/L		05/21/24 06:43	05/22/24 16:00	1(	
Arsenic	ND		1.0	mg/L		05/21/24 06:43	05/22/24 16:00	10	
Barium	0.13		0.10	mg/L		05/21/24 06:43	05/22/24 16:00	10	
Cadmium	ND		0.10	mg/L		05/21/24 06:43	05/22/24 16:00	1(	
Chromium	ND		0.50	mg/L		05/21/24 06:43	05/22/24 16:00	10	
Cobalt	ND		0.50	mg/L		05/21/24 06:43	05/22/24 16:00	1	
Copper	ND		0.50	mg/L		05/21/24 06:43	05/22/24 16:00	1(	
Lead	ND		0.50	mg/L		05/21/24 06:43	05/22/24 16:00	1(	
Nickel	ND		0.50	mg/L		05/21/24 06:43	05/22/24 16:00	10	
Zinc	ND		2.5	mg/L		05/21/24 06:43	05/22/24 16:00	10	
Method: SW846 7470A - Mercury (	CVAA)								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND		0.00020	mg/L		05/21/24 07:01	05/21/24 14:06	1	
General Chemistry									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Specific Conductance (SM 2510B)	170000		1.0	umhos/cm			05/21/24 17:25	1	
Total Dissolved Solids (SM 2540C)	240000		2000	mg/L			05/20/24 13:43	1	

#### Client Sample ID: MW-3-5-15-24 Date Collected: 05/15/24 08:55 Date Received: 05/15/24 17:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	4 mL	4 mL	441555	05/17/24 20:59	YO8L	EET CAL 4
	Instrume	nt ID: IC9								
Total/NA	Analysis	300.0	DL	10	4 mL	4 mL	441555	05/17/24 22:40	YO8L	EET CAL 4
	Instrume	nt ID: IC9								
Total Recoverable	Prep	200.7			50 mL	50 mL	442598	05/21/24 06:43	JP8N	EET CAL 4
Total Recoverable	Analysis	200.7 Rev 4.4		1			443027	05/21/24 22:55	P1R	EET CAL 4
	Instrume	nt ID: ICP11								
Total/NA	Analysis	SM 2510B		1			443199	05/21/24 17:35	ZL4M	EET CAL 4
	Instrume	nt ID: ManSciMantech								
Total/NA	Analysis	SM 2540C		1	100 mL	1000 mL	442360	05/20/24 13:43	PK4M	EET CAL 4
	Instrume	nt ID: BAL100								

#### Client Sample ID: MW-2-5-15-24 Date Collected: 05/15/24 10:10 Date Received: 05/15/24 17:05

#### Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 300.0 4 mL 441555 05/17/24 21:16 YO8L EET CAL 4 4 mL 1 Instrument ID: IC9 Total/NA Analysis 300.0 DL 10 4 mL 4 ml 441555 05/17/24 22:57 YO8L EET CAL 4 Instrument ID: IC9 Total Recoverable 200.7 EET CAL 4 Prep 50 ml 50 mL 442598 05/21/24 06:43 JP8N 443027 EET CAL 4 **Total Recoverable** Analysis 200.7 Rev 4.4 1 05/21/24 23:06 P1R Instrument ID: ICP11 443199 Total/NA Analysis SM 2510B 1 05/21/24 17:33 ZL4M EET CAL 4 Instrument ID: ManSciMantech Total/NA Analysis SM 2540C 100 mL 1000 mL 442360 05/20/24 13:43 PK4M EET CAL 4 1 Instrument ID: BAL100

#### Client Sample ID: MW-1-5-15-24 Date Collected: 05/15/24 11:35

Date Received: 05/15/24 17:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	4 mL	4 mL	441555	05/17/24 21:33	YO8L	EET CAL 4
	Instrume	nt ID: IC9								
Total/NA	Analysis	300.0	DL	10	4 mL	4 mL	441555	05/17/24 23:14	YO8L	EET CAL 4
	Instrume	nt ID: IC9								
Total Recoverable	Prep	200.7			50 mL	50 mL	442598	05/21/24 06:43	JP8N	EET CAL 4
Total Recoverable	Analysis	200.7 Rev 4.4		1			443027	05/21/24 23:08	P1R	EET CAL 4
	Instrume	nt ID: ICP11								
Total/NA	Analysis	SM 2510B		1			443199	05/21/24 17:31	ZL4M	EET CAL 4
	Instrume	nt ID: ManSciMantech								
Total/NA	Analysis	SM 2540C		1	100 mL	1000 mL	442360	05/20/24 13:43	PK4M	EET CAL 4
	Instrume	nt ID: BAL100								

**Eurofins Calscience** 

8

Matrix: Water

Matrix: Water

Lab Sample ID: 570-184533-2

Lab Sample ID: 570-184533-3 Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 570-184533-4

Lab Sample ID: 570-184533-5

# Client Sample ID: MW-4-5-15-24 Date Collected: 05/15/24 12:40

Date Received: 05/15/24 17:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	4 mL	4 mL	441555	05/17/24 21:50	YO8L	EET CAL 4
	Instrume	nt ID: IC9								
Total/NA	Analysis	300.0	DL	10	4 mL	4 mL	441555	05/17/24 23:31	YO8L	EET CAL 4
	Instrume	nt ID: IC9								
Total Recoverable	Prep	200.7			50 mL	50 mL	442598	05/21/24 06:43	JP8N	EET CAL 4
Total Recoverable	Analysis	200.7 Rev 4.4		1			443027	05/21/24 23:11	P1R	EET CAL 4
	Instrume	nt ID: ICP11								
Total/NA	Analysis	SM 2510B		1			443199	05/21/24 17:29	ZL4M	EET CAL 4
	Instrume	nt ID: ManSciMantech								
Total/NA	Analysis	SM 2540C		1	100 mL	1000 mL	442360	05/20/24 13:43	PK4M	EET CAL 4
	Instrume	nt ID: BAL100								

# Client Sample ID: DUP-5-15-24

Date Collected: 05/15/24 00:00 Date Received: 05/15/24 17:05

#### Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 300.0 4 mL 441555 05/17/24 22:07 YO8L EET CAL 4 4 mL 1 Instrument ID: IC9 Total/NA Analysis 300.0 DL 10 4 mL 4 ml 441555 05/18/24 00:22 YO8L EET CAL 4 Instrument ID: IC9 Total Recoverable 200.7 Prep 50 ml 50 mL 442598 05/21/24 06:43 JP8N EET CAL 4 443027 **Total Recoverable** Analysis 200.7 Rev 4.4 1 05/21/24 23:13 P1R EET CAL 4 Instrument ID: ICP11 Total/NA Analysis SM 2510B 1 443199 05/21/24 17:27 ZL4M EET CAL 4 Instrument ID: ManSciMantech Total/NA Analysis SM 2540C 1000 mL 442360 PK4M EET CAL 4 1 100 mL 05/20/24 13:43 Instrument ID: BAL100

#### Client Sample ID: EP(West)-5-15-24 Date Collected: 05/15/24 13:05

Date Received: 05/15/24 17:05

Lab Sample ID:	570-184533-6
	Matrix: Water

# _____

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		50	4 mL	4 mL	441555	05/17/24 22:24	YO8L	EET CAL 4
	Instrume	nt ID: IC9								
Total/NA	Analysis	300.0	DL	1000	4 mL	4 mL	441555	05/18/24 00:38	YO8L	EET CAL 4
	Instrume	nt ID: IC9								
Total Recoverable	Prep	200.7			50 mL	50 mL	442598	05/21/24 06:43	JP8N	EET CAL 4
Total Recoverable	Analysis	200.7 Rev 4.4		10			443391	05/22/24 16:00	P1R	EET CAL 4
	Instrume	nt ID: ICP11								
Total/NA	Prep	7470A			25 mL	50 mL	442619	05/21/24 07:01	VCN7	EET CAL 4
Total/NA	Analysis	7470A		1			442851	05/21/24 14:06	ECX6	EET CAL 4
	Instrume	nt ID: HG9								

Matrix: Water

5 6

Lab Sample ID: 570-184533-6

# Client Sample ID: EP(West)-5-15-24 Date Collected: 05/15/24 13:05 Date Received: 05/15/24 17:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2510B		1			443199	05/21/24 17:25	ZL4M	EET CAL 4
Total/NA	Analysis	SM 2540C		1	0.5 mL	1000 mL	442360	05/20/24 13:43	PK4M	EET CAL 4
	Instrume	nt ID: BAL100								

#### Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

# 4 5 6 7 8

9

# Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 570-441555/5 Matrix: Water									Client S	ample ID: N Prep Ty		
Analysis Batch: 441555										1100 13	po. 10	
		MB MB										
Analyte	Res	sult Qualifier		RL	Unit		D	Pi	repared	Analyze	d	Dil Fa
Chloride		ND		1.0	mg/L					05/17/24 0	5:57	
Fluoride		ND		0.10	mg/L					05/17/24 0	5:57	
Sulfate		ND		1.0	mg/L					05/17/24 0	5:57	
Lab Sample ID: LCS 570-441555/6							Cli	ent	Sample	ID: Lab Co	ntrol S	amn'
Matrix: Water										Prep Ty		
Analysis Batch: 441555												
· · · · · · · · · · · · · · · · · · ·			Spike	LC	S LCS					%Rec		
Analyte			Added		t Qualifier	Unit		D	%Rec	Limits		
Chloride			50.0	50.		mg/L		_	100	90 - 110		
Fluoride			2.50	2.3		mg/L			96	90 - 110		
Sulfate			50.0	49.		mg/L			100	90 - 110		
Lab Sample ID: LCSD 570-441555/7						C	lient S	am	nle ID: I	ab Control	Sampl	e Di
Matrix: Water										Prep Ty		
Analysis Batch: 441555										1100 1	po. 10	
Analysis Datch. 441000			Spike	LCS	LCSD					%Rec		R
Analyte			Added		t Qualifier	Unit		D	%Rec	Limits	RPD	Lin
Chloride			50.0	50.		mg/L		_	100	90 - 110	0	
			2.50	2.4		-					1	
Fluoride						mg/L			96	90 - 110	-	
Sulfate			50.0	49.	0	mg/L			100	90 - 110	0	
Lab Sample ID: 570-184775-H-13 MS									Client	Sample ID:		
Matrix: Water										Prep Ty	pe: To	tal/N
Analysis Batch: 441555												
S	ample \$	Sample	Spike	M	6 MS					%Rec		
·	Result	Qualifier	Added		t Qualifier	Unit		D	%Rec	Limits		
Chloride	5.4		50.0	56.		mg/L			103	80 - 120		
Fluoride	0.33		2.50	2.7	2	mg/L			95	80 - 120		
Sulfate	11		50.0	62.	1	mg/L			103	80 - 120		
Lab Sample ID: 570-184775-H-13 MSI	C						Client	t Sa	ample ID	: Matrix Spi	ke Dup	olica
Matrix: Water										· Prep Ty		
Analysis Batch: 441555												
				MS	MSD					%Rec		RF
S	ample \$	Sample	Spike	INIO					0/ <b>D</b>	Limits	RPD	Lin
	ample \$ Result (		Spike Added			Unit		D	%Rec			
Analyte	Result		Added	Resu	t Qualifier	Unit ma/l		<u>D</u>			0	
Analyte Chloride	Result 5.4		<b>Added</b> 50.0	<b>Resu</b> 57.	t Qualifier	mg/L		<u>D</u>	103	80 - 120	0	
Analyte	Result		Added	Resu	t Qualifier	mg/L mg/L		<u>D</u>			0 1 0	
Analyte	Result 0.33		Added 50.0 2.50	<b>Resu</b> 57. 2.6	t Qualifier	mg/L		<u>D</u>	103 94	80 - 120 80 - 120	1	
Analyte Chloride Fluoride Sulfate Aethod: 200.7 Rev 4.4 - Metals (1	Result 0.33		Added 50.0 2.50	<b>Resu</b> 57. 2.6	t Qualifier	mg/L mg/L			103 94 103	80 - 120 80 - 120 80 - 120	1 0	
Analyte	Result 0.33		Added 50.0 2.50	<b>Resu</b> 57. 2.6	t Qualifier	mg/L mg/L			103 94 103 Client S	80 - 120 80 - 120 80 - 120 80 - 120	1 0	Blar
Analyte Chloride Fluoride Sulfate Aethod: 200.7 Rev 4.4 - Metals (I Lab Sample ID: MB 570-442598/1-A	Result         Q           5.4         0.33           11         ICP)	Qualifier	Added 50.0 2.50	<b>Resu</b> 57. 2.6	t Qualifier	mg/L mg/L			103 94 103 Client S	80 - 120 80 - 120 80 - 120	1 0 lethod Recov	Blar erab
Analyte Chloride Fluoride Sulfate Method: 200.7 Rev 4.4 - Metals (I Lab Sample ID: MB 570-442598/1-A Matrix: Water Analysis Batch: 443027	Result 0 5.4 0.33 11	Qualifier	Added 50.0 2.50	Resu 57. 2.6 62.	t Qualifier	mg/L mg/L			103 94 103 Client Sa Prep	80 - 120 80 - 120 80 - 120 ample ID: M Type: Total Prep B	1 0 lethod Recov atch: 4	Blan erab 4259
Analyte Chloride Fluoride Sulfate Aethod: 200.7 Rev 4.4 - Metals (I Lab Sample ID: MB 570-442598/1-A Matrix: Water Analysis Batch: 443027 Analyte	Result 0 5.4 0.33 11 ICP)	Qualifier	Added 50.0 2.50	Resu 57. 2.6 62.	t Qualifier	mg/L mg/L		 Pr	103 94 103 Client Sa Prep	80 - 120 80 - 120 80 - 120 ample ID: N Type: Total Prep B Analyze	1 0 lethod Recov atch: 4	2 2 Blan erabl 4259
Analyte Chloride Fluoride Sulfate Aethod: 200.7 Rev 4.4 - Metals (I Lab Sample ID: MB 570-442598/1-A Matrix: Water Analysis Batch: 443027	Result 0 5.4 0.33 11 ICP)	Qualifier	Added 50.0 2.50	Resu 57. 2.6 62.	t Qualifier	mg/L mg/L		 Pr	103 94 103 Client Sa Prep	80 - 120 80 - 120 80 - 120 ample ID: M Type: Total Prep B	1 0 lethod Recov atch: 4	erab
Analyte Chloride Fluoride Sulfate Analysis Batch: 443027 Analyte	Result 0 5.4 0.33 11 ICP)	Qualifier	Added 50.0 2.50	Resu 57. 2.6 62.	t Qualifier	mg/L mg/L	(	 P1 05/2	103 94 103 Client Sa Prep	80 - 120 80 - 120 80 - 120 ample ID: N Type: Total Prep B Analyze	lethod Recov atch: 4 d 2:48	Blan erab 4259

5 6

9

**Client Sample ID: Method Blank** Prep Type: Total Recoverable

**Client Sample ID: Lab Control Sample** 

Prep Type: Total Recoverable

# Method: 200.7 Rev 4.4 - Metals (ICP) (Continued) Lab Sample ID: MB 570-442598/1-A

#### **Matrix: Water** Analysis Batch: 443027

Analysis Batch: 443027							Prep Batch:	442598
	MB	МВ						
Analyte	Result (	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	ND		0.010	mg/L		05/21/24 06:43	05/21/24 22:48	1
Cadmium	ND		0.010	mg/L		05/21/24 06:43	05/21/24 22:48	1
Chromium	ND		0.050	mg/L		05/21/24 06:43	05/21/24 22:48	1
Cobalt	ND		0.050	mg/L		05/21/24 06:43	05/21/24 22:48	1
Copper	ND		0.050	mg/L		05/21/24 06:43	05/21/24 22:48	1
Lead	ND		0.050	mg/L		05/21/24 06:43	05/21/24 22:48	1
Nickel	ND		0.050	mg/L		05/21/24 06:43	05/21/24 22:48	1
Zinc	ND 4	^1+	0.25	mg/L		05/21/24 06:43	05/21/24 22:48	1

# Lab Sample ID: LCS 570-442598/2-A

#### Matrix: Water Analysis Batch: 443027

						Prep Ba	tch: 442598
Spike	LCS	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.500	0.495		mg/L		99	85 - 115	
0.500	0.514		mg/L		103	85 - 115	
0.500	0.518		mg/L		104	85 - 115	
0.500	0.521		mg/L		104	85 - 115	
0.500	0.526		mg/L		105	85 - 115	
0.500	0.530		mg/L		106	85 - 115	
0.500	0.523		mg/L		105	85 - 115	
0.500	0.521		mg/L		104	85 - 115	
0.500	0.522		mg/L		104	85 - 115	
0.500	0.529		mg/L		106	85 - 115	
0.500	0.529	^1+	mg/L		106	85 - 115	
	Added 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Added         Result           0.500         0.495           0.500         0.514           0.500         0.514           0.500         0.518           0.500         0.521           0.500         0.526           0.500         0.530           0.500         0.523           0.500         0.521           0.500         0.521           0.500         0.522           0.500         0.522           0.500         0.529	Added         Result         Qualifier           0.500         0.495         0.500           0.500         0.514         0.500           0.500         0.518         0.500           0.500         0.521         0.500           0.500         0.526         0.500           0.500         0.523         0.500           0.500         0.521         0.523           0.500         0.522         0.500           0.500         0.522         0.500	Added         Result         Qualifier         Unit           0.500         0.495         mg/L           0.500         0.514         mg/L           0.500         0.518         mg/L           0.500         0.521         mg/L           0.500         0.526         mg/L           0.500         0.523         mg/L           0.500         0.523         mg/L           0.500         0.521         mg/L           0.500         0.523         mg/L           0.500         0.521         mg/L           0.500         0.522         mg/L           0.500         0.529         mg/L	Added         Result         Qualifier         Unit         D           0.500         0.495         mg/L         mg/L         mg/L           0.500         0.514         mg/L         mg/L           0.500         0.518         mg/L         mg/L           0.500         0.521         mg/L         mg/L           0.500         0.526         mg/L         mg/L           0.500         0.523         mg/L         mg/L           0.500         0.521         mg/L         mg/L           0.500         0.521         mg/L         mg/L           0.500         0.521         mg/L         mg/L           0.500         0.522         mg/L         mg/L           0.500         0.529         mg/L         mg/L	Spike         LCS         LCS           Added         Result         Qualifier         Unit         D         %Rec           0.500         0.495         mg/L         103           0.500         0.514         mg/L         103           0.500         0.518         mg/L         104           0.500         0.521         mg/L         104           0.500         0.526         mg/L         105           0.500         0.523         mg/L         106           0.500         0.521         mg/L         104           0.500         0.523         mg/L         104           0.500         0.521         mg/L         104           0.500         0.522         mg/L         104           0.500         0.522         mg/L         104           0.500         0.529         mg/L         104	Spike         LCS         LCS         WRec           Added         Result         Qualifier         Unit         D         %Rec           0.500         0.495         mg/L         D         %Rec         Limits           0.500         0.514         mg/L         103         85 - 115           0.500         0.518         mg/L         104         85 - 115           0.500         0.521         mg/L         104         85 - 115           0.500         0.526         mg/L         105         85 - 115           0.500         0.523         mg/L         106         85 - 115           0.500         0.521         mg/L         105         85 - 115           0.500         0.523         mg/L         106         85 - 115           0.500         0.521         mg/L         104         85 - 115           0.500         0.522         mg/L         104         85 - 115           0.500         0.529         mg/L         106         85 - 115

### Lab Sample ID: LCSD 570-442598/3-A Matrix: Water

#### Client Sample ID: Lab Control Sample Dup Prep Type: Total Recoverable

# Analysis Batch: 443027

Analysis Batch: 443027							Prep	Batch: 4	42598
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	0.500	0.495		mg/L		99	85 - 115	0	20
Selenium	0.500	0.512		mg/L		102	85 - 115	0	20
Arsenic	0.500	0.519		mg/L		104	85 - 115	0	20
Barium	0.500	0.520		mg/L		104	85 - 115	0	20
Cadmium	0.500	0.526		mg/L		105	85 - 115	0	20
Chromium	0.500	0.529		mg/L		106	85 - 115	0	20
Cobalt	0.500	0.523		mg/L		105	85 - 115	0	20
Copper	0.500	0.521		mg/L		104	85 - 115	0	20
Lead	0.500	0.524		mg/L		105	85 - 115	0	20
Nickel	0.500	0.530		mg/L		106	85 - 115	0	20
Zinc	0.500	0.526	^1+	mg/L		105	85 - 115	0	20

### Lab Sample ID: 570-184533-1 MS

Matrix: Water								Prep	Type: Tot	al Recoverable
Analysis Batch: 443027									Prep	Batch: 442598
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	ND		0.500	0.549		mg/L		110	80 - 120	

**Eurofins Calscience** 

Client Sample ID: MW-3-5-15-24

# Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

#### Lab Sample ID: 570-184533-1 MS Matrix: Water

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Selenium	ND		0.500	0.519		mg/L		104	80 - 120
Arsenic	ND		0.500	0.542		mg/L		108	80 - 120
Barium	0.022		0.500	0.535		mg/L		103	80 - 120
Cadmium	ND		0.500	0.506		mg/L		101	80 - 120
Chromium	ND		0.500	0.527		mg/L		105	80 - 120
Cobalt	ND		0.500	0.498		mg/L		100	80 - 120
Copper	ND		0.500	0.538		mg/L		108	80 - 120
Lead	ND		0.500	0.509		mg/L		102	80 - 120
Nickel	ND		0.500	0.497		mg/L		99	80 - 120
Zinc	ND	^1+	0.500	0.508	^1+	mg/L		102	80 - 120

### Lab Sample ID: 570-184533-1 MSD Matrix: Water

#### Analysis Batch: 443027

Analysis Batch: 443027									Prep I	Batch: 4	42598
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		0.500	0.534		mg/L		107	80 - 120	3	20
Selenium	ND		0.500	0.518		mg/L		104	80 - 120	0	20
Arsenic	ND		0.500	0.540		mg/L		108	80 - 120	0	20
Barium	0.022		0.500	0.527		mg/L		101	80 - 120	1	20
Cadmium	ND		0.500	0.499		mg/L		100	80 - 120	1	20
Chromium	ND		0.500	0.522		mg/L		104	80 - 120	1	20
Cobalt	ND		0.500	0.494		mg/L		99	80 - 120	1	20
Copper	ND		0.500	0.530		mg/L		106	80 - 120	1	20
Lead	ND		0.500	0.499		mg/L		100	80 - 120	2	20
Nickel	ND		0.500	0.493		mg/L		99	80 - 120	1	20
Zinc	ND	^1+	0.500	0.503	^1+	mg/L		101	80 - 120	1	20

#### Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 570-442619/1-A Matrix: Water Analysis Batch: 442851	мв	мв							Client Sa	ample ID: Mo Prep Tyj Prep Ba	be: To	tal/NA
Analyte	Result			RL	Un	it	D	Р	repared	Analyzed		Dil Fac
Mercury	ND		0.00	0020	mg	/L			1/24 07:01	05/21/24 13		1
Lab Sample ID: LCS 570-442619/2-A							Cli	ient	Sample	ID: Lab Con	trol S	ample
Matrix: Water										Prep Ty		
Analysis Batch: 442851										Prep Ba	tch: 4	42619
			Spike	LC	S LCS					%Rec		
Analyte			Added	Resu	t Qualifier	Unit		D	%Rec	Limits		
Mercury			0.00800	0.0079	9	mg/L		_	100	80 - 120		
Lab Sample ID: LCSD 570-442619/3-A						C	lient S	Sam	ple ID: L	ab Control S	Sampl	e Dup
Matrix: Water									· · · ·	Prep Ty	be: To	tal/NA
Analysis Batch: 442851										Prep Ba	tch: 4	42619
-			Spike	LCSI	LCSD					%Rec		RPD
Analyte			Added	Resu	t Qualifier	Unit		D	%Rec	Limits	RPD	Limit

1	
N	Mercury

Job ID: 570-184533-1

Client Sample ID: MW-3-5-15-24 **Prep Type: Total Recoverable** 98

# Client Sample ID: MW-3-5-15-24 Prep Type: Total Recoverable

4

0.00829

mg/L

104

80 - 120

0.00800

10

#### Method: 7470A - Mercury (CVAA)

Lab Sample ID: 570-185062-Q	2-2-C MS							Client	Sample ID	: Matrix	Spike
Matrix: Water									Prep 1	Type: To	al/NA
Analysis Batch: 442851									Prep I	Batch: 4	4 <mark>26</mark> 19
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
			0.00800	0.00919		mg/L		104	80 - 120		
Mercury Lab Sample ID: 570-185062-Q	0.00089		0.00800	0.00919		Ū	lient Sa		: Matrix Sp	oike Dup	licate
Lab Sample ID: 570-185062-Q Matrix: Water			0.00000	0.00313		Ū	lient Sa		): Matrix Sp Prep 1	· Type: To	al/NA
Mercury Lab Sample ID: 570-185062-Q Matrix: Water Analysis Batch: 442851			0.00800	0.00919		Ū	lient Sa		): Matrix Sp Prep 1		al/NA
Lab Sample ID: 570-185062-Q Matrix: Water	R-2-D MSD	Sample	Spike	MSD	MSD	Ū	lient Sa		): Matrix Sp Prep 1	· Type: To	tal/NA 42619
Lab Sample ID: 570-185062-Q Matrix: Water	2-2-D MSD Sample	Sample Qualifier		MSD	MSD Qualifier	Ū	lient Sa D		): Matrix Sp Prep 1 Prep I	· Type: To	al/NA

#### Lab Sample ID: MB 570-443199/10 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 443199 MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Specific Conductance ND 1.0 umhos/cm 05/21/24 15:54 1 Lab Sample ID: 570-184773-G-2 DU **Client Sample ID: Duplicate** Matrix: Water Prep Type: Total/NA Analysis Batch: 443199 Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier Unit RPD Limit D Specific Conductance 640 587 umhos/cm 8 25

#### Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 570-442360/1									Client	Sample ID: I	<b>Nethod</b>	Blank
Matrix: Water										Prep T	ype: To	tal/NA
Analysis Batch: 442360												
	МВ	МВ										
Analyte	Result	Qualifier		RL		Unit		D	Prepared	Analyz	əd	Dil Fa
Total Dissolved Solids	ND			10		mg/L				05/20/24 1	3:43	,
Lab Sample ID: LCS 570-442360/2								Clier	nt Sampl	e ID: Lab Co	ontrol S	ample
Matrix: Water										Prep T	ype: To	tal/NA
Analysis Batch: 442360												
-			Spike		LCS	LCS				%Rec		
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits		
Total Dissolved Solids			1000		968		mg/L		97	84 - 108		
Lab Sample ID: LCSD 570-442360/3							С	lient Sa	mple ID:	Lab Contro	l Samp	le Dup
Matrix: Water										Prep T	ype: To	tal/NA
Analysis Batch: 442360												
			Spike		LCSD	LCSD				%Rec		RPD
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Dissolved Solids			1000		966		mg/L		97	84 - 108	0	10

5

9

# Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: 570-184504-I Matrix: Water	D-9 DU						Client Sam Pre	ole ID: Dup p Type: To	
Analysis Batch: 442360									
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Dissolved Solids	730		 730		mg/L			0	10

# **QC Association Summary**

#### HPLC/IC

#### Analysis Batch: 441555

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-184533-1	MW-3-5-15-24	Total/NA	Water	300.0	
570-184533-1 - DL	MW-3-5-15-24	Total/NA	Water	300.0	
570-184533-2	MW-2-5-15-24	Total/NA	Water	300.0	
570-184533-2 - DL	MW-2-5-15-24	Total/NA	Water	300.0	
570-184533-3	MW-1-5-15-24	Total/NA	Water	300.0	
570-184533-3 - DL	MW-1-5-15-24	Total/NA	Water	300.0	
570-184533-4	MW-4-5-15-24	Total/NA	Water	300.0	
570-184533-4 - DL	MW-4-5-15-24	Total/NA	Water	300.0	
570-184533-5	DUP-5-15-24	Total/NA	Water	300.0	
570-184533-5 - DL	DUP-5-15-24	Total/NA	Water	300.0	
570-184533-6	EP(West)-5-15-24	Total/NA	Water	300.0	
570-184533-6 - DL	EP(West)-5-15-24	Total/NA	Water	300.0	
MB 570-441555/5	Method Blank	Total/NA	Water	300.0	
LCS 570-441555/6	Lab Control Sample	Total/NA	Water	300.0	
LCSD 570-441555/7	Lab Control Sample Dup	Total/NA	Water	300.0	
570-184775-H-13 MS	Matrix Spike	Total/NA	Water	300.0	
570-184775-H-13 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

#### **Metals**

#### Prep Batch: 442598

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-184533-1	MW-3-5-15-24	Total Recoverable	Water	200.7	
570-184533-2	MW-2-5-15-24	Total Recoverable	Water	200.7	
570-184533-3	MW-1-5-15-24	Total Recoverable	Water	200.7	
570-184533-4	MW-4-5-15-24	Total Recoverable	Water	200.7	
570-184533-5	DUP-5-15-24	Total Recoverable	Water	200.7	
570-184533-6	EP(West)-5-15-24	Total Recoverable	Water	200.7	
MB 570-442598/1-A	Method Blank	Total Recoverable	Water	200.7	
LCS 570-442598/2-A	Lab Control Sample	Total Recoverable	Water	200.7	
LCSD 570-442598/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.7	
570-184533-1 MS	MW-3-5-15-24	Total Recoverable	Water	200.7	
570-184533-1 MSD	MW-3-5-15-24	Total Recoverable	Water	200.7	

#### Prep Batch: 442619

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
570-184533-6	EP(West)-5-15-24	Total/NA	Water	7470A	
MB 570-442619/1-A	Method Blank	Total/NA	Water	7470A	
LCS 570-442619/2-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 570-442619/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	
570-185062-Q-2-C MS	Matrix Spike	Total/NA	Water	7470A	
570-185062-Q-2-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

#### Analysis Batch: 442851

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-184533-6	EP(West)-5-15-24	Total/NA	Water	7470A	442619
MB 570-442619/1-A	Method Blank	Total/NA	Water	7470A	442619
LCS 570-442619/2-A	Lab Control Sample	Total/NA	Water	7470A	442619
LCSD 570-442619/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	442619
570-185062-Q-2-C MS	Matrix Spike	Total/NA	Water	7470A	442619
570-185062-Q-2-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	442619

# **QC Association Summary**

10

# ...

### Analysis Batch: 443027

**Metals** 

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-184533-1	MW-3-5-15-24	Total Recoverable	Water	200.7 Rev 4.4	442598
570-184533-2	MW-2-5-15-24	Total Recoverable	Water	200.7 Rev 4.4	442598
570-184533-3	MW-1-5-15-24	Total Recoverable	Water	200.7 Rev 4.4	442598
570-184533-4	MW-4-5-15-24	Total Recoverable	Water	200.7 Rev 4.4	442598
570-184533-5	DUP-5-15-24	Total Recoverable	Water	200.7 Rev 4.4	442598
MB 570-442598/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	442598
LCS 570-442598/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	442598
LCSD 570-442598/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.7 Rev 4.4	442598
570-184533-1 MS	MW-3-5-15-24	Total Recoverable	Water	200.7 Rev 4.4	442598
570-184533-1 MSD	MW-3-5-15-24	Total Recoverable	Water	200.7 Rev 4.4	442598

#### Analysis Batch: 443391

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch		
570-184533-6	EP(West)-5-15-24	Total Recoverable	Water	200.7 Rev 4.4	442598		

# **General Chemistry**

#### Analysis Batch: 442360

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-184533-1	MW-3-5-15-24	Total/NA	Water	SM 2540C	
570-184533-2	MW-2-5-15-24	Total/NA	Water	SM 2540C	
570-184533-3	MW-1-5-15-24	Total/NA	Water	SM 2540C	
570-184533-4	MW-4-5-15-24	Total/NA	Water	SM 2540C	
570-184533-5	DUP-5-15-24	Total/NA	Water	SM 2540C	
570-184533-6	EP(West)-5-15-24	Total/NA	Water	SM 2540C	
MB 570-442360/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 570-442360/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 570-442360/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
570-184504-D-9 DU	Duplicate	Total/NA	Water	SM 2540C	

#### Analysis Batch: 443199

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-184533-1	MW-3-5-15-24	Total/NA	Water	SM 2510B	
570-184533-2	MW-2-5-15-24	Total/NA	Water	SM 2510B	
570-184533-3	MW-1-5-15-24	Total/NA	Water	SM 2510B	
570-184533-4	MW-4-5-15-24	Total/NA	Water	SM 2510B	
570-184533-5	DUP-5-15-24	Total/NA	Water	SM 2510B	
570-184533-6	EP(West)-5-15-24	Total/NA	Water	SM 2510B	
MB 570-443199/10	Method Blank	Total/NA	Water	SM 2510B	
570-184773-G-2 DU	Duplicate	Total/NA	Water	SM 2510B	

Job ID: 570-184533-1

# Laboratory: Eurofins Calscience

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	3082	07-31-24

# **Method Summary**

#### Client: Northstar Environmental Remediation Project/Site: Blythe Energy

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET CAL 4
200.7 Rev 4.4	Metals (ICP)	EPA	EET CAL 4
7470A	Mercury (CVAA)	SW846	EET CAL 4
SM 2510B	Conductivity, Specific Conductance	SM	EET CAL 4
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET CAL 4
200.7	Preparation, Total Recoverable Metals	EPA	EET CAL 4
7470A	Preparation, Mercury	SW846	EET CAL 4

#### Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

<mark>12</mark> 13

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin, CA 92780 Phone (714) 895-5494		Chain	of Cu	stody Re	COI	rd							+		💸 eurofins	Loc: 570 184533	1
Client Information	Sampler: Ralph De La Pa	ma		Lab PM: Fama		ri M	570-	18453	33 Cha	ain of	Custo	dy			COC No: 570-102068-21246	.1	2
Client Contact: Arlin Brewster	Phone: (949) 702-0968			E-Mail:			-				ľ	state or Origin:			Page:		3
Company:	(949)702-0908		PWSID:	Sheri.	raina	i@el.e	suloin	ISUS.C							Page 1 of 1 Job#:		
Northstar Environmental Remediation Address:	Due Date Requested	•	L		-	_			Ana	lysis	Requ	uested		1 1	Preservation Codes:		4
26225 Enterprise Court															N - None		
City: Lake Forest	TAT Requested (day	/s): Norm	nal					BHY							D - HNO3		5
State, Zip: CA, 92630	Compliance Project:	Δ Yes Δ N	0					7470A									6
Phone:	PO#							,uZ									0
949-274-1719(Tel) Email:	Blythe Energy wo#					280		Pb, Ni,									7
arlin.brewster@northstarer.com Project Name:	Desired #				or No)	GFM		CE,							<u>^</u>		1
Blythe Energy	Project # 57013297			2	es o	300_ORGFM_28D		Cr, Co,						and a land			8
Site: California	SSOW#				so (Y	6d, 30		O, bo						of cost	Other:		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	O=waste/oil,	Perform MS/M	25108, 2540C_Cal	Ę	200.7 Sb, As, Ba, (						Traffel Missiphere		ructions/Note:	9 10
		$\geq$	Preserv	ation Code:	$\mathbf{X}$	<b>N</b>	D		_					P			44
MW-3-5-15-29	5-15-24	0855	6	Water		×	x								2		
MW-2-5-15-24		1010		Water	Т	x	x								2		12
MW-1-5-15-24		1(35		Water		x	x								2		
MW-4-5-15-24		1240		Water	+	x	x			+-					2		13
DUP-(-)(-)4		10 10		Water	+	×	x	+	-	+-	┼┼				2		
) () 2(		12 ~		++	+-	+		+			┼╴┼		+				14
EP (West)- 4447 141 5-15-24		1305		Water	+	×		×							/		
	1		6		$\perp$			_			$\square$						
					Τ												
				11				-		+			+++				
Possible Hazard Identification Non-Hazard Flammable Skin Initant Deliverable Requested: I, II, III, IV, Other (specify)	Poison B Unknow		diological	I		$\square_R$	etum	To Cli	ent_		be ass Dis	posal By La	amples al ab	re retain	ed longer than 1 mon hive For	<b>th)</b> Months	
Empty Kit Relingoished by:		Date:		1	Time:	-	-					M ethod of	Shipment:	-			
Relinquished by:			0 1200	Company Hite		Recei	ved by:	1	1	6		_	Date/Time	5-2	4 17:05	company EC	
Relinquished by:	Date/Time:		17.91	Company		Recei	ved by:	6					Date/Time			company	
Relinquished by:	Date/Time:			Сотралу		Recei	ved by:						Date/Time	Ð:	c	Company	
Custody Seals Intact: Custody Seal No.:						Coole	r Temp	erature(:	s) ⁰C an	d Other	Remarks				0.2/	0.3 SC14	

ł n 2

4 5 6

5/22/2024 a

# Login Sample Receipt Checklist

#### Client: Northstar Environmental Remediation

#### Login Number: 184533 List Number: 1

Creator: Nguyen, Jenny

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 570-184533-1

List Source: Eurofins Calscience

# SECOND SEMI-ANNUAL 2023 MONITORING REPORT BLYTHE ENERGY PROJECT BLYTHE, CALIFORNIA



Submitted by: Blythe Energy Inc. 385 North Buck Boulevard Blythe, California 92225 (760) 922-9950

Submittal to: The California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, California 92260



# **JANUARY 2024**

January 31, 2024

California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, California 92260

- Attention: Mr. Scott Stormo Engineering Geologist
- Subject: Second Semi-Annual 2023 Monitoring Report Monitoring and Reporting Program Board Order No. R7-2002-0012 Blythe Energy Project Blythe, California

Dear Mr. Stormo:

Blythe Energy Inc. is pleased to present this report containing field data, laboratory analytical results, and statistical analysis for sampling conducted during the third and fourth quarters of 2023 at our Blythe, California facility. Field sampling was performed under the terms of the California Regional Water Quality Control Board – Colorado River Basin Region (RWQCB) Board Order Number R7-2002-0012. Field sampling was performed by Northstar Environmental Remediation (Northstar) of Lake Forest, California.

Data within this report summarizes the sampling activities that occurred during the third and fourth quarters of 2023. Laboratory data sheets and chain-of-custody records are also included as an appendix to this report.

If you should have any questions regarding this report, please contact David Gutierrez IV, Manager Operations at (760) 921-1359.

Sincerely, Blythe Energy Inc.

Mike Ludwin Interim Plant General Manager Sr. Director Operations-Power

cc: David Gutierrez IV (Blythe Energy Inc.) CDFW USFWS

# **\\\$**[)

### SECOND SEMI-ANNUAL 2023 MONITORING REPORT BLYTHE ENERGY INC. BLYTHE, CALIFORNIA

January 31, 2024

Prepared for:

Blythe Energy Inc. 385 North Buck Boulevard Blythe, California 92225

Prepared by:

WSP USA Environment and Infrastructure Inc. 3560 Hyland Avenue, Ste. 100 Costa Mesa, California 92626 (949) 642-0245

Project No. NB11160982

CERTIFIED HYDROGEOLOGIST

Duane G. Paul, PG 6336, CHG 414 Principal Hydrogeologist

### SECOND SEMI-ANNUAL 2023 MONITORING REPORT BLYTHE ENERGY INC. BLYTHE, CALIFORNIA

Submitted by:

Blythe Energy Inc. 385 North Buck Boulevard Blythe, California 92225

Mike Ludwin Interim Plant General Manager Sr. Director Operations - Power Agent For Blythe Energy Inc.

# TABLE OF CONTENTS

- 1. Facility Information and Declaration
- 2. Monitoring
- 3. Reference Maps
- 4. Quarterly Potentiometric Surface Maps
- 5. Analytical Summary Tables
- 6. Statistical Analysis
- 7. Lysimeter Test Records
- 8. Evaporation Pond Sampling Records
- 9. Well Sampling Records
- 10. Leachate Collection and Recovery System (LCRS) & Weekly Lysimeter Records

# <u>APPENDIX</u>

Appendix A Laboratory Analytical Data Sheets

# ****\}])

# SECOND SEMI-ANNUAL 2023 MONITORING REPORT

SECTION 1 FACILITY INFORMATION AND DECLARATION Second Semi-Annual 2023 Monitoring Report Blythe Energy Inc. Blythe, California January 31, 2024

# **\\\$**])

# FACILITY INFORMATION

# Facility Contact:

David Gutierrez IV Senior Manager, Operations & Maintenance Blythe Energy Inc.

### Telephone:

(760) 921-1359

### Address:

Blythe Energy Inc. 385 North Buck Boulevard Blythe, California 92225

# Monitoring and Reporting Program:

California Regional Water Quality Control Board Order No. R7-2002-0012

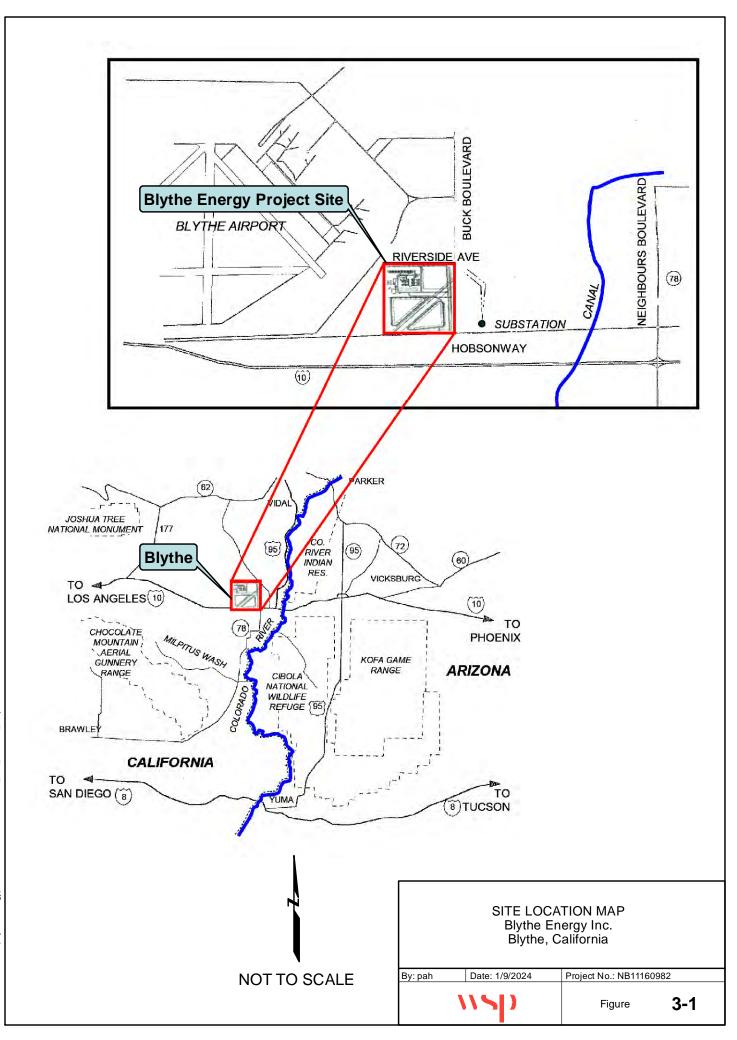
#### DECLARATION

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information. I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

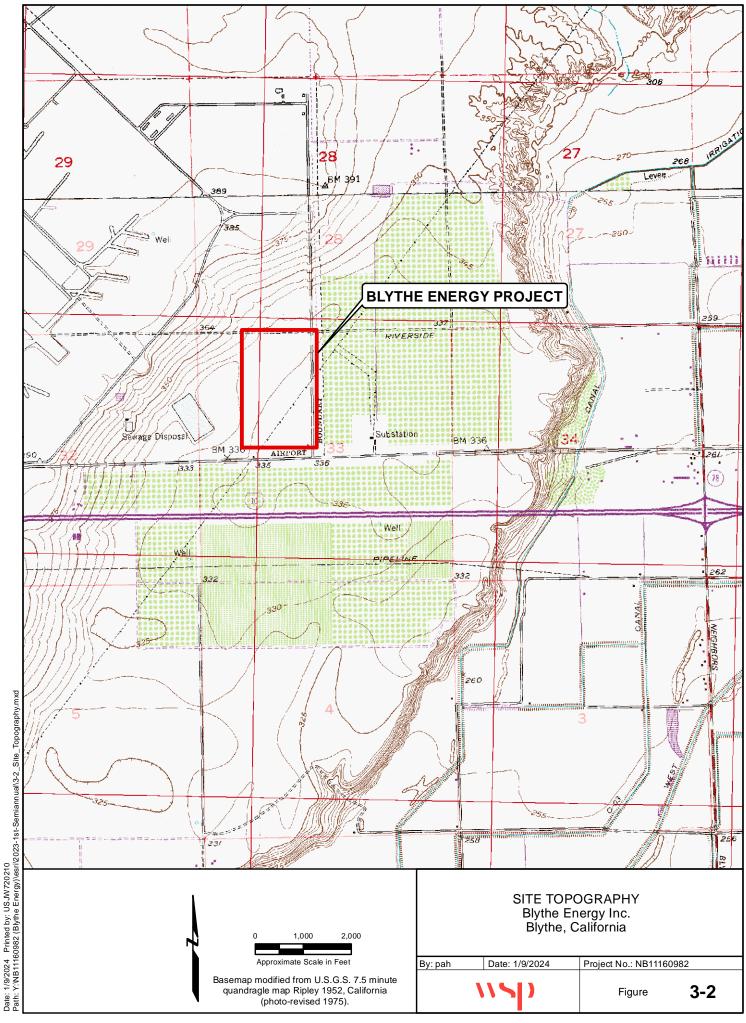
Wike Ludwin
 Interim Plant General Manager
 Sr. Director Operations - Power
 Agent For
 Blythe Energy Inc.

### SECOND SEMI-ANNUAL 2023 MONITORING REPORT

SECTION 2 MONITORING


# MONITORING

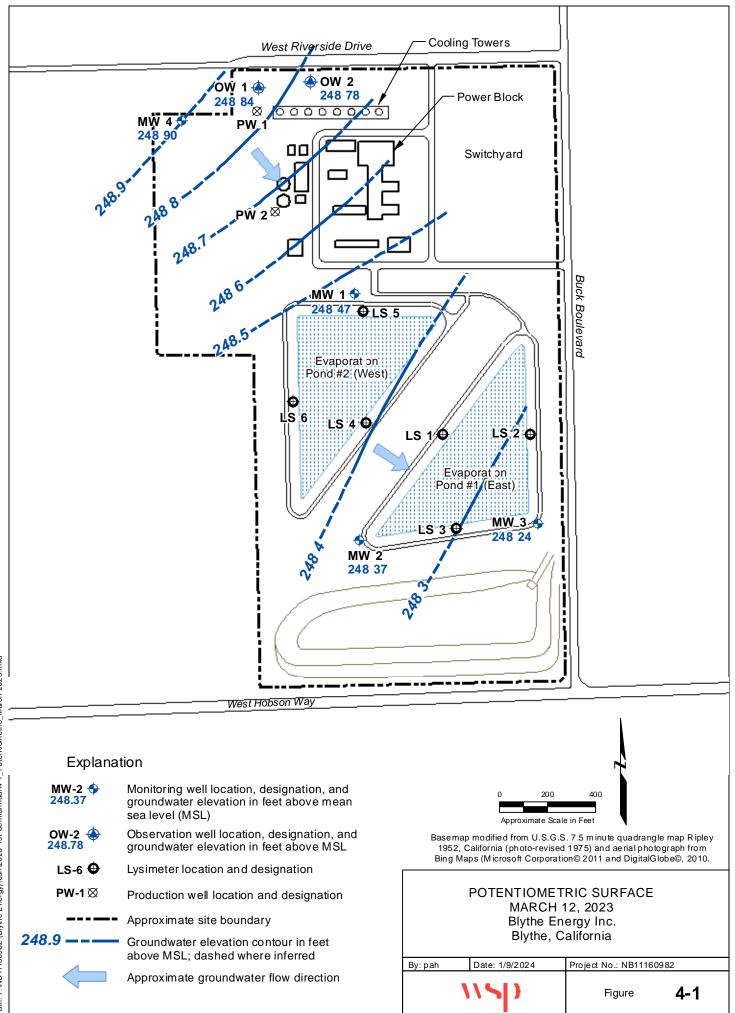
The Second Semi-Annual 2023 monitoring event was conducted in compliance with the California Regional Water Quality Control Board- Lahontan Region (RWQCB) Board Order No. R7-2002-012 Waste Discharge Requirements (WDRs) and associated Monitoring and Reporting Program (MRP). Third and fourth quarter 2023 groundwater monitoring was performed by Northstar Environmental Remediation (Northstar) of Lake Forest, California on September 26 and December 6, respectively.

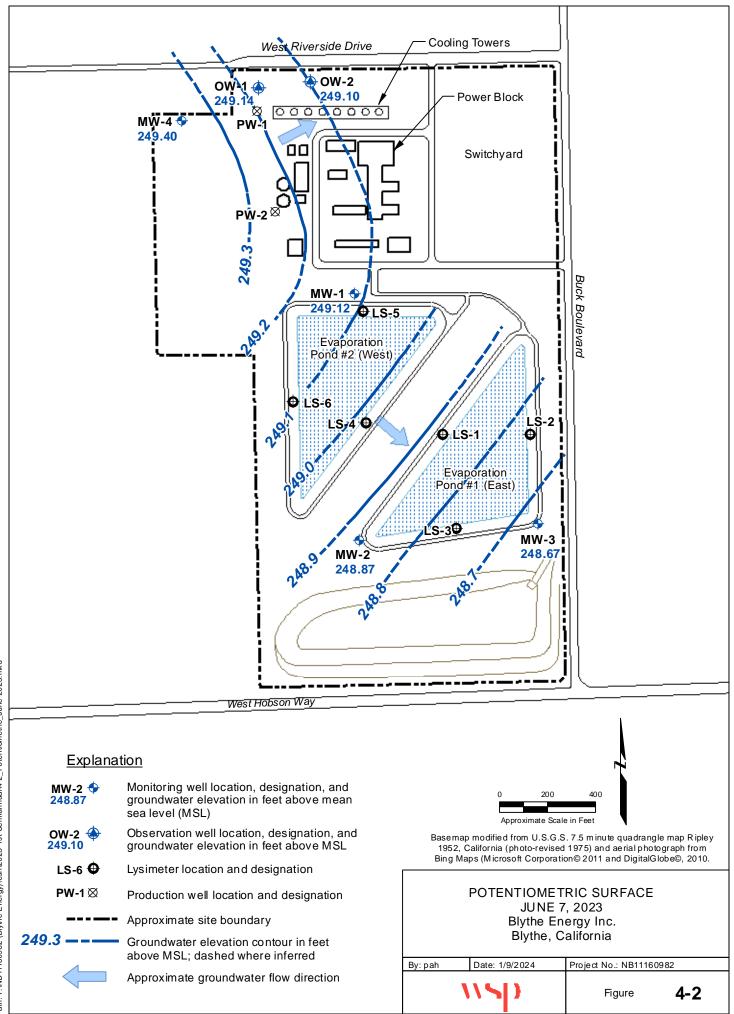

Site reference maps and first, second, third, and fourth quarter 2023 potentiometric surface maps are included in Sections 3 and 4. Groundwater quality laboratory analytical data is presented in Section 5 and the statistical analysis is presented in Section 6. The records for the lysimeter, evaporation pond, monitoring well, and the leakage collection recovery sump (LCRS) are presented in Sections 7 through 10. Laboratory analytical data sheets and chain-of-custody reports are also included in Appendix A.

SECOND SEMI-ANNUAL 2023 MONITORING REPORT

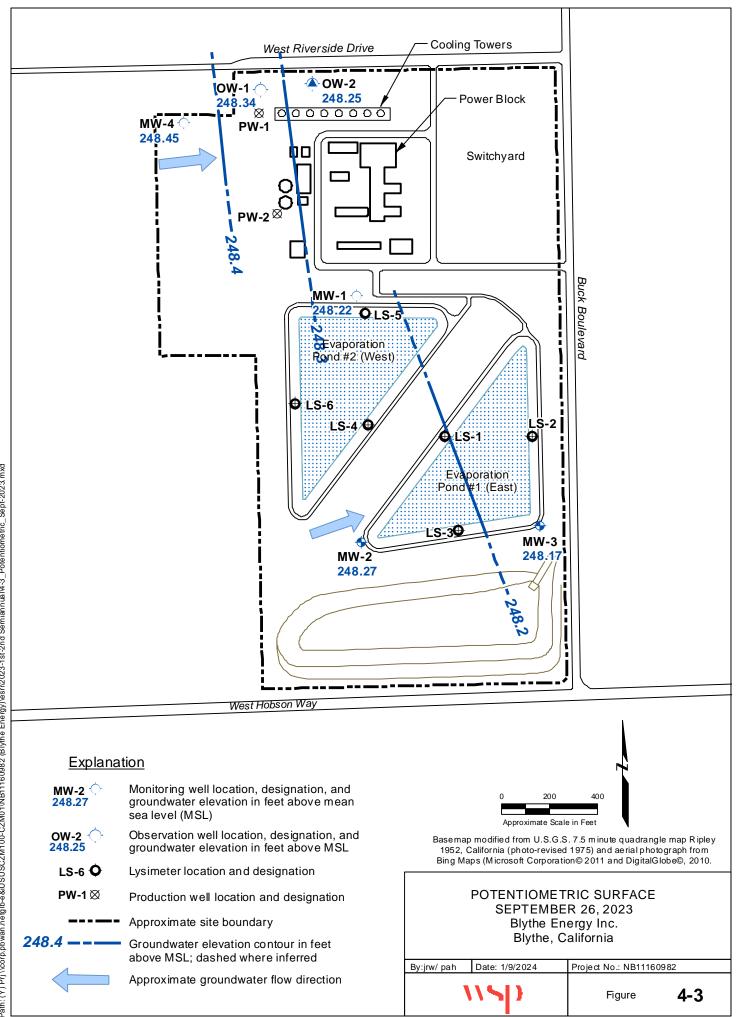
SECTION 3 REFERENCE MAPS

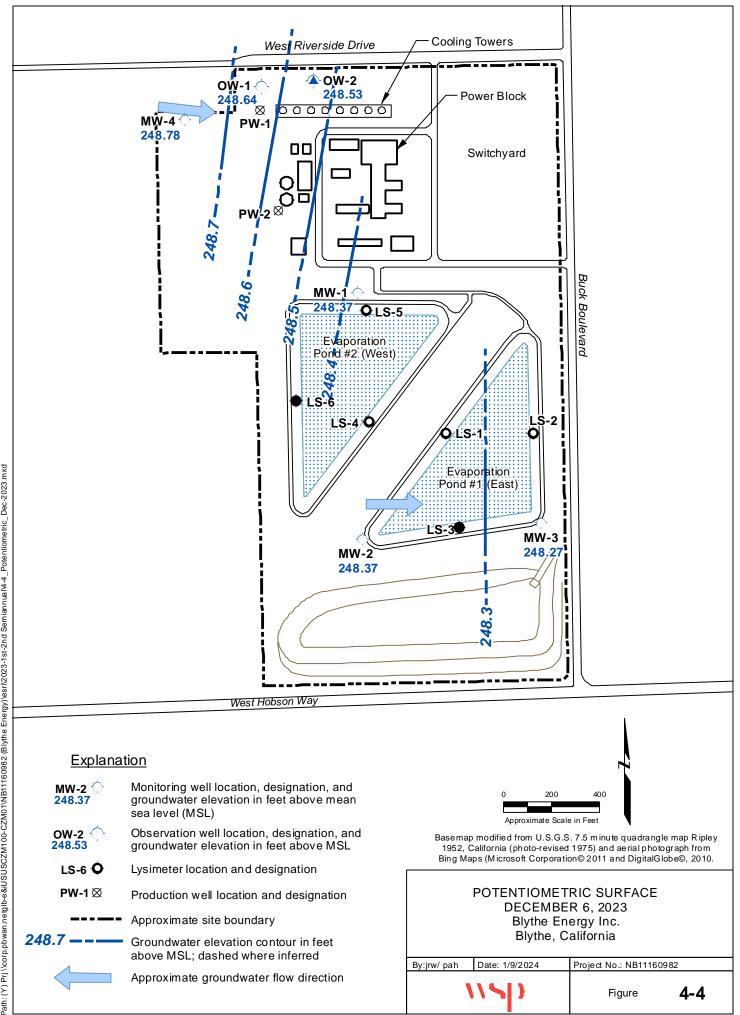



Date: 1/9/2024 Printed by: USJW720210 Path: Y.NB11160982 (Blythe Energy)\ssri/2023-15t-Semiannual\3-1_Site_Location_Map.mxd




1/9/2024 Printed by: USJW 720210 Y:\\B11160982 (Blythe Energy)\esri\2023-1st-Semiannual\3-2_Site_Topography.mxd


# SECOND SEMI-ANNUAL 2023 MONITORING REPORT


SECTION 4 QUARTERLY POTENTIOMETRIC SURFACE MAPS





Date: 1/9/2024 Printed by: USJW7 20210 Path: Y:NB11160982 (Blythe Energy)\esri\2023-1st-Semiannual\4-2_Potentiometric_June-2023.mxd





# SECOND SEMI-ANNUAL 2023 MONITORING REPORT

SECTION 5 ANALYTICAL SUMMARY TABLES

### ****\|)

### TABLE 5-1 SUMMARY OF SECOND SEMI-ANNUAL 2023 WEST EVAPORATION POND WATER LABORATORY ANALYTICAL RESULTS

Laboratory Analyte	Method	Detection Limit (mg/L)	Result (mg/L)
Antimony	EPA 200.7	2.5	ND
Arsenic	EPA 200.7	2.5	ND
Barium	EPA 200.7	0.25	ND
Cadmium	EPA 200.7	0.25	ND
Total Chromium	EPA 200.7	1.3	ND
Cobalt	EPA 200.7	1.3	ND
Copper	EPA 200.7	1.3	ND
Lead	EPA 200.7	1.3	ND
Mercury	EPA 245.1	0.00020	ND
Nickel	EPA 200.7	1.3	ND
Selenium	EPA 200.7	1.0	ND
Zinc	EPA 200.7	6.3	ND
Sulfate	EPA 300.0	1,000	14,000
Chloride	EPA 300.0	2,000	110,000
Total Dissolved Solids	SM2540C	2,000	220,000
Specific Conductance	SM2510B	1.0 µmhos/cm	180,000
рН	SM4500-H,B	0.100 pH units	NA

Parameters (Field)	Units	Value
Water Temperature	Degrees Celsius	18.4
рН	pH Units	7.83
Specific Conductance	ms/cm	>20.00

Water sample collected on December 6, 2023, from the West Pond. The East Pond was dry.

### Notes:

mg/L = milligrams per liter

ND = Not detected at method detection limit indicated

ms/cm = Millisiemens per centimeter

µmhos/cm = Micromhos per centimeter

NA = Not Available

# ****\|)

### TABLE 5-2 SUMMARY OF GROUNDWATER ANAYLTICAL RESULTS FIRST QUARTER 2023

Analyte	EPA Method	Reporting	MW-1	MW-2	MW-3	MW-4	DUP
Analyte	EPA Method	Limit (mg/L)*	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Chloride	300.0	10	170	130	150	320	150
Sulfate	300.0	10	440	380	410	390	400
Selenium	200.7	0.10	ND	ND	ND	ND	ND
Total Dissolved Solids	SM2540C	10	1,300	1,100	1,200	1,300	1,200
Specific Conductance							
(umhos/cm)	SM2510B	1.0	2,000	1,800	1,800	2,200	1,800

Field Parameters	Units	MW-1	MW-2	MW-3	MW-4	DUP
Static Water Level	Feet Below Measuring Point	88.80	89.40	89.95	93.60	NA
Stabilized pH	pH Units	6.95	7.64	6.55	7.03	NA
Stabilized Water Temperature	Degrees Celsius	30.4	30.5	25.4	32.6	NA

Groundwater samples collected on March 12, 2023.

Notes:

mg/L = milligrams per liter

NA = Not applicable

ND = Not detected

- Dup = Duplicate sample of MW-3 * = Except where poted on labor
  - = Except where noted on laboratory analytical data sheets

### TABLE 5-2 (Cont.) SUMMARY OF GROUNDWATER ANAYLTICAL RESULTS SECOND QUARTER 2023

Angluán		Reporting	MW-1	MW-2	MW-3	MW-4	DUP
Analyte	EPA Method	Limit (mg/L)*	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Chloride	300.0	10	200	130	150	330	130
Sulfate	300.0	10	410	380	390	370	380
Selenium	200.7	0.10	ND	ND	ND	ND	ND
Total Dissolved Solids	SM2540C	20	1,200	1,100	1,300	1,300	1,100
Specific Conductance							
(umhos/cm)	SM2510B	1.0	2,000	1,700	1,800	2,100	1,700

Field Parameters	Units	MW-1	MW-2	MW-3	MW-4	DUP
Static Water Level	Feet Below Measuring Point	88.15	88.90	89.55	93.10	NA
Stabilized pH	pH Units	7.06	6.92	6.64	7.13	NA
Stabilized Water Temperature	Degrees Celsius	30.5	30.2	25.0	32.2	NA

Groundwater samples collected on June 7, 2023.

- mg/L = milligrams per liter
- NA = Not applicable
- ND = Not detected
- Dup = Duplicate sample of MW-2
- * = Except where noted on laboratory analytical data sheets

### TABLE 5-2 (Cont.) SUMMARY OF GROUNDWATER ANALYTICAL RESULTS THIRD QUARTER 2023

Analyte	EPA Method	Reporting	MW-1	MW-2	MW-3	MW-4	DUP
Analyte		Limit (mg/L)*	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Chloride	300.0	10	180	130	160	330	130
Sulfate	300.0	10	470	410	450	360	420
Selenium	200.7	0.10	ND	ND	ND	ND	ND
Total Dissolved Solids	SM2540C	20	1300	1100	1300	1200	1200
Specific Conductance							
(umhos/cm)	SM2510B	1.0	2000	1700	1900	2000	1700

Field Parameters	Units	MW-1	MW-2	MW-3	MW-4	DUP
Static Water Level	Feet Below Measuring Point	89.05	89.5	90.05	94.05	NA
Stabilized pH	pH Units	7.13	7.06	6.51	7.23	NA
Stabilized Water Temperature	Degrees Celsius	30.5	30.1	23.9	32.8	NA

Groundwater samples collected on September 26, 2023.

- mg/L = milligrams per liter
- NA = Not applicable
- ND = Not detected
- Dup = Duplicate sample of MW-2
- * = Except where noted on laboratory analytical data sheets

### TABLE 5-2 (Cont.) SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FOURTH QUARTER 2023

Analyte	EPA Method	Reporting Limit (mg/L)*	MW-1	MW-2	MW-3	MW-4	DUP (mg/l.)
		Linit (ing/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Chloride	300.0	10	200	130	150	290	130
Sulfate	300.0	10	430	390	430	320	400
Selenium	200.7	0.020	ND	ND	ND	ND	ND
Total Dissolved Solids	SM2540C	10-20	1300	1100	1300	1200	1100
Specific Conductance							
(umhos/cm)	SM2510B	1.0	1900	1700	1800	2000	1900

Field Parameters	Units	MW-1	MW-2	MW-3	MW-4	DUP
Static Water Level	Feet Below Measuring Point	88.90	89.40	89.95	93.72	NA
Stabilized pH	pH Units	7.18	7.01	6.69	7.29	NA
Stabilized Water Temperature	Degrees Celsius	30.5	30.5	25.1	31.2	NA

Groundwater samples collected on December 6, 2023.

Notes:

- mg/L = milligrams per liter
- NA = Not applicable

ND = Not detected

- DUP = Duplicate sample of MW-2
  - = Except where noted on laboratory analytical data sheets

### SECOND SEMI-ANNUAL 2023 MONITORING REPORT

SECTION 6 STATISTICAL ANALYSIS

### ****\|)

### STATISTICAL ANALYSIS - SECOND SEMI-ANNUAL 2023 MONITORING

Statistical analysis is used as an additional method for the detection of leakage from the surface impoundments. The statistical methods used for this program are those specified in the RWQCB Waste Discharge Requirements (WDR) and Monitoring and Reporting Programs (MRPs) of Order Number R7-2002-0012. Statistical analysis of groundwater quality data is based on intra-well rather than inter-well comparisons. The following section presents the technical approach and results of the statistical analysis for the Second Semi-Annual 2023 sampling event and the intra-well statistical analysis.

### APPROACH AND RESULTS

The Upper Tolerance Limit (UTL) is recalculated for each well based on historical data. Concentrations from subsequent quarterly groundwater samples collected from each well are compared to the corresponding UTLs. An UTL was calculated for each of the four groundwater monitoring wells sampled during the third and fourth quarters of 2023. Calculations of UTLs are presented in Table 6-1.

As shown in Table 6-2, there was an UTL exceedance for chloride in the water sample collected from well MW-4 during the third quarter 2023 sampling event, but was not exceeded for chloride during the fourth quarter sampling event. Based on evaluation of the raw data, the UTL exceedance was determined not to be caused by rounding of the laboratory results. The higher chloride concentration reported at MW-4 during the third quarter 2023 is consistent with those reported in the first and second quarter 2023 sample results.

As described in the first semi-annual 2023 monitoring report, the quarterly groundwater elevation and flow interpretations since first quarter have shown groundwater flow ranging from north to south to northwest to southeast beneath the site, with MW-4 as generally the most upgradient-most well at the site during that time. As such, it is likely that the higher reported concentrations recently observed at MW-4 are attributed to groundwater movement from areas north to northwest of the site flowing onto (beneath) the site and not attributed to operations at the facility. Based on the foregoing, the groundwater concentrations at MW-4 wells will continue to be evaluated and reassessed during the next quarterly groundwater sampling event.

### Table 6-1: Calculation for Mean and Standard Deviation (Total Dissolved Solids)

Table 6-1: Calculation for Mean and Sta												NAVA			
	<u>MN</u>			_	<u>MW</u>			_	<u>MW</u>			_	<u>MN</u>		
Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)
0	3Q-02	1170	7.0648	0	3Q-02	1180	7.0733	0	3Q-02	1120	7.0211				
270	2Q-03	1160	7.0562	270	2Q-03	1050	6.9565	270	2Q-03	947	6.8533				
450	1Q-04	1100	7.0031	450	1Q-04	1000	6.9078	450	1Q-04	1000	6.9078				
540	2Q-04	1200	7.0901	540	2Q-04	960	6.8669	540	2Q-04	1100	7.0031				
630	3Q-04	1100	7.0031	630	3Q-04	1000	6.9078	630	3Q-04	1000	6.9078				
720	4Q-04	1100	7.0031	720	4Q-04	1000	6.9078	720	4Q-04	1100	7.0031				
810	1Q-05	1100	7.0031	810	1Q-05	1100	7.0031	810	1Q-05	1100	7.0031				
900	2Q-05	1170	7.0648	900	2Q-05	1090	6.9939	900	2Q-05	1080	6.9847				
990	3Q-05	1080	6.9847	990	3Q-05	985	6.8926	990	3Q-05	1000	6.9078				
1080	4Q-05	1100	7.0031	1080	4Q-05	1000	6.9078	1080	4Q-05	1200	7.0901				
1170	1Q-06	1070	6.9754	1170	1Q-06	999	6.9068	1170	1Q-06	1040	6.9470				
1260	2Q-06	1100	7.0031	1260	2Q-06	1000	6.9078	1260	2Q-06	1100	7.0031				
1350	3Q-06	1100	7.0031	1350	3Q-06	1100	7.0031	1350	3Q-06	1100	7.0031				
1440	4Q-06	1100	7.0031	1440	4Q-06	1000	6.9078	1440	4Q-06	1100	7.0031				
1530	1Q-07	1100	7.0031	1530	1Q-07	1000	6.9078	1530	1Q-07	1100	7.0031				
1620	2Q-07	1100	7.0031	1620	2Q-07	1100	7.0031	1620	2Q-07	1200	7.0901				
	RA-07	1200	7.0901		RA-07	1100	7.0031		RA-07	1200	7.0901				
1710	3Q-07	1100	7.0031	1710	3Q-07	1100	7.0031	1710	3Q-07	1100	7.0031				
1800	4Q-07	1200	7.0901	1800	4Q-07	1100	7.0031	1800	4Q-07	1500	7.3132				
1867	12/7/2007	1200	7.0901	1867	12/7/2007	1100	7.0031	1867	12/7/2007	1400	7.2442				
1890	1Q-08	1200	7.0901	1890	1Q-08	1100	7.0031	1890	1Q-08	1300	7.1701				
1966	2Q-08	1200	7.0901	1966	2Q-08	1100	7.0031	1099	2Q-08	1700	7.4384				
2068	3Q-08	1100	7.0031	2068	3Q-08	1100	7.0031	2068	3Q-08	1600	7.3778				
2178	4Q-08	1100	7.0031	2178	4Q-08	1100	7.0031	2178	4Q-08	1400	7.2442				
2349	1Q-09	1100	7.0031	2349	1Q-09	1100	7.0031	2349	1Q-09	1200	7.0901				
2473	2Q-09	1200	7.0901	2473	2Q-09	1100	7.0031	2473	2Q-09	1100	7.0031				
2571	3Q-09	1100	7.0031	2571	3Q-09	1100	7.0031	2571	3Q-09	1400	7.2442	0	3Q-09	1200	7.0901
								2605	10/30/09	1300	7.1701	34	10/30/09	1100	7.0031
2652	4Q-09	1200	7.0901	2652	4Q-09	1100	7.0031	2652	4Q-09	1500	7.3132	81	4Q-09	1200	7.0901
2718	1Q-10	1200	7.0901	2718	1Q-10	1100	7.0031	2718	1Q-10	1800	7.4955	116	1Q-10	1200	7.0901
								2753	4/2/2010	1800	7.4955				
2800	2Q-10	1200	7.0901	2800	2Q-10	1100	7.0031	2800	2Q-10	2300	7.7407	198	2Q-10	1200	7.0901
2828	6/18/2010	1200	7.0901	2828	6/18/2010	1100	7.0031	2828	6/18/2010	2400	7.7832	226	6/18/2010	1200	7.0901
2895	3Q-10	1100	7.0031	2895	3Q-10	1100	7.0031	2895	3Q-10	2500	7.8240	293	3Q-10	1100	7.0031
								2922	9/20/2010R	2200	7.6962				
3014	4Q-10	1200	7.0901	3014	4Q-10	1100	7.0031	3014	4Q-10	1500	7.3132	412	4Q-10	1200	7.0901
3086	1Q-11	1200	7.0901	3086	1Q-11	1100	7.0031	3086	1Q-11	1600	7.3778	576	1Q-11	1200	7.0901
3179	2Q-11	1100	7.0031	3179	2Q-11	1100	7.0031	3179	2Q-11	1800	7.4955	669	2Q-11	1100	7.0031
3286	3Q-11	1200	7.0901	3286	3Q-11	1100	7.0031	3286	3Q-11	1500	7.3132	776	3Q-11	1100	7.0031
3372	4Q-11	1200	7.0901	3372	4Q-11	1100	7.0031	3372	4Q-11	1400	7.2442	862	4Q-11	1200	7.0901
3472	1Q-12	1200	7.0901	3472	1Q-12	1100	7.0031	3472	1Q-12	1500	7.3132	962	1Q-12	1100	7.0031
0112	102.12	1200	7.0001	0112		1100	1.0001	0112		1000	1.0102	002	192,12	1100	1.0001

****\}

### Table 6-1: Calculation for Mean and Standard Deviation (Total Dissolved Solids)

	B.#\A			Table 6-1: Calculation for Mean and Standard Deviation (Total Dissolved Solids)         MW2       MW3							
	<u>MW</u>							(		<u>N3</u>	
Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)
3572	2Q-12	1100	7.0031	3572	2Q-12	1100	7.0031	3572	2Q-12	1400	7.2442
3638	3Q-12	1200	7.0901	3638	3Q-12	1100	7.0031	3638	3Q-12	1200	7.0901
3741	4Q-12	1200	7.0901	3741	4Q-12	1100	7.0031	3741	4Q-12	1100	7.0031
3840	1Q-13	1100	7.0031	3840	1Q-13	1000	6.9078	3840	1Q-13	1100	7.0031
3904	2Q-13	1200	7.0901	3904	2Q-13	1100	7.0031	3904	2Q-13	1200	7.0901
4013	3Q-13	1200	7.0901	4013	3Q-13	1100	7.0031	4013	3Q-13	1000	6.9078
4088	4Q-13	1200	7.0901	4088	4Q-13	1100	7.0031	4088	4Q-13	1100	7.0031
4202	1Q-14	1200	7.0901	4202	1Q-14	1100	7.0031	4202	1Q-14	1100	7.0031
4316	2Q-14	1200	7.0901	4316	2Q-14	1100	7.0031	4316	2Q-14	1100	7.0031
4395	3Q-14	1200	7.0901	4395	3Q-14	1100	7.0031	4395	3Q-14	1100	7.0031
4472	4Q-14	1200	7.0901	4472	4Q-14	1100	7.0031	4472	4Q-14	1000	6.9078
4579	1Q-15	1200	7.0901	4579	1Q-15	1100	7.0031	4579	1Q-15	970	6.8773
4765	2Q-15	1200	7.0901	4765	2Q-15	1100	7.0031	4765	2Q-15	1000	6.9078
4848	3Q-15	1300	7.1701	4848	3Q-15	1100	7.0031	4848	3Q-15	1000	6.9078
4938	4Q-15	1200	7.0901	4938	4Q-15	1100	7.0031	4938	4Q-15	1000	6.9078
5055	1Q-16	1200	7.0901	5055	1Q-16	1100	7.0031	5055	1Q-16	1000	6.9078
5122	2Q-16	1200	7.0901	5122	2Q-16	1100	7.0031	5122	2Q-16	1000	6.9078
5213	3Q-16	1300	7.1701	5213	3Q-16	1100	7.0031	5213	3Q-16	1000	6.9078
5305	4Q-16	1100	7.0031	5305	4Q-16	1100	7.0031	5305	4Q-16	920	6.8244
5397	1Q-17	1300	7.1701	5397	1Q-17	1100	7.0031	5397	1Q-17	980	6.8876
5487	2Q-17	1200	7.0901	5487	2Q-17	1100	7.0031	5487	2Q-17	1000	6.9078
5563	3Q-17	1200	7.0901	5563	3Q-17	1100	7.0031	5563	3Q-17	970	6.8773
5672	4Q-17	1300	7.1701	5672	4Q-17	1100	7.0031	5672	4Q-17	950	6.8565
5782	1Q-18	1200	7.0901	5782	1Q-18	1100	7.0031	5782	1Q-18	1100	7.0031
5850	2Q-18	1200	7.0901	5850	2Q-18	1100	7.0031	5850	2Q-18	1100	7.0031
5960	3Q-18	1300	7.1701	5960	3Q-18	1100	7.0031	5960	3Q-18	1100	7.0031
6007	10/30/2018	1200	7.0901								
6041	4Q-18	1200	7.0901	6041	4Q-18	1100	7.0031	6041	4Q-18	1100	7.0031
6136	1Q-19	1200	7.0901	6135	1Q-19	1100	7.0031	6135	1Q-19	1200	7.0901
6233	2Q-19	1200	7.0901	6233	2Q-19	1100	7.0031	6233	2Q-19	1100	7.0031
6330	3Q-19	1300	7.1701	6330	3Q-19	1100	7.0031	6330	3Q-19	1100	7.0031
6311	4Q-19	1300	7.1701	6311	4Q-19	1100	7.0031	6311	4Q-19	1200	7.0901
6417	1Q-20	1200	7.0901	6417	1Q-20	1100	7.0031	6417	1Q-20	1300	7.1701
6494	2Q-20	1300	7.1701	6494	2Q-20	1100	7.0031	6494	2Q-20	1300	7.1701
6606	3Q-20	1300	7.1701	6606	3Q-20	1200	7.0901	6606	3Q-20	1300	7.1701
6678	4Q-20	1200	7.0901	6678	4Q-20	1200	7.0901	6678	4Q-20	1300	7.1701
6769	1Q-21	1200	7.0901	6769	1Q-21	1100	7.0031	6769	1Q-21	1200	7.0901
6851	2Q-21	1300	7.1701	6851	2Q-21	1100	7.0031	6851	2Q-21	1200	7.0901
7033	3Q-21	1300	7.1701	7033	3Q-21	1100	7.0031	7033	3Q-21	1000	6.9078
7131	4Q-21	1100	7.0031	7131	4Q-21	1000	6.9078	7131	4Q-21	1100	7.0031
7223	1Q-22	1200	7.0901	7223	1Q-22	1100	7.0031	7223	1Q-22	1100	7.0031
6769 6851 7033 7131	1Q-21 2Q-21 3Q-21 4Q-21	1200 1300 1300 1100	7.0901 7.1701 7.1701 7.0031	6769 6851 7033 7131	1Q-21 2Q-21 3Q-21 4Q-21	1100 1100 1100 1000	7.0031 7.0031 7.0031 6.9078	6769 6851 7033 7131	1Q-21 2Q-21 3Q-21 4Q-21	1200 1200 1000 1100	7.0901 7.0901 6.9078 7.0031

### ****\}

	M	V4	
Days	Date	TDS	In(TDS)
1062	2Q-12	1100	7.0031
1128	3Q-12	1100	7.0031
1231	4Q-12	1100	7.0031
1330	1Q-13	1000	6.9078
1394	2Q-13	1100	7.0031
1507	3Q-13	1100	7.0031
1583	4Q-13	1100	7.0031
1697	1Q-14	1100	7.0031
1811	2Q-14	1100	7.0031
1890	3Q-14	1100	7.0031
1967	4Q-14	1100	7.0031
2074	1Q-15	1000	6.9078
2260	2Q-15	1100	7.0031
2343	3Q-15	1100	7.0031
2433	4Q-15	1100	7.0031
2550	1Q-16	1100	7.0031
2617	2Q-16	1100	7.0031
2708	3Q-16	1100	7.0031
2800	4Q-16	1100	7.0031
2892	1Q-17	1100	7.0031
2982	2Q-17	1100	7.0031
3058	3Q-17	1200	7.0901
3167	4Q-17	1200	7.0901
3277	1Q-18	1200	7.0901
3345	2Q-18	1200	7.0901
3455	3Q-18	1100	7.0031
0500	10.40	4400	7 0004
3536	4Q-18	1100	7.0031
3631	1Q-19	1000	6.9078
3728	2Q-19	1100	7.0031
3825	3Q-19	1100	7.0031
3806	4Q-19	1100	7.0031
3912	1Q-20	1100	7.0031
3989	2Q-20	1100	7.0031
4101	3Q-20	1200	7.0901
4173	4Q-20	1100	7.0031
4264	1Q-21	980	6.8876
4346	2Q-21	1100	7.0031
4528	3Q-21	1100	7.0031
4626	4Q-21	990	6.8977
4718	1Q-22	1100	7.0031

### Table 6-1: Calculation for Mean and Standard Deviation (Total Dissolved Solids)

						1: Calculation for	mean and St	andard Devlatio							
		<u>W1</u>				<u>1W2</u>			·	<u>1W3</u>				<u>IW4</u>	
Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)	Days	Date	TDS	In(TDS)
7298	2Q-22	1200	7.0901	7298	2Q-22	1100	7.0031	7298	2Q-22	1100	7.0031	4793	2Q-22	1100	7.0031
7388	3Q-22	1300	7.1701	7388	3Q-22	1100	7.0031	7388	3Q-22	1200	7.0901	4883	3Q-22	1100	7.0031
7480	4Q-22	1300	7.1701	7480	4Q-22	1200	7.0901	7480	4Q-22	1300	7.1701	4975	4Q-22	1400	7.2442
7582	1Q-23	1300	7.1701	7582	1Q-23	1100	7.0031	7582	1Q-23	1200	7.0901	5077	1Q-23	1300	7.1701
7670	2Q-23	1200	7.0901	7670	2Q-23	1100	7.0031	7670	2Q-23	1300	7.1701	5165	2Q-23	1300	7.1701
7785	3Q-23	1300	7.1701	7785	3Q-23	1100	7.0031	7785	3Q-23	1300	7.1701	5280	3Q-23	1200	7.0901
7877	4Q-23	1300	7.1701	7877	4Q-23	1100	7.0031	7877	4Q-23	1300	7.1701	5372	4Q-23	1200	7.0901
Standard Dev	viation =	67.8424	0.0566	Standard Devia	ation =	39.4763	0.0418	Standard Devi	ation =	326.3482	0.2169	Standard Dev	iation =	74.7899	0.0623
Mean =		1187.3494	7.0779	Mean =		1088.5854	6.9918	Mean =		1247.9647	7.1034	Mean =		1127.8333	7.0212
n =		83	83	n =		82	82	n =		85	85	n =		60	57
(t{n-1, 0.95}) =	=	1.663	1.663	(t{n-1, 0.95}) =		1.664	1.664	(t{n-1, 0.95}) =	1	1.663	1.663	(t{n-1, 0.95}) =	=	1.671	1.671
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.009
$k = t(1 + 1/n)^{\frac{1}{2}}$	² =		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.674	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{\gamma}$	2 =		1.686
UTL = Mean +	+ St.Dev.*k =		7.1726	UTL = Mean +	St.Dev.*k =		7.0617	UTL = Mean +	St.Dev.*k =		7.4661	UTL = Mean ·	⊦ St.Dev.*k =		7.1262
Concentration	Significant?		No	Concentration	Significant?		No	Concentration	Significant?		No	Concentration	Significant?		Yes
Standard Dev	viation =	68.2813	0.0563	Standard Devia	ation =	44.3752	0.0415	Standard Devi	ation =	319.6070	0.2157	Standard Dev	iation =	74.8382	0.0648
Mean =		1190.1163	7.0780	Mean =		1088.9882	6.9919	Mean =		1248.5698	7.1042	Mean =		1125.3448	7.0237
n =		84	84	n =		83	83	n =		86	86	n =		58	58
(t{n-1, 0.95}) =	=	1.663	1.663	(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95}) =	:	1.663	1.663	(t{n-1, 0.95}) :	=	1.672	1.672
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.009
$k = t(1 + 1/n)^{\frac{1}{2}}$	² =		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{3}$	² =		1.686
UTL = Mean +	+ St.Dev.*k =		7.1722	UTL = Mean +	St.Dev.*k =		7.0614	UTL = Mean +	St.Dev.*k =		7.4649	UTL = Mean ·	⊦ St.Dev.*k =		7.1330
Concentration	n Significant?		No	Concentration	Significant?		No	Concentration	Significant?		No	Concentration	Significant?		Yes
Standard Dev	viation =	67.6196	0.0569	Standard Devia	ation =	44.1242	0.0413	Standard Devi	ation =	317.7912	0.2146	Standard Dev	iation =	74.8242	0.0648
Mean =		1188.8235	7.0791	Mean =		1088.8571	6.9921	Mean =		1249.1609	7.1049	Mean =		1126.6102	7.0249
n =		85	85	n =		84	84	n =		87	87	n =		59	59
(t{n-1, 0.95}) =	=	1.663	1.663	(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95}) =	:	1.663	1.663	(t{n-1, 0.95}) :	=	1.671	1.671
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.008
$k = t(1 + 1/n)^{\frac{1}{2}}$	² =		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{\gamma}$	2 =		1.685
UTL = Mean +	+ St.Dev.*k =		7.1742	UTL = Mean +	St.Dev.*k =		7.0611	UTL = Mean +	St.Dev.*k =		7.4638	UTL = Mean -	⊦ St.Dev.*k =		7.1341
Concentration	n Significant?		No	Concentration	Significant?		No	Concentration	Significant?		No	Concentration	Significant?		No
Standard Dev		68.2813	0.0574	Standard Devia	ation =	43.8774	0.0411	Standard Devi	ation =	316.0060	0.2134	Standard Dev	iation =	74.7899	0.0648
Mean =		1190.1163	7.0802	Mean =		1088.9882	6.9922	Mean =		1249.7386	7.1057	Mean =		1127.8333	7.0260
n =		86	86	n =		85	85	n =		88	88	n =		60	60
(t{n-1, 0.95}) =	=	1.663	1.663	(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95}) =	:	1.662	1.662	(t{n-1, 0.95}) :	=	1.671	1.671
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.008
$k = t(1 + 1/n)^{\frac{1}{2}}$	² =		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.671	$k = t(1 + 1/n)^{1/2}$	2 =		1.685
UTL = Mean +			7.1761	UTL = Mean +			7.0609	UTL = Mean +			7.4624	UTL = Mean -			7.1351
Concentration			No	Concentration			No	Concentration			No	Concentration			No

### ********])

					Table 6	6-1 (Cont.): Ca	Iculation for Me	ean and Stan	dard Deviation (Sulfa	ite)					
	<u>MW</u>	<u>1</u>			<u>MW</u>	<u>2</u>			<u>MW3</u>	<u>}</u>			<u>MW</u>	<u>4</u>	
Days	Date	SO4	In(SO₄)	Days	Date	SO4	In(SO₄)	Days	Date	SO4	In(SO₄)	Days	Date	SO4	In(SO₄)
0	3Q-02	348	5.8522	0	3Q-02	419	6.0379	0	3Q-02	403	5.9989				
270	2Q-03	409	6.0137	270	2Q-03	427	6.0568	270	2Q-03	404	6.0014				
450	1Q-04	370	5.9135	450	1Q-04	360	5.8861	450	1Q-04	340	5.8289				
540	2Q-04	330	5.7991	540	2Q-04	340	5.8289	540	2Q-04	330	5.7991				
630	3Q-04	360	5.8861	630	3Q-04	360	5.8861	630	3Q-04	350	5.8579				
720	4Q-04	380	5.9402	720	4Q-04	370	5.9135	720	4Q-04	380	5.9402				
810	1Q-05	350	5.8579	810	1Q-05	360	5.8861	810	1Q-05	340	5.8289				
900	2Q-05	326	5.7869	900	2Q-05	331	5.8021	900	2Q-05	303	5.7137				
990	3Q-05	451	6.1115	990	3Q-05	450	6.1092	990	3Q-05	440	6.0868				
1080	4Q-05	360	5.8861	1080	4Q-05	360	5.8861	1080	4Q-05	330	5.7991				
1170	1Q-06	379	5.9375	1170	1Q-06	369	5.9108	1170	1Q-06	358	5.8805				
1260	2Q-06	390	5.9661	1260	2Q-06	370	5.9135	1260	2Q-06	370	5.9135				
1350	3Q-06	370	5.9135	1350	3Q-06	400	5.9915	1350	3Q-06	380	5.9402				
1440	4Q-06	370	5.9135	1440	4Q-06	380	5.9402	1440	4Q-06	380	5.9402				
1530	1Q-07	380	5.9402	1530	1Q-07	380	5.9402	1530	1Q-07	360	5.8861				
1620	2Q-07	460	6.1312	1620	2Q-07	470	6.1527	1620	2Q-07	450	6.1092				
	RA-07	385	5.9532		RA-07	365	5.8999		RA-07	360	5.8861				
1710	3Q-07	370	5.9135	1710	3Q-07	380	5.9402	1710	3Q-07	380	5.9402				
1800	4Q-07	360	5.8861	1800	4Q-07	360	5.8861	1800	4Q-07	420	6.0403				
1867	12/7/2007	380	5.9402	1867	12/7/2007	360	5.8861	1867	12/7/2007	385	5.9532				
1890	1Q-08	380	5.9402	1890	1Q-08	380	5.9402	1890	1Q-08	390	5.9661				
1966	2Q-08	380	5.9402	1966	2Q-08	370	5.9135	1966	2Q-08	480	6.1738				
2068	3Q-08	390	5.9661	2068	3Q-08	400	5.9915	2068	3Q-08	480	6.1738				
2178	4Q-08	400	5.9915	2178	4Q-08	410	6.0162	2178	4Q-08	460	6.1312				
2349	1Q-09	380	5.9402	2349	1Q-09	390	5.9661	2349	1Q-09	360	5.8861				
2473	2Q-09	390	5.9661	2473	2Q-09	390	5.9661	2473	2Q-09	340	5.8289				
2571	3Q-09	370	5.9135	2571	3Q-09	350	5.8579	2571	3Q-09	560	6.3279	0	3Q-09	380	5.9402
								2618	10/30/09	430	6.0638	34	10/30/09	350	5.8579
2652	4Q-09	370	5.9135	2652	4Q-09	380	5.9402	2652	4Q-09	500	6.2146	81	4Q-09	350	5.8579
2718	1Q-10	370	5.9135	2718	1Q-10	400	5.9915	2718	1Q-10	610	6.4135	116	1Q-10	370	5.9135
								2753	4/2/2010	620	6.4297				
2800	2Q-10	390	5.9661	2800	2Q-10	420	6.0403	2800	2Q-10	620	6.4297	198	2Q-10	380	5.9402
2828	6/18/2010	330	5.7991	2828	6/18/2010	360	5.8861	2828	6/18/2010	690	6.5367	226	6/18/2010	340	5.8289
2895	3Q-10	380	5.9402	2895	3Q-10	370	5.9135	2895	3Q-10	700	6.5511	293	3Q-10	370	5.9135
								2922	9/20/2010R	750	6.6201				
3014	4Q-10	340	5.8289	3014	4Q-10	380	5.9402	3014	4Q-10	510	6.2344	412	4Q-10	380	5.9402
3086	1Q-11	360	5.8861	3086	1Q-11	370	5.9135	3086	1Q-11	490	6.1944	576	1Q-11	340	5.8289
3179	2Q-11	400	5.9915	3179	2Q-11	410	6.0162	3179	2Q-11	640	6.4615	669	2Q-11	370	5.9135
3286	3Q-11	380	5.9402	3286	3Q-11	410	6.0162	3286	3Q-11	510	6.2344	776	3Q-11	360	5.8861
3372	4Q-11	390	5.9661	3372	4Q-11	410	6.0162	3372	4Q-11	500	6.2146	862	4Q-11	370	5.9135

## **\\\$**])

					Table	6-1 (Cont.): Ca	Iculation for Me	ean and Stand	ard Deviation (Sul	fate)	
	<u>MW</u> 1	<u>1</u>			MV	<u>V2</u>			MM	<u>13</u>	
Days	Date	_ SO₄	In(SO₄)	Days	Date	SO4	In(SO₄)	Days	Date	SO4	In(SO₄)
3472	1Q-12	340	5.8289	3472	1Q-12	360	5.8861	3472	1Q-12	510	6.2344
3572	2Q-12	500	6.2146	3572	2Q-12	420	6.0403	3572	2Q-12	480	6.1738
3638	3Q-12	380	5.9402	3638	3Q-12	400	5.9915	3638	3Q-12	420	6.0403
3741	4Q-12	410	6.0162	3741	4Q-12	420	6.0403	3741	4Q-12	390	5.9661
3840	1Q-13	400	5.9915	3840	1Q-13	410	6.0162	3840	1Q-13	370	5.9135
3904	2Q-13	380	5.9402	3904	2Q-13	390	5.9661	3904	2Q-13	350	5.8579
4013	3Q-13	390	5.9661	4013	3Q-13	420	6.0403	4013	3Q-13	330	5.7991
4088	4Q-13	420	6.0403	4088	4Q-13	410	6.0162	4088	4Q-13	340	5.8289
4202	1Q-14	420	6.0403	4202	1Q-14	440	6.0868	4202	1Q-14	450	6.1092
4316	2Q-14	410	6.0162	4316	2Q-14	480	6.1738	4316	2Q-14	400	5.9915
4395	3Q-14	440	6.0868	4395	3Q-14	410	6.0162	4395	3Q-14	370	5.9135
4472	4Q-14	340	5.8289	4472	4Q-14	360	5.8861	4472	4Q-14	290	5.6699
4579	1Q-15	390	5.9661	4579	1Q-15	360	5.8861	4579	1Q-15	290	5.6699
4765	2Q-15	370	5.9135	4765	2Q-15	360	5.8861	4765	2Q-15	280	5.6348
4848	3Q-15	430	6.0638	4848	3Q-15	410	6.0162	4848	3Q-15	330	5.7991
4938	4Q-15	410	6.0162	4938	4Q-15	410	6.0162	4938	4Q-15	330	5.7991
5055	1Q-16	370	5.9135	5055	1Q-16	380	5.9402	5055	1Q-16	340	5.8289
5122	2Q-16	390	5.9661	5122	2Q-16	420	6.0403	5122	2Q-16	330	5.7991
5213	3Q-16	420	6.0403	5213	3Q-16	390	5.9661	5213	3Q-16	300	5.7038
5305	4Q-16	400	5.9915	5305	4Q-16	420	6.0403	5305	4Q-16	330	5.7991
5397	1Q-17	450	6.1092	5397	1Q-17	400	5.9915	5397	1Q-17	310	5.7366
5487	2Q-17	440	6.0868	5487	2Q-17	400	5.9915	5487	2Q-17	330	5.7991
5563	3Q-17	430	6.0638	5563	3Q-17	400	5.9915	5563	3Q-17	310	5.7366
5672	4Q-17	400	5.9915	5672	4Q-17	380	5.9402	5672	4Q-17	290	5.6699
5782	1Q-18	390	5.9661	5782	1Q-18	400	5.9915	5782	1Q-18	390	5.9661
5850	2Q-18	390	5.9661	5850	2Q-18	380	5.9402	5850	2Q-18	360	5.8861
5960	3Q-18	430	6.0638	5960	3Q-18	390	5.9661	5960	3Q-18	380	5.9402
6007	10/30/2018	410	6.0162								
6041	4Q-18	380	5.9402	6041	4Q-18	380	5.9402	6041	4Q-18	380	5.9402
6136	1Q-19	370	5.9135	6135	1Q-19	370	5.9135	6135	1Q-19	390	5.9661
6233	2Q-19	450	6.1092	6233	2Q-19	400	5.9915	6233	2Q-19	400	5.9915
6330	3Q-19	440	6.0868	6330	3Q-19	400	5.9915	6330	3Q-19	390	5.9661
6311	4Q-19	390	5.9661	6311	4Q-19	370	5.9135	6311	4Q-19	390	5.9661
6417	1Q-20	390	5.9661	6417	1Q-20	370	5.9135	6417	1Q-20	410	6.0162
6494	2Q-20	430	6.0638	6494	2Q-20	390	5.9661	6494	2Q-20	400	5.9915
6606	3Q-20	210	5.3471	6606	3Q-20	380	5.9402	6606	3Q-20	430	6.0638
6678	4Q-20	420	6.0403	6678	4Q-20	390	5.9661	6678	4Q-20	440	6.0868
6769	1Q-21	440	6.0868	6769	1Q-21	390	5.9661	6769	1Q-21	440	6.0868
6851	2Q-21	450	6.1092	6851	2Q-21	400	5.9915	6851	2Q-21	410	6.0162
7033	3Q-21	440	6.0868	7033	3Q-21	380	5.9402	7033	3Q-21	330	5.7991
7131	4Q-21	380	5.9402	7131	4Q-21	390	5.9661	7131	4Q-21	430	6.0638

### ****\|)

	<u>MV</u>	<u>V4</u>	
Days	Date	SO4	In(SO₄)
962	1Q-12	300	5.7038
1062	2Q-12	350	5.8579
1128	3Q-12	320	5.7683
1231	4Q-12	340	5.8289
1330	1Q-13	330	5.7991
1394	2Q-13	300	5.7038
1507	3Q-13	310	5.7366
1583	4Q-13	310	5.7366
1697	1Q-14	330	5.7991
1811	2Q-14	360	5.8861
1890	3Q-14	310	5.7366
1967	4Q-14	270	5.5984
2074	1Q-15	270	5.5984
2260	2Q-15	270	5.5984
2343	3Q-15	320	5.7683
2433	4Q-15	320	5.7683
2550	1Q-16	310	5.7366
2617	2Q-16	310	5.7366
2708	3Q-16	310	5.7366
2800	4Q-16	360	5.8861
2892	1Q-17	340	5.8289
2982	2Q-17	340	5.8289
3058	3Q-17	330	5.7991
3167	4Q-17	310	5.7366
3277	1Q-18	340	5.8289
3345	2Q-18	310	5.7366
3455	3Q-18	300	5.7038
3536	4Q-18	280	5.6348
3631	4Q-18 1Q-19	270	5.5984
3728	2Q-19	290	5.6699
3825	2Q-19 3Q-19	300	5.7038
3806	4Q-19	270	5.5984
3912	4Q-19 1Q-20	260	5.5904 5.5607
3989	2Q-20	280	5.6348
4101	2Q-20 3Q-20	280	5.6348 5.6348
4101	3Q-20 4Q-20	280	5.6348
4173	4Q-20 1Q-21	280	5.6348 5.6348
4264	2Q-21	280	5.6346 5.7038
4346	2Q-21 3Q-21	300 280	5.6348
4526		280	5.6348
4020	4Q-21	200	J.034ð

					Tabl	e 6-1 (Cont.): Cal	culation for M	lean and Standa	ard Deviation (Su	lfate)	
	<u>M</u>	<u>W1</u>			N	<u>1W2</u>			<u>M\</u>	<u>N3</u>	
Days	Date	SO4	In(SO₄)	Days	Date	SO4	In(SO₄)	Days	Date	SO4	In(SO₄)
7223	1Q-22	420	6.0403	7223	1Q-22	400	5.9915	7223	1Q-22	380	5.9402
7298	2Q-22	450	6.1092	7298	2Q-22	390	5.9661	7298	2Q-22	380	5.9402
7388	3Q-22	450	6.1092	7388	3Q-22	390	5.9661	7388	3Q-22	390	5.9661
7480	4Q-22	450	6.1092	7480	4Q-22	380	5.9402	7480	4Q-22	400	5.9915
7582	1Q-23	440	6.0868	7582	1Q-23	380	5.9402	7582	1Q-23	410	6.0162
7670	2Q-23	410	6.0162	7670	2Q-23	380	5.9402	7670	2Q-23	390	5.9661
7785	3Q-23	470	6.1527	7785	3Q-23	410	6.0162	7785	3Q-23	450	6.1092
7877	4Q-23	430	6.0638	7877	4Q-23	390	5.9661	7877	4Q-23	430	6.0638
Standard Devia	ation =	40.6208	0.1113	Standard Dev	viation =	25.5520	0.0663	Standard Devi	ation =	98.3681	0.2112
Mean =		395.2093	5.9699	Mean =		390.0122	5.9640	Mean =		410.6235	5.9942
n =		83	83	n =		82	82	n =		85	85
(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95})	=	1.664	1.664	(t{n-1, 0.95}) =	:	1.663	1.663
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006
$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	^{/2} =		1.674	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673
UTL = Mean +	St.Dev.*k =		6.1560	UTL = Mean	+ St.Dev.*k =		6.0750	UTL = Mean +	St.Dev.*k =		6.3474
Concentration	Significant?		No	Concentration	n Significant?		No	Concentration	Significant?		No
Standard Devia	ation =	40.0763	0.1107	Standard Dev	viation =	26.1925	0.0659	Standard Devi	ation =	95.8400	0.2099
Mean =		393.9048	5.9704	Mean =		389.8916	5.9637	Mean =		410.3837	5.9939
n =		84	84	n =		83	83	n =		86	86
(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95})	=	1.663	1.663	(t{n-1, 0.95}) =	:	1.663	1.663
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006
$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{3}$	^{/2} =		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673
UTL = Mean +	St.Dev.*k =		6.1556	UTL = Mean	+ St.Dev.*k =		6.0740	UTL = Mean +	· St.Dev.*k =		6.3450
Concentration	Significant?		No	Concentration	n Significant?		No	Concentration	Significant?		No
Standard Devia	ation =	40.6831	0.1118	Standard Dev	viation =	26.1266	0.0658	Standard Devi	ation =	95.3757	0.2091
Mean =		394.8000	5.9726	Mean =		390.1310	5.9643	Mean =		410.8391	5.9952
n =		85	85	n =		84	84	n =		87	87
(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95})	=	1.663	1.663	(t{n-1, 0.95}) =	:	1.663	1.663
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006
$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{3}$	¹ / ₂ =		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673
UTL = Mean +	St.Dev.*k =		6.1596	UTL = Mean	+ St.Dev.*k =		6.0744	UTL = Mean +	· St.Dev.*k =		6.3449
Concentration	Significant?		No	Concentration	n Significant?		No	Concentration	Significant?		No
Standard Devia	ation =	40.6208	0.1116	Standard Dev	viation =	25.9706	0.0654	Standard Devi	ation =	94.8480	0.2080
Mean =		395.2093	5.9736	Mean =		390.1294	5.9643	Mean =		411.0568	5.9960
n =		86	86	n =		85	85	n =		88	88
(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95})	=	1.663	1.663	(t{n-1, 0.95}) =	:	1.662	1.662
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006
$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{3}$	² =		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.671
UTL = Mean +	St.Dev.*k =		6.1603	UTL = Mean	+ St.Dev.*k =		6.0738	UTL = Mean +	St.Dev.*k =		6.3436
Concentration	Significant?		No	Concentration	n Significant?		No	Concentration	Significant?		No

### ****\}])

		<u>MW4</u>	
Days	Date	 SO₄	In(SO₄)
4718	1Q-22	300	5.7038
4793	2Q-22	290	5.6699
4883	3Q-22	310	5.7366
4975	4Q-22	380	5.9402
5077	1Q-23	390	5.9661
5165	2Q-23	370	5.9135
5280	3Q-23	360	5.8861
5372	4Q-23	320	5.7683
		05 0540	0.4445
Standard Devia	ation =	35.8512	0.1115
Mean =		321.6667	5.7628
n =		57	57
$(t\{n-1, 0.95\}) =$		1.672	1.672
$(1 + 1/n)^{\frac{1}{2}} =$			1.009
$k = t(1 + 1/n)^{\frac{1}{2}}$			1.687
UTL = Mean +			5.9508
Concentration	Significant?		Yes
Standard Devia	ation =	36.1134	0.1123
Mean =		321.0345	5.7653
n =		58	58
(t{n-1, 0.95}) =		1.672	1.672
(1 + 1/n) ^{1/2} =			1.009
$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.686
UTL = Mean +	St.Dev.*k =		5.9547
Concentration	Significant?		No
Standard Devia	ation =	36.1583	0.1124
Mean =		321.6949	5.7674
n =		59	59
(t{n-1, 0.95}) =		1.671	1.671
(1 + 1/n) ^{1/2} =			1.008
$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.685
UTL = Mean +	St.Dev.*k =		5.9568
Concentration	Significant?		No
Standard Devia	ation =	35.8512	0.1114
Mean =		321.6667	5.7674
n =		60	60
(t{n-1, 0.95}) =		1.671	1.671
(1 + 1/n) ^{1/2} =			1.008
$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.685
UTL = Mean +	St.Dev.*k =		5.9552
Concentration	Significant?		No

					Table 6-	1 (Cont.): Cale	culation for Mea	in and Stand	ard Deviation (Chlori	de)							
	<u>MW1</u>				<u>MW</u>	2			<u>MW3</u>				<u>MW4</u>	<u>4</u>	Cl In(Cl)		
Days	Date	CI	In(CI)	Days	Date	CI	In(CI)	Days	Date	CI	In(CI)	Days	Date		In(CI)		
0	3Q-02	294	5.6836	0	3Q-02	225	5.4161	0	3Q-02	202	5.3083						
270	2Q-03	272	5.6058	270	2Q-03	209	5.3423		2Q-03	117	4.7622						
450	1Q-04	200	5.2983	450	1Q-04	180	5.1930		1Q-04	110	4.7005						
540	2Q-04	220	5.3936	540	2Q-04	190	5.2470		2Q-04	120	4.7875						
630	3Q-04	200	5.2983	630	3Q-04	180	5.2470 5.1930 5.1930		3Q-04	120	4.7875						
720	4Q-04	210	5.3471	720	4Q-04	180	5.1930 $450$ $5.1930$ $540$ $5.1930$ $630$ $5.0626$ $720$ $5.3519$ $5.1930$ $5.2417$ $900$ $5.2470$ $108$ $5.2470$		4Q-04	210	5.3471						
810	1Q-05	230	5.4381	810	1Q-05	180	5.1930		1Q-05	130	4.8675						
900	2Q-05	182	5.2040	900	2Q-05	158	5.0626		2Q-05	109	4.6913						
990	3Q-05	255	5.5413	990	3Q-05	211	5.3519/20		3Q-05	156	5.0499						
1080	4Q-05	230	5.4381	1080	4Q-05	180	5.1930		4Q-05	130	4.8675						
1170	1Q-06	219	5.3891	1170	1Q-06	189	5.2417		1Q-06	149	5.0039						
1260	2Q-06	210	5.3471	1260	2Q-06	190	5.2470	า	2Q-06	160	5.0752						
1350	3Q-06	210	5.3471	1350	3Q-06	190	$0.2470_{117}$	า	3Q-06	180	5.1930						
1440	4Q-06	210	5.3471	1440	4Q-06	190	5.2470 _{1.26}	า	4Q-06	210	5.3471						
1530	1Q-07	230	5.4381	1530	1Q-07	190	5.2470 ₁₃₄	า	1Q-07	200	5.2983						
1620	2Q-07	210	5.3471	1620	2Q-07	210	5.3471 ₁₄	า	2Q-07	230	5.4381						
	RA-07	220	5.3936		RA-07	205	5.3230 ₁₅₃	า	RA-07	240	5.4806						
1710	3Q-07	250	5.5215		3Q-07	190	^{5.2470} 162	5 1	3Q-07	190	5.2470						
1800	4Q-07	230	5.4381	1800	4Q-07	180	5.1930		4Q-07	300	5.7038						
1867	12/7/2007	270	^{5.5984} 171	0 1867	12/7/2007	190	5.2470 ₁₇₁	ר 1867	12/7/2007	270	5.5984						
1890	1Q-08	250	5.5215	0	1Q-08	190	5.2470 ₁₈₀	5 1	1Q-08	280	5.6348						
1966	2Q-08	230	5.4381	1966	2Q-08	200	5.2983		2Q-08	350	5.8579						
2068	3Q-08	250	5.5215 ₁₈₉	2068	3Q-08	200	^{5.2983} 189	า	3Q-08	400	5.9915						
2178	4Q-08	240	5.4806	2178	4Q-08	180	5.1930 ₁₉₆	5	4Q-08	320	5.7683						
2349	1Q-09	230	5.4381	2349	1Q-09	190	5.2470206	2	1Q-09	230	5.4381						
2473	2Q-09	230	5.4381	2473	2Q-09	170	5.1358 ₂₁₇	3	2Q-09	220	5.3936						
2571	3Q-09	230	5.4381	2571	3Q-09	220	5.3936 ₂₃₄	2571 g	3Q-09	370	5.9135	0	3Q-09	270	5.5984		
							247	0040	10/30/09	220	5.3936	34	10/30/09	250	5.5215		
2652	4Q-09	220	5.3936	2652	4Q-09	170	5.1358	2652	4Q-09	250	5.5215	81	4Q-09	250	5.5215		
2718	1Q-10	230	5.4381	2718	1Q-10	170	5.1358	2718	1Q-10	360	5.8861	116	1Q-10	260	5.5607		
								2753	4/2/2010	400	5.9915						
2800	2Q-10	260	5.5607	2800	2Q-10	180	5.1930	2800	2Q-10	580	6.3630	198	2Q-10	280	5.6348		
2828	6/18/2010	250	5.5215	2828	6/18/2010	170	5.1358	2828	6/18/2010	660	6.4922	226	6/18/2010	250	5.5215		
2895	3Q-10	220	5.3936	2895	3Q-10	220	5.3936	2895	3Q-10	670	6.5073	293	3Q-10	260	5.5607		
								2922	9/20/2010R	460	6.1312						
3014	4Q-10	220	5.3936	3014	4Q-10	160	5.0752	3014	4Q-10	200	5.2983	412	4Q-10	260	5.5607		
3086	1Q-11	210	5.3471	3086	1Q-11	160	5.0752	3086	1Q-11	240	5.4806	576	1Q-11	250	5.5215		
3179	2Q-11	200	5.2983	3179	2Q-11	160	5.0752	3179	2Q-11	340	5.8289	669	2Q-11	260	5.5607		
3286	3Q-11	190	5.2470	3286	3Q-11	160	5.0752	3286	3Q-11	190	5.2470	776	3Q-11	250	5.5215		
3372	4Q-11	230	5.4381	3372	4Q-11	170	5.1358	3372	4Q-11	180	5.1930	862	4Q-11	270	5.5984		

### ****\|)

_					Table 6-	-1 (Cont.): Cald	culation for Me	an and Standa	rd Deviation (Chlo	ride)	
	MW1				MW	12			MW	3	
Days	Date	CI	In(CI)	Days	Date	CI	In(CI)	Days	Date	CI	In(CI)
3472	1Q-12	210	5.3471	3472	1Q-12	160	5.0752	3472	1Q-12	220	5.3936
3572	2Q-12	270	5.5984	3572	2Q-12	160	5.0752	3572	2Q-12	190	5.2470
3638	3Q-12	220	5.3936	3638	3Q-12	150	5.0106	3638	3Q-12	140	4.9416
3741	4Q-12	230	5.4381	3741	4Q-12	170	5.1358	3741	4Q-12	160	5.0752
3840	1Q-13	220	5.3936	3840	1Q-13	160	5.0752	3840	1Q-13	140	4.9416
3904	2Q-13	200	5.2983	3904	2Q-13	140	4.9416	3904	2Q-13	120	4.7875
4013	3Q-13	240	5.4806	4013	3Q-13	160	5.0752	4013	3Q-13	120	4.7875
4088	4Q-13	210	5.3471	4088	4Q-13	150	5.0106	4088	4Q-13	120	4.7875
4202	1Q-14	250	5.5215	4202	1Q-14	180	5.1930	4202	1Q-14	170	5.1358
4316	2Q-14	240	5.4806	4316	2Q-14	180	5.1930	4316	2Q-14	140	4.9416
4395	3Q-14	240	5.4806	4395	3Q-14	160	5.0752	4395	3Q-14	130	4.8675
4472	4Q-14	240	5.4806	4472	4Q-14	150	5.0106	4472	4Q-14	110	4.7005
4579	1Q-15	210	5.3471	4579	1Q-15	140	4.9416	4579	1Q-15	110	4.7005
4765	2Q-15	210	5.3471	4765	2Q-15	140	4.9416	4765	2Q-15	110	4.7005
4848	3Q-15	220	5.3936	4848	3Q-15	150	5.0106	4848	3Q-15	110	4.7005
4938	4Q-15	220	5.3936	4938	4Q-15	150	5.0106	4938	4Q-15	120	4.7875
5055	1Q-16	230	5.4381	5055	1Q-16	140	4.9416	5055	1Q-16	120	4.7875
5122	2Q-16	230	5.4381	5122	2Q-16	150	5.0106	5122	2Q-16	120	4.7875
5213	3Q-16	210	5.3471	5213	3Q-16	150	5.0106	5213	3Q-16	110	4.7005
5305	4Q-16	250	5.5215	5305	4Q-16	160	5.0752	5305	4Q-16	120	4.7875
5397	1Q-17	200	5.2983	5397	1Q-17	140	4.9416	5397	1Q-17	110	4.7005
5487	2Q-17	210	5.3471	5487	2Q-17	140	4.9416	5487	2Q-17	110	4.7005
5563	3Q-17	190	5.2470	5563	3Q-17	140	4.9416	5563	3Q-17	100	4.6052
5672	4Q-17	190	5.2470	5672	4Q-17	140	4.9416	5672	4Q-17	120	4.7875
5782	1Q-18	220	5.3936	5782	1Q-18	140	4.9416	5782	1Q-18	140	4.9416
5850	2Q-18	220	5.3936	5850	2Q-18	140	4.9416	5850	2Q-18	140	4.9416
5960	3Q-18	220	5.3936	5960	3Q-18	150	5.0106	5960	3Q-18	150	5.0106
6007	10/30/2018	200	5.2983								
6041	4Q-18	230	5.4381	6041	4Q-18	150	5.0106	6041	4Q-18	140	4.9416
6136	1Q-19	230	5.4381	6135	1Q-19	140	4.9416	6135	1Q-19	140	4.9416
6233	2Q-19	200	5.2983	6233	2Q-19	150	5.0106	6233	2Q-19	150	5.0106
6330	3Q-19	220	5.3936	6330	3Q-19	160	5.0752	6330	3Q-19	160	5.0752
6311	4Q-19	220	5.3936	6311	4Q-19	140	4.9416	6311	4Q-19	140	4.9416
6417	1Q-20	150	5.0106	6417	1Q-20	130	4.8675	6417	1Q-20	170	5.1358
6494	2Q-20	180	5.1930	6494	2Q-20	130	4.8675	6494	2Q-20	150	5.0106
6606	3Q-20	90	4.4998	6606	3Q-20	130	4.8675	6606	3Q-20	170	5.1358
6678	4Q-20	220	5.3936	6678	4Q-20	150	5.0106	6678	4Q-20	180	5.1930
6769	1Q-21	200	5.2983	6769	1Q-21	140	4.9416	6769	1Q-21	160	5.0752
6851	2Q-21	200	5.2983	6851	2Q-21	150	5.0106	6851	2Q-21	150	5.0106
7033	3Q-21	200	5.2983	7033	3Q-21	140	4.9416	7033	3Q-21	130	4.8675
7131	4Q-21	130	4.8675	7131	4Q-21	130	4.8675	7131	4Q-21	170	5.1358

### ********]

	MW	4	
Days	Date	CI	In(CI)
962	1Q-12	280	5.6348
1062	2Q-12	260	5.5607
1128	3Q-12	260	5.5607
1231	4Q-12	270	5.5984
1330	1Q-13	270	5.5984
1394	2Q-13	250	5.5215
1507	3Q-13	270	5.5984
1583	4Q-13	260	5.5607
1697	1Q-14	300	5.7038
1811	2Q-14	300	5.7038
1890	3Q-14	290	5.6699
1967	4Q-14	270	5.5984
2074	1Q-15	260	5.5607
2260	2Q-15	260	5.5607
2343	3Q-15	280	5.6348
2433	4Q-15	270	5.5984
2550	1Q-16	270	5.5984
2617	2Q-16	280	5.6348
2708	3Q-16	260	5.5607
2800	4Q-16	290	5.6699
2892	1Q-17	270	5.5984
2982	2Q-17	270	5.5984
3058	3Q-17	260	5.5607
3167	4Q-17	270	5.5984
3277	1Q-18	270	5.5984
3345	2Q-18	270	5.5984
3455	3Q-18	280	5.6348
3536	4Q-18	260	5.5607
3631	1Q-19	270	5.5984
3728	2Q-19	290	5.6699
3825	3Q-19	290	5.6699
3806	4Q-19	260	5.5607
3912	1Q-20	250	5.5215
3989	2Q-20	260	5.5607
4101	3Q-20	270	5.5984
4173	4Q-20	280	5.6348
4264	1Q-21	280	5.6348
4346	2Q-21	190	5.2470
4528	3Q-21	280	5.6348
4626	4Q-21	270	5.5984

					Table	6-1 (Cont.): Calcı	ulation for M	ean and Standa	d Deviation (Chlo	oride)	
	<u>MV</u>	<u>V1</u>			M	<u>N2</u>			<u>MV</u>	<u>/3</u>	
Days	Date	CI	In(CI)	Days	Date	CI	In(CI)	Days	Date	CI	In(CI)
7223	1Q-22	180	5.1930	7223	1Q-22	140	4.9416	7223	1Q-22	140	4.9416
7298	2Q-22	170	5.1358	7298	2Q-22	130	4.8675	7298	2Q-22	130	4.8675
7388	3Q-22	170	5.1358	7388	3Q-22	130	4.8675	7388	3Q-22	130	4.8675
7480	4Q-22	180	5.1930	7480	4Q-22	130	4.8675	7480	4Q-22	150	5.0106
7582	1Q-23	170	5.1358	7582	1Q-23	130	4.8675	7582	1Q-23	150	5.0106
7670	2Q-23	200	5.2983	7670	2Q-23	130	4.8675	7670	2Q-23	150	5.0106
7785	3Q-23	180	5.1930	7785	3Q-23	130	4.8675	7785	3Q-23	160	5.0752
7877	4Q-23	200	5.2983	7877	4Q-23	130	4.8675	7877	4Q-23	150	5.0106
Standard Devia	ation =	29.2262	0.1611	Standard Dev	viation =	23.8918	0.1490	Standard Devi	ation =	117.1764	0.4390
Mean =		216.6506	5.3668	Mean =		164.3537	5.0909	Mean =		196.6235	5.1683
n =		83	83	n =		82	82	n =		85	86
(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95})	=	1.664	1.664	(t{n-1, 0.95}) =		1.663	1.663
(1 + 1/n) ^{1/2} =			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	(1 + 1/n) ^{1/2} =			1.006
$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{3}$	² =		1.674	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673
UTL = Mean +	St.Dev.*k =		5.6363	UTL = Mean	+ St.Dev.*k =		5.3404	UTL = Mean +	St.Dev.*k =		5.9026
Concentration S	Significant?		No	Concentration	n Significant?		No	Concentration	Significant?		No
Standard Devia	ation =	30.2186	0.1603	Standard Dev	viation =	25.1116	0.1501	Standard Devia	ation =	114.4650	0.4367
Mean =		216.4524	5.3660	Mean =		163.9398	5.0882	Mean =		196.0814	5.1665
n =		84	84	n =		83	83	n =		86	86
(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95})	=	1.663	1.663	(t{n-1, 0.95}) =		1.663	1.663
(1 + 1/n) ^{1/2} =			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006
$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{3}$	² =		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673
UTL = Mean +	St.Dev.*k =		5.6341	UTL = Mean	+ St.Dev.*k =		5.3394	UTL = Mean +	St.Dev.*k =		5.8970
Concentration S	Significant?		No	Concentration	n Significant?		No	Concentration	Significant?		No
Standard Devia	ation =	30.2973	0.1604	Standard Dev	viation =	25.2331	0.1511	Standard Devia	ation =	113.8633	0.4343
Mean =		216.0235	5.3639	Mean =		163.5357	5.0856	Mean =		195.6667	5.1654
n =		85	85	n =		84	84	n =		87	87
(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95})	=	1.663	1.663	(t{n-1, 0.95}) =		1.663	1.663
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006
$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{3}$	² =		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673
UTL = Mean +			5.6323	UTL = Mean	+ St.Dev.*k =		5.3384	UTL = Mean +	St.Dev.*k =		5.8918
Concentration S	Significant?		No	Concentration	n Significant?		No	Concentration	Significant?		No
Standard Devia	ation =	30.1681	0.1597	Standard Dev	viation =	25.3448	0.1521	Standard Devia	ation =	113.3116	0.4321
Mean =		215.8372	5.3632	Mean =		163.1412	5.0830	Mean =		195.1477	5.1637
n =		86	86	n =		85	85	n =		88	88
(t{n-1, 0.95}) =		1.663	1.663	(t{n-1, 0.95})	=	1.663	1.663	(t{n-1, 0.95}) =		1.662	1.662
$(1 + 1/n)^{\frac{1}{2}} =$			1.006	$(1 + 1/n)^{\frac{1}{2}} =$			1.006	(1 + 1/n) ^{1/2} =			1.006
$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.673	$k = t(1 + 1/n)^{3}$	² =		1.673	$k = t(1 + 1/n)^{\frac{1}{2}}$	=		1.671
UTL = Mean +	St.Dev.*k =		5.6302	UTL = Mean	+ St.Dev.*k =		5.3374	UTL = Mean +	St.Dev.*k =		5.8859
Concentration S	Significant?		No	Concentration	n Significant?		No	Concentration	Significant?		No

	N	IW4	
Days	 Date	CI	In(CI)
4718	1Q-22	290	5.6699
4793	2Q-22	270	5.5984
4883	3Q-22	270	5.5984
4975	4Q-22	330	5.7991
5077	1Q-23	320	5.7683
5165	2Q-23	330	5.7991
5280	3Q-23	330	5.7991
5372	4Q-23	290	5.6699
Standard De	eviation =	22.0240	0.0746
Mean =		272.1667	5.5951
n =		60	58
(t{n-1, 0.95})	=	1.671	1.671
$(1 + 1/n)^{\frac{1}{2}} =$			1.009
k = t(1 + 1/n)	$)^{1/2} =$		1.685
UTL = Mean	+ St.Dev.*k =		5.7208
Concentratio	on Significant?		Yes
Standard De	eviation =	20.8827	0.0787
Mean =		270.8621	5.5986
n =		58	58
(t{n-1, 0.95})	=	1.672	1.672
$(1 + 1/n)^{\frac{1}{2}} =$			1.009
k = t(1 + 1/n)	) ^{1/2} =		1.686
UTL = Mean	+ St.Dev.*k =		5.7313
Concentratio	on Significant?		Yes
Standard De	eviation =	22.0872	0.0822
Mean =		271.8644	5.6020
n =		59	59
(t{n-1, 0.95})	=	1.671	1.671
$(1 + 1/n)^{\frac{1}{2}} =$			1.008
k = t(1 + 1/n)	$)^{1/2} =$		1.685
UTL = Mean	+ St.Dev.*k =		5.7406
Concentratio	on Significant?		Yes
Standard De	eviation =	22.0240	0.0820
Mean =		272.1667	5.6032
n =		60	60
(t{n-1, 0.95})	) =	1.671	1.671
$(1 + 1/n)^{\frac{1}{2}} =$			1.008
k = t(1 + 1/n)			1.685
	+ St.Dev.*k =		5.7413
Concentratio	on Significant?		No

# ********])

### Table 6-2Comparison to Tolerance Interval1

				Q1 2023			Q2 2023		
WELL	PARAMETER	RESULT	In(RESULT)	UPPER TOLERANCE LIMIT	UTL EXCEEDED (YES/NO)	RESULT	In(RESULT)	UPPER TOLERANCE LIMIT	UTL EXCEEDED (YES/NO)
	TDS	1300	7.1701	7.1726	No	1200	7.0901	7.1722	No
MW-1	SO4	440	6.0868	6.1560	No	410	6.0162	6.1556	No
	Cl ₂	170	5.1358	5.6363	No	200	5.2983	5.6341	No
	TDS	1100	7.0031	7.0617	No	1100	7.0031	7.0614	No
MW-2	SO4	380	5.9402	6.0750	No	380	5.9402	6.0740	No
	Cl ₂	130	4.8675	5.3404	No	130	4.8675	5.3394	No
	TDS	1200	7.0901	7.4661	No	1300	7.1701	7.4649	No
MW-3	SO4	410	6.0162	6.3474	No	390	5.9661	6.3450	No
	Cl ₂	150	5.0106	5.9026	No	150	5.0106	5.8970	No
	TDS	1300	7.1701	7.1262	Yes	1300	7.1701	7.1330	Yes
MW-4	SO4	390	5.9661	5.9508	Yes	370	5.9135	5.9547	No
	Cl ₂	320	5.7683	5.7208	Yes	330	5.7991	5.7313	Yes

¹Upper tolerance limit (UTL) calculated using 95% distribution and 95% probability

# ********])

### Table 6-2Comparison to Tolerance Interval1

				Q3 2023			Q4 2023		
WELL	PARAMETER	RESULT	In(RESULT)	UPPER TOLERANCE LIMIT	UTL EXCEEDED (YES/NO)	RESULT	In(RESULT)	UPPER TOLERANCE LIMIT	UTL EXCEEDED (YES/NO)
	TDS	1300	7.1701	7.1742	No	1300	7.1701	7.1761	No
MW-1	SO4	470	6.1527	6.1596	No	430	6.0638	6.1603	No
	Cl ₂	180	5.1930	5.6323	No	200	5.2983	5.6302	No
	TDS	1100	7.0031	7.0611	No	1100	7.0031	7.0609	No
MW-2	SO4	410	6.0162	6.0744	No	390	5.9661	6.0738	No
	Cl ₂	130	4.8675	5.3384	No	130	4.8675	5.3374	No
	TDS	1300	7.1701	7.4638	No	1300	7.1701	7.4624	No
MW-3	SO4	450	6.1092	6.3449	No	430	6.0638	6.3436	No
	Cl ₂	160	5.0752	5.8918	No	150	5.0106	5.8859	No
	TDS	1200	7.0901	7.1341	No	1200	7.0901	7.1351	No
MW-4	SO4	360	5.8861	5.9568	No	320	5.7683	5.9552	No
	Cl ₂	330	5.7991	5.7406	Yes	290	5.6699	5.7413	No

¹Upper tolerance limit (UTL) calculated using 95% distribution and 95% probability

### SECOND SEMI-ANNUAL 2023 MONITORING REPORT

SECTION 7 LYSIMETER TEST RECORDS

Project Name/Client: Blythe Energy Inc.	Site Name: Blythe Energy Project
Project No. NB11160982	Date: March 12, 2023
Weather Conditions: Sunny 75° F	Sampler: Ralph De La Parra

EAST POND	
Lysimeter No.: 1	Notes: *
TEST RESULTS: Dry	
Lysimeter No.: 2	Notes: *
TEST RESULTS: Dry	
Lysimeter No.: 3	Notes: *
TEST RESULTS: Dry	
WEST POND	Notes: *
WEST POND Lysimeter No.: 4	Notes: *
	Notes: *
Lysimeter No.: 4	Notes: * Notes: *
Lysimeter No.: 4 TEST RESULTS: Dry	
Lysimeter No.: 4 TEST RESULTS: Dry Lysimeter No.: 5	

# **\\S**])

Project Name/Client: Blythe Energy Inc.	Site Name: Blythe Energy Project
Project No. NB11160982	Date: June 7, 2023
Weather Conditions: Sunny	Sampler: Ralph De La Parra
EAST POND	Notes: *
Lysimeter No.: 1	
TEST RESULTS: Dry	
Lysimeter No.: 2	Notes: *
TEST RESULTS: Dry	
Lysimeter No.: 3	Notes: *
TEST RESULTS: Dry	
WEST POND	Notes: *
Lysimeter No.: 4	
TEST RESULTS: Dry	
Lysimeter No.: 5	Notes: *
TEST RESULTS: Dry	
Lysimeter No.: 6	Notes: *
TEST RESULTS: Dry	

Project Name/Client: Blythe Energy Inc.	Site Name: Blythe Energy Project
Project No. NB11160982	Date: September 26, 2023
Weather Conditions: Warm, Sunny	Sampler: Ralph De La Parra
EAST POND	Notes: *
Lysimeter No.: 1	
TEST RESULTS: Dry	
Lysimeter No.: 2	Notes: *
TEST RESULTS: Trace amount of water (~50 ml)	
Lysimeter No.: 3	Notes: *
TEST RESULTS: Dry	
WEST POND	Notes: *
Lysimeter No.: 4	
TEST RESULTS: Dry	
Lysimeter No.: 5	Notes: *
TEST RESULTS: Trace amount of water (~2 ml)	
Lysimeter No.: 6	Notes: *
TEST RESULTS: Dry	

Project Name/Client: Blythe Energy Inc.	Site Name: Blythe Energy Project
Project No. NB11160982	Date: December 6, 2023
Weather Conditions: Sunny	Sampler: Ralph De La Parra

EAST POND	Notes: *
Lysimeter No.: 1	1005.
TEST RESULTS: Dry	
Lysimeter No.: 2	Notes: *
TEST RESULTS: Dry	
Lysimeter No.: 3	Notes: *
TEST RESULTS: Dry	
WEST POND	Notes: *
Lysimeter No.: 4	
TEST RESULTS: Dry	
Lysimeter No.: 5	Notes: *
TEST RESULTS: Dry	
Lysimeter No.: 6	Notes: *
TEST RESULTS: Dry	

SECOND SEMI-ANNUAL 2023 MONITORING REPORT

SECTION 8 EVAPORATION POND SAMPLING RECORDS

### **EVAPORATION POND SAMPLING RECORD**

Project Name/Client: Blythe Energy Inc.	Site Name: Blythe Energy Project
Project No.: NB11160982	Date: March 12, 2023
Weather Conditions: Warm, Sunny	Sampler: Ralph De La Parra
Pond No./Designation: #1 East Time: N/A	Comments: Dry.
Color/Clarity: N/A	
Temp.: N/A	
pH: N/A	
Ec: N/A	
Pond No./Designation: #2 West	Comments: Contains Brine Shrimp
Time: 1215	
Color/Clarity: slightly green	
Temp.: 27.1°C	
pH: 8.49	
Ec: >20.00 ms/cm	

- Temperature reported in degrees Celsius
- pH reported in pH units
- Ec reported in millisiemens per centimeter (ms/cm)

71

### **EVAPORATION POND SAMPLING RECORD**

Project Name/Client: Blythe Energy Inc.	Site Name: Blythe Energy Project		
Project No.: NB11160982	Date: June 7, 2023		
Weather Conditions: Warm, Sunny	Sampler: Ralph De La Parra		
Pond No./Designation: #1 East	Comments: Dry		
Time: N/A			
Color/Clarity: N/A			
Temp.: N/A			
pH: N/A			
Ec: N/A			
Pond No./Designation: #2 West	Comments:		
Time: 1545			
Color/Clarity: slightly green			
Temp.: 33.1°C			
рН: 8.23			
Ec: >20.00 ms/cm			

- Temperature reported in degrees Celsius
- pH reported in pH units
- Ec reported in millisiemens per centimeter (ms/cm)

### **EVAPORATION POND SAMPLING RECORD**

Project Name/Client: Blythe Energy Inc.	Site Name: Blythe Energy Project		
Project No.: NB11160982	Date: September 26, 2023		
Weather Conditions: Warm, Sunny	Sampler: Ralph De La Parra		
Pond No./Designation: #1 East	Comments: DRY		
Time: NA			
Color/Clarity: NA			
Temp.: NA			
pH: NA			
Ec: NA			
Pond No./Designation: #2 West	Comments: Contains Brine Shrimp		
Time: 1315			
Color/Clarity: slightly green			
Temp.: 30.8°C			
pH: 8.35			
Ec: >20.00 ms/cm			

- Temperature reported in degrees Celsius
- pH reported in pH units
- Ec reported in millisiemens per centimeter (ms/cm)

### **EVAPORATION POND SAMPLING RECORD**

Project Name/Client: Blythe Energy Inc.	Site Name: Blythe Energy Project
Project No.: NB11160982	Date: December 6, 2023
Weather Conditions: Warm, Sunny	Sampler: Ralph De La Parra
Pond No./Designation: #1 East Time: NA	Comments: DRY
Color/Clarity: NA	
Temp.: NA	
pH: A	
Ec: NA	
Pond No./Designation: #2 West	Comments:
Time: 1600	
Color/Clarity: slightly green	
Temp.: 18.4 °C	
рН: 7.83	
Ec: >20.00 ms/cm	
	· · · · ·

- Temperature reported in degrees Celsius
- pH reported in pH units
- Ec reported in millisiemens per centimeter (ms/cm)

SECOND SEMI-ANNUAL 2023 MONITORING REPORT

SECTION 9 WELL SAMPLING RECORDS

### **\\S**D

### WELL SAMPLING/DEVELOPMENT RECORD

Project:		Blythe E	nergy Inc.	Project No:	NB11160982	2
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra
Well No.:	MW-1	Date:	March 12, 2023	Sampler:	Ralph De La Pa	arra
Elevation of Me	easuring Po	oint (MP)			337.27	ft. (a)
Elevation of Gr	ound Surfa	ice			337.76	ft. (b)
Well Depth (be	low MP)				120.00	ft. (c)
Casing Inside [	Diameter				4.0	in. (d)
		С	ALCULATION OF CASIN	IG VOLUME		
Depth of Water	Below MP	,			88.80	ft. (e)
Water Level Ele	evation (a-	e)			248.47	ft. (f)
Height of Wate	r in Well				31.20	ft.
Volume of Wat	er in Casin	g			31.20x 0.66 = 20.59	gal.
Sampling/Deve Purging Appara	-		nt) _ Grundfos electric sul	Dedicated	Non-dedicated $$	
Sampling Appa	iratus: Typ	e	Sampled through put	mp		
Cleaning Metho	ods		Alconox and potable	water wash, doub	le distilled water	
rinse						
			FIELD OBSERVAT	IONS		
Weather Condi	tions _	Clear, warm				
Well Head Con	ditions	Dry, good				
Comments	-					

Blythe Energy Inc.

Project Name/Client



March 12, 2023

			FIE	ELD MEAS	SUREMENTS			
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Clarity/Colc		
9:40	2	10	29.9	6.95	1.95	Clear, odorless		
9:45	2	20	30.0	6.95	1.95	Clear, odorless		
9:50	2	30	30.1	6.95	1.95	Clear, odorless		
9:55	2	40	30.2	6.95	1.95	Clear, odorless		
10:00	2	60	30.3	6.95	1.95	Clear, odorless		
10:10	2	70	30.4	6.95	1.95	Clear, odorless		
Total Vo	ol. Purged	-	70	_ (gal)	Casing Vol.	Purged <u>3.</u>		
Final W	ater Level	After Purging			ft. Be	elow MP; Time		
Fate of Purged <b>Discharged to groun</b> Water			round					

Well Number

MW-1

Date

### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-1-3-12-23	10:10	3	Quarterly	N	NA	

F = Filtered (Y,N), P = Preservative (Type)

### **\\S**D

### WELL SAMPLING/DEVELOPMENT RECORD

Project:		Blythe E	nergy Inc.	Project No:	NB11160982	2		
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra		
Well No.:	MW-2	Date:	March 12, 2023	Sampler:	Ralph De La Pa	arra		
Elevation of Me	asuring Po	int (MP)			337.77	ft. (a)		
Elevation of Gro	ound Surfa	се			337.17	ft. (b)		
Well Depth (bel	ow MP)				120.00	ft. (c)		
Casing Inside D	Diameter				4.0	in. (d)		
		C	ALCULATION OF CASIN	IG VOLUME				
Depth of Water	Below MP				89.40	ft. (e)		
Water Level Ele	evation (a-e	e)			248.37	ft. (f)		
Height of Water	r in Well				30.60	ft.		
Volume of Wate	er in Casino	9			30.60 x 0.66 = 20.20	gal.		
Sampling/Deve Purging Appara		vstem (High-ligh	nt) _ Grundfos electric sul	Dedicated	Non-dedicated $$			
Sampling Appa	ratus: Typ	е	Sampled through pump					
Cleaning Metho	ods		Alconox and potable	water wash, doub	le distilled water			
rinse								
			FIELD OBSERVAT	IONS				
Weather Condit	tions	Clear, warm						
Well Head Con	ditions	Dry, good						
Comments	_							

Blythe Energy Inc.

Project Name/Client



March 12, 2023

			FIE	ELD MEAS	SUREMENTS			
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Clarity/Colo		
8:55	2	10	29.7	6.96	1.71	Clear, odorless		
9:00	2	20	29.8	6.95	1.71	Clear, odorless		
9:05	2	40	29.9	6.95	1.71	Clear, odorless		
9:10	2	50	29.9	6.95	1.71	Clear, odorless		
9:15	2	60	30.0	6.95	1.71	Clear, odorless		
9:20	2	70	30.5	6.95	1.71	Clear, odorless		
Total Vo	ol. Purged	-	70	(gal)	Casing Vol.	Purged <u>3.</u>		
Final W	ater Level	After Purging			ft. Be	elow MP; Time		
Fate of Purged <b>Discharged to groun</b> Water			round					

Well Number

MW-2

Date

### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-2-3-12-23	9:20	3	Quarterly	N	NA	

F = Filtered (Y,N), P = Preservative (Type)

### **\\S**D

### WELL SAMPLING/DEVELOPMENT RECORD

Project:	Blyt	he Energy Inc.	Project No:	NB11160982	2			
Location:	Blyt	he, California	Logged by:	Ralph De La Pa	arra			
Well No.: MW	-3 Date:	March 12, 2023	Sampler:	Ralph De La Pa	arra			
Elevation of Measurin	g Point (MP)			338.22	ft. (a)			
Elevation of Ground S	urface			336.28	ft. (b)			
Well Depth (below MF	?)			115.00	ft. (c)			
Casing Inside Diamete	er			4.0	in. (d)			
		CALCULATION OF CASI	NG VOLUME					
Depth of Water Below	MP	·		89.95	ft. (e)			
Water Level Elevation	(a-e)			248.27	ft. (f)			
Height of Water in We	11			25.05	ft.			
Volume of Water in Ca	asing			25.05 x 0.66 = 16.53	gal.			
Sampling/Developmer Purging Apparatus: T		n-light) Grundfos electric su	Dedicated	Non-dedicated $$				
Sampling Apparatus:	Туре	Sampled through pu	Sampled through pump					
Cleaning Methods		Alconox and potable	e water wash, doub	le distilled water				
Rinse								
		FIELD OBSERVA	ΓIONS					
Weather Conditions	Clear, wa	rm						
Well Head Conditions	Dry, good	1						
Comments								

Blythe Energy Inc.

Project Name/Client



March 12, 2023

			FIE	ELD MEAS	SUREMENTS		
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Cla	rity/Color
8:05	2	10	25.3	6.53	1.85	Clear, odorles	S
8:10	2	20	25.2	6.54	1.84	Clear, odorles	S
8:15	2	30	25.3	6.55	1.85	Clear	
8:20	2	40	25.3	6.55	1.85	Clear	
8:25	2	50	25.4	6.55	1.85	Clear	
8:30	2	60	25.4	6.55	1.85	Clear	
Total V	otal Vol. Purged (gal) Casing Vol. Purged					Purged	3.63
Final W	ater Level	After Purging			ft. Be	elow MP; Time	
Fate of Purged Discharged to gr Water			round				

Well Number

MW-3

Date

### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-3-3-12-23	8:30	6	Quarterly	N	NA	Duplicate Collected (DUP-3-12- 23)

F = Filtered (Y,N), P = Preservative (Type)

### **\\S**D

### WELL SAMPLING/DEVELOPMENT RECORD

Project:		Blythe	Energy Inc.	Project No:	NB11160982	2
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra
Well No.:	MW-4	Date:	March 12, 2023	Sampler:	Ralph De La Pa	arra
Elevation of Mea	asuring Po	pint (MP)			342.50	ft. (a)
Elevation of Gro	und Surfa	ce			339.95	ft. (b)
Well Depth (belo	ow MP)				118.95	ft. (c)
Casing Inside Di	ameter				4.0	in. (d)
		(	CALCULATION OF CASIN	IG VOLUME		
Depth of Water E	Below MP				93.60	ft. (e)
Water Level Elev	vation (a-e	e)			248.90	ft. (f)
Height of Water	in Well				25.35	ft.
Volume of Water	r in Casin	g			25.35 x 0.66 = 16.73	gal.
Sampling/Develo	-	ystem (High-lig	ght) _ Grundfos submersib	Dedicated le pump	Non-dedicated $$	
Sampling Appara	atus: Typ	е	Sampled through put	mp		
Cleaning Method	ds		Alconox and potable	water wash, doub	ble distilled water	
Rinse						
			FIELD OBSERVAT	IONS		
Weather Condition	ons	Clear, warm				
Well Head Cond	litions	Dry, good				
Comments	_					

Blythe Energy Inc.

Project Name/Client



March 12, 2023

Date

MW-4

			FIE	ELD MEAS	SUREMENTS			
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Clarity/C	Color	
10:25	2	10	32.4	7.03	2.07	Clear, odorless		
10:30	2	20	32.4	7.03	2.07	Clear, odorless		
10:35	2	30	32.5	7.03	2.07	Clear, odorless		
10:40	2	40	32.5	7.03	2.07	Clear, odorless		
10:45	2	50	32.5	7.03	2.07	Clear, odorless		
10:50	2	60	32.6	7.03	2.07	Clear, odorless		
Total Vo	ol. Purged	-	60	_ (gal)	Casing Vol.	Purged	3.58	
Final W	ater Level	After Purging			ft. Be	elow MP; Time		
Fate of Purged <b>Discharged to gro</b> Water		round						

Well Number

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-4-3-12-23	10:50	3	Quarterly	Ν	NA	

F = Filtered (Y,N), P = Preservative (Type)

Depth to Water Readings: OW-1 = 91.85 feet OW-2 = 88.65 feet

Project:		Blythe	Energy Inc.	Project No:	NB11160982	2
Location:		Blythe	e, California	Logged by:	Ralph De La Pa	arra
Well No.:	MW-1	Date:	June 7, 2023	Sampler:	Ralph De La Pa	arra
Elevation of Me	easuring P	oint (MP)			337.27	ft. (a)
Elevation of Gr	ound Surfa	асе			337.76	ft. (b)
Well Depth (be	low MP)				120.0	ft. (c)
Casing Inside E	Diameter				4.0	in. (d)
			CALCULATION OF CASI	ING VOLUME		
Depth of Water	Below MF	2			88.15	ft. (e)
Water Level Ele	evation (a-	e)			249.12	ft. (f)
Height of Wate	r in Well				31.85	ft.
Volume of Wate	er in Casir	ıg			31.85 x 0.66 = 21.02	gal.
Sampling/Deve Purging Appara	-		ght) Proactive electric su	Dedicated	Non-dedicated $$	
Sampling Appa	ratus: Typ	be	Sampled through pu	ımp		
Cleaning Metho	ods		Alconox and potable	e water wash, doub	le distilled water	
rinse						
			FIELD OBSERVA	TIONS		
Weather Condi	tions	Clear, warm				
Well Head Con	ditions	Dry, good				
Comments						
·						

Blythe Energy Inc.

Project Name/Client



June 7, 2023

			FIE	ELD MEAS	SUREMENTS		
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Clarity/Color	
12:45	1	5	30.5	7.06	1.91	Clear, odorless	
12:50	1	10	30.4	7.06	1.91	Clear, odorless	
13:00	1	20	30.4	7.06	1.91	Clear, odorless	
13:20	1	40	30.4	7.06	1.91	Clear, odorless	
13:40	1	60	30.4	7.06	1.91	Clear, odorless	
13:50	1	70	30.5	7.06	1.91 Clear, odorless		
Total Vol. Purged (gal) Casing Vol. Purged					Purged 3.33		
Final W	ater Level	After Purging			ft. Be	elow MP; Time	
Fate of Purged <b>Discharged to g</b> Water			round				

Well Number

MW-1

Date

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-1-6-7-23	13:50	3	Quarterly	N	NA	

Project:		Blythe	Energy Inc.	Project No:	NB11160982	2			
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra			
Well No.:	MW-2	Date:	June 7, 2023	Sampler:	Ralph De La Pa	arra			
Elevation of Mea	asuring Po	pint (MP)			337.77	ft. (a)			
Elevation of Gro	und Surfa	ce			337.17	ft. (b)			
Well Depth (belo	w MP)				120.00	ft. (c)			
Casing Inside Di	ameter				4.0	in. (d)			
		(	CALCULATION OF CASI	NG VOLUME					
Depth of Water E	Below MP				88.90	ft. (e)			
Water Level Elev	vation (a-e	e)			248.87	ft. (f)			
Height of Water	in Well				31.10	ft.			
Volume of Water	r in Casin	g			31.10 x 0.66 = 20.53	gal.			
Sampling/Develo	-	ystem (High-lig	ght) Proactive electric su	Dedicated	Non-dedicated $$				
Sampling Appara	atus: Typ	e	Sampled through pu	Sampled through pump					
Cleaning Method	ds		Alconox and potable	e water wash, doub	le distilled water				
rinse									
			FIELD OBSERVA	TIONS					
Weather Condition	ons	Clear, warm							
Well Head Cond	itions	Dry, good							
Comments	_								

Project Name/Client

Blythe Energy Inc.



June 7, 2023

	n		FIE	ELD MEAS	SUREMENTS	r
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Clarity/Color
11:25	1	5	30.0	6.91	1.70	Clear, odorless
11:30	1	10	30.2	6.92	1.70	Clear, odorless
11:40	1	20	30.1	6.92	1.70	Clear, odorless
12:00	1	40	30.1	6.92	1.70	Clear, odorless
12:20	1	60	30.1	6.92	1.70	Clear, odorless
12:30	1	70	30.2	6.92	1.70	Clear, odorless
Total Vo	ol. Purged	-	70	(gal)	Casing Vol.	Purged <u>3.4</u>
Final W	ater Level	After Purging			ft. Be	elow MP; Time
Fate of Purged Discharged to grow			round			

Well Number

MW-2

Date

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-2-6-7-23	12:30	4	Quarterly	Ν	NA	Duplicate Collected (DUP-6-7-23)

Project:		Blythe	Energy Inc.	Project No:	NB11160982	2			
Location:		Blythe	, California	Logged by:	Ralph De La Pa	arra			
Well No.:	MW-3	Date:	June 7, 2023	Sampler:	Ralph De La Pa	arra			
Elevation of Me	easuring Pc	oint (MP)			338.22	ft. (a)			
Elevation of Gr	ound Surfa	ce			336.28	ft. (b)			
Well Depth (be	low MP)				115.00	ft. (c)			
Casing Inside Diameter					4.0	in. (d)			
		(	CALCULATION OF CASI	ING VOLUME					
Depth of Water	Below MP	1			89.55	ft. (e)			
Water Level Ele	evation (a-e	э)			248.67	ft. (f)			
Height of Wate	r in Well				25.45	ft.			
Volume of Wate	er in Casin	g			25.45 x 0.66 = 16.80	gal.			
Sampling/Deve Purging Appara			ght) _ <b>Proactive submersit</b>	Dedicated ble pump	Non-dedicated $$				
Sampling Appa	iratus: Typ	e	Sampled through pu	Sampled through pump					
Cleaning Metho	ods		Alconox and potable	e water wash, doub	e distilled water				
rinse									
			FIELD OBSERVA	TIONS					
Weather Condi	tions _	Clear, warm							
Well Head Con	ditions	Dry, good							
Comments	_					-			
						-			

Second Semi-Annual 2023 Monitoring Report Blythe Energy Inc. Blythe, California January 31, 2024



Projec	ct Name/C	lient Blythe	e Energy In	с.	Well Number	<b>MW-3</b> Date <b>June 7, 2023</b>		
			FIE	ELD MEAS	SUREMENTS			
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	pН	Spec. Cond. (ms/cm at 25 °C)	Parti	iculates/C	dor/Clarity/Color
10:20	1	5	25.0	6.31	1.85	Clear, odorless		
10:25	1	10	25.0	6.49	1.83	Clear, odorless		
10:35	1	20	25.0	6.63	1.83	Clear, odorless		
10:45	1	40	25.0	6.63	1.83	Clear, odorless		
11:05	1	60	25.0	6.64	1.83	Clear, odorless		
				( I)				
I otal V	ol. Purged	-	60	(gal)	Casing Vol. Purged			3.57
Final W	ater Level	After Purging			ft. Be	elow MP; T	ïme	
Fate of Water	Purged	Discharged to g	round					
·								

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-3-6-7-23	11:05	2	Quarterly	Ν	NA	

Project:		Blythe Er	nergy Inc.	Project No:	NB11160982	2		
Location:		Blythe, C	California	Logged by:	Ralph De La Pa	arra		
Well No.: M	W-4	Date:	June 7, 2023	Sampler:	Ralph De La Pa	arra		
Elevation of Measur	ing Point	(MP)			342.50	ft. (a)		
Elevation of Ground	Surface				337.76	ft. (b)		
Well Depth (below M	1P)				118.95	ft. (c)		
Casing Inside Diame	eter				4.0	in. (d)		
		CA	ALCULATION OF CASI	NG VOLUME				
Depth of Water Belo	w MP				93.10	ft. (e)		
Water Level Elevation	on (a-e)				249.40	ft. (f)		
Height of Water in W	/ell				25.85	ft.		
Volume of Water in Casing					25.85 x 0.66 = 17.06	gal.		
Sampling/Developm Purging Apparatus:	-	m (High-ligh	t) Proactive submersik	Dedicated	Non-dedicated $$			
Sampling Apparatus	: Туре		Sampled through pump					
Cleaning Methods			Alconox and potable	water wash, doub	le distilled water			
Rinse								
			FIELD OBSERVAT	TIONS				
Weather Conditions	Cle	ear, warm						
Well Head Condition	ns Dr	y, good						
Comments								
·								

Blythe Energy Inc.

Project Name/Client



June 7, 2023

Date

MW-4

			FIE	ELD MEAS	SUREMENTS	
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Clarity/Color
14:15	1	5	32.2	7.10	2.08	Clear, odorless
14:20	1	10	32.2	7.12	2.08	Clear, odorless
14:30	1	20	32.2	7.13	2.08	Clear, odorless
14:50	1	40	32.2	7.13	2.08	Clear, odorless
15:00	1	50	32.2	7.13	2.08	Clear, odorless
15:10	1	60	32.2	7.13	2.08	Clear, odorless
Total Vo	ol. Purged		60	(gal)	Casing Vol.	Purged 3.5
Final W	ater Level	After Purging			ft. Be	elow MP; Time
Fate of	Fate of Purged <b>Discharged to ground</b>					

Well Number

Water

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-4-6-7-23	15:10	2	Quarterly	N	NA	

F = Filtered (Y,N), P = Preservative (Type)

Depth to Water Readings: OW-1 = 91.55 feet OW-2 = 88.38 feet

Project:		Blythe E	Energy Inc.	Project No:	NB11160980	)		
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra		
Well No.:	MW-1	Date:	September 26, 2023	Sampler:	Ralph De La Pa	arra		
Elevation of Me	easuring Po	pint (MP)			337.27	ft. (a)		
Elevation of Gr	ound Surfa	ice			337.76	ft. (b)		
Well Depth (be	low MP)				120.00	ft. (c)		
Casing Inside [	Diameter				4.0	in. (d)		
		C	ALCULATION OF CASING	G VOLUME				
Depth of Water	Below MF	)			89.05	ft. (e)		
Water Level Ele	evation (a-	e)			248.22	ft. (f)		
Height of Wate	r in Well		<u> </u>		30.95	ft.		
Volume of Wat	er in Casin	g			30.95x 0.66 = 20.42	gal.		
Sampling/Deve Purging Appara	-		ht) Geosub electric subm	Dedicated ersible pump	Non-dedicated $$			
Sampling Appa	iratus: Typ	e	Sampled through pump					
Cleaning Metho	ods		Alconox and potable v	water wash, doub	le distilled water			
_rinse								
			FIELD OBSERVATION	ONS				
Weather Condi	tions	Clear, warm						
Well Head Con	ditions	Dry, good						
Comments	_							
·								

Second Semi-Annual 2023 Monitoring Report Blythe Energy Inc. Blythe, California January 31, 2024



Projec	ject Name/Client Blyth		e Energy Inc.		Well Number	MW-1	Date	September 26 2023		
			FIE	ELD MEAS	SUREMENTS					
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Part	iculates/0	Ddor/Clarity/Color		
10:40	2	10	30.0	7.14	1.96	Clear, odorless				
10:50	2	20	30.1	7.14	1.96	Clear, odorless				
11:00	2	30	30.3	7.13	1.96	Clear, odorless				
11:10	2	40	30.4	7.13	1.96	Clear, odorless				
11:20	2	50	30.4	7.13	1.96		Clear	, odorless		
11:35	2	65	30.5	7.13	1.96		Clear	, odorless		
Total Vo	ol. Purged	-	65	(gal)	Casing Vol.	Purged		3.18		
Final W	ater Level	After Purging	ft. Below MP; Time							
Fate of Purged <b>Discharged to</b> Water		round								

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-1-9-26-23	11:35	2	Quarterly	Ν	NA	

Project:		Blythe B	Energy Inc.	Project No: NB1116098				
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra		
Well No.:	MW-2	Date:	September 26, 2023	Sampler:	Ralph De La Pa	arra		
Elevation of Me	easuring Po	oint (MP)			337.77	ft. (a)		
Elevation of Gr	ound Surfa	ace			337.17	ft. (b)		
Well Depth (be	low MP)				120.00	ft. (c)		
Casing Inside [	Diameter				4.0	in. (d)		
		C	ALCULATION OF CASING	G VOLUME				
Depth of Water	Below MF	0			89.50	ft. (e)		
Water Level El	evation (a-	e)			248.27	ft. (f)		
Height of Wate	r in Well		<u> </u>		30.50	ft.		
Volume of Wat	er in Casin	g			30.50 x 0.66 = 20.13	gal.		
Sampling/Deve Purging Appara	-		ht) Geosu electric subme	Dedicated rsible pump	Non-dedicated $$			
Sampling Appa	iratus: Typ	be	Sampled through pump					
Cleaning Metho	ods		Alconox and potable v	vater wash, doub	ole distilled water			
rinse								
			FIELD OBSERVATION	ONS				
Weather Condi	tions	Clear, warm						
Well Head Con	ditions	Dry, good						
Comments	-							

Second Semi-Annual 2023 Monitoring Report Blythe Energy Inc. Blythe, California January 31, 2024



Projec	t Name/Cl	ient Blythe	Energy In	с.	Well Number MW-2 Date		September 26 2023			
			FIE	ELD MEAS	SUREMENTS					
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Parti	culates/0	Ddor/Clarity/Color		
09:20	1	10	29.8	7.08	1.72	Clear, odorless				
09:30	1	20	29.7	7.07	1.72	Clear, odorless				
09:40	1	30	29.8	7.07	1.72	Clear, odorless				
09:50	1	40	29.9	7.06	1.72	Clear, odorless				
10:00	1	50	30.0	7.06	1.72		Clear	, odorless		
10:15	1	65	30.1	7.06	1.72		Clear	, odorless		
Total Vo	ol. Purged	-	65	_ (gal)	Casing Vol.	Purged		3.22		
Final W	ater Level	After Purging	ft. Below MP; Time							
Fate of Purged <b>Discharged to</b> Water			round							

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-2-9-26-23	10:15	4	Quarterly	N	NA	Duplicate collected.

Project:		Blythe I	Energy Inc.	Project No:	NB11160980	)			
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra			
Well No.:	MW-3	Date:	September 26, 2023	Sampler:	Ralph De La Pa	arra			
Elevation of Me	easuring Po	pint (MP)			338.22	ft. (a)			
Elevation of Gr	ound Surfa	ice			336.28	ft. (b)			
Well Depth (be	low MP)				115.00	ft. (c)			
Casing Inside [	Diameter				4.0	in. (d)			
		C	ALCULATION OF CASING	G VOLUME					
Depth of Water	Below MF	)			90.05	ft. (e)			
Water Level Ele	evation (a-	e)			248.17	ft. (f)			
Height of Wate	r in Well				24.95	ft.			
Volume of Wat	er in Casin	g			24.95 x 0.66 = 16.47	gal.			
Sampling/Deve Purging Appara			ht) Geosub electric subm	Dedicated ersible pump	Non-dedicated $$				
Sampling Appa	ratus: Typ	e	Sampled through pum	Sampled through pump					
Cleaning Metho	ods		Alconox and potable v	vater wash, doub	ole distilled water				
Rinse									
			FIELD OBSERVATIO	ONS					
Weather Condi	tions	Clear, warm							
Well Head Con	-	Dry, good							
Comments	-								
	-								

Second Semi-Annual 2023 Monitoring Report Blythe Energy Inc. Blythe, California January 31, 2024



Project	Name/Clie	nt Blythe	Energy Inc	<b>.</b>	Well Number MW-3 Date		September 26, 2023		
			FIEI	LD MEAS	UREMENTS				
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	pН	Spec. Cond. (ms/cm at 25 °C)	Part	iculates/C	)dor/Clarity/Color	
07:25	1	10	23.2	6.47	1.87	Clear, odorless			
07:35	1	20	23.4	6.53	1.88	Clear, odorless			
07:45	1	30	23.6	6.55	1.83	Clear, odorless			
07:55	1	40	23.8	6.51	1.80	Clear, odorless			
08:15	1	60	23.9	6.51	1.80		Clear	odorless	
Total Vol.	Purged	_	60	(gal)	Casing Vol. Purged			3.64	
Final Wat	er Level A	fter Purging	ft. Below MP; Time						
Fate of P Water	Fate of Purged Discharged to g								

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-3-9-26-23	08:15	2	Quarterly	Ν	NA	

## **\\S**[]

Project:		Blythe	Energy Inc.	Project No:	NB11160980	)		
Location:		Blythe	, California	Logged by:	Ralph De La Pa	arra		
Well No.:	MW-4	Date:	September 26, 2023	Sampler:	Ralph De La Pa	arra		
Elevation of Me	easuring P	oint (MP)			342.50	ft. (a)		
Elevation of Gr	ound Surfa	ace			339.95	ft. (b)		
Well Depth (be	low MP)				118.95	ft. (c)		
Casing Inside [	Diameter				4.0	in. (d)		
		(	CALCULATION OF CASING	G VOLUME				
Depth of Water	Below MF	þ			94.05	ft. (e)		
Water Level Ele	evation (a-	e)			248.45	ft. (f)		
Height of Wate	r in Well				24.90	ft.		
Volume of Wate	er in Casir	g			24.90 x 0.66 = 16.43	gal.		
Sampling/Deve Purging Appara	-		ght) _ Geosub submersible p	Dedicated	Non-dedicated $\boldsymbol{}$			
Sampling Appa	iratus: Typ	be	Sampled through pump					
Cleaning Metho	ods		Alconox and potable v	vater wash, doub	ble distilled water			
Rinse	)							
			FIELD OBSERVATIO	ONS				
Weather Condi	tions	Clear, warm						
Well Head Con	ditions	Dry, good						
Comments								
·								

Second Semi-Annual 2023 Monitoring Report Blythe Energy Inc. Blythe, California January 31, 2024



**Project Name/Client** Blythe Energy Inc. Well Number MW-4 September 26, Date 2023 FIELD MEASUREMENTS Cumulative Spec. Cond. Pump Temp Vol. Removed Particulates/Odor/Clarity/Color Time Rate pН (ms/cm (°C) (GPM) at 25 °C) (gal) 12:00 2 10 30.9 7.25 2.01 Clear, odorless 12:10 2 20 31.9 7.23 2.01 Clear, odorless 12:20 2 30 32.4 7.23 2.00 Clear, odorless 12:30 2 40 32.6 7.23 2.00 Clear, odorless 2 12:40 50 32.7 7.23 2.00 Clear, odorless 12:50 2 60 7.23 32.8 2.00 Clear, odorless Total Vol. Purged Casing Vol. Purged 60 (gal) 3.65 Final Water Level After Purging ft. Below MP; Time Fate of Purged **Discharged to ground** Water

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-4-9-26-23	12:50	2	Quarterly	Ν	NA	

F = Filtered (Y,N), P = Preservative (Type)

Depth to Water Readings: OW-1 = 92.35 feet OW-2 = 89.18 feet

## **\\S**[]

Project:		Blythe E	inergy Inc.	Project No:	NB11160980	0
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra
Well No.:	<b>MW-1</b>	Date:	December 6, 2023	Sampler:	Ralph De La Pa	arra
Elevation of Me	easuring Po	oint (MP)			337.27	ft. (a)
Elevation of Gr	ound Surfa	ice			337.76	ft. (b)
Well Depth (be	low MP)				120.0	ft. (c)
Casing Inside [	Diameter				4.0	in. (d)
		С	ALCULATION OF CASIN	G VOLUME		
Depth of Water	Below MF	)			88.90	ft. (e)
Water Level El	evation (a-	e)			248.37	ft. (f)
Height of Wate	r in Well				31.10	ft.
Volume of Wat	er in Casin	g			31.10 x 0.66 = 20.52	gal.
Sampling/Deve Purging Appara	-		ht) Geosub electric subm	Dedicated	Non-dedicated $$	-
Sampling Appa	aratus: Typ	e	Sampled through pun	np		
Cleaning Metho	ods		Alconox and potable	water wash, doub	ole distilled water	
rinse						-
			FIELD OBSERVATI	ONS		
Weather Condi	tions	Clear, warm				
Well Head Con	ditions	Dry, good				
Comments	-					

Blythe Energy Inc.

Project Name/Client



December 6, 2023

			FIE	ELD MEAS	SUREMENTS	
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	pH (ms/cm Particulates/Odor at 25 °C)	
14:45	1	10	30.4	7.17	1.93	Clear, odorless
14:55	1	20	30.3	7.18	1.92	Clear, odorless
15:05	1	30	30.4	7.18	1.92	Clear, odorless
15:15	1	40	30.4	7.18	1.92	Clear, odorless
15:25	1	50	30.4	7.18	1.92	Clear, odorless
15:45	1	70	30.5	7.18	1.92	Clear, odorless
Total Vo	ol. Purged	-	70	(gal)	Casing Vol.	Purged <u>3.41</u>
Final W	ater Level	After Purging			ft. Be	low MP; Time
Fate of Purged Discharged to g			round			

Well Number

MW-1

Date

SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-1-12-6-23	15:45	3	Annual	Ν	NA	

Project:		Blythe E	inergy Inc.	Project No:	NB11160982	2
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra
Well No.:	MW-2	_ Date:	December 6, 2023	Sampler:	Ralph De La Pa	arra
Elevation of Me	easuring Po	oint (MP)			337.77	ft. (a)
Elevation of Gr	ound Surfa	ce			337.17	ft. (b)
Well Depth (be	low MP)				120.00	ft. (c)
Casing Inside [	Diameter				4.0	in. (d)
		С	ALCULATION OF CASIN	G VOLUME		
Depth of Water	Below MP	1			89.40	ft. (e)
Water Level Ele	evation (a-	э)			248.37	ft. (f)
Height of Wate	r in Well				30.60	ft.
Volume of Wat	er in Casin	g			30.60 x 0.66 = 20.19	gal.
Sampling/Deve Purging Appara	-		ht) _ Geosub electric subm	Dedicated nersible pump	Non-dedicated $\boldsymbol{}$	
Sampling Appa	iratus: Typ	e	Sampled through pun	np		
Cleaning Metho	ods		Alconox and potable	water wash, doub	le distilled water	
rinse						
			FIELD OBSERVATI	ONS		
Weather Condi	tions	Clear, warm				
Well Head Con	ditions	Dry, good				
Comments	_					
·						

Project Name/Client

Blythe Energy Inc.



December 6, 2023

			FIE	ELD MEAS	SUREMENTS			
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/Clarity/Color		
13:25	1	10	30.2	7.02	1.69	Clear, odorless		
13:35	1	20	30.2	7.01	1.69	Clear, odorless		
13:45	1	30	30.3	7.01	1.69	Clear, odorless		
13:55	1	40	30.4	7.01	1.69	Clear, odorless		
14:05	1	50	30.5	7.01	1.69	Clear, odorless		
14:25	1	70	30.5	7.01	1.69 Clear, odorless			
Total Vo	ol. Purged	-	70	_ (gal)	Casing Vol.	Purged <u>3.4</u>		
Final W	ater Level	After Purging			ft. Be	elow MP; Time		
Fate of Water	Purged	Discharged to g	round					

Well Number

MW-2

Date

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-2-12-26-23	14:25	3	Annual	Ν	NA	Dup-12-6-23

Project:		Blythe B	Energy Inc.	Project No:	NB11160982	2
Location:		Blythe,	California	Logged by:	Ralph De La Pa	arra
Well No.:	MW-3	_ Date:	December 6, 2023	Sampler:	Ralph De La Pa	arra
Elevation of Me	easuring Po	oint (MP)			338.22	ft. (a)
Elevation of Gr	ound Surfa	ce			336.28	ft. (b)
Well Depth (be	low MP)				115.00	ft. (c)
Casing Inside [	Diameter				4.0	in. (d)
		C	ALCULATION OF CASIN	G VOLUME		
Depth of Water	Below MP	1	. <u></u>		89.95	ft. (e)
Water Level Ele	evation (a-e	э)			248.27	ft. (f)
Height of Wate	r in Well		<u></u>		25.05	ft.
Volume of Wat	er in Casin	g			25.05 x 0.66 = 16.53	gal.
Sampling/Deve Purging Appara			ht) _ Geosub submersible	Dedicated pump	Non-dedicated $$	
Sampling Appa	iratus: Typ	e	Sampled through pun	np		
Cleaning Metho	ods		Alconox and potable	water wash, doub	ble distilled water	
rinse						
			FIELD OBSERVATI	ONS		
Weather Condi	tions _	Clear, warm				
Well Head Con	ditions	Dry, good				
Comments	_					
·						

Second Semi-Annual 2023 Monitoring Report Blythe Energy Inc. Blythe, California January 31, 2024

Blythe Energy Inc.

Project Name/Client



December 6, 2023

			FIE	ELD MEAS	SUREMENTS			
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (°C)			ity/Color		
12:15	1	10	24.9	6.71	1.92	Clear, odorless	6	
12:25	1	20	25.0	6.69	1.92	Clear, odorless		
12:35	1	30	25.0	6.69	1.92	Clear, odorless		
12:45	1	40	25.0	6.69	1.92	Clear, odorless		
13:05	1	70	25.1	6.69	1.92	\$		
Total V	ol. Purged	-	70	_ (gal)	Casing Vol.	Purged	3.62	
Final W	ater Level	After Purging			ft. Be	elow MP; Time		
Fate of Water	Fate of Purged Discharged to Water		round					

Well Number

MW-3

Date

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-3-12-6-23	13:05	3	Annual	Ν	NA	

## **\\S**[]

Project:		Blythe	Energy Inc.	Project No:	NB11160982	2
Location:		Blythe	, California	Logged by:	Ralph De La Pa	arra
Well No.:	MW-4	Date:	December 6, 2023	Sampler:	Ralph De La Pa	arra
Elevation of Me	easuring P	oint (MP)			342.50	ft. (a)
Elevation of Gr	ound Surfa	ace			339.95	ft. (b)
Well Depth (be	low MP)				118.95	ft. (c)
Casing Inside [	Diameter				4.0	in. (d)
		(	CALCULATION OF CASIN	G VOLUME		
Depth of Water	Below MF	þ			93.72	ft. (e)
Water Level Ele	evation (a-	e)			248.78	ft. (f)
Height of Wate	r in Well				25.23	ft.
Volume of Wat	er in Casir	g			25.23 x 0.66 = 16.65	gal.
Sampling/Deve Purging Appara	-		ght) _ Geosub submersible	Dedicated pump	Non-dedicated $$	
Sampling Appa	aratus: Typ	be	Sampled through pun	ıp		
Cleaning Metho	ods		Alconox and potable	water wash, doub	ble distilled water	
Rinse	•					
			FIELD OBSERVATI	ONS		
Weather Condi	tions	Clear, warm				
Well Head Con	ditions	Dry, good				
Comments	-					

Blythe Energy Inc.

Project Name/Client



December 6, 2023

			FIELI	D MEASU	REMENTS		
Time	Pump Rate (GPM)	Cumulative Vol. Removed (gal)	Temp (ºC)	рН	Spec. Cond. (ms/cm at 25 °C)	Particulates/Odor/0	Clarity/Color
16:20	1	10	30.8	7.28	1.96	Clear, odor	less
16:30	1	20	30.9	7.28	1.96	Clear, odor	less
16:40	1	30	30.9	7.29	1.96	Clear, odor	less
16:50	1	40	31.0	7.29	1.96	Clear, odor	less
17:00	1	50	31.1	7.29	1.96	Clear, odor	less
17:10	1	60	31.2	7.29	1.96	Clear, odor	less
Total Vol. F	Purged	_	60	(gal)	Casing Vol. Pu	ırged	3.60
Final Water Level After Purging					ft. Belo	w MP; Time	
Fate of Pur Nater	ged Di	ischarged to gro	ound				

Well Number

MW-4

Date

#### SAMPLE INVENTORY

Label	Time	Number of Bottles	Analysis	F	Р	Remarks
MW-4-12-6-23	17:10	3	Annual	Ν	NA	

F = Filtered (Y,N), P = Preservative (Type)

Depth to Water Readings: OW-1 = 92.05 feet OW-2 = 88.90 feet

## **\\\$**])

#### SECOND SEMI-ANNUAL 2023 MONITORING REPORT

SECTION 10 LEACHATE COLLECTION AND RECOVERY SYSTEM (LCRS) & WEEKLY LYSIMETER RECORDS



#### LEACHATE COLLECTION AND RECOVERY SYSTEM (LCRS) & WEEKLY LYSIMETER RECORDS

Table 10-1 shows records of weekly inspections performed on the Leachate Collection and Recovery System (LCR) and Lysimeter Records

Date	East LRS Measurement in inches	East LRS pump Out Yes / No	Lysimiters checked	Water Present	East Pond Level Inches of Free Board	West LRS Measurement in inches	West LRS pump Out Yes / No	Lysimiters checked	Water Present	West Pond Level Inches of Free Board	Comments
1/1/2023	66	Y	Y	N	161	2	N	Y	N	44	Weekly Inspection - East LRS Pumped Residual
1/8/2023	55	N	Y	N	153	4	N	Y	N	44	Weekly Inspection - East LRS Pumped Residual
1/15/2023	8	N	Y	N	363	70	Y	Y	N	45	Weekly Inspection - West LRS Pumped Residual
1/22/2023	62	Y	Y	N	363	24	N	Y	N	43	Weekly Inspection - East LRS Pumped Residual
1/29/2023	68	Y	Y	N	363	28	N	Y	Ν	45	Weekly Inspection - East LRS Pumped Residual
2/5/2023	66	Y	Y	N	363	29	Y	Y	Ν	43	Weekly Inspection - East/West LRS Pumped Residual
2/13/2023	72	N	Y	N	144	43	N	Y	Ν	42	Weekly Inspection
2/21/2023	50	Y	Y	N	134	40	N	Y	N	41	Weekly Inspection - East LRS Pumped Residual
2/26/2023	50	N	Y	N	120	48	N	Y	N	44	Weekly Inspection
3/5/2023	84	Y	Y	N	130	60	N	Y	N	41	Weekly Inspection - East LRS Pumped Residual
3/12/2023	78	Y	Y	N	137	37	Y	Y	N	45	Weekly Inspection - East/West LRS Pumped Residual
3/19/2023	6	N	Y	N	141	65	Y	Y	N	41	Weekly Inspection - West LRS Pumped Residual
3/26/2023	78	N	Y	N	137	4	N	Y	Ν	41	Weekly Inspection - Pump stuck in LRS piping
4/2/2023	56	N	Y	N	137	8	N	Y	N	41	Weekly Inspection - Pump stuck in LRS piping
4/8/2023	54	N	Y	N	144	10	N	Y	N	41	Weekly Inspection - Pump stuck in LRS piping
4/16/2023	82	N	Y	N	139	32	Y	Y	N	49	Weekly Inspection - Pump stuck in LRS piping
4/23/2023	75	N	Y	N	138	43	N	Y	N	41	Weekly Inspection - Pump stuck in LRS piping
5/7/2023	52	N	Y	N	144	1	N	Y	N	45	Weekly Inspection - Pump stuck in LRS piping
5/14/2023	68	Y	Y	N	145	6	N	Y	N	48	Weekly Inspection - East LRS Pumped Residual
5/21/2023	26	N	Y	N	144	18	N	Y	N	51	Weekly Inspection
5/29/2023	30	N	Y	N	141	87	N	Y	N	44	Weekly Inspection
6/4/2023	12	N	Y	N	144	48	N	Y	Ν	51	Weekly Inspection
6/10/2023	12	N	Y	N	161	60	N	Y	Ν	55	Weekly Inspection
6/18/2023	6	N	Y	N	150	46	N	Y	N	54	Weekly Inspection
6/24/2023	10	Ν	Y	Ν	155	48	N	Y	Ν	57	Weekly Inspection

#### Table 10-1 Leachate Collection and Recovery System (LCRS) & Weekly Lysimeter Results

# ****\\

Date	East LRS Measurement in inches	East LRS pump Out Yes / No	Lysimiters checked	Water Present	East Pond Level Inches of Free Board	West LRS Measurement in inches	West LRS pump Out Yes / No	Lysimiters checked	Water Present	West Pond Level Inches of Free Board	Comments
7/2/2023	56	N	Y	N	188	10	N	Y	N	41	Weekly Inspection
7/9/2023	55	N	Y	N	189	48	N	Y	N	63	Weekly Inspection
7/16/2023	5	N	Y	N	363	48	N	Y		65	Weekly Inspection
											Weekly Inspection - Water detected in Lysimeter determined to be rain
7/23/2023	15	N	Y	Y	363	50	N	Y	Y	55	water
7/30/2023	24	N	Y	N	141	56	N	Y	N	68	Weekly Inspection
8/6/2023	36	N	Y	N	144	60	N	Y	Ν	68	Weekly Inspection
8/14/2023	36	N	Y	N	363	53	N	Y	N	72	Weekly Inspection
8/19/2023	32	Y	Y	N	363	40	N	Y	N	72	Weekly Inspection - West LRS Pumped Residual
8/27/2023	7	N	Y	N	363	57	N	Y	N	72	Weekly Inspection
9/3/2023	7	N	Y	N	363	55	N	Y	N	68	Weekly Inspection
9/9/2023	35	N	Y	N	363	62	Y	Y	N	71	Weekly Inspection - East LRS Pumped Residual
9/17/2023	12	N	Y	N	103	26	N	Y	N	75	Weekly Inspection
9/24/2023	20	N	Y	Y	363	45	N	Y	Y	70	Weekly Inspection - Water detected in Lysimeter determined to be rain water
10/1/2023	27	N	Y	Y	363	48	N	Y	N	68	Weekly Inspection - Water detected in Lysimeter determined to be rain water
10/8/2023	36	N	Y	N	363	48	N	Y	N	70	Weekly Inspection
10/15/2023	36	N	Y	N	363	48	N	Y	N	72	Weekly Inspection
10/22/2023	39	N	Y	N	363	56	N	Y	N	73	Weekly Inspection
10/29/2023	34	N	Y	N	363	55	N	Y	Ν	71	Weekly Inspection
11/4/2023	28	N	Y	N	363	58	N	Y	N	73	Weekly Inspection
11/12/2023	27	N	Y	N	363	57	N	Y	N	72	Weekly Inspection
11/19/2023	34	N	Y	N	363	54	N	Y	N	71	Weekly Inspection
11/26/2023	53	N	Y	N	363	60	N	Y	N	72	Weekly Inspection
12/2/2023	48	N	Y	N	363	48	N	Y	N	72	Weekly Inspection
12/10/2023	54	N	Y	N	363	58	N	Y	Ν	70	Weekly Inspection
12/16/2023	60	N	Y	Y	363	60	Y	Y	N	71	Weekly Inspection - West LRS Pumped Residual - Water detected in Lysimeter determined to be rain water
12/24/2023	40	N	Y	Ν	363	44	N	Y	N	72	Weekly Inspection
12/30/2023	59	N	Y	Ν	363	54	N	Y	Ν	67	Weekly Inspection

#### Table 10-1 Leachate Collection and Recovery System (LCRS) & Weekly Lysimeter Results (cont.)

## ****\|)

$\sim$		4	
- 1.0	hmn	nent	<u>`</u>
$\sim$			0

## **\\\$**])

#### SECOND SEMI-ANNUAL 2023 MONITORING REPORT

APPENDIX A

LABORATORY ANALYTICAL DATA SHEETS



**Environment Testing** 

### **ANALYTICAL REPORT**

### PREPARED FOR

Attn: Arlin Brewster Northstar Environmental Remediation 26225 Enterprise Court Lake Forest, California 92630 Generated 10/9/2023 12:04:31 PM

JOB DESCRIPTION

Blythe Energy

### **JOB NUMBER**

570-154386-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780







### **Eurofins Calscience**

#### Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

### Authorization

Generated 10/9/2023 12:04:31 PM

5

Authorized for release by Sheri Fama, Project Manager I Sheri.Fama@et.eurofinsus.com (657)210-6368

### **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Lab Chronicle	10
QC Sample Results	12
QC Association Summary	15
Certification Summary	17
Method Summary	18
Chain of Custody	19
Receipt Checklists	20

3

5

### Qualifiers

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
Glossary	,

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEO	Taxisity Equivalent Quatient (Diaxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

#### Job ID: 570-154386-1

#### Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-154386-1

#### Receipt

The samples were received on 9/27/2023 12:45 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.4° C.

#### **Receipt Exceptions**

The following sample was received at the laboratory without a sample collection time documented on the chain of custody MW-4-9-26-23 (570-154386-4) The time of collection was taken from the container labels.

#### HPLC/IC

Method 300.0: Due to the high concentration of Sulfate, the matrix spike / matrix spike duplicate (MS/MSD) for analytical batch 570-368832 could not be evaluated for accuracy and precision. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **General Chemistry**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

### Sample Summary

Client: Northstar Environmental Remediation Project/Site: Blythe Energy

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-154386-1	MW-1-9-26-23	Water	09/26/23 11:35	09/27/23 12:45
570-154386-2	MW-2-9-26-23	Water	09/26/23 10:15	09/27/23 12:45
570-154386-3	MW-3-9-26-23	Water	09/26/23 08:15	09/27/23 12:45
570-154386-4	MW-4-9-26-23	Water	09/26/23 12:50	09/27/23 12:45
570-154386-5	DUP-9-26-23	Water	09/26/23 00:00	09/27/23 12:45

### **Detection Summary**

RL

10

10

1.0

20

umhos/cm

mg/L

**Result Qualifier** 

180

470

2000

1300

#### Client Sample ID: MW-1-9-26-23

Analyte

Chloride

Sulfate

Specific Conductance

**Total Dissolved Solids** 

Job	ID:	570-	15438	6-1
		• • •		• •

Total/NA

Total/NA

6

	Lab Sam	nple ID: 5	70-154386-1	3
Unit	Dil Fac D	Method	Prep Type	
mg/L		300.0	Total/NA	4
mg/L	10	300.0	Total/NA	

SM 2510B

SM 2540C

Lab Sample ID: 570-154386-2

Lab Sample ID: 570-154386-3

Lab Sample ID: 570-154386-4

1

1

#### Client Sample ID: MW-2-9-26-23

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chloride	130	10	mg/L	10	300.0	Total/NA
Sulfate	410	10	mg/L	10	300.0	Total/NA
Specific Conductance	1700	1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1100	20	mg/L	1	SM 2540C	Total/NA

#### Client Sample ID: MW-3-9-26-23

Analyte	Result (	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chloride	160		10	mg/L	10	300.0	Total/NA
Sulfate	450		10	mg/L	10	300.0	Total/NA
Specific Conductance	1900		1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1300		20	mg/L	1	SM 2540C	Total/NA

#### Client Sample ID: MW-4-9-26-23

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chloride	330	10	mg/L	10	300.0	Total/NA
Sulfate	360	10	mg/L	10	300.0	Total/NA
Specific Conductance	2000	1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1200	20	mg/L	1	SM 2540C	Total/NA

#### Client Sample ID: DUP-9-26-23

#### Lab Sample ID: 570-154386-5

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Prep Type
Chloride	130	10	mg/L	10	300.0	Total/NA
Sulfate	420	10	mg/L	10	300.0	Total/NA
Specific Conductance	1700	1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1200	20	mg/L	1	SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 570-154386-1

Client Sample ID: MW-1-9-20 Date Collected: 09/26/23 11:35	5-23				La	ib Sample	ID: 570-154 Matrix	
Date Received: 09/27/23 12:45								
Method: EPA 300.0 - Anions, Ion								
Analyte		Qualifier	RL	Unit	_ <u>D</u>	Prepared	Analyzed	Dil Fac
Chloride	180		10	mg/L			09/30/23 08:19	10
Sulfate	470		10	mg/L			09/29/23 09:39	10
Method: EPA 200.7 Rev 4.4 - Met	tals (ICP)	- Total Reco	overable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.10	mg/L		09/28/23 07:21	09/28/23 15:12	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance (SM 2510B)	2000		1.0	umhos/cm			10/05/23 12:14	1
Total Dissolved Solids (SM 2540C)	1300		20	mg/L			10/02/23 18:23	1
			20	iiig/L				
Client Sample ID: MW-2-9-20	6-23				La	b Sample	ID: 570-154	
Date Collected: 09/26/23 10:15 Date Received: 09/27/23 12:45							Matrix	Water
Method: EPA 300.0 - Anions, Ion	Chroma	tography						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	130		10	mg/L		··	09/30/23 09:09	10
Sulfate	410		10	mg/L			09/29/23 09:59	10
Method: EPA 200.7 Rev 4.4 - Met	als (ICP)	- Total Reco	verable					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.10	mg/L		09/28/23 07:21	09/28/23 15:14	1
General Chemistry								
Analyte	Beault	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Specific Conductance (SM 2510B)	1700	Quaimer	1.0	umhos/cm		Fiepareu	10/05/23 12:16	
Total Dissolved Solids (SM 2540C)	1700		20	mg/L			10/02/23 12:10	
Client Sample ID: MW-3-9-20	6-23				La	b Sample	ID: 570-154	
Date Collected: 09/26/23 08:15 Date Received: 09/27/23 12:45							Matrix	: Watei
Method: EPA 300.0 - Anions, Ion								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	160		10	mg/L			09/30/23 09:26	10
Sulfate	450		10	mg/L			09/29/23 10:20	10
Method: EPA 200.7 Rev 4.4 - Met	tals (ICP)	- Total Reco	verable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.10	mg/L		09/28/23 07:21	09/28/23 15:47	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance (SM 2510B)	1900		1.0	umhos/cm			10/05/23 12:18	1
			· · -					

Client: Northstar Environmental Remediation Project/Site: Blythe Energy

Job ID: 570-154386-1

Client Sample ID: MW-4-9-2 Date Collected: 09/26/23 12:50 Date Received: 09/27/23 12:45	6-23				La	ib Sample	ID: 570-154 Matrix	386-4 : Water
	n Chroma	tography						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	330		10	mg/L			09/30/23 09:43	10
Sulfate	360		10	mg/L			09/29/23 10:41	10
	tals (ICP)	- Total Reco	verable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.10	mg/L		09/28/23 07:21	09/28/23 15:19	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance (SM 2510B)	2000		1.0	umhos/cm			10/05/23 12:19	1
Total Dissolved Solids (SM 2540C)	1200		20	mg/L			10/02/23 18:23	1
Client Sample ID: DUP-9-26 Date Collected: 09/26/23 00:00	-23				La	b Sample	ID: 570-154 Matrix	386-5 Water
Date Received: 09/27/23 12:45								,
Method: EPA 300.0 - Anions, Ior					_			
Analyte		Qualifier	RL	Unit	_ <u>D</u>	Prepared	Analyzed	Dil Fac
Chloride	130		10	mg/L			09/30/23 10:00	10
Sulfate	420		10	mg/L			09/29/23 11:02	10
	tals (ICP)	- Total Reco	overable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.10	mg/L		09/28/23 07:21	09/28/23 15:22	1
General Chemistry								
General Chemistry Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
-	Result 1700	Qualifier	<b>RL</b> 1.0	Unit umhos/cm	_ <u>D</u>	Prepared	Analyzed	Dil Fac

Job ID: 570-154386-1

Matrix: Water

5

8

Lab Sample ID: 570-154386-1

#### Client Sample ID: MW-1-9-26-23 Date Collected: 09/26/23 11:35 Date Received: 09/27/23 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	300.0 it ID: IC10		10	4 mL	4 mL	368832	09/29/23 09:39	YO8L	EET CAL 4
Total/NA	Analysis Instrumer	300.0 tt ID: IC7		10	4 mL	4 mL	369227	09/30/23 08:19	U9XB	EET CAL 4
Total Recoverable	Prep	200.7			50 mL	50 mL	368399	09/28/23 07:21	JP8N	EET CAL 4
Total Recoverable	Analysis Instrumer	200.7 Rev 4.4 t ID: ICP10		1			368739	09/28/23 15:12	P1R	EET CAL 4
Total/NA	Analysis Instrumer	SM 2510B t ID: ManSciMantech	1	1			370945	10/05/23 12:14	ZL4M	EET CAL 4
Total/NA	Analysis Instrumer	SM 2540C t ID: BAL100		1	50 mL	1000 mL	369782	10/02/23 18:23	ZL7L	EET CAL 4

#### Client Sample ID: MW-2-9-26-23 Date Collected: 09/26/23 10:15 Date Received: 09/27/23 12:45

### Lab Sample ID: 570-154386-2

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	t ID: IC10	<u></u>	10	4 mL	4 mL	368832	09/29/23 09:59	YO8L	EET CAL 4
Total/NA	Analysis Instrumen	300.0 it ID: IC7		10	4 mL	4 mL	369227	09/30/23 09:09	U9XB	EET CAL 4
Total Recoverable Total Recoverable	Prep Analysis Instrumen	200.7 200.7 Rev 4.4 t ID: ICP10		1	50 mL	50 mL	368399 368739	09/28/23 07:21 09/28/23 15:14		EET CAL 4 EET CAL 4
Total/NA	Analysis Instrumen	SM 2510B t ID: ManSciMantech	1	1			370945	10/05/23 12:16	ZL4M	EET CAL 4
Total/NA	Analysis Instrumen	SM 2540C t ID: BAL100		1	50 mL	1000 mL	369782	10/02/23 18:23	ZL7L	EET CAL 4

#### Client Sample ID: MW-3-9-26-23 Date Collected: 09/26/23 08:15 Date Received: 09/27/23 12:45

#### Lab Sample ID: 570-154386-3 Matrix: Water

Batch Batch Dil Initial Batch Final Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 300.0 10 4 mL 4 mL 368832 09/29/23 10:20 YO8L EET CAL 4 Instrument ID: IC10 Total/NA 300.0 369227 EET CAL 4 Analysis 10 4 mL 4 mL 09/30/23 09:26 U9XB Instrument ID: IC7 **Total Recoverable** Prep 200.7 50 mL 50 mL 368399 09/28/23 07:21 JP8N EET CAL 4 **Total Recoverable** 200.7 Rev 4.4 368739 09/28/23 15:47 P1R EET CAL 4 Analysis 1 Instrument ID: ICP10 Total/NA Analysis SM 2510B 370945 10/05/23 12:18 ZL4M EET CAL 4 1 Instrument ID: ManSciMantech Total/NA Analysis SM 2540C 1000 mL 369782 EET CAL 4 50 mL 10/02/23 18:23 ZL7L 1 Instrument ID: BAL100

#### Client Sample ID: MW-4-9-26-23 Date Collected: 09/26/23 12:50 Date Received: 09/27/23 12:45

Batch

Batch

			La	b Sample ID: 570-154386-4 Matrix: Water
Dil	Initial	Final	Batch	Prepared

Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	4 mL	4 mL	368832	09/29/23 10:41	YO8L	EET CAL 4
	Instrumen	nt ID: IC10								
Total/NA	Analysis	300.0		10	4 mL	4 mL	369227	09/30/23 09:43	U9XB	EET CAL 4
	Instrumen	it ID: IC7								
Total Recoverable	Prep	200.7			50 mL	50 mL	368399	09/28/23 07:21	JP8N	EET CAL 4
Total Recoverable	Analysis	200.7 Rev 4.4		1			368739	09/28/23 15:19	P1R	EET CAL 4
	Instrumen	t ID: ICP10								
Total/NA	Analysis	SM 2510B		1			370945	10/05/23 12:19	ZL4M	EET CAL 4
	Instrumen	t ID: ManSciMantech	า							
Total/NA	Analysis	SM 2540C		1	50 mL	1000 mL	369782	10/02/23 18:23	ZL7L	EET CAL 4
	Instrumen	t ID: BAL100								

#### Client Sample ID: DUP-9-26-23 Date Collected: 09/26/23 00:00 Date Received: 09/27/23 12:45

### Lab Sample ID: 570-154386-5

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	t ID: IC10	<u></u>	10	4 mL	4 mL	368832	09/29/23 11:02	YO8L	EET CAL 4
Total/NA	Analysis Instrumen	300.0 t ID: IC7		10	4 mL	4 mL	369227	09/30/23 10:00	U9XB	EET CAL 4
Total Recoverable Total Recoverable	Prep Analysis Instrumen	200.7 200.7 Rev 4.4 t ID: ICP10		1	50 mL	50 mL	368399 368739	09/28/23 07:21 09/28/23 15:22		EET CAL 4 EET CAL 4
Total/NA	Analysis Instrumen	SM 2510B t ID: ManSciMantech	ו	1			370945	10/05/23 12:21	ZL4M	EET CAL 4
Total/NA	Analysis Instrumen	SM 2540C t ID: BAL100		1	50 mL	1000 mL	369782	10/02/23 18:23	ZL7L	EET CAL 4

#### Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

RL

1.0

Spike

Added

50.0

Spike

Unit

mg/L

LCS LCS

LCSD LCSD

53.4

Result Qualifier Unit

mg/L

D

Prepared

D %Rec

Lab Sample ID: MB 570-368832/5

Lab Sample ID: LCS 570-368832/6

Lab Sample ID: LCSD 570-368832/7

Analysis Batch: 368832

Analysis Batch: 368832

Analysis Batch: 368832

**Matrix: Water** 

**Matrix: Water** 

**Matrix: Water** 

Analyte

Sulfate

Analyte

Sulfate

Method: 300.0 - Anions, Ion Chromatography

MB MB

ND

**Result Qualifier** 

Job ID: 570-154386-1

Prep Type: Total/NA

Prep Type: Total/NA

**Client Sample ID: Method Blank** 

**Client Sample ID: Lab Control Sample** 

%Rec

Limits

Analyzed

09/29/23 05:16

9

Dil Fac

1

#### 107 90 - 110 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA %Rec RPD Limits RPD Limit D %Rec

Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	RPD	Limit
Sulfate	50.0	53.4	mg/L	107	90 - 110	0	15
Lab Sample ID: 570-154386-1 MS Matrix: Water Analysis Batch: 368832				Client Sar	nple ID: M Prep Ty		
Sample Sample	Spike	MS MS			%Rec		

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	470		50.0	515	4	mg/L		97	80 - 120	 

Lab Sample ID: 570-154386 Matrix: Water Analysis Batch: 368832	6-1 MSD						Clie	ent San	nple ID: M Prep Ty		
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	470		50.0	521	4	mg/L		109	80 - 120	1	20

Lab Sample ID: MB 570-369227/5 Matrix: Water								Clie	ent Sam	ple ID: Method Prep Type: To	
Analysis Batch: 369227											
	MB	MB									
Analyte	Result	Qualifier		RL		Unit		D P	repared	Analyzed	Dil Fac
Chloride	ND			1.0		mg/L				09/30/23 07:29	1
Lab Sample ID: LCS 570-369227/6							Clie	nt Sa	mple ID	: Lab Control S	Sample
Matrix: Water										Prep Type: T	
Analysis Batch: 369227											
			Spike		LCS	LCS				%Rec	
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits	
Chloride			50.0		49.1		mg/L		98	90 - 110	
Lab Sample ID: LCSD 570-369227/	7					c	lient Sa	ample	ID: Lab	Control Samp	ole Dup

Matrix: Water Analysis Batch: 369227							Prep ly	pe: lot	al/NA
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	50.0	48.2		mg/L	_	96	90 - 110	2	15

MS MS

MSD MSD

226

Result Qualifier

Unit

mg/L

225

Result Qualifier

Unit

mg/L

Unit

mg/L

D

Spike

Added

50.0

Spike

Added

50.0

Lab Sample ID: 570-154386-1 MS

Lab Sample ID: 570-154386-1 MSD

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 570-368399/1-A

Lab Sample ID: LCS 570-368399/2-A

Analysis Batch: 369227

Analysis Batch: 369227

Analysis Batch: 368739

**Matrix: Water** 

**Matrix: Water** 

**Matrix: Water** 

**Matrix: Water** 

Analyte

Chloride

Analyte

Chloride

Analyte

Selenium

Method: 300.0 - Anions, Ion Chromatography

Sample Sample

Sample Sample

180

**Result Qualifier** 

MB MB Result Qualifier

ND

180

**Result Qualifier** 

Job ID: 570-154386-1

Prep Type: Total/NA

Client Sample ID: MW-1-9-26-23

%Rec

Limits

80 - 120

Client Sample ID: MW-1-9-26-23

%Rec

D %Rec

Prepared

82

80

D

Prep Ty	be: Tot	al/NA	
%Rec		RPD	8
Limits	RPD	Limit	
80 - 120	1	20	9
ole ID: Mo e: Total F			
Prep Ba	tch: 36	58399	

**Client Sample ID: Method Blar** Prep Type: Total Recoverab Prep Batch: 36839 Dil Fac 1

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable

09/28/23 07:21 09/28/23 14:26

Analyzed

Analysis Batch: 368739							Prep Batch: 368399
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Selenium	0.500	0.524		mg/L		105	85 - 115

RL

0.10

Lab Sample ID: LCSD 570-368399/3-A Matrix: Water			C	Client Sa			o Control pe: Total		
Analysis Batch: 368739							Prep Ba		
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Selenium	0.500	0.510		mg/L		102	85 - 115	3	20

Lab Sample ID: 570-15438 Matrix: Water Analysis Batch: 368739		Sample	Spike	MS	MS				pe: Total	W-3-9-26- Recoverat atch: 3683	ole
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Selenium	ND		0.500	0.513		mg/L		103	80 - 120		
Lab Sample ID: 570-15438	6-3 MSD						Clie	ent San	nple ID: M	W-3-9-26-	23
Matrix: Water							F	Prep Ty	pe: Total	Recoverat	ole
Analysis Batch: 368739									Prep Ba	atch: 3683	99
-	Sample	Sample	Spike	MSD	MSD				%Rec	R	PD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD Lii	mit
Selenium	ND		0.500	0.510		mg/L		102	80 - 120	1	20

Job ID: 570-154386-1

#### Method: SM 2510B - Conductivity, Specific Conductance

Lab Sample ID: MB 570-3709 Matrix: Water										- ne	Juli Gull	ple ID: M Prep Ty		
Analysis Batch: 370945												i icp i j	pc. 10	
		мв	мв											
Analyte	Re		Qualifier		RL		Ur	it	D	Р	repared	Analy	zed	Dil Fa
Specific Conductance		ND			1.0		un	nhos/cm				10/05/23		
-														
Lab Sample ID: 570-154994-	I-1 DU										Client	Sample I		
Matrix: Water												Prep Ty	pe: Io	
Analysis Batch: 370945	Sample	Sam	nlo			ווס	DU							RP
Analyte	Result		•				Qualifie	er Unit		D			RPD	Lim
Specific Conductance	4300	Qua				4310	Quanne		os/cm				0.2	2
- •													0.2	
lethod: SM 2540C - Soli	ds, Tota	al Di	issolve	d (TDS	5)									
Lab Sample ID: MB 570-369	782/1									Clie	ent Sam	ple ID: M	ethod	Blan
Matrix: Water												Prep Ty		
Analysis Batch: 369782														
		MB	MB											
Analyte	Re	esult	Qualifier		RL		Ur	it	D	Р	repared	Analy	zed	Dil Fa
Total Dissolved Solids		ND			10		mę	j/L				10/02/23	18:23	
- - -														
Lab Sample ID: LCS 570-369	782/2							C	lient	Sai	nple ID	: Lab Cor		
Matrix: Water												Prep Ty	pe: To	tal/N
Analysis Batch: 369782				• •								~-		
				Spike			LCS			_	~-	%Rec		
Analyte				Added			Qualifie			D	%Rec	Limits		
Total Dissolved Solids				1000		1010		mg/L			101	84 - 108		
Lab Sample ID: LCSD 570-3	69782/3							Client	Sam	ple	ID: Lab	Control	Sampl	e Du
Matrix: Water												Prep Ty	pe: To	tal/N
Analysis Batch: 369782														
				Spike		LCSD	LCSD					%Rec		RP
Analyte				Added			Qualifie	er Unit		D	%Rec	Limits	RPD	Lim
Total Dissolved Solids				1000		978		mg/L		_	98	84 - 108	3	1
Lab Sample ID: 570-154386-	1 DU									Clie	ent San	nple ID: M	W-1-9	-26-2
												Prep Ty		
Matrix: Water														
Matrix: Water Analysis Batch: 369782														
Matrix: Water Analysis Batch: 369782	Sample	Sam	ple			DU	DU							RPI
	Sample Result						DU Qualifie	er Unit		D			RPD	RPI Limi

# Prep Batch 11 12

#### Analysis Batch: 368832

HPLC/IC

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-154386-1	MW-1-9-26-23	Total/NA	Water	300.0	
570-154386-2	MW-2-9-26-23	Total/NA	Water	300.0	
570-154386-3	MW-3-9-26-23	Total/NA	Water	300.0	
570-154386-4	MW-4-9-26-23	Total/NA	Water	300.0	
570-154386-5	DUP-9-26-23	Total/NA	Water	300.0	
MB 570-368832/5	Method Blank	Total/NA	Water	300.0	
LCS 570-368832/6	Lab Control Sample	Total/NA	Water	300.0	
LCSD 570-368832/7	Lab Control Sample Dup	Total/NA	Water	300.0	
570-154386-1 MS	MW-1-9-26-23	Total/NA	Water	300.0	
570-154386-1 MSD	MW-1-9-26-23	Total/NA	Water	300.0	

#### Analysis Batch: 369227

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-154386-1	MW-1-9-26-23	Total/NA	Water	300.0	
570-154386-2	MW-2-9-26-23	Total/NA	Water	300.0	
570-154386-3	MW-3-9-26-23	Total/NA	Water	300.0	
570-154386-4	MW-4-9-26-23	Total/NA	Water	300.0	
570-154386-5	DUP-9-26-23	Total/NA	Water	300.0	
MB 570-369227/5	Method Blank	Total/NA	Water	300.0	
LCS 570-369227/6	Lab Control Sample	Total/NA	Water	300.0	
LCSD 570-369227/7	Lab Control Sample Dup	Total/NA	Water	300.0	
570-154386-1 MS	MW-1-9-26-23	Total/NA	Water	300.0	
570-154386-1 MSD	MW-1-9-26-23	Total/NA	Water	300.0	

#### Metals

#### Prep Batch: 368399

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-154386-1	MW-1-9-26-23	Total Recoverable	Water	200.7	
570-154386-2	MW-2-9-26-23	Total Recoverable	Water	200.7	
570-154386-3	MW-3-9-26-23	Total Recoverable	Water	200.7	
570-154386-4	MW-4-9-26-23	Total Recoverable	Water	200.7	
570-154386-5	DUP-9-26-23	Total Recoverable	Water	200.7	
MB 570-368399/1-A	Method Blank	Total Recoverable	Water	200.7	
LCS 570-368399/2-A	Lab Control Sample	Total Recoverable	Water	200.7	
LCSD 570-368399/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.7	
570-154386-3 MS	MW-3-9-26-23	Total Recoverable	Water	200.7	
570-154386-3 MSD	MW-3-9-26-23	Total Recoverable	Water	200.7	

#### Analysis Batch: 368739

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-154386-1	MW-1-9-26-23	Total Recoverable	Water	200.7 Rev 4.4	368399
570-154386-2	MW-2-9-26-23	Total Recoverable	Water	200.7 Rev 4.4	368399
570-154386-3	MW-3-9-26-23	Total Recoverable	Water	200.7 Rev 4.4	368399
570-154386-4	MW-4-9-26-23	Total Recoverable	Water	200.7 Rev 4.4	368399
570-154386-5	DUP-9-26-23	Total Recoverable	Water	200.7 Rev 4.4	368399
MB 570-368399/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	368399
LCS 570-368399/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	368399
LCSD 570-368399/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.7 Rev 4.4	368399
570-154386-3 MS	MW-3-9-26-23	Total Recoverable	Water	200.7 Rev 4.4	368399
570-154386-3 MSD	MW-3-9-26-23	Total Recoverable	Water	200.7 Rev 4.4	368399

#### **General Chemistry**

#### Analysis Batch: 369782

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
570-154386-1	MW-1-9-26-23	Total/NA	Water	SM 2540C		
570-154386-2	MW-2-9-26-23	Total/NA	Water	SM 2540C		
570-154386-3	MW-3-9-26-23	Total/NA	Water	SM 2540C		
570-154386-4	MW-4-9-26-23	Total/NA	Water	SM 2540C		
570-154386-5	DUP-9-26-23	Total/NA	Water	SM 2540C		
MB 570-369782/1	Method Blank	Total/NA	Water	SM 2540C		
LCS 570-369782/2	Lab Control Sample	Total/NA	Water	SM 2540C		
LCSD 570-369782/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C		
570-154386-1 DU	MW-1-9-26-23	Total/NA	Water	SM 2540C		
Analysis Batch: 370	945					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
570-154386-1	MW-1-9-26-23	Total/NA	Water	SM 2510B		
570-154386-2	MW-2-9-26-23	Total/NA	Water	SM 2510B		
570-154386-3	MW-3-9-26-23	Total/NA	Water	SM 2510B		

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method
570-154386-1	MW-1-9-26-23	Total/NA	Water	SM 2510B
570-154386-2	MW-2-9-26-23	Total/NA	Water	SM 2510B
570-154386-3	MW-3-9-26-23	Total/NA	Water	SM 2510B
570-154386-4	MW-4-9-26-23	Total/NA	Water	SM 2510B
570-154386-5	DUP-9-26-23	Total/NA	Water	SM 2510B
MB 570-370945/10	Method Blank	Total/NA	Water	SM 2510B
570-154994-I-1 DU	Duplicate	Total/NA	Water	SM 2510B

Job ID: 570-154386-1

Client: Northstar Environmental Remediation Project/Site: Blythe Energy Job ID: 570-154386-1

### Laboratory: Eurofins Calscience

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date			
California	State	3082	07-31-24			

#### Client: Northstar Environmental Remediation Project/Site: Blythe Energy

Anions, Ion Chromatography		
Amons, for orientatography	EPA	EET CAL 4
Metals (ICP)	EPA	EET CAL 4
Conductivity, Specific Conductance	SM	EET CAL 4
Solids, Total Dissolved (TDS)	SM	EET CAL 4
Preparation, Total Recoverable Metals	EPA	EET CAL 4
ences: avironmental Protection Agency		
,	Conductivity, Specific Conductance Solids, Total Dissolved (TDS) Preparation, Total Recoverable Metals	Conductivity, Specific Conductance     SM       Solids, Total Dissolved (TDS)     SM       Preparation, Total Recoverable Metals     EPA

#### Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

#### **Eurofins Calscience Tustin**

### Chain of Custody Record

	154386
Environ	ument Testing

America

🔅 eurofins

2841 Dow Avenue, Suite 100 Tustin, CA 92780 Phone (714) 895-5494

lient Information		Sampler: Lab PM: Ralph DeLa Parra Fama, S								Carrier Tracking No(s):					COC No: 440-210767-37763.1			
ent Contact lin Brewster	Phone: (949)	Phone: (949) 202-0568 E-Mall: Sheri.Fama				State of Origin					Drigin:				Page: Page 1 of 1			
^{mpany:} orthstar Environmental Remediation			PWSID:						Analy	sis f	Requ	ester	d				Job #:	
dress: 225 Enterprise Court	Due Date Requeste					280							T		Τ		Preservation Co	des: M - Hexane N - None
y: ke Forest	TAT Requested (da	Norma			19 A	ORGFM											B - NaOH C - Zn Acetate D - Nitric Acld	0 - AsNa02 P - Na204S Q - Na2S03
A, 92630 ^{one:} 9-274-1719(Tel)	Compliance Projec PO# Blythe Energy	t: ∆Yes ∠	No		-	DS, 300											E - NaHSO4 F - MeOH G - Amchlor	R - Na2S2O3 S - H29O4 T - TSP Dodecanydr
^{nail:}  phdelaparra@cox.net	WO #:		-		s or No) No)	Calcd T										S	H - Ascorbic Acid I - Ice J - DI Water K - EDTA	U - Actione V - MCAA W - pH 4-5
oject Name: Y <b>the Energy</b> e:	Project #: 44003897 SSOW#:				nple (Yes (Yes or N	, 2540C										containers	L - EDA Other:	Y - Trizma Z - other (specify)
lifornia		- 1	Sample	Matrix	red Sampl	2810B Conductivity, 2540C_Calcd TDS, 300_ORGFM_28D Chioride												
		Sample	Type (C=comp,	(Winwater, Sissolid, Oswaste/oli,	eld Filtered erform MS/N	10B Con hioride	200.7 - Se									Total Number of		
Imple Identification	Sample Date	Time	the second se	tion Code:									+	┢─╁		X	Special II	structions/Note:
N-1-9-26-23	9-26-23	1135	6	Water		X	x						1			2		
N-2 — 4	11	1015	1	Water	11	X	x									2		
N-3 - 1(	E i	0815		Water		X	X									2		
N-4 - 11	11			Water		X	x									2		
JP – Lj	د.			Water	口	X	X								1	Z		
····· <u>··</u> ·····························						-			111 10 011 0011		1		10 0111 100	<b>I</b> , I		+		
						T												
						+	57	0-154	386 C	hain	of Cu:	stody				_		
						+		1	1 1	I	1	1	1	1 1	1	[		
Reible Hazard Identification	ant Polson B Unkno		diological		Se		<b>Disp</b> e eturn	<b>osal (</b> . To Clie	A fee i ent	nay t	Disj	oosal l	<b>d if s</b> a By La	a <b>mple</b> b	s are i		ed longer th <b>an</b> ' ive For	Months
liverable Requested: I, II, III, IV, Other (specify)					Sp	pecial	Instru	ctions/	QC Re	quire	ments	:						
npty Kiz Relinquished by:		Date:			Time							Met	hod of	Shipme				
linquisited by	Date/Time 9-22 Date/Time;	HSC1		Company	s	-	eived by	- 1	Zid	nc	H			Date/T Date/T	-23	1-27	3 12:45	Company EC Company
inquished by:	Date/Time:			Company			elved by							Date/T		_		Company

Ver: 01/16/2019 0/9/2023

#### Login Sample Receipt Checklist

Client: Northstar Environmental Remediation

#### Login Number: 154386 List Number: 1 Creator: Vitente, Precy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to Job Narrative for details.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No time on COC Sample -4, logged in per container labels.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins Calscience



**Environment Testing** 

## **ANALYTICAL REPORT**

## PREPARED FOR

Attn: Arlin Brewster Northstar Environmental Remediation 26225 Enterprise Court Lake Forest, California 92630 Generated 12/29/2023 2:16:05 PM

## JOB DESCRIPTION

Blythe Energy Annual

## **JOB NUMBER**

570-163811-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

See page two for job notes and contact information.





## **Eurofins Calscience**

#### Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

### Authorization

Generated 12/29/2023 2:16:05 PM

5

Authorized for release by Sheri Fama, Project Manager I Sheri.Fama@et.eurofinsus.com (657)210-6368

## **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	6
Detection Summary	
Client Sample Results	9
Lab Chronicle	13
QC Sample Results	16
QC Association Summary	25
Certification Summary	29
Method Summary	30
Chain of Custody	31
Receipt Checklists	32

#### Qualifiers

Qualifiers	
HPLC/IC	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
E	Result exceeded calibration range.
Metals	•
Qualifier	Qualifier Description
*1	LCS/LCSD RPD exceeds control limits.
F1	MS and/or MSD recovery exceeds control limits.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

#### Job ID: 570-163811-1

#### **Eurofins Calscience**

#### Job Narrative 570-163811-1

#### Receipt

The samples were received on 12/8/2023 10:25 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.0° C.

#### HPLC/IC

Method 300.0: The native sample, matrix spike, and matrix spike duplicate (MS/MSD) associated with analytical batch 570-393952 were performed at the same dilution. Due to the additional level of analyte present in the spiked samples, the concentration of Chloride and Sulfate in the MS/MSD was above the instrument calibration range. The data have been reported and qualified.

Method 300.0: Due to the high concentration of Chloride and Sulfate, the matrix spike / matrix spike duplicate (MS/MSD) for analytical batch 570-393952 could not be evaluated for accuracy and precision. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Metals

Method 200.7 Rev 4.4: The following sample was diluted due to the nature of the sample matrix: EP-12-06-23 (570-163811-8). Elevated reporting limits (RLs) are provided.

Method 6010D: The following sample was diluted due to the nature of the sample matrix: EP-12-06-23 (570-163811-8). Elevated reporting limits (RLs) are provided.

Method 7471A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample/ laboratory control sample (LCS/LCSD) recovery is within acceptance limits.

Method 7471A: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 570-392837 and analytical batch 570-394894 recovered outside control limits for the following analytes: Mercury.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **General Chemistry**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **Sample Summary**

Client: Northstar Environmental Remediation Project/Site: Blythe Energy

Job ID: 570-163811-1 SDG: Annual

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-163811-1	MW-1-12-06-23	Water	12/06/23 15:45	12/08/23 10:25
570-163811-2	MW-2-12-06-23	Water	12/06/23 14:25	12/08/23 10:25
570-163811-3	MW-3-12-06-23	Water	12/06/23 13:05	12/08/23 10:25
570-163811-4	MW-4-12-06-23	Water	12/06/23 17:10	12/08/23 10:25
570-163811-5	DUP-12-06-23	Water	12/06/23 00:00	12/08/23 10:25
570-163811-6	EP (East) Sludge-12-06-23	Solid	12/06/23 13:50	12/08/23 10:25
570-163811-7	EP (West) Sludge-12-06-23	Solid	12/06/23 15:55	12/08/23 10:25
570-163811-8	EP-12-06-23	Water	12/06/23 16:00	12/08/23 10:25

### **Detection Summary**

#### Client Sample ID: MW-1-12-06-23

Analyte Chloride	Result Qualifier		Unit	Dil Fac D	<b>Method</b> 300.0	Prep Type Total/NA
Sulfate	200 430	10 10	mg/L mg/L	10 10	300.0 300.0	Total/NA Total/NA
Specific Conductance	1900	1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1300	20	mg/L	1	SM 2540C	Total/NA

#### Client Sample ID: MW-2-12-06-23

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chloride	130	10	mg/L	10	300.0	Total/NA
Sulfate	390	10	mg/L	10	300.0	Total/NA
Specific Conductance	1700	1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1100	10	mg/L	1	SM 2540C	Total/NA

#### Client Sample ID: MW-3-12-06-23

Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chloride	150		20	mg/L	20	300.0	Total/NA
Sulfate	430		20	mg/L	20	300.0	Total/NA
Specific Conductance	1800		1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1300		10	mg/L	1	SM 2540C	Total/NA

#### Client Sample ID: MW-4-12-06-23

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chloride	290	20	mg/L	20	300.0	Total/NA
Sulfate	320	20	mg/L	20	300.0	Total/NA
Specific Conductance	2000	1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1200	10	mg/L	1	SM 2540C	Total/NA

#### Client Sample ID: DUP-12-06-23

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Prep Туре
Chloride	130	10	mg/L	10	300.0	Total/NA
Sulfate	400	10	mg/L	10	300.0	Total/NA
Specific Conductance	1900	1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1100	10	mg/L	1	SM 2540C	Total/NA

#### Client Sample ID: EP (East) Sludge-12-06-23

Analyte	Result Qualifier	RL	Unit	Dil Fac	Method	Prep Type
Arsenic	3.8	3.1	mg/Kg	5	6010B	Total/NA
Barium	22	3.1	mg/Kg	5	6010B	Total/NA
Chromium	2.8	1.0	mg/Kg	5	6010B	Total/NA
Copper	2.9	2.0	mg/Kg	5	6010B	Total/NA
Lead	2.0	2.0	mg/Kg	5	6010B	Total/NA
Molybdenum	13	2.0	mg/Kg	5	6010B	Total/NA
Vanadium	5.1	1.0	mg/Kg	5	6010B	Total/NA
Zinc	20	5.1	mg/Kg	5	6010B	Total/NA

#### Client Sample ID: EP (West) Sludge-12-06-23

Analyte	Result Qualifier	RL	Unit	Dil Fac	) Method	Prep Type
Arsenic	4.4	3.1	mg/Kg	5	6010B	Total/NA
Barium	32	3.1	mg/Kg	5	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

**Eurofins Calscience** 

SDG: Annual

Lab Sample ID: 570-163811-2

Lab Sample ID: 570-163811-3

Lab Sample ID: 570-163811-4

Lab Sample ID: 570-163811-5

Lab Sample ID: 570-163811-6

Lab Sample ID: 570-163811-7

Job ID: 570-163811-1

### **Detection Summary**

Job ID: 570-163811-1 SDG: Annual

Lab Sample ID: 570-163811-7

Client Sample ID: EP (West) Sludge-12-06-23 (Continued)

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chromium	3.5	1.0	mg/Kg	5	6010B	Total/NA
Molybdenum	2.6	2.1	mg/Kg	5	6010B	Total/NA
Vanadium	2.7	1.0	mg/Kg	5	6010B	Total/NA
Zinc	27	5.1	mg/Kg	5	6010B	Total/NA
Client Sample ID: EP-12	-06-23			Lab San	nple ID: 5	70-163811-8

#### Client Sample ID: EP-12-06-23

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Туре
Sulfate	14000	1000	mg/L	1000	300.0	Total/NA
Chloride - DL	110000	2000	mg/L	2000	300.0	Total/NA
Specific Conductance	180000	1.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	220000	2000	mg/L	1	SM 2540C	Total/NA

5 6

This Detection Summary does not include radiochemical test results.

Job ID: 570-163811-1 SDG: Annual

Client Sample ID: MW-1-12- Date Collected: 12/06/23 15:45 Date Received: 12/08/23 10:25	06-23				La	ib Sample	ID: 570-163 Matrix	3811-1 : Water
Method: EPA 300.0 - Anions, lor	n Chroma	tography						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	200		10	mg/L			12/16/23 15:18	10
Sulfate	430		10	mg/L			12/16/23 15:18	10
Method: EPA 200.7 Rev 4.4 - Me	tals (ICP)	- Total Rec	overable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.10	mg/L		12/13/23 07:38	12/13/23 15:38	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance (SM 2510B)	1900		1.0	umhos/cm			12/21/23 15:05	1
Total Dissolved Solids (SM 2540C)	1300		20	mg/L			12/13/23 17:06	1
Client Sample ID: MW-2-12-	06-23				La	ab Sample	ID: 570-163	3811-2
Date Collected: 12/06/23 14:25 Date Received: 12/08/23 10:25							Matrix	: Water
Method: EPA 300.0 - Anions, lor								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	130		10	mg/L			12/16/23 15:35	10
Sulfate	390		10	mg/L			12/16/23 15:35	10
Method: EPA 200.7 Rev 4.4 - Me	tals (ICP)	- Total Rec	overable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.10	mg/L		12/13/23 07:38	12/13/23 15:40	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance (SM 2510B)	1700		1.0	umhos/cm			12/21/23 15:03	1
Total Dissolved Solids (SM 2540C)	1100		10	mg/L			12/13/23 17:06	1
Client Sample ID: MW-3-12- Date Collected: 12/06/23 13:05	06-23				La	ab Sample	ID: 570-163 Matrix	3811-3 : Water
Date Received: 12/08/23 10:25								
Method: EPA 300.0 - Anions, Ior Analyte		t <mark>ography</mark> Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	150		20	mg/L		Fiepaleu	12/19/23 07:35	20
Sulfate	430		20	mg/L			12/19/23 07:35	20
			overable					
Method: EPA 200 7 Rev 4.4 - Me	tals (ICP)	- Total Rec						
				Unit	п	Prenared	<b>Analyzod</b>	Dil Eac
Method: EPA 200.7 Rev 4.4 - Me Analyte Selenium		- Total Rec Qualifier		Unit mg/L	_ <u>D</u>	Prepared 12/13/23 07:38	Analyzed 12/13/23 15:48	
Selenium	Result		RL		_ <u>D</u>	•		
Analyte Selenium General Chemistry	Result ND	Qualifier	<b>RL</b> 0.10	mg/L		12/13/23 07:38	12/13/23 15:48	1
Analyte	Result ND		RL		D	•		Dil Fac

**Eurofins Calscience** 

Zinc

Job ID: 570-163811-1 SDG: Annual

Client Sample ID: MW-4-12- Date Collected: 12/06/23 17:10 Date Received: 12/08/23 10:25	06-23				La	ab Sample	ID: 570-163 Matrix	
Method: EPA 300.0 - Anions, Ion								
Analyte		Qualifier	RL	Unit	_ <u>D</u>	Prepared	Analyzed	Dil Fa
Chloride	290		20	mg/L			12/19/23 07:54	:
Sulfate	320		20	mg/L			12/19/23 07:54	:
Method: EPA 200.7 Rev 4.4 - Met	• • •		verable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.10	mg/L		12/13/23 07:38	12/13/23 15:51	
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Specific Conductance (SM 2510B)	2000		1.0	umhos/cm			12/21/23 14:59	
Total Dissolved Solids (SM 2540C)	1200		10	mg/L			12/13/23 17:06	
lient Sample ID: DUP-12-00 ate Collected: 12/06/23 00:00 ate Received: 12/08/23 10:25	6-23				La	ab Sample	ID: 570-163 Matrix	
Method: EPA 300.0 - Anions, Ion	Chroma	tography						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Chloride	130		10	mg/L			12/19/23 08:13	
Sulfate	400		10	mg/L			12/19/23 08:13	
Analyte	Result ND	Qualifier	<b>RL</b> 0.10	Unit mg/L	_ <u>D</u>	Prepared 12/13/23 07:38	Analyzed 12/13/23 15:53	Dil F
General Chemistry Analyte	Posult	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Specific Conductance (SM 2510B)	1900		1.0	umhos/cm			12/21/23 14:57	
			1.0				12/21/23 14:57	
otal Dissolved Solids (SM 2540C)	1100		10	mg/L			12/13/23 17:00	
lient Sample ID: EP (East) ate Collected: 12/06/23 13:50 ate Received: 12/08/23 10:25 Method: SW846 6010B - Metals (		-12-06-23			La	ab Sample	ID: 570-163 Matrix	
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
ntimony	ND		10	mg/Kg		12/14/23 09:47		
vrsenic	3.8		3.1	mg/Kg		12/14/23 09:47		
Barium	22		3.1	mg/Kg		12/14/23 09:47		
eryllium	ND		0.51	mg/Kg		12/14/23 09:47		
admium	ND		0.51	mg/Kg		12/14/23 09:47		
hromium	2.8		1.0	mg/Kg		12/14/23 09:47		
obalt	ND		1.0	mg/Kg		12/14/23 09:47		
opper	2.9		2.0	mg/Kg		12/14/23 09:47		
ead	2.0		2.0	mg/Kg		12/14/23 09:47		
lolybdenum	13		2.0	mg/Kg		12/14/23 09:47		
lickel	ND		2.0	mg/Kg		12/14/23 09:47		
						12/14/23 09:47		
liver	NI I		15	ma/ka				
	ND ND		1.5 10	mg/Kg mg/Kg				
Silver Thallium <b>Vanadium</b>	ND ND 5.1		1.5 10 1.0	mg/Kg mg/Kg mg/Kg		12/14/23 09:47		

**Eurofins Calscience** 

12/14/23 09:47 12/16/23 14:24

5.1

20

mg/Kg

Job ID: 570-163811-1 SDG: Annual

Client Sample ID: EP (East) S Date Collected: 12/06/23 13:50 Date Received: 12/08/23 10:25	siuage	12-06-23			La	io Sample	ID: 570-163 Matrix	
Method: SW846 7471A - Mercury								
Analyte	· · ·	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.080	mg/Kg		<u> </u>	12/20/23 18:57	
		40.00.00				h Comula	ID. 570 400	044 -
Client Sample ID: EP (West) \$ Date Collected: 12/06/23 15:55	Sluage	-12-06-23			La	ib Sample	ID: 570-163	
Date Received: 12/08/23 10:25							Matrix	.: 5010
Method: SW846 6010B - Metals (I	CP)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	ND		10	mg/Kg		12/14/23 09:47	12/16/23 14:33	
Arsenic	4.4		3.1	mg/Kg		12/14/23 09:47	12/16/23 14:33	
Barium	32		3.1	mg/Kg		12/14/23 09:47	12/16/23 14:33	
Beryllium	ND		0.51	mg/Kg		12/14/23 09:47	12/16/23 14:33	
Cadmium	ND		0.51	mg/Kg		12/14/23 09:47	12/16/23 14:33	
Chromium	3.5		1.0	mg/Kg		12/14/23 09:47	12/16/23 14:33	
Cobalt	ND		1.0	mg/Kg		12/14/23 09:47	12/16/23 14:33	
Copper	ND		2.1	mg/Kg		12/14/23 09:47	12/16/23 14:33	
Lead	ND		2.1	mg/Kg		12/14/23 09:47	12/16/23 14:33	
Molybdenum	2.6		2.1	mg/Kg		12/14/23 09:47	12/16/23 14:33	
Nickel	ND		2.1	mg/Kg		12/14/23 09:47	12/16/23 14:33	
Silver	ND		1.5	mg/Kg		12/14/23 09:47		
Thallium	ND		10	mg/Kg		12/14/23 09:47		
Vanadium	2.7		1.0	mg/Kg		12/14/23 09:47		
Zinc	27		5.1	mg/Kg		12/14/23 09:47		
	21		0.1	iiig/itg		12/1 1/20 00:11	12,10,20 11.00	
Method: SW846 7471A - Mercury	(CVAA)							
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.080	mg/Kg		12/14/23 16:41	12/20/23 18:58	
lient Sample ID: EP-12-06-2	3				La	b Sample	ID: 570-163	811-8
Client Sample ID: EP-12-06-2 Date Collected: 12/06/23 16:00	3				La	b Sample	ID: 570-163 Matrix:	
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25					La	b Sample		
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion (	Chroma		RL	Unit			Matrix	Wate
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte	Chroma Result	tography Qualifier	RL	Unit ma/L	La D	Prepared	Matrix: Analyzed	Wate
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate	Chroma Result 14000	Qualifier	1000	Unit mg/L			Matrix	Wate
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate Method: EPA 300.0 - Anions, Ion (	Chroma Result 14000 Chroma	Qualifier	1000	mg/L	<u>D</u>	Prepared	Matrix: Analyzed 12/16/23 14:44	Dil Fa
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate Method: EPA 300.0 - Anions, Ion ( Analyte	Chroma Result 14000 Chroma Result	Qualifier	1000 DL RL	mg/L Unit			Matrix: Analyzed 12/16/23 14:44 Analyzed	Dil Fac
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate Method: EPA 300.0 - Anions, Ion ( Analyte Chloride	Chroma Result 14000 Chroma Result 110000	Qualifier tography - D Qualifier	1000 DL 2000	mg/L	<u>D</u>	Prepared	Matrix: Analyzed 12/16/23 14:44	Dil Fa
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate Method: EPA 300.0 - Anions, Ion ( Analyte	Chroma Result 14000 Chroma Result 110000	Qualifier tography - D Qualifier	1000 DL 2000	mg/L Unit	<u>D</u>	Prepared	Matrix: Analyzed 12/16/23 14:44 Analyzed	Dil Fa
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate Method: EPA 300.0 - Anions, Ion ( Analyte Chloride	Chroma Result 14000 Chroma Result 110000 NIS (ICP)	Qualifier tography - D Qualifier	1000 DL 2000	mg/L Unit	<u>D</u>	Prepared	Matrix: Analyzed 12/16/23 14:44 Analyzed	Dil Fa           100           Dil Fa           200
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate Method: EPA 300.0 - Anions, Ion ( Analyte Chloride Method: EPA 200.7 Rev 4.4 - Meta	Chroma Result 14000 Chroma Result 110000 NIS (ICP)	Qualifier tography - D Qualifier - Total Reco	1000 DL RL 2000 Dverable	mg/L Unit mg/L	D	Prepared Prepared	Matrix: <u>Analyzed</u> 12/16/23 14:44 <u>Analyzed</u> 12/19/23 16:55 <u>Analyzed</u>	Dil Fa Dil Fa 200 Dil Fa
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate Method: EPA 300.0 - Anions, Ion ( Analyte Chloride Method: EPA 200.7 Rev 4.4 - Meta Analyte	Chroma Result 14000 Chroma Result 110000 Als (ICP) Result ND	Qualifier tography - D Qualifier - Total Reco Qualifier	1000           RL           2000           overable           RL           1.0	mg/L Unit mg/L Unit	D	Prepared Prepared Prepared	Matrix: <u>Analyzed</u> 12/16/23 14:44 <u>Analyzed</u> 12/19/23 16:55 <u>Analyzed</u>	Dil Fa Dil Fa 200 Dil Fa
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate Method: EPA 300.0 - Anions, Ion ( Analyte Chloride Method: EPA 200.7 Rev 4.4 - Meta Analyte Selenium	Chroma Result 14000 Chroma Result 110000 Als (ICP) Result ND CP) - To	Qualifier tography - D Qualifier - Total Reco Qualifier	1000           RL           2000           overable           RL           1.0	mg/L Unit mg/L Unit	D	Prepared Prepared Prepared	Matrix: <u>Analyzed</u> 12/16/23 14:44 <u>Analyzed</u> 12/19/23 16:55 <u>Analyzed</u>	Dil Fa 100 Dil Fa 200 Dil Fa 1
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate Method: EPA 300.0 - Anions, Ion ( Analyte Chloride Method: EPA 200.7 Rev 4.4 - Meta Analyte Selenium Method: SW846 6010D - Metals (I	Chroma Result 14000 Chroma Result 110000 Als (ICP) Result ND CP) - To	Qualifier tography - D Qualifier - Total Reco Qualifier tal Recovera	1000           RL           2000           overable           RL           1.0	mg/L Unit mg/L Unit mg/L Unit Unit Unit	D D D	Prepared Prepared Prepared 12/13/23 07:38	Matrix: <u>Analyzed</u> 12/16/23 14:44 <u>Analyzed</u> 12/19/23 16:55 <u>Analyzed</u> 12/14/23 11:18	Dil Fa 100 Dil Fa 200 Dil Fa 1 Dil Fa
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate Method: EPA 300.0 - Anions, Ion ( Analyte Chloride Method: EPA 200.7 Rev 4.4 - Meta Analyte Selenium Method: SW846 6010D - Metals (I Analyte	Chroma Result 14000 Chroma Result 110000 Als (ICP) Result ND CP) - To Result	Qualifier tography - D Qualifier - Total Reco Qualifier tal Recovera	1000           RL           2000           Overable           RL           1.0           able           RL           2.5	mg/L       Unit       mg/L       Unit       mg/L       Unit       mg/L	D D D	Prepared Prepared 12/13/23 07:38 Prepared	Matrix: <u>Analyzed</u> 12/16/23 14:44 <u>Analyzed</u> 12/19/23 16:55 <u>Analyzed</u> 12/14/23 11:18 <u>Analyzed</u> 12/28/23 13:31	Dil Fa 100 Dil Fa 200 Dil Fa 1 Dil Fa 2
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate Method: EPA 300.0 - Anions, Ion ( Analyte Chloride Method: EPA 200.7 Rev 4.4 - Meta Analyte Selenium Method: SW846 6010D - Metals (If Analyte Antimony	Chroma Result 14000 Chroma Result 110000 als (ICP) Result ND CP) - To Result ND	Qualifier tography - D Qualifier - Total Reco Qualifier tal Recovera	1000           RL           2000           Overable           RL           1.0           able           RL	mg/L Unit mg/L Unit mg/L Unit Unit Unit	D D D	Prepared           Prepared           12/13/23 07:38           Prepared           12/13/23 07:55	Matrix: <u>Analyzed</u> 12/16/23 14:44 <u>Analyzed</u> 12/19/23 16:55 <u>Analyzed</u> 12/14/23 11:18 <u>Analyzed</u> 12/28/23 13:31 12/28/23 13:31	Dil Fa100Dil Fa200Dil Fa1Dil Fa22
Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25 Method: EPA 300.0 - Anions, Ion ( Analyte Sulfate Method: EPA 300.0 - Anions, Ion ( Analyte Chloride Method: EPA 200.7 Rev 4.4 - Meta Analyte Selenium Method: SW846 6010D - Metals (II Analyte Antimony Arsenic	Chroma Result 14000 Chroma Result 110000 nls (ICP) Result ND CP) - To Result ND ND	Qualifier tography - D Qualifier - Total Reco Qualifier tal Recovera	1000           RL           2000           overable           RL           1.0           able           RL           2.5	mg/L       Unit       mg/L       Unit       mg/L       Unit       mg/L	D D D	Prepared           Prepared           12/13/23 07:38           Prepared           12/13/23 07:55           12/13/23 07:55	Matrix: Analyzed 12/16/23 14:44 Analyzed 12/19/23 16:55 Analyzed 12/14/23 11:18 Analyzed 12/28/23 13:31 12/28/23 13:31 12/28/23 13:31	

#### Client Sample ID: EP-12-06-23 Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25

## Lab Sample ID: 570-163811-8

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	ND		1.3	mg/L		12/13/23 07:55	12/28/23 13:31	25
Copper	ND		1.3	mg/L		12/13/23 07:55	12/28/23 13:31	25
Lead	ND		1.3	mg/L		12/13/23 07:55	12/28/23 13:31	25
Nickel	ND		1.3	mg/L		12/13/23 07:55	12/28/23 13:31	25
Zinc	ND		6.3	mg/L		12/13/23 07:55	12/28/23 13:31	25
Method: SW846 7470A - Mercury	• • •							
	• • •							
		Qualifier	RL	Unit	_ D	Prepared	Analyzed	Dil Fac
	Result ND	Qualifier	<b>RL</b> 0.00020	<mark>Unit</mark> mg/L	_ <u>D</u>	Prepared 12/18/23 19:39	Analyzed 12/20/23 20:36	Dil Fac
Mercury		Qualifier			_ <u>D</u>	•		Dil Fac 1
Mercury General Chemistry	ND	Qualifier Qualifier			_ <u>D</u> 	•		Dil Fac 1 Dil Fac
Analyte Mercury General Chemistry Analyte Specific Conductance (SM 2510B)	ND		0.00020	mg/L		12/18/23 19:39	12/20/23 20:36	1

Job ID: 570-163811-1 SDG: Annual

Matrix: Water

Matrix: Water

Lab Sample ID: 570-163811-1

Lab Sample ID: 570-163811-2

#### Client Sample ID: MW-1-12-06-23 Date Collected: 12/06/23 15:45 Date Received: 12/08/23 10:25

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	300.0 t ID: IC28		10	4 mL	4 mL	393421	12/16/23 15:18	UIP1	EET CAL 4
Total Recoverable	Prep	200.7			50 mL	50 mL	392120	12/13/23 07:38	JP8N	EET CAL 4
Total Recoverable	Analysis Instrument	200.7 Rev 4.4 t ID: ICP10		1			392409	12/13/23 15:38	P1R	EET CAL 4
Total/NA	Analysis Instrument	SM 2510B t ID: ManSciMantech	1	1			395454	12/21/23 15:05	ZL4M	EET CAL 4
Total/NA	Analysis Instrument	SM 2540C t ID: BAL100		1	50 mL	1000 mL	392414	12/13/23 17:06	JB	EET CAL 4

#### Client Sample ID: MW-2-12-06-23 Date Collected: 12/06/23 14:25 Date Received: 12/08/23 10:25

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	t ID: IC28		10	4 mL	4 mL	393421	12/16/23 15:35	-	EET CAL 4
Total Recoverable Total Recoverable	Prep Analysis Instrumen	200.7 200.7 Rev 4.4 tt ID: ICP10		1	50 mL	50 mL	392120 392409	12/13/23 07:38 12/13/23 15:40		EET CAL 4 EET CAL 4
Total/NA	Analysis Instrumen	SM 2510B t ID: ManSciMantech		1			395454	12/21/23 15:03	ZL4M	EET CAL 4
Total/NA	Analysis Instrumen	SM 2540C t ID: BAL100		1	100 mL	1000 mL	392414	12/13/23 17:06	JB	EET CAL 4

#### Client Sample ID: MW-3-12-06-23 Date Collected: 12/06/23 13:05 Date Received: 12/08/23 10:25

#### Lab Sample ID: 570-163811-3 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	300.0 It ID: IC31		20	4 mL	4 mL	393952	12/19/23 07:35	U9XB	EET CAL 4
Total Recoverable	Prep	200.7			50 mL	50 mL	392120	12/13/23 07:38	JP8N	EET CAL 4
Total Recoverable	Analysis Instrumen	200.7 Rev 4.4 t ID: ICP10		1			392409	12/13/23 15:48	P1R	EET CAL 4
Total/NA	Analysis Instrumen	SM 2510B t ID: ManSciMantech	۱	1			395454	12/21/23 15:01	ZL4M	EET CAL 4
Total/NA	Analysis Instrumen	SM 2540C t ID: BAL100		1	100 mL	1000 mL	392414	12/13/23 17:06	JB	EET CAL 4

Job ID: 570-163811-1 SDG: Annual

#### Client Sample ID: MW-4-12-06-23 Date Collected: 12/06/23 17:10 Date Received: 12/08/23 10:25

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		20	4 mL	4 mL	393952	12/19/23 07:54	U9XB	EET CAL 4
	Instrument	ID: IC31								
Total Recoverable	Prep	200.7			50 mL	50 mL	392120	12/13/23 07:38	JP8N	EET CAL 4
Total Recoverable	Analysis	200.7 Rev 4.4		1			392409	12/13/23 15:51	P1R	EET CAL 4
	Instrument	ID: ICP10								
Total/NA	Analysis	SM 2510B		1			395454	12/21/23 14:59	ZL4M	EET CAL 4
	Instrument	ID: ManSciMantech	ı							
Total/NA	Analysis	SM 2540C		1	100 mL	1000 mL	392414	12/13/23 17:06	JB	EET CAL 4
	Instrument	ID: BAL100								

#### Client Sample ID: DUP-12-06-23 Date Collected: 12/06/23 00:00 Date Received: 12/08/23 10:25

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	300.0 t ID: IC31		10	4 mL	4 mL	393952	12/19/23 08:13	U9XB	EET CAL 4
Total Recoverable	Prep	200.7			50 mL	50 mL	392120	12/13/23 07:38	JP8N	EET CAL 4
Total Recoverable	Analysis Instrumen	200.7 Rev 4.4 t ID: ICP10		1			392409	12/13/23 15:53	P1R	EET CAL 4
Total/NA	Analysis Instrumen	SM 2510B t ID: ManSciMantech	I	1			395454	12/21/23 14:57	ZL4M	EET CAL 4
Total/NA	Analysis Instrumen	SM 2540C t ID: BAL100		1	100 mL	1000 mL	392414	12/13/23 17:06	JB	EET CAL 4

#### Client Sample ID: EP (East) Sludge-12-06-23 Date Collected: 12/06/23 13:50 Date Received: 12/08/23 10:25

#### Batch Batch Dil Initial Final Batch Prepared Method Amount Amount Number Prep Type Туре Run Factor or Analyzed Analyst Lab Total/NA 3050B Prep 1.96 g 50 mL 392626 12/14/23 09:47 GYR8 EET CAL 4 Total/NA 6010B 5 393559 Analysis 12/16/23 14:24 P1R EET CAL 4 Instrument ID: ICP11 Total/NA Prep 7471A 50 mL 392837 12/14/23 16:41 EV3M EET CAL 4 0.52 g Total/NA Analysis 7471A 394894 12/20/23 18:57 CS5Z EET CAL 4 1

#### Client Sample ID: EP (West) Sludge-12-06-23 Date Collected: 12/06/23 15:55 Date Received: 12/08/23 10:25

Instrument ID: HG7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.95 g	50 mL	392626	12/14/23 09:47	GYR8	EET CAL 4
Total/NA	Analysis	6010B		5			393559	12/16/23 14:33	P1R	EET CAL 4
	Instrumer	nt ID: ICP11								

Lab Sample ID: 570-163811-4 Matrix: Water

#### Lab Sample ID: 570-163811-5

Matrix: Water

12 13

#### Lab Sample ID: 570-163811-6 Matrix: Solid

Lab Sample ID: 570-163811-7 Matrix: Solid

#### Client Sample ID: EP (West) Sludge-12-06-23 Date Collected: 12/06/23 15:55 Date Received: 12/08/23 10:25

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	7471A			0.52 g	50 mL	392837	12/14/23 16:41	EV3M	EET CAL 4
Total/NA	Analysis	7471A		1			394894	12/20/23 18:58	CS5Z	EET CAL 4
	Instrumer	t ID: HG7								

#### Client Sample ID: EP-12-06-23 Date Collected: 12/06/23 16:00 Date Received: 12/08/23 10:25

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	t ID: IC28		1000	4 mL	4 mL	393421	12/16/23 14:44	UIP1	EET CAL 4
Total/NA	Analysis Instrumen	300.0 t ID: IC7	DL	2000	4 mL	4 mL	394093	12/19/23 16:55	URMH	EET CAL 4
Total Recoverable	Prep	200.7			50 mL	50 mL	392120	12/13/23 07:38	JP8N	EET CAL 4
Total Recoverable	Analysis Instrumen	200.7 Rev 4.4 t ID: ICP10		10			392763	12/14/23 11:18	P1R	EET CAL 4
Total Recoverable	Prep	3005A			50 mL	50 mL	392131	12/13/23 07:55	JP8N	EET CAL 4
Total Recoverable	Analysis Instrumen	6010D t ID: ICP9		25			396904	12/28/23 13:31	P1R	EET CAL 4
Total/NA	Prep	7470A			25 mL	50 mL	394059	12/18/23 19:39	EV3M	EET CAL 4
Total/NA	Analysis Instrumen	7470A t ID: HG9		1			394949	12/20/23 20:36	CS5Z	EET CAL 4
Total/NA	Analysis Instrumen	SM 2510B t ID: ManSciMantech	1	1			395454	12/21/23 14:54	ZL4M	EET CAL 4
Total/NA	Analysis Instrumen	SM 2540C t ID: BAL100		1	0.5 mL	1000 mL	392414	12/13/23 17:06	JB	EET CAL 4

#### Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

**Eurofins Calscience** 

Job ID: 570-163811-1 SDG: Annual

Lab Sample ID: 570-163811-8

### Lab Sample ID: 570-163811-7 Matrix: Solid

Matrix: Water

Method: 300.0 - Anions	. Ion Chromatography
------------------------	----------------------

Lab Sample ID: MB 570-3934 Matrix: Water	21/5						Clie	ent Sam	ple ID: Mo Prep Tyj		
Analysis Batch: 393421		МВ МВ									
Analyte	Re	sult Qualifier		RL	Unit		D P	repared	Analyz	hov	Dil Fac
Chloride				1.0	mg/L			repared	12/16/23		1
Sulfate		ND		1.0	mg/L				12/16/23		1
					0						
Lab Sample ID: LCS 570-393 Matrix: Water	421/6					Clie	nt Sa	mple ID	: Lab Con Prep Ty		
Analysis Batch: 393421											
			Spike		LCS		_	~-	%Rec		
Analyte			Added		Qualifier	Unit	<u>D</u>	%Rec	Limits		
Chloride			50.0	47.4		mg/L		95	90 - 110		
Sulfate			50.0	47.6		mg/L		95	90 - 110		
Lab Sample ID: LCSD 570-39	3421/7				C	lient Sa	mple	ID: Lab	Control		
Matrix: Water									Prep Ty	pe: Io	tal/NA
Analysis Batch: 393421			Spike	I Cen	LCSD				%Rec		RPD
Analyte			Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			50.0	47.5		mg/L	_ <u>-</u>	95	90 - 110	0	
Sulfate			50.0 50.0	47.3		-					
Suifate			50.0	47.3		mg/L		95	90 - 110	1	15
Lab Sample ID: 570-164956-E	D-12 MS						C	lient Sa	mple ID: N	Matrix	Spike
Matrix: Water									· Prep Ty		
Analysis Batch: 393421											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	69		50.0	111		mg/L		83	80 - 120		
Sulfate	120		50.0	170		mg/L		93	80 - 120		
Lab Sample ID: 570-164956-I Matrix: Water	D-12 MSC	)				Client	Samp	le ID: M	latrix Spik Prep Tyj		
Analysis Batch: 393421											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	69		50.0	111		mg/L		82	80 - 120	0	20
Sulfate	120		50.0	171		mg/L		94	80 - 120	0	20
Lab Sample ID: MB 570-3939	52/5						Clie	ent Sam	ple ID: Me	ethod	Blank
Matrix: Water									Prep Ty	pe: To	tal/NA
Analysis Batch: 393952											
		MB MB									
Analyte	Re	sult Qualifier		RL	Unit		<u> </u>	repared	Analyz		Dil Fac
Chloride		ND		1.0	mg/L				12/18/23		1
Sulfate		ND		1.0	mg/L				12/18/23	18:26	1
•						Clie	nt Sa	mple ID	: Lab Con	trol S	ample
Lab Sample ID: LCS 570-393 Matrix: Water	952/6										tal/NA
Matrix: Water	952/6								Prep Ty		tal/NA
•	952/6		Spike	LCS	LCS				Prep Ty		tal/NA
Matrix: Water Analysis Batch: 393952	952/6		Spike Added		LCS			%Rec	Prep Tyj %Rec		tal/NA
Matrix: Water	952/6		Spike Added		Qualifier	Unit mg/L	D	%Rec 104	Prep Ty		tal/NA

$\mathbf{W}$	Method: 300.0	- Anions.	Ion Chromatography
--------------	---------------	-----------	--------------------

Lab Sample ID: LCSD 570-3 Matrix: Water	393952/7				C	Client S	ample	ID: Lab	Control S Prep Ty		
Analysis Batch: 393952											
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	<u>D</u>	%Rec	Limits	RPD	Limit
Chloride			50.0	52.0		mg/L		104	90 - 110	0	15
_Sulfate			50.0	51.4		mg/L		103	90 - 110	0	15
Lab Sample ID: 570-164956	5-E-26 MS						С	lient Sa	mple ID: I		
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 393952											
	•	Sample	Spike	-	MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	<u>D</u>	%Rec	Limits		
Chloride	2500		50.0	2520		mg/L		-34	80 - 120		
Sulfate	4500	E	50.0	4460	E 4	mg/L		-116	80 - 120		
Lab Sample ID: 570-164956	3-E-26 MSD	)				Client	t Samp	le ID: N	latrix Spil		
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 393952	Comula	Commis	0	MOD	MOD				0/ <b>D</b> = =		
A secolaria	•	Sample	Spike	-	MSD	11	_	0/ <b>D</b>	%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	2500		50.0	2520		mg/L		-39	80 - 120	0	20
Sulfate	4500	F	50.0	4450	E 4	mg/L		-128	80 - 120	0	20
Analysis Batch: 394093 Analyte	Pe	MB MB sult Qualifier		RL	Unit		DP	repared	Analyz	od	Dil Fac
Chloride		ND Quanner		1.0	mg/L		<u> </u>	Tepareu	<u></u>		
_ Lab Sample ID: LCS 570-39									12/19/20	07.34	1
	21003/6				0		ont Sa				
Matrix: Water	94093/6				0		ent Sa	mple ID	: Lab Cor	itrol Sa	ample
Matrix: Water	94093/6				Ū		ent Sa	mple ID		itrol Sa	ample
	94093/6		Spike	LCS	LCS		ent Sa	mple ID	: Lab Cor	itrol Sa	ample
Matrix: Water	94093/6		Spike Added		-		ent Sa D	mple ID %Rec	: Lab Cor Prep Ty	itrol Sa	ample
Matrix: Water Analysis Batch: 394093	94093/6				LCS	Cli			: Lab Cor Prep Ty %Rec	itrol Sa	ample
Matrix: Water Analysis Batch: 394093 Analyte Chloride			Added	Result	LCS Qualifier	Clic Unit mg/L	<u>D</u>	<b>%Rec</b>	<b>C: Lab Cor</b> <b>Prep Ty</b> <b>%Rec</b> Limits 90 - 110	ntrol Sa pe: Tot	ample al/NA
Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: LCSD 570-3			Added	Result	LCS Qualifier	Clic Unit mg/L	<u>D</u>	<b>%Rec</b>	: Lab Cor         Prep Ty         %Rec         Limits         90 - 110         O Control 3	ntrol Sa pe: Tot  Sample	ample al/NA
Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: LCSD 570-3 Matrix: Water			Added	Result	LCS Qualifier	Clic Unit mg/L	<u>D</u>	<b>%Rec</b>	<b>C: Lab Cor</b> <b>Prep Ty</b> <b>%Rec</b> Limits 90 - 110	ntrol Sa pe: Tot  Sample	ample al/NA
Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: LCSD 570-3			Added 50.0	<b>Result</b> 51.3	LCS Qualifier	Clic Unit mg/L	<u>D</u>	<b>%Rec</b>	* Lab Con Prep Ty %Rec Limits 90 - 110 O Control % Prep Ty	ntrol Sa pe: Tot  Sample	ample al/NA e Dup al/NA
Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: LCSD 570-3 Matrix: Water Analysis Batch: 394093			Added 50.0 Spike	Result 51.3	LCS Qualifier (	Client S	D Sample	<mark>%Rec</mark> 103 ID: Lat	Control S Prep Ty %Rec Limits 90 - 110 Control S Prep Ty %Rec	atrol Sa pe: Tot Sample pe: Tot	ample al/NA e Dup al/NA RPD
Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: LCSD 570-3 Matrix: Water			Added 50.0	Result 51.3	LCS Qualifier	Clic Unit mg/L	<u>D</u>	<b>%Rec</b>	* Lab Con Prep Ty %Rec Limits 90 - 110 O Control % Prep Ty	ntrol Sa pe: Tot  Sample	ample al/NA e Dup al/NA
Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: LCSD 570- Matrix: Water Analysis Batch: 394093 Analyte	394093/7		Added 50.0 Spike Added	Result 51.3 LCSD Result	LCS Qualifier (	Client S Unit Client S	D ample	%Rec           103           ID: Lat           %Rec           102	2: Lab Cor Prep Ty %Rec Limits 90 - 110 O Control S Prep Ty %Rec Limits	sample pe: Tot Sample pe: Tot	e Dup al/NA e Dup al/NA RPD Limit 15
Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: LCSD 570-3 Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: 570-164977 Matrix: Water	394093/7		Added 50.0 Spike Added	Result 51.3 LCSD Result	LCS Qualifier (	Client S Unit Client S	D ample	%Rec           103           ID: Lat           %Rec           102	2: Lab Con Prep Ty %Rec Limits 90 - 110 D Control S Prep Ty %Rec Limits 90 - 110	sample pe: Tot Sample pe: Tot <u>RPD</u> 0	e Dup al/NA e Dup al/NA RPD Limit 15 Spike
Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: LCSD 570-4 Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: 570-164977	394093/7 7-D-1 MS		Added 50.0 Spike Added 50.0	Result 51.3 LCSD Result 51.2	LCS Qualifier ( LCSD Qualifier	Client S Unit Client S	D ample	%Rec           103           ID: Lat           %Rec           102	2: Lab Con Prep Ty %Rec Limits 90 - 110 O Control 9 Prep Ty %Rec Limits 90 - 110 mple ID: I Prep Ty	sample pe: Tot Sample pe: Tot <u>RPD</u> 0	e Dup al/NA e Dup al/NA RPD Limit 15 Spike
Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: LCSD 570-3 Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: 570-164977 Matrix: Water Analysis Batch: 394093	394093/7 7-D-1 MS Sample		Added 50.0 Spike Added 50.0 Spike	Result 51.3 LCSD Result 51.2	LCS Qualifier LCSD Qualifier MS	Client S	D Sample D C	%Rec 103 ID: Lak <u>%Rec</u> 102	2: Lab Con Prep Ty %Rec Limits 90 - 110 O Control 3 Prep Ty %Rec Limits 90 - 110 mple ID: I Prep Ty %Rec	sample pe: Tot Sample pe: Tot <u>RPD</u> 0	e Dup al/NA e Dup al/NA RPD Limit 15 Spike
Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: LCSD 570-3 Matrix: Water Analysis Batch: 394093 Analyte Chloride Lab Sample ID: 570-164977 Matrix: Water	394093/7 7-D-1 MS Sample	Sample Qualifier	Added 50.0 Spike Added 50.0	Result 51.3 LCSD Result 51.2	LCS Qualifier ( LCSD Qualifier	Client S Unit Client S	D ample	%Rec           103           ID: Lat           %Rec           102	2: Lab Con Prep Ty %Rec Limits 90 - 110 O Control 9 Prep Ty %Rec Limits 90 - 110 mple ID: I Prep Ty	sample pe: Tot Sample pe: Tot <u>RPD</u> 0	e Dup al/NA e Dup al/NA RPD Limit 15 Spike

### **QC Sample Results**

9

#### Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 570-164977 Matrix: Water	-D-1 MSD					Clien	t Sa	mp	le ID: Ma	atrix Spil Prep Ty		
Analysis Batch: 394093												
	Sample	Sample	Spike	MSD	MSD					%Rec		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Chloride	6.8		50.0	62.3		mg/L		_	111	80 - 120	0	20
lethod: 200.7 Rev 4.4 -	Metals (	CP)										
Lab Sample ID: MB 570-392	2120/1-A						(			ole ID: M		
Matrix: Water								P	rep iyp	e: Total I		
Analysis Batch: 392409										Prep Ba	itch: 3	9212
	_	MB MB					_	_				
Analyte	Re	Sult Qualifier		RL			D -		repared	Analyz		Dil Fa
Selenium		ND		0.10	mg/L			12/1	3/23 07:38	12/13/23	14:44	
Lab Sample ID: LCS 570-39	2120/2-A					Cli	ent	Sar	nple ID:	Lab Cor	trol Sa	ampl
Matrix: Water								P	rep Typ	e: Total I	Recov	erabl
Analysis Batch: 392409										Prep Ba	tch: 3	9212
-			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Selenium			0.500	0.495		mg/L		_	99	85 - 115		
Lab Sample ID: LCSD 570-3	202120/2-0					liont S	ami	olo	ID: Lab	Control	Sampl	0 Duu
Matrix: Water	552120/5-A	•				ment c	ann			e: Total I		
									тертур	Prep Ba		
Analysis Batch: 392409			Spiko		LCSD					%Rec	iten. s	SZ IZ RPI
Analyta			Spike			11		-	0/ Dee		000	
Analyte Selenium			Added 0.500	0.496	Qualifier	Unit mg/L		D	<u>%Rec</u> 99	Limits 85 - 115	0	Limi
			0.000	0.400		iiig/E			00	00-110	0	2
Lab Sample ID: 570-163704	-С-10-В М	S						CI	ient San	nple ID: I	Matrix	Spik
Matrix: Water										e: Total I		
Analysis Batch: 392409										Prep Ba		
	Sample	Sample	Spike	MS	MS					%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
Selenium	ND		0.500	0.506		mg/L		_	99	80 - 120		
Lab Sample ID: 570-163704	-C-10-C M	sn				Clien	t Sa	mn		atrix Spil		licat
Matrix: Water						enen	· · · ·			e: Total I		
Analysis Batch: 392409								1	100 190	Prep Ba		
	Sample	Sample	Spike	MSD	MSD					%Rec		RPI
Analyte		Qualifier	Added		Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Selenium	ND		0.500	0.519		mg/L		_	101	80 - 120	3	20
/lethod: 6010B - Metals												
Lab Sample ID: MB 570-392 Matrix: Solid	2626/1-A ^	5					(	Clie	nt Sam	ole ID: M Prep Ty		
Analysis Batch: 393559										Prep Ba		
Analysis Batell. 00000		MB MB								тер Бе		02020
Analyte	Do	sult Qualifier		RL	Unit		D	D	repared	Analyz	ed	Dil Fa
- nuly to				9.8	mg/K	<u> </u>			•	12/16/23		
Antimony												
Antimony Arsenic		ND ND			-	-						
Antimony Arsenic Barium		ND ND ND		9.8 2.9 2.9	mg/K mg/K	g		12/1	4/23 09:47	12/16/23	14:14	Ę

Prep Type: Total/NA

Prep Batch: 392626

**Client Sample ID: Method Blank** 

#### Method: 6010B - Metals (ICP) (Continued)

#### Lab Sample ID: MB 570-392626/1-A ^5 Matrix: Solid Analysis Batch: 393559

	MB MB						
Analyte R	esult Qualifi	er RL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND	0.49	mg/Kg		12/14/23 09:47	12/16/23 14:14	5
Chromium	ND	0.98	mg/Kg		12/14/23 09:47	12/16/23 14:14	5
Cobalt	ND	0.98	mg/Kg		12/14/23 09:47	12/16/23 14:14	5
Copper	ND	2.0	mg/Kg		12/14/23 09:47	12/16/23 14:14	5
Lead	ND	2.0	mg/Kg		12/14/23 09:47	12/16/23 14:14	5
Molybdenum	ND	2.0	mg/Kg		12/14/23 09:47	12/16/23 14:14	5
Nickel	ND	2.0	mg/Kg		12/14/23 09:47	12/16/23 14:14	5
Silver	ND	1.5	mg/Kg		12/14/23 09:47	12/16/23 14:14	5
Thallium	ND	9.8	mg/Kg		12/14/23 09:47	12/16/23 14:14	5
Vanadium	ND	0.98	mg/Kg		12/14/23 09:47	12/16/23 14:14	5
Zinc	ND	4.9	mg/Kg		12/14/23 09:47	12/16/23 14:14	5

#### Lab Sample ID: LCS 570-392626/2-A ^5 Matrix: Solid

#### Analysis Batch: 393559

#### **Client Sample ID: Lab Control Sample** Prep Type: Total/NA Prep Batch: 392626

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.5	56.0		mg/Kg		111	80 - 120	
Arsenic	50.5	49.1		mg/Kg		97	80 - 120	
Barium	50.5	49.2		mg/Kg		97	80 - 120	
Beryllium	50.5	49.2		mg/Kg		97	80 - 120	
Cadmium	50.5	49.9		mg/Kg		99	80 - 120	
Chromium	50.5	50.1		mg/Kg		99	80 - 120	
Cobalt	50.5	49.7		mg/Kg		98	80 - 120	
Copper	50.5	48.7		mg/Kg		96	80 - 120	
Lead	50.5	50.2		mg/Kg		99	80 - 120	
Molybdenum	50.5	50.4		mg/Kg		100	80 - 120	
Nickel	50.5	49.8		mg/Kg		99	80 - 120	
Silver	25.3	24.2		mg/Kg		96	80 - 120	
Thallium	50.5	48.8		mg/Kg		97	80 - 120	
Vanadium	50.5	49.2		mg/Kg		97	80 - 120	
Zinc	50.5	49.7		mg/Kg		98	80 - 120	

#### Lab Sample ID: LCSD 570-392626/3-A ^5 **Matrix: Solid**

#### Analysis Batch: 393559 Prep Batch: 392626 Spike LCSD LCSD %Rec RPD Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte 80 - 120 Antimony 49.8 53.9 mg/Kg 108 4 20 Arsenic 49.8 47.1 mg/Kg 95 80 - 120 4 20 Barium 49.8 47.7 mg/Kg 96 80 - 120 3 20 Beryllium 49.8 47.8 mg/Kg 96 80 - 120 3 20 Cadmium 49.8 48.3 97 80 - 120 3 20 mg/Kg Chromium 49.8 48.7 mg/Kg 98 80 - 120 3 20 Cobalt 49.8 48.3 97 80 - 120 3 20 mg/Kg 49.8 47.3 80 - 120 Copper mg/Kg 95 3 20 Lead 49.8 48.8 mg/Kg 98 80 - 120 3 20 Molybdenum 49.8 48.9 mg/Kg 98 80 - 120 3 20 Nickel 49.8 48.6 98 80 - 120 2 20 mg/Kg

#### **Eurofins Calscience**

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample Dup** 

5

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: EP (East) Sludge-12-06-23

Client Sample ID: EP (East) Sludge-12-06-23

#### Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCSD 570-392626/3-A ^5 Matrix: Solid Analysis Batch: 393559			C	Client Sa	mple	ID: Lat	Control Prep Ty Prep Ba	pe: Ťot	al/NA
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Silver	24.9	23.5		mg/Kg		94	80 - 120	3	20
Thallium	49.8	48.3		mg/Kg		97	80 - 120	1	20
Vanadium	49.8	47.7		mg/Kg		96	80 - 120	3	20
Zinc	49.8	48.2		mg/Kg		97	80 - 120	3	20

#### Lab Sample ID: 570-163811-6 MS Matrix: Solid

Analysis Batch: 393559									Prep Batch: 392626
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	ND		50.3	43.3		mg/Kg		86	75 - 125
Arsenic	3.8		50.3	53.0		mg/Kg		98	75 - 125
Barium	22		50.3	70.4		mg/Kg		97	75 - 125
Beryllium	ND		50.3	47.3		mg/Kg		94	75 - 125
Cadmium	ND		50.3	46.1		mg/Kg		92	75 - 125
Chromium	2.8		50.3	51.1		mg/Kg		96	75 - 125
Cobalt	ND		50.3	46.2		mg/Kg		90	75 - 125
Copper	2.9		50.3	49.6		mg/Kg		93	75 - 125
Lead	2.0		50.3	48.6		mg/Kg		93	75 - 125
Molybdenum	13		50.3	59.9		mg/Kg		94	75 - 125
Nickel	ND		50.3	47.4		mg/Kg		91	75 - 125
Silver	ND		25.1	23.5		mg/Kg		94	75 - 125
Thallium	ND		50.3	44.9		mg/Kg		89	75 - 125
Vanadium	5.1		50.3	53.5		mg/Kg		96	75 - 125
Zinc	20		50.3	68.0		mg/Kg		95	75 - 125

#### Lab Sample ID: 570-163811-6 MSD Matrix: Solid Analysis Batch: 393559

#### Prep Batch: 392626 Sample Sample Spike MSD MSD %Rec RPD RPD Analyte **Result Qualifier** Added Result Qualifier Unit D %Rec Limits Limit ND Antimony 50.5 41.5 mg/Kg 82 75 - 125 4 20 Arsenic 3.8 50.5 51.1 mg/Kg 94 75 - 125 3 20 Barium 22 75 - 125 20 50.5 68.9 mg/Kg 93 2 Beryllium ND 50.5 45.8 90 75 - 125 3 20 mg/Kg ND 75 - 125 Cadmium 50.5 44.7 mg/Kg 88 20 3 Chromium 2.8 50.5 49.2 mg/Kg 92 75 - 125 4 20 Cobalt ND 50.5 44.4 mg/Kg 86 75 - 125 4 20 Copper 2.9 50.5 48.1 mg/Kg 90 75 - 125 3 20 Lead 2.0 50.5 46.5 mg/Kg 88 75 - 125 4 20 75 - 125 Molybdenum 13 50.5 57.1 mg/Kg 88 5 20 Nickel ND 50.5 45.7 mg/Kg 87 75 - 125 20 4 Silver ND 25.3 22.7 mg/Kg 90 75 - 125 20 4 Thallium ND 50.5 20 43.6 mg/Kg 86 75 - 125 3 Vanadium 5.1 50.5 92 75 - 125 20 51.8 mg/Kg 3 Zinc 50.5 66.6 92 20 mg/Kg 75 - 125 2 20

**Eurofins Calscience** 

#### Method: 6010D - Metals (ICP)

#### Lab Sample ID: MB 570-392131/1-A **Matrix: Water** Analysis Batch: 396904

	MB	МВ						
Analyte R	esult	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.10	mg/L		12/13/23 07:55	12/28/23 12:59	1
Arsenic	ND		0.10	mg/L		12/13/23 07:55	12/28/23 12:59	1
Barium	ND		0.010	mg/L		12/13/23 07:55	12/28/23 12:59	1
Cadmium	ND		0.010	mg/L		12/13/23 07:55	12/28/23 12:59	1
Chromium	ND		0.050	mg/L		12/13/23 07:55	12/28/23 12:59	1
Cobalt	ND		0.050	mg/L		12/13/23 07:55	12/28/23 12:59	1
Copper	ND		0.050	mg/L		12/13/23 07:55	12/28/23 12:59	1
Lead	ND		0.050	mg/L		12/13/23 07:55	12/28/23 12:59	1
Nickel	ND		0.050	mg/L		12/13/23 07:55	12/28/23 12:59	1
Zinc	ND		0.25	mg/L		12/13/23 07:55	12/28/23 12:59	1

#### Lab Sample ID: LCS 570-392131/2-A Matrix: Water

#### Analysis Batch: 396904

#### **Client Sample ID: Lab Control Sample Prep Type: Total Recoverable** Prep Batch: 392131

Client Sample ID: Lab Control Sample Dup

**Prep Type: Total Recoverable** 

	0	1.00					
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.500	0.554		mg/L		111	80 - 120
Arsenic	0.500	0.523		mg/L		105	80 - 120
Barium	0.500	0.534		mg/L		107	80 - 120
Cadmium	0.500	0.526		mg/L		105	80 - 120
Chromium	0.500	0.533		mg/L		107	80 - 120
Cobalt	0.500	0.529		mg/L		106	80 - 120
Copper	0.500	0.527		mg/L		105	80 - 120
Lead	0.500	0.527		mg/L		105	80 - 120
Nickel	0.500	0.535		mg/L		107	80 - 120
Zinc	0.500	0.522		mg/L		104	80 - 120

#### Lab Sample ID: LCSD 570-392131/3-A **Matrix: Water**

#### Analysis Batch: 396904 Prep Batch: 392131 LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Antimony 0.500 0.542 mg/L 108 80 - 120 2 20 Arsenic 0.500 0.512 mg/L 102 80 - 120 2 20 Barium 0.500 0.526 mg/L 105 80 - 120 2 20 Cadmium 0.500 103 2 20 0.514 mg/L 80 - 120 Chromium 0.500 0.526 105 80 - 120 20 mg/L 1 Cobalt 0.500 0.524 mg/L 105 80 - 120 20 1 103 20 Copper 0.500 0.514 mg/L 80 - 120 3 Lead 0.500 0.517 mg/L 103 80 - 120 2 20 Nickel 0.500 0.531 mg/L 106 80 - 120 1 20 Zinc 0.500 0.510 mg/L 102 80 - 120 2 20

#### Lab Sample ID: 570-164264-H-1-B MS ^5 Matrix: Water

Matrix: Water							F	Prep Ty	pe: Total Recoverable
Analysis Batch: 396904									Prep Batch: 392131
-	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	ND		0.500	0.565		mg/L		113	72 - 132

**Eurofins Calscience** 

Prep Batch: 392131

**Client Sample ID: Method Blank** 

Prep Type: Total Recoverable

**Client Sample ID: Matrix Spike** 

5

**Client Sample ID: Matrix Spike** 

**Prep Type: Total Recoverable** 

#### Method: 6010D - Metals (ICP) (Continued)

#### Lab Sample ID: 570-164264-H-1-B MS ^5 Matrix: Water Analysis Batch: 396904

Analysis Batch: 396904	Sample	Sample	Spike	MS	MS				Prep Batch: 392131 %Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	ND		0.500	0.541		mg/L		108	80 - 140
Barium	0.13		0.500	0.682		mg/L		110	87 - 123
Cadmium	ND		0.500	0.526		mg/L		105	82 - 124
Chromium	ND		0.500	0.517		mg/L		103	86 - 122
Cobalt	ND		0.500	0.530		mg/L		106	83 - 125
Copper	ND		0.500	0.519		mg/L		104	78 - 126
Lead	ND		0.500	0.510		mg/L		102	84 - 120
Nickel	ND		0.500	0.546		mg/L		109	84 - 120
Zinc	ND		0.500	ND		mg/L		107	89 - 131

#### Lab Sample ID: 570-164264-H-1-C MSD ^5 Matrix: Water Analysis Batch: 396904

Analysis Batch: 396904									Prep Ba		2131
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		0.500	0.560		mg/L		112	72 - 132	1	10
Arsenic	ND		0.500	0.532		mg/L		106	80 - 140	2	11
Barium	0.13		0.500	0.648		mg/L		103	87 - 123	5	6
Cadmium	ND		0.500	0.516		mg/L		103	82 - 124	2	7
Chromium	ND		0.500	0.509		mg/L		102	86 - 122	2	8
Cobalt	ND		0.500	0.522		mg/L		104	83 - 125	1	7
Copper	ND		0.500	0.510		mg/L		102	78 - 126	2	7
Lead	ND		0.500	0.508		mg/L		102	84 - 120	0	7
Nickel	ND		0.500	0.571		mg/L		114	84 - 120	5	7
Zinc	ND		0.500	ND		mg/L		105	89 - 131	2	8

#### Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 570-39 Matrix: Water Analysis Batch: 394949	МВ					Clie		ole ID: Meth Prep Type: Prep Batcl	Tota	al/NA	
Analyte	Result	Qualifier		RL	Unit	0	) P	repared	Analyzed	0	Dil Fac
Mercury	ND		0.0	0020	mg/L		12/18/23 19:3		12/20/23 19:4	.40 1	
Lab Sample ID: LCS 570-3 Matrix: Water Analysis Batch: 394949	94059/2-A					Clier	nt Sar	nple ID:	Lab Contro Prep Type: Prep Batcl	Tot	al/NA
			Spike	_	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury			0.00800	0.00803		mg/L		100	80 - 120		
Lab Sample ID: LCSD 570-394059/3-A Matrix: Water Analysis Batch: 394949			Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 394059								
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits F	RPD	Limit
Mercury			0.00800	0.00830		mg/L		104	80 - 120	3	10

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Recoverable 5 6

9

### Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: 570-163522	2-A-1-C MS						CI	ient Sa	nple ID: I		
Matrix: Water									Prep Ty		
Analysis Batch: 394949	<u> </u>	<u> </u>	<b>•</b> "						Prep Ba	atch: 3	94059
		Sample	Spike	-	MS		_	~~ <b>-</b>	%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	<u>D</u>	%Rec	Limits		
Mercury	ND		0.00800	0.00810		mg/L		101	80 - 120		
Lab Sample ID: 570-163522	2-A-1-D MS	D				Client	Samp	le ID: M	atrix Spil		
Matrix: Water									Prep Ty	pe: Tot	tal/NA
Analysis Batch: 394949									Prep Ba	atch: 3	94059
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Mercury	ND		0.00800	0.00825		mg/L		103	80 - 120	2	20
lethod: 7471A - Mercu	ry (CVAA	)									
Lab Sample ID: MB 570-39	2837/1-A						Clie	ent Sam	ple ID: M		
Matrix: Solid									Prep Ty		
Analysis Batch: 394894									Prep Ba	atch: 3	92837
		MB MB									
Analyte	Re	sult Quali	fier	RL	Unit	I	D P	repared	Analyz	zed	Dil Fa
Mercury		ND	0.0	082	mg/K	g	12/1	4/23 16:4	1 12/20/23	18:32	
Lab Sample ID: LCS 570-39	92837/2-A					Clie	nt Sai	mple ID:	Lab Cor	ntrol Sa	ample
Matrix: Solid									Prep Ty		
Analysis Batch: 395299									Prep Ba	-	
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury			0.392	0.422		mg/Kg		108	80 - 120		
Lab Sample ID: LCSD 570-	392837/3-A				c	lient Sa	mple	ID: Lab	Control	Sample	e Dui
Matrix: Solid									Prep Ty		
Analysis Batch: 394894									Prep Ba		
·····,····			Spike	LCSD	LCSD				%Rec		RPI
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Mercury			0.408	0.489	*1	mg/Kg		120	80 - 120	15	10
Lab Sample ID: 570-164263	3-D-6-A MS						C	lient Sa	nple ID: I	Matrix	Snik
Matrix: Solid									Prep Ty		
Analysis Batch: 394894									Prep Ba		
Analysis Daten. 334034	Sample	Sample	Spike	MS	MS				%Rec	aten. 5	52051
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Mercury	0.18		0.392	0.698		mg/Kg		131	80 - 120		
-			0.001	0.000							
Lab Sample ID: 570-164263	3-E-6-A MS	D				Client	Samp	le ID: M	atrix Spil		
Matrix: Solid									Prep Ty	-	
Analysis Batch: 394894			_						Prep Ba	atch: 3	
	· ·	Comula	Cuilco	Men	MSD				%Rec		RPD
	Sample		Spike								
Analyte		Qualifier	Added		Qualifier	Unit mg/Kg	D	%Rec 129	Limits 80 - 120	RPD	Limi

# Method: SM 2510B - Conductivity, Specific Conductance

_ Lab Sample ID: MB 570-3954	454/10								C	Clie	nt Sam	ple ID: M	ethod	Blank
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 395454													·	
		MB	MB											
Analyte	Re	esult	Qualifier		RL		Uni	t	D	Pr	epared	Analy	zed	Dil Fac
Specific Conductance		ND			1.0		umł	nos/cm				12/21/23	14:24	1
Lab Sample ID: 570-165531-	B-1 DU										Client	Sample I		
Matrix: Water												Prep Ty	pe: To	tal/N/
Analysis Batch: 395454														
	Sample	Sam	ple			DU	DU							RPI
Analyte	Result	Qua	lifier			Result	Qualifier	· Unit		D			RPD	Limi
Specific Conductance	8300					8350		umhos	s/cm	_			0.1	2
Method: SM 2540C - Soli	ids, Tota	al Di	ssolve	d (TDS	5)									
Lab Sample ID: MB 570-3924	414/1								C	Clie	nt Sam	ple ID: M	ethod	Blan
Matrix: Water												Prep Ty		
Analysis Batch: 392414														
····· <b>,</b> ··· · ··· · · · · · · · · · · · · · ·		ΜВ	МВ											
Analyte	Re	sult	Qualifier		RL		Uni	t	D	Pr	repared	Analy	zed	Dil Fa
Total Dissolved Solids		ND			10		mg/	-				12/13/23		
-														
Lab Sample ID: LCS 570-392 Matrix: Water	2414/2							CI	ient S	San	nple ID	: Lab Cor Prep Ty		
Analysis Batch: 392414														
,				Spike		LCS	LCS					%Rec		
Analyte				Added		Result	Qualifier	· Unit		D	%Rec	Limits		
Total Dissolved Solids				1000		1040		mg/L		_	104	84 - 108		
Lab Sample ID: LCSD 570-39	92414/3							Client	Sam	ole	ID: Lab	Control	Sampl	e Dur
Matrix: Water												Prep Ty		
Analysis Batch: 392414														
				Spike		LCSD	LCSD					%Rec		RP
Analyte				Added			Qualifier	· Unit		D	%Rec	Limits	RPD	Limi
										_				
Total Dissolved Solids				1000		1030		mg/L			103	84 - 108	1	10
Total Dissolved Solids	1 DU			1000		1030		mg/L	с	lier			·	-
Total Dissolved Solids Lab Sample ID: 570-163811-	1 DU			1000		1030		mg/L	С	lier		ole ID: MV	V-1-12	-06-23
Total Dissolved Solids Lab Sample ID: 570-163811- Matrix: Water	1 DU			1000		1030		mg/L	С	lier			V-1-12	-06-23
Total Dissolved Solids Lab Sample ID: 570-163811-		Sam	ple	1000			DU	mg/L	С	lier		ole ID: MV	V-1-12	-06-23 tal/NA
Total Dissolved Solids Lab Sample ID: 570-163811- Matrix: Water	1 DU Sample Result		•	1000		DU	DU Qualifier	Ū	С	lier		ole ID: MV	V-1-12	

### HPLC/IC

#### Analysis Batch: 393421

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-1	MW-1-12-06-23	Total/NA	Water	300.0	
570-163811-2	MW-2-12-06-23	Total/NA	Water	300.0	
570-163811-8	EP-12-06-23	Total/NA	Water	300.0	
MB 570-393421/5	Method Blank	Total/NA	Water	300.0	
LCS 570-393421/6	Lab Control Sample	Total/NA	Water	300.0	
LCSD 570-393421/7	Lab Control Sample Dup	Total/NA	Water	300.0	
570-164956-D-12 MS	Matrix Spike	Total/NA	Water	300.0	
570-164956-D-12 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

#### Analysis Batch: 393952

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-3	MW-3-12-06-23	Total/NA	Water	300.0	
570-163811-4	MW-4-12-06-23	Total/NA	Water	300.0	
570-163811-5	DUP-12-06-23	Total/NA	Water	300.0	
MB 570-393952/5	Method Blank	Total/NA	Water	300.0	
LCS 570-393952/6	Lab Control Sample	Total/NA	Water	300.0	
LCSD 570-393952/7	Lab Control Sample Dup	Total/NA	Water	300.0	
570-164956-E-26 MS	Matrix Spike	Total/NA	Water	300.0	
570-164956-E-26 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

#### Analysis Batch: 394093

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-163811-8 - DL	EP-12-06-23	Total/NA	Water	300.0	
MB 570-394093/5	Method Blank	Total/NA	Water	300.0	
LCS 570-394093/6	Lab Control Sample	Total/NA	Water	300.0	
LCSD 570-394093/7	Lab Control Sample Dup	Total/NA	Water	300.0	
570-164977-D-1 MS	Matrix Spike	Total/NA	Water	300.0	
570-164977-D-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

#### **Metals**

#### Prep Batch: 392120

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-1	MW-1-12-06-23	Total Recoverable	Water	200.7	
570-163811-2	MW-2-12-06-23	Total Recoverable	Water	200.7	
570-163811-3	MW-3-12-06-23	Total Recoverable	Water	200.7	
570-163811-4	MW-4-12-06-23	Total Recoverable	Water	200.7	
570-163811-5	DUP-12-06-23	Total Recoverable	Water	200.7	
570-163811-8	EP-12-06-23	Total Recoverable	Water	200.7	
MB 570-392120/1-A	Method Blank	Total Recoverable	Water	200.7	
LCS 570-392120/2-A	Lab Control Sample	Total Recoverable	Water	200.7	
LCSD 570-392120/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.7	
570-163704-C-10-B MS	Matrix Spike	Total Recoverable	Water	200.7	
570-163704-C-10-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7	

#### Prep Batch: 392131

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
570-163811-8	EP-12-06-23	Total Recoverable	Water	3005A
MB 570-392131/1-A	Method Blank	Total Recoverable	Water	3005A
LCS 570-392131/2-A	Lab Control Sample	Total Recoverable	Water	3005A
LCSD 570-392131/3-A	Lab Control Sample Dup	Total Recoverable	Water	3005A

10

# **QC Association Summary**

Job ID: 570-163811-1 SDG: Annual

# **Metals (Continued)**

#### Prep Batch: 392131 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-164264-H-1-B MS ^5	Matrix Spike	Total Recoverable	Water	3005A	
570-164264-H-1-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

#### Analysis Batch: 392409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
570-163811-1	MW-1-12-06-23	Total Recoverable	Water	200.7 Rev 4.4	392120	
570-163811-2	MW-2-12-06-23	Total Recoverable	Water	200.7 Rev 4.4	392120	
570-163811-3	MW-3-12-06-23	Total Recoverable	Water	200.7 Rev 4.4	392120	8
570-163811-4	MW-4-12-06-23	Total Recoverable	Water	200.7 Rev 4.4	392120	
570-163811-5	DUP-12-06-23	Total Recoverable	Water	200.7 Rev 4.4	392120	9
MB 570-392120/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	392120	
LCS 570-392120/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	392120	10
LCSD 570-392120/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.7 Rev 4.4	392120	
570-163704-C-10-B MS	Matrix Spike	Total Recoverable	Water	200.7 Rev 4.4	392120	
570-163704-C-10-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7 Rev 4.4	392120	

#### Prep Batch: 392626

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
570-163811-6	EP (East) Sludge-12-06-23	Total/NA	Solid	3050B		
570-163811-7	EP (West) Sludge-12-06-23	Total/NA	Solid	3050B		
MB 570-392626/1-A ^5	Method Blank	Total/NA	Solid	3050B		
LCS 570-392626/2-A ^5	Lab Control Sample	Total/NA	Solid	3050B		
LCSD 570-392626/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	3050B		
570-163811-6 MS	EP (East) Sludge-12-06-23	Total/NA	Solid	3050B		
570-163811-6 MSD	EP (East) Sludge-12-06-23	Total/NA	Solid	3050B		

#### Analysis Batch: 392763

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-8	EP-12-06-23	Total Recoverable	Water	200.7 Rev 4.4	392120

#### Prep Batch: 392837

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-6	EP (East) Sludge-12-06-23	Total/NA	Solid	7471A	
570-163811-7	EP (West) Sludge-12-06-23	Total/NA	Solid	7471A	
MB 570-392837/1-A	Method Blank	Total/NA	Solid	7471A	
LCS 570-392837/2-A	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 570-392837/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	
570-164263-D-6-A MS	Matrix Spike	Total/NA	Solid	7471A	
570-164263-E-6-A MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	

#### Analysis Batch: 393559

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-6	EP (East) Sludge-12-06-23	Total/NA	Solid	6010B	392626
570-163811-7	EP (West) Sludge-12-06-23	Total/NA	Solid	6010B	392626
MB 570-392626/1-A ^5	Method Blank	Total/NA	Solid	6010B	392626
LCS 570-392626/2-A ^5	Lab Control Sample	Total/NA	Solid	6010B	392626
LCSD 570-392626/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	6010B	392626
570-163811-6 MS	EP (East) Sludge-12-06-23	Total/NA	Solid	6010B	392626
570-163811-6 MSD	EP (East) Sludge-12-06-23	Total/NA	Solid	6010B	392626

# **QC Association Summary**

Job ID: 570-163811-1 SDG: Annual

#### **Metals**

#### Prep Batch: 394059

letals					
rep Batch: 394059					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-8	EP-12-06-23	Total/NA	Water	7470A	
MB 570-394059/1-A	Method Blank	Total/NA	Water	7470A	
LCS 570-394059/2-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 570-394059/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	
570-163522-A-1-C MS	Matrix Spike	Total/NA	Water	7470A	
570-163522-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	
analysis Batch: 39489	94				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-6	EP (East) Sludge-12-06-23	Total/NA	Solid	7471A	392837
570-163811-7	EP (West) Sludge-12-06-23	Total/NA	Solid	7471A	392837
MB 570-392837/1-A	Method Blank	Total/NA	Solid	7471A	392837
LCSD 570-392837/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	392837
570-164263-D-6-A MS	Matrix Spike	Total/NA	Solid	7471A	392837
570-164263-E-6-A MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	392837
Analysis Batch: 39494	19				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-8	EP-12-06-23	Total/NA	Water	7470A	394059
MB 570-394059/1-A	Method Blank	Total/NA	Water	7470A	394059
LCS 570-394059/2-A	Lab Control Sample	Total/NA	Water	7470A	394059
LCSD 570-394059/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	394059
570-163522-A-1-C MS	Matrix Spike	Total/NA	Water	7470A	394059
570-163522-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	394059
Analysis Batch: 39529	99				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 570-392837/2-A	Lab Control Sample	Total/NA	Solid	7471A	392837
Analysis Batch: 39690	)4				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-8	EP-12-06-23	Total Recoverable	Water	6010D	392131
MB 570-392131/1-A	Method Blank	Total Recoverable	Water	6010D	392131
LCS 570-392131/2-A	Lab Control Sample	Total Recoverable	Water	6010D	392131
LCSD 570-392131/3-A	Lab Control Sample Dup	Total Recoverable	Water	6010D	392131
570-164264-H-1-B MS ^5	Matrix Spike	Total Recoverable	Water	6010D	392131
570-104204-H-1-D IVIS ~5		Total T (000 Totable		00102	

### **General Chemistry**

#### Analysis Batch: 392414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-1	MW-1-12-06-23	Total/NA	Water	SM 2540C	
570-163811-2	MW-2-12-06-23	Total/NA	Water	SM 2540C	
570-163811-3	MW-3-12-06-23	Total/NA	Water	SM 2540C	
570-163811-4	MW-4-12-06-23	Total/NA	Water	SM 2540C	
570-163811-5	DUP-12-06-23	Total/NA	Water	SM 2540C	
570-163811-8	EP-12-06-23	Total/NA	Water	SM 2540C	
MB 570-392414/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 570-392414/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 570-392414/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	

**Eurofins Calscience** 

12/29/2023

# **QC Association Summary**

10

### **General Chemistry (Continued)**

#### Analysis Batch: 392414 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-1 DU	MW-1-12-06-23	Total/NA	Water	SM 2540C	
Analysis Batch: 39	95454				_
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-163811-1	MW-1-12-06-23	Total/NA	Water	SM 2510B	
570-163811-2	MW-2-12-06-23	Total/NA	Water	SM 2510B	

570-163811-2	MW-2-12-06-23	Total/NA	Water	SM 2510B	
570-163811-3	MW-3-12-06-23	Total/NA	Water	SM 2510B	
570-163811-4	MW-4-12-06-23	Total/NA	Water	SM 2510B	
570-163811-5	DUP-12-06-23	Total/NA	Water	SM 2510B	
570-163811-8	EP-12-06-23	Total/NA	Water	SM 2510B	
MB 570-395454/10	Method Blank	Total/NA	Water	SM 2510B	
570-165531-B-1 DU	Duplicate	Total/NA	Water	SM 2510B	

Client: Northstar Environmental Remediation Project/Site: Blythe Energy

## Laboratory: Eurofins Calscience

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority	Progra	am	Identification Number	Expiration Date
lifornia	State		3082	07-31-24
for which the agency of	does not offer certification		ot certified by the governing authori	ty. This list may include analyte:
Analysis Method	Prep Method	Matrix	Analyte	
		Water	Chlorido	
300.0		Water	Chloride	
300.0 300.0		Water	Sulfate	

# **Method Summary**

# Client: Northstar Environmental Remediation Project/Site: Blythe Energy

Job ID: 570-163811-1 SDG: Annual

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET CAL 4
200.7 Rev 4.4	Metals (ICP)	EPA	EET CAL 4
6010B	Metals (ICP)	SW846	EET CAL 4
6010D	Metals (ICP)	SW846	EET CAL 4
7470A	Mercury (CVAA)	SW846	EET CAL 4
7471A	Mercury (CVAA)	SW846	EET CAL 4
SM 2510B	Conductivity, Specific Conductance	SM	EET CAL 4
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET CAL 4
200.7	Preparation, Total Recoverable Metals	EPA	EET CAL 4
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET CAL 4
3050B	Preparation, Metals	SW846	EET CAL 4
7470A	Preparation, Mercury	SW846	EET CAL 4
7471A	Preparation, Mercury	SW846	EET CAL 4

#### **Protocol References:**

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

#### **Eurofins Calscience**

# Chain of Custody Record

# curofins Loc: 570 163811

2841 Dow Avenue, Suite 100 Tustin, CA 92780 Phone (714) 895-5494

Client Information	Sampler: Ralph De La P	Sampler: Lab PM: Ralph De La Parra Farna, Sher			Sher	i M					C	Carrier Tr	acking N	io(s):			COC No: 570-88420-187	COC No: 570-88420-18777.1	
Client Contact: Arlin Brewster	Phone: (949)702-096/	Phone: E-Mail: State of Origin: (949)702-0968 Sheri.Fama@et.eurofinsus.com					Page: Page 1 of 1												
Company:	(040)/02 0000		PWSID:	- Chich	arria	801.0	aion	1303.									Job#:		
Northstar Environmental Remediation Address: 26225 Enterprise Court	Due Date Request	ted:		+				ĥ		alysis	Requ	Jested			Т		Preservation Co	des: M - Hexane	
City: Lake Forest	TAT Requested (d	taya):	1					Fotal Chromi Zinc,									A - HCL B - NaOH C - Zn Acetate	N - None O - AsNaO2	
State, Zlp:	Compliance Project	Ct: A Yes A No				ŵ		Total Zinc,	adium								D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3	
CA, 92630	PO #		, 			Calcol TDS		nium, Nickel,	n, Van								F - MeOH G - Amchlor	R - Na2S203 S - H2SO4	
949-274-1719(Tel) Email:	Blythe Energy wo#					ec_Ca		roury,	halliu								H - Ascorbic Acid I - Ice	T - TSP Dodecally U - Acetone V - MCAA	
arlin.brewster@northstarer.com Project Name:	Annual Project#				or No)	suffa		B Me	Silver, T						-1	Bers	J - DI Water K - EDTA	W - pH 4-5	
Blythe Energy	57013297	_			Ves	ictanc oride,		anic, Bari	im, Si							ontair	L - EDA Other:	Y - Trizma Z - other (specify)	
Site: California	SSOW#					ondu D Chk		V, Arse	pden							of cor			
		Sample	Type (W=water (C=comp, O=wa		Perform NS/N	108 Specific ( 0_ORGFIN_28	200.7 - Selenium	6010D Antimony Colbolt, Copper	Beryllum, Moly							Total Number			
Sample Identification	Sample Date	Time	G=grab) ST-Ties Preservation C	and the second se		10 00 N	R D	80	ă		┼─┼			┝─┼	-+	Ĕ	Special	Instructions/No	te:
MW-1-12-06-23	12-6-23	1545		iter		X	x		-	-	┼╌╀					-			
MW-2-12-06-23 2		1425	Wa	iter	Τ	×	×												
MW-3-12-06-23 3		1305	Wa	iter		x	×												
MW-4-12-06-23 4		1710	Wa	iter		×	×												
DUP-12-06-23 5			Wa	ter		×	×												
EP (East) Sludge-12-06-23		1350	Sc	lid				x	×										
EP (West) Sludge-12-06-23 7		1555	Sc	lid				x	×						-1				
EP-12-06-23		1600	Wa	iter		x	×	x											
0																			
	1									_									_
																	hain of Custody		
	ison B Onkno		liological		Sai		<b>Disp</b> eturn	osal To Ci	(A fe	e may I	be ass Dis	sessed sposal l	l <b>if san</b> By Lab	nples	are r	Arch	<b>ed longer than 1</b> ive For	month) Months	
Deliverable Requested: I, II, III, IV, Other (specify)										Require	ments	:							
Empty Kit Relinguished by		Date:		٦	Time :		6	$\frown$				Me	thod of SI	hipment					
Relinquished by ////	Date/Tighey	23 C 10	025 Compan	Har		Receiv	ved bev	A	The	the	_	-		Date/T	108	120	23 1025	Company	
Relinquished by:	Date/Time:	· · · · · · · · · · · · · · · · · · ·	Compan			Receiv	ved by:							Dete/T	ime:			Company	
Relinquished by:	Date/Time:		Compan	у		Receiv	ved by:							Date/T	ime:			Company	
Custody Seals Intact: Custody Seal No.:			<u>_</u>			Coole	r Temp	perature	(s)°C a	ind Other	Remarks	= 2	.6/	3.0	)	SC	14-		

Ver: 01/16/2019 12/29/2023

# Login Sample Receipt Checklist

Client: Northstar Environmental Remediation

#### Login Number: 163811 List Number: 1 Creator: Gutierrez, Rebecca

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins Calscience

14

# MOJAVE DESERT AIR QUALITY MANAGEMENT DISTRICT

Final Determination/Decision - Statement of Basis for Renewal of

FOP Number: 130202262 For: BLYTHE ENERGY, INC. Facility: BLYTHE ENERGY PROJECT Facility Address: 385 N. Buck Blvd. Blythe, CA 92226

Document Date: September 5, 2023 Submittal date to EPA/CARB for review: September 5, 2023 EPA/CARB 45-day Commenting Period ends: October 21, 2023 Public Notice Posted: September 5, 2023 Public Commenting Period ends: October 6, 2023 Permit Issue date: November 1, 2023

> Permitting Engineer: Roseana Brasington

14306 PARK AVENUE, VICTORVILLE, CALIFORNIA 92392 PHONE: (760) 245-1661 • FAX: (760) 245-2022 • EMAIL: ENGINEERING@MDAQMD.CA.GOV

# A. Introduction

#### 1. Application and Setting

### BACKGROUND:

Federal Operating Permit (FOP) number 130202262 is for Blythe Energy, Inc. (BEP). BEP uses two F-Class Siemens V84.3A combustion turbine generators (CTGs) with dedicated heat recovery steam generators (HRSGs) to produce electricity. Inlet air to the CTGs is filtered and, during seasonally warm conditions, conditioned with chilled air supported by a mechanical draft wet cooling tower (chiller). Compressed air and natural gas are mixed and combusted in the turbine combustion chamber. Lean pre-mixed air and low-NOx combustors are used to minimize NOx formation during combustion. Exhaust gas from the combustion chamber is expanded through a multi-stage power turbine, which drives both the air compressor and electric power generator. Heat from the exhaust gas is then recovered in the HRSG.

Each HRSG is equipped with a duct burner to provide supplementary firing during high ambient temperatures to maintain constant steam production to the condensing steam turbine generator (STG). A Selective Catalytic Reduction (SCR) system is used to reduce NOx emissions. An Oxidation Catalyst is used to reduce CO and VOC. Steam is produced in each HRSG and flows to the STG. The STG drives an electric generator to produce electricity. STG exhaust steam is condensed in a surface condenser with water from the main cooling tower.

BEP also has a 303 bhp emergency diesel-fueled internal combustion engine that drives a water pump for fire suppression and a propane fueled 114 bhp internal combustion engine that drives an emergency electrical power generator.

BEP is located in a "Zone B" area as defined by Rule 1201(S)(2) which means that the area is designated Federal Attainment or Unclassified for Ozone.

POLLUTANT	STATE AREA	FEDERAL AREA
	DESIGNATION	DESIGNATION
OZONE	NONATTAINMENT	UNCLASSIFIED/ATTAINMENT
Precursors: NOx, VOC		
NO2	ATTAINMENT	UNCLASSIFIED/ATTAINMENT
СО	ATTAINMENT	UNCLASSIFIED/ATTAINMENT
PM10	NONATTAINMENT	NONATTAINMENT
Precursors: SOx, NOx,		
VOC		
PM2.5	NONATTAINMENT	UNCLASSIFIED/ATTAINMENT
SO2	ATTAINMENT	UNCLASSIFIED

BEP is defined as a Major Facility pursuant to District Rule 1201 – *Federal Operating Permit Definitions*, section 1201(S) and also pursuant to PSD Program, as this facility has a Potential to Emit (PTE) as shown below:

POLLUTANT	BEP	REGULATION	REGULATION	REGULATION	REGULATION	PSD	PSD
	PTE	XIII - NSR	XIII - NSR	XII - TV	XII - TV	THRESHOLD	STATUS
		THRESHOLD	FACILITY	THRESHOLD	FACILITY		
			STATUS		STATUS		
NOx	97	25	MAJOR	100	NON MAJOR	100	NON MAJOR
VOC	24	25	NON MAJOR	100	NON MAJOR	100	NON MAJOR
PM10	56.9	15	MAJOR	100	NON MAJOR	100	NON MAJOR
SOx	12	25	NON MAJOR	100	NON MAJOR	100	NON MAJOR
СО	175.0	100	MAJOR	100	MAJOR	100	MAJOR
HAP		10 ANY HAP	AREA	10 ANY HAP	AREA	NONE HAP IS	NA
		25 ANY		25 ANY		NOT A PSD	
		COMBINATION		COMBINATION		POLLUTANT	
		OF HAP		OF HAP			

#### 2. Description of Proposed Action

BEP proposes to renew the FOP and to make changes to the monitoring requirements related to the Continuous Emissions Monitoring System. The Mojave Desert Air Quality Management District (MDAQMD or District) received the following applications:

- June 2, 2021 application to renew Acid Rain Permit
- October 8, 2021 application to renew the current Title V Federal Operating Permit (FOP) for BEP.
- September 12, 2022 application for modification. The proposed administrative modification changes the facility primary and alternate contacts.

This document serves as the final determination to revise the permit as necessary to renew it pursuant to Rule 1203(B). This final determination will be submitted to USEPA, CARB, and the public for review and comment. Please refer to the cover page of this document for the noticing and comment period timeframes.

The FOP will be formatted to conform with new District guidelines and minor typographical and spelling errors will be corrected. The permit has been updated to include citations from PSD permit SE 02-01. BEP has proposed to revise the permit conditions related to the CO CEMS, harmonizing the monitoring requirements of Part 60 and Part 75 and to establish in the Operating Permit ongoing quality assurance requirements for the CEMS. None of these changes alter any emissions limitations or relax any monitoring, recordkeeping, or reporting requirements.

Pursuant to Regulation XII, *Federal Operating Permits*, the District has reviewed the terms and conditions of this Federal Operating Permit. This review included an analysis of federal, state, and local applicability determinations for all sources, including those that have been modified or permitted since the original issuance of the Federal Operating Permit. The review also included an assessment of all monitoring in the permit for sufficiency to determine compliance. This *Statement of Legal and Factual Basis*, pursuant to Rule 1203(B)(1)(a)(i), is intended to assess the adequacy of the proposed Title V Permit renewal and explain the District's basis in composing the proposed Title V Permit renewal.

# B. Title V Permit/FOP

### 1. Proposed Changes to FOP

The proposed changes to the FOP are indicated in the red-line version of the draft. Additionally, a description and explanation of those changes are indicated below:

### PART I: INTRODUCTORY INFORMATION

Final Determination/Decision – Statement of Basis Blythe Energy Project September 5, 2023 Page 3 This section of the Federal Operating Permit contains general information about the BEP facility, including facility identifying information (section A), a description of the facility (section B), and a description of the facility's equipment (section C).

#### Changes made to this section of the FOP:

- Update of Responsible Official, facility primary and alternate contacts
- Added language indicating what pollutants trigger Title V applicability
- Updated Model/Serial Numbers for cooling tower under permit B007958

#### PART II: FACILITYWIDE APPLICABLE REQUIREMENTS; EMISSIONS LIMITATIONS; MONITORING, RECORDKEEPING, REPORTING AND TESTING REQUIREMENTS; COMPLIANCE CONDITIONS; COMPLIANCE PLANS

This section of the Federal Operating Permit contains requirements applicable to the entire facility and equipment (section A), facility-wide monitoring, recordkeeping, and reporting requirements (section B), and facility-wide compliance conditions (section C).

#### Changes made to this section of the FOP:

- Section A
  - Added Rule 201 language in accordance with current permitting standards as it is an applicable requirement
  - Updated Rule 203 language to current permitting standards
  - o Updated Rule 204 language to current permitting standards
  - Updated Rule 206 language to current permitting standards
  - Updated Rule 207 language to current permitting standards
  - Updated Rule 209 language to current permitting standards
  - o Updated Rule 217 language to current permitting standards
  - Updated Rule 219 language to current permitting standards
  - Updated Rule 221 language to current permitting standards
  - Updated Rule 301 language to current permitting standards
  - Updated Rule 312 language to current permitting standards
  - o Updated Rule 401 language to reflect current rule requirements
  - Added Rule 402 language in accordance with current permitting standards as it is an applicable requirement
  - o Updated Rule 403 language to reflect current rule requirements
  - o Updated Rule 403.2 language to reflect current rule requirements
  - o Updated Rule 404 language to reflect current rule requirements
  - Added Rule 431 language in accordance with current permitting standards as it is an applicable requirement
  - Added Rule 441 language in accordance with current permitting standards as it is an applicable requirement
  - o Updated Rule 442 language to reflect current rule requirements

Final Determination/Decision - Statement of Basis Blythe Energy Project September 5, 2023 Page 4

- Added Rule 462 language in accordance with current permitting standards as it is an applicable requirement
- Added Rule 463 language in accordance with current permitting standards as it is an applicable requirement
- Added Rule 900 language in accordance with current permitting standards as it is an applicable requirement
- Added Rule 1104 language in accordance with current permitting standards
- Updated Rule 1113 language to reflect current rule requirements
- Updated Rule 1114 language to reflect current rule requirements
- o Updated Rule 1115 language to reflect current rule requirements
- Added Rule 1116 language in accordance with current permitting standards as it is an applicable requirement
- Added Rule 1159 in accordance with current permitting standards as it is an applicable requirement
- Added Rule 1168 in accordance with current permitting standards as it is an applicable requirement
- Added Rule 1211 in accordance with current permitting standards as it is an applicable requirement
- Added requirement for deadlines pertaining to the submission of Title V Permit Renewal per District Rule 1202.
- Updated citation of regulatory requirements related to Comprehensive Emission Inventory reporting
- Updated Rule 1203 and 1208 related to Compliance Certification to current permitting standards
- Section B updated rule citations, added requirements and citations associated with PSD permit SE 02-01 4/07
- Section C
  - Updated 40 CFR 61 Subparts A and M language to current permitting standards
  - o Added 40 CFR 63 Subpart ZZZZ as it is an applicable requirement
  - Added 40 CFR 60 Subpart GG as it is an applicable requirement
  - Added 40 CFR 60 Subpart Db as it is an applicable requirement

#### PART III: EQUIPMENT SPECIFIC APPLICABLE REQUIREMENTS; EMISSIONS LIMITATIONS; MONITORING, RECORDKEEPING, REPORTING AND TESTING REQUIREMENTS; COMPLIANCE CONDITIONS; COMPLIANCE PLANS

This section of the Federal Operating Permit contains equipment-specific applicable requirements including emission limitations, monitoring and recordkeeping, reporting and testing, and compliance plans.

#### Changes made to this section of the FOP:

• Sections A and B related to the combustion turbines:

Final Determination/Decision – Statement of Basis Blythe Energy Project September 5, 2023 Page 5

- updated rule citations, added requirements and citations associated with PSD permit SE 02-01 4/07
- o revised permit condition related to the monitoring requirements for the CO CEMS
- added references to 40 CFR 60 Subparts A and Db and Title IV Acid Rain Program
- Updated conditions 11 and 13 to reference the District Compliance Test Procedural Manual
- Modified Condition 16 to add ongoing NO_x, O₂ and CO CEMS QA requirements and to clarify how each analyzer is certified (NO_x and O₂ by 40 CFR 75, CO by 40 CFR 60 Appendix B, PS-4).
- For the NOx and CO CEMS, the current permit references only analyzer performance specifications from 40 CFR 60 Appendix B. This condition was updated to specify that the NOx and O2 analyzers are certified in accordance with 40 CFR 75 and to add ongoing CEMS QA requirements for NOx, O2 and CO. Since ongoing CEMS QA is not currently specified by permit, Blythe would like to document that the NOx and O2 analyzers follow 40 CFR 75 and the CO analyzers follows 40 CFR 60 Appendix F with certain provisions adopted from 40 CFR 75. This hybrid approach for CO enables Blythe to conduct quarterly audits on the same schedule. Harmonizing 40 CFR 60 with 40 CFR 75 monitoring provisions has been the subject of many EPA and State/local monitoring petition approvals. Also, in 2007, EPA harmonized certain 40 CFR 60 subparts to allow for data from certified 40 CFR 75 monitors to be used to demonstrate compliance with 40 CFR 60 emissions limits. For example, 40 CFR 60 Subpart GG allows for alternative testing and monitoring procedures harmonizing the requirements of Subpart GG with the monitoring provisions of 40 CFR 75. A comparison of the 40 CFR 60 and 40 CFR 75 differences specific to Blythe's QA program are shown below.
  - QA Test Schedules and Grace Periods:
    - RATAs: 40 CFR 60 Appendix F QA RATAs are required once every four calendar quarters with an option to extend if the fourth quarter is a non-operating quarter. 40 CFR 75 QA RATAs are required at least once every four QA operating quarters (a "QA operating quarter" is a calendar quarter in which the unit operated in at least 168 hours; "four QA operating quarters" assumes the incentive criteria is satisfied, which is common; otherwise, the standard frequency is every two QA operating quarters) but no less frequently than once every eight calendar quarters, plus a 720-unit operating hour grace period following the expiration of the standard deadline.
    - Linearity Checks / CGAs: 40 CFR 60 Appendix F CGAs are required in all quarters in which a RATA is not conducted with an exclusion for non-operating quarters. 40 CFR 75 linearity checks

Final Determination/Decision - Statement of Basis Blythe Energy Project September 5, 2023 Page 6 (analogous to the 40 CFR 60 CGA) are required at least once during each QA operating quarter, not to exceed four calendar quarters, plus a 168-unit operating hour grace period following the expiration of the standard deadline.

- Analyzer Range Exemptions for CGAs: 40 CFR 60 does not contain CGA exemptions for low-emitting sources, while 40 CFR 75 contains linearity check exemptions for analyzer ranges with span values less than or equal to 30 ppm. Blythe uses this exemption for the NOx and CO low ranges.
- RATA Load: 40 CFR 60 specifies that RATAs are to be conducted while operating at more than 50 percent of normal load while 40 CFR 75 specifies that testing shall be conducted at a normal load level(s) as determined in accordance with 40 CFR 75 Appendix A Section 2.3.1.3(a).
- added permit condition specifying Comprehensive Emission Inventory Requirements
- Sections C and D related to the duct burners:
  - Clarified and expanded citation of 40 CFR 60 Subpart Db
  - updated rule citations, added requirements and citations associated with PSD permit 02-01
  - added permit condition specifying Comprehensive Emission Inventory Requirements
- Sections E and F related to the SCR Units
  - updated rule citations, added requirements and citations associated with PSD permit 02-01
- Sections G & H related to the oxidation catalysts
  - updated rule citations, added requirements and citations associated with PSD permit 02-01
- Section I related to the main cooling tower
  - updated rule citations, added requirements and citations associated with PSD permit 02-01
- Section J related to the chiller cooling tower
  - Updated equipment details to correct model/serial numbers
  - updated rule citations, added requirements and citations associated with PSD permit 02-01
- Section K related to the diesel emergency fire pump and Section L related to the propane emergency generator
  - Updated rule citations
  - Updated permit condition 4 of permits E007961 and E009492 removing the vacated provision of 40 CFR 63 Subpart ZZZZ Section 63.6640(f)(1)(ii) Added condition to permit for E008159 which clarifies appropriate non-emergency use as allowed under 40 CFR 63.6640(f)at an area HAP source.
  - Clarified citation for permit condition 5 for E007961 with respect to operating for the purposes of compliance with NFPA 25 requirements.

Final Determination/Decision – Statement of Basis Blythe Energy Project September 5, 2023 Page 7

- Updated recordkeeping requirements in accordance with 40 CFR 63.6655(f)
- Added requirements 40 CFR 63.6603(a)
- added permit condition specifying Comprehensive Emission Inventory Requirements

## PART IV: STANDARD FEDERAL OPERATING PERMIT CONDITIONS

No changes were made to this section

# PART V: OPERATIONAL FLEXIBILITY

No changes were made to this section

### PART VI: ACID RAIN PERMIT

• Updated Title IV Acid Rain Permit with current designated representative and facility contact person.

## PART VII: CONVENTIONS, ABREVIATIONS, DEFINITIONS

Changes made to this section of the FOP:

• Updated SIP table

### 5. Rules and Regulations Applicable to the Proposed Project

### District Rules

Rules 203 – Permit to Operate. Any equipment which may cause the issuance of air contaminants must obtain authorization for such construction from the Air Pollution Control Officer. BEP is in compliance with this rule as they maintain District permits for all residing equipment per Part II, section A of their FOP.

Rule 204 – Permit Conditions. To assure compliance with all applicable regulations, the Air Pollution Control Officer may impose written conditions on any permit. BEP complies with all applicable regulations per Part II, section A of their FOP.

Rule 206 – Posting of Permit to Operate. Equipment shall not operate unless the entire permit is affixed upon the equipment or kept at a location for which it is issued and will be made available to the District upon request. BEP complies with this regulation per Part II, section A of their FOP.

Rule 207 – Altering or Falsifying of Permit. A person shall not willfully deface, alter, forge, or falsify any issued permit. BEP complies with this regulation per Part II, section A of their FOP.

Final Determination/Decision - Statement of Basis Blythe Energy Project September 5, 2023 Page 8 Rule 209 – Transfer and Voiding of Permits. BEP shall not transfer, whether by operation of law or otherwise, either from one location to another, from one piece of equipment to another, or from one person to another. When equipment which has been granted a permit is altered, changes location, or no longer will be operated, the permit shall become void. BEP complies with this regulation per Part II, section A of their FOP.

Rule 217 – Provisions for Sampling and Testing Facilities. This rule requires the applicant to provide and maintain requirements for sampling and testing. BEP is in compliance with this rule per Part II, section A of their FOP.

Rule 219 – Equipment not Requiring a Permit. This rule exempts certain equipment from District Permit. BEP is in compliance with this rule per Part II, section A.

Rule 221 – Federal Operating Permit Requirement. BEP is in compliance with this rule, as they currently hold and maintain a Federal Operating Permit.

Rule 301/312 – Permit Fees/Fees for Federal Operating Permits. BEP annual permit fees are due by the applicable dates. BEP is currently not delinquent for any fees.

Rule 401 – Visible Emissions. This rule limits visible emissions opacity to less than 20 percent (or Ringlemann No. 1). In normal operating mode, visible emissions are not expected to exceed 20 percent opacity. BEP has specific operating conditions that enforce compliance with this rule, specifically Part II, section A.

Rule 403 – Fugitive Dust. This rule prohibits fugitive dust beyond the property line of any emission source. BEP has specific operating conditions to ensure compliance with this condition, specifically Part II, section A.

Rule 404 – Particulate Matter Concentration. BEP shall not discharge into the atmosphere from this facility, particulate matter (PM) except liquid sulfur compounds, in excess of the concentration at standard conditions, shown in Rule 404, Table 404 (a).

(a) Where the volume discharged is between figures listed in the table the exact concentration permitted to be discharged shall be determined by linear interpolation.

(b) This condition shall not apply to emissions resulting from the combustion of liquid or gaseous fuels in steam generators or gas turbines.

(c) For the purposes of this condition, emissions shall be averaged over one complete cycle of operation or one hour, whichever is the lesser time period.

BEP adheres to this rule per Part II, section A of their FOP

Rule 405 – Solid Particulate Matter, Weight. BEP shall not discharge into the atmosphere from

Final Determination/Decision – Statement of Basis Blythe Energy Project September 5, 2023 Page 9 this facility, solid PM including lead and lead compounds in excess of the rate shown in Rule 405, Table 405(a):

(a) Where the process weight per hour is between figures listed in the table, the exact weight of permitted discharge shall be determined by linear interpolation.

(b) For the purposes of this condition, emissions shall be averaged over one complete cycle of operation or one hour, whichever is the lesser time period.

BEP adheres to this rule per Part II, section A of their FOP.

Rule 406 – Specific Contaminants. This rule limits single source of emissions of specific compounds. BEP meets this requirement by complying with operating condition listed in Part II, section A of their FOP.

Rule 407 – Liquid and Gaseous Air Contaminants. This rule limits CO emissions from facilities. BEP meets this requirement by complying with operating condition listed in Part II, section A of their FOP.

Rule 408 – Circumvention. This rule prohibits hidden or secondary rule violations. The proposed renewal is not expected to violate Rule 408. BEP meets this requirement by complying with operating condition listed in Part II, section A of their FOP.

Rule 409 – Combustion Contaminants. This rule limits the emissions of combustion contaminants exceeding 0.23 gram per cubic meter (0.1 grain per cubic foot) of gas calculated to 12 percent of carbon dioxide (CO2) at standard averaged over a minimum of 15 consecutive minutes. BEP meets this requirement by complying with operating condition listed in Part II, section A of their FOP.

Rule 430 – Breakdown Provisions. Any Breakdown which results in a violation to any rule or regulation as defined by Rule 430 shall be properly addressed pursuant to this rule. BEP meets this requirement by complying with operating condition listed in Part II, section A of their FOP.

Rule 431 – *Sulfur Content of Fuels*. This rule limits the sulfur content allowed in fuels burned at the facility. BEP meets this requirement by complying with operating condition listed in Part II, Section A of their FOP.

Rule 442 – Usage of Solvents. This rule reduces VOC emissions from VOC containing materials or equipment that is not subject to any other rule in Regulation XI. BEP meets the requirement by complying with operating condition listed in Part II, section A of their FOP.

Rule 900 – *Standards of Performance for New Stationary Sources (NSPS)*. Rule 900 adopts all applicable provisions regarding standards of performance for new stationary sources as set forth in 40 CFR 60. The provisions of applicable NSPS's have been incorporated into the conditions of the District Permits for applicable units in Part III of the FOP.

Rule 1000 – *National Emission Standards for Hazardous Air Pollutants (NESHAP)*. Rule 1000 adopts all applicable provisions regarding standards of performance for new stationary sources as set forth in 40 CFR 61. The provisions of applicable NESHAPS's have been incorporated into the conditions of the District Permits for applicable units in Part III of the FOP.

Rule 1104 – Organic Solvent Degreasing Operations. This rule limits the emission of VOCs from wipe cleaning and degreasing operations using organic solvents. BEP meets this requirement by complying with operating condition listed in Part II, Section A of their FOP.

Rule 1113 – *Architectural Coatings*. This rule limits the quantity of VOC in Architectural Coatings. BEP meets the requirements of this rule by complying with operating condition listed in Part II, Section A of their FOP.

Rule 1114 – *Wood Products Coatings*. This rule limits the emission of VOC from coatings associated with Wood Products. BEP meets the requirements of this rule by complying with operating condition listed in Part II, Section A of their FOP.

Rule 1115 – *Metal Parts and Products Coatings*. This rule limits the emission of VOC from coatings associated with Metal Parts and Products. BEP meets the requirements of this rule by complying with operating condition listed in Part II, Section A of their FOP.

Rule 1168 - Adhesives and Sealants. This rule limits the emission of VOC from adhesives and sealants. The requirements are largely placed on the adhesive and sealant manufacture as the product categories regulated by this rule are largely consumer products. BEP meets the requirements of this rule by complying with the requirements of Part II.A.

Regulation XII – *Federal Operating Permits*. This regulation contains requirements for sources which must have a FOP. BEP currently has a FOP and is expected to comply with all applicable rules and regulations.

Rule 1201 – *Federal Operating Permit Definitions*. BEP is defined as a federal Major Facility pursuant to this rule.

Rule 1203 – *Federal Operating Permits*. This rule outlines the permit term, issuance, restrictions, content, operational flexibility, compliance certification, permit shield, and violations of Federal Operating Permits. BEP complies with this rule per Part II, Sections B and C, and Part IV and V of their FOP.

Rule 1205 – *Modifications of Federal Operating Permits*. The proposed equipment classifies as a Modification to the Federal Operating Permit (FOP), and subsequently, this permit modification is issued in accordance with the provisions of District Rule 1203.

Final Determination/Decision – Statement of Basis Blythe Energy Project September 5, 2023 Page 11 Rule 1207 – *Notice and Comment*. This rule outlines the noticing requirements for Notice and Comment. BEP will properly notice their renewal pursuant to this rule.

Rule 1208 – *Certification*. BEP included a Certification of Responsible Official as required with the submitted application for the proposed modification.

Rule 1211 – *Greenhouse Gas Provisions of Federal Operating Permits*. BEP is a Major GHG Facility pursuant to Rule 1211. BEP meets the requirements of this rule by complying with operating condition listed in Part II, Section A of their FOP.

Regulation XIII – *New Source Review* This regulation sets forth requirements for the preconstruction review of all new or modified facilities. This permitting action does not constitute any NSR actions.

Regulation XVII – *Prevention of Significant Deterioration*. Please take notice that this regulation is not currently implemented by the MDAQMD because the USEPA has not delegated authority for the PSD Program to the District at this time. However, this facility is a major stationary source for CO under the language in the applicability procedures of 40 CFR 52.21 (a)(2)(i) and (ii). The proposed renewal does not result in a new major stationary source and do not constitute a major modification of any existing major stationary source, the proposed Title V permit renewal is not subject to PSD. This facility operates under existing PSD permit SE 02-01. The PSD permit requirements have been added as operating conditions under the proposed renewal of the FOP.

#### **State Regulations**

<u>CCR §93115 – Airborne Toxic Control Measure for Stationary Compression Ignition (CI)</u> <u>Engines</u>. The purpose of this airborne toxic control measure (ATCM) is to reduce diesel particulate matter (PM) and criteria pollutant emissions from stationary diesel-fueled compression ignition (CI) engines. The provisions of this ATCM have been incorporated into the conditions of the District Permits for applicable units in Part III of the FOP.

#### **Federal Regulations**

<u>40 CFR 60, Subpart A – NSPS General Provisions</u> – this facility is subject to Subpart A because it operates equipment subject to Subparts Db and GG.

<u>40 CFR 60 Subpart Db Standards of Performance for Industrial-Commercial-Institutional Steam</u> <u>Generating Units</u> – this facility is subject to the NSPS because it owns and operates natural gas fired duct burners which are capable of combusting more than 100 MMbtu/hour heat input. <u>40 CFR 60 Subpart GG New Source Performance Standard for Stationary Gas Turbines</u> – this facility is subject to the NSPS because it owns and operates stationary gas turbines with a heat input greater than 10 MMBtu/hr which were constructed after October 3, 1977. This facility complies with the NOx emission limits set forth in 60.332(a)(1) and (a)(3) and the SO2 emissions limits set forth in 60.333. Permit conditions have been included that specify recordkeeping requirements and fuel certification as required by the NSPS.

<u>40 CFR 61, Subpart M – National Emission Standard for Asbestos</u> - BEP complies with 40 CFR 61, Subpart M – per conditions in Part II, section C.

<u>40 CFR 63 Subpart ZZZZ – National Emissions Standard for Hazardous Air Pollutants for</u> <u>Stationary Reciprocating Internal Combustion Engines</u> - BEP is an area source for HAP and complies with this regulation via operating conditions listed in Part III for each applicable IC engine.

<u>40 CFR 64, Compliance Assurance Monitoring</u> - The Compliance Assurance Monitoring (CAM) rule (40 CFR 64) applies to each Pollutant Specific Emissions Unit (PSEU) when it is located at a Major Facility that is required to obtain Title V, Part 70 or 71 permit and it meets all of the following criteria. "PSEU" means an emissions unit considered separately with respect to each regulated air pollutant. The PSEU must:

a. Be subject to an emission limitation or standard [40 CFR 64; AND,

b. Use a control device to achieve compliance [40 CFR 64.2(a)(2)]; AND,

c. Have the potential pre-control emissions that exceed or are equivalent to the major source threshold. [40 CFR 64.2(a)(3)]

The combustion turbines each have a pre-control PTE which is in excess of the major source threshold. The turbines each vent through a selective catalytic reduction control and an oxidation catalyst control. The turbine emissions are monitored by a Continuous Emissions Monitor (CEMS). 40 CFR 64.2(b)(1)(vi) specifically exempts the turbines and their associated controls from CAM because the CEMS is required in the Part 70 (Title V) permit. There is no other equipment at the facility which satisfies the criteria specified in "a", "b", and "c" above; therefore, none of the other facility equipment is subject to CAM either. See the CAM Plan applicability determination, included in the renewal application materials included in Appendix A.

<u>40 CFR 75 Acid Rain Program</u> – The combustion turbines and duct burners are subject the Acid Rain Program. Pursuant to 40 CFR Part 72.6(a)(3)(i), the affected units specified above meet the 72.2 definition for a new utility unit and are subject to the acid rain permit requirements of 72.9(a). The affected units do not qualify for a new unit exemption pursuant to 40 CFR 72.7(b)(1) since each serves a generator with a nameplate capacity greater than 25 MW. The affected units specified above are not listed in table-2 of 40 CFR Part 73, therefore, the operator

Final Determination/Decision – Statement of Basis Blythe Energy Project September 5, 2023 Page 13 is not required to obtain SO2 allowances under the Acid Rain Program. This unit is not subject to the NOx requirements from 40 CFR Part 76 as this unit is not capable of firing on coal.

#### 7. Conclusion and Recommendation

The District has reviewed the applications for the proposed renewal of the BEP Federal Operating Permit and conducted a written analysis as required by District Rule 1203, section (B)(1)(a). The District has determined that the proposed renewal is compliant with all applicable District, State, and Federal rules and regulations as projected when operated in the terms of the permit conditions given herein, and the attached revised FOP. The proposed permit and corresponding statement of legal and factual basis will be released for public comment and publicly noticed pursuant to District Rule 1207. To view the public notice please refer to Appendix B of this document. Please refer to the cover sheet of this document for noticing and review dates.

#### 8. Public Comment and Notifications:

a. Public Comment

The preliminary determination was publicly noticed for the required 30-Day Public commenting period. Noticing Methods include the following, per District Rule 1207 (A)(1)(a):

• Publish in newspapers of general circulation - Press Enterprise and the Daily Press.

• Mail and/or email to MDAQMD contact list of persons requesting notice of actions (see the contact list following the Public Notice in Appendix B).

• Posted on the MDAQMD Website at the following link: <u>https://www.mdaqmd.ca.gov/permitting/public-notices-advisories/public-notices-permitting</u>

b. Notifications/USEPA & CARB Review The preliminary determination was submitted via e-mail to EPA and CARB pursuant to District Rule 1207 for a forty-five (45) day review period. The final renewed FOP shall be issued after the review period is over, provided there are no comments that require resubmission. All correspondence as required by District Rule 1207 were forwarded electronically to the following recipients. Please refer to the cover page for noticing dates. No comments were received on the preliminary determination. This final decision/determination will be submitted to USEPA, CARB and the facility.

Please refer to the cover page of this document for the noticing and comment period timeframes.

Director, Office of Air Division United States EPA, Region IX 75 Hawthorne Street San Francisco, CA 94105 Notified via electronic reporting to cdx.epa.gov (EPA Central Data Exchange)

Chief, Stationary Source Division California Air Resources Board P.O. Box 2815 Sacramento, CA 95812 Notified via email to permits@arb.ca.gov

Mary Dyas, Project Manager California Energy Commission 715 P Street Sacramento, CA 95814 Notified vie email to: <u>CME@energy.ca.gov</u>

Mike Ludwin, Senior Director Operations - Power Blythe Energy Project P.O. Box 1210 Blythe, CA 92226

# Appendix A Application

# Title V Operating Permit Renewal Application

Blythe Energy Inc.

Federal Operating Permit 130202262

Blythe, CA

October 8, 2021

Submitted to: Mojave Desert Air Quality Management District 14306 Park Avenue Victorville, CA 92392-2383

Submitted by: Blythe Energy Inc. 385 N. Buck Blvd Blythe, CA 92225

# Table of Contents

Section	Description
1	MDAQMD Form 1202E2-A: General Facility Information
2	MDAQMD Form 1202E2-B: Application Certification
3	MDAQMD Form 1202E2-D: List of Exempt Equipment
4	MDAQMD Form 1202E2-E: Potential Emissions Report,
	Criteria Pollutants and HAPs, Potential Greenhouse Gas
	Emission Report
5	MDAQMD Form 1202E2-F: Compliance Assurance
	Monitoring Applicability Determination
6	40 CFR 75 and 40 CFR 60 Monitoring Clarifications
7	Redlined Copy of Current Operating Permit

# SECTION 1: MDAQMD Form 1202E2-A

**General Facility Information** 

# **Mojave Desert Air Quality Management District**

# TITLE V PERMIT RENEWAL APPLICATION – GENERAL FACILITY INFORMATION

1. FACILITY ID:	FÆ	ACILITY SIC CODE:	
TITLE V PERMIT NUMBER:	PERMIT EXPIRATION DATE:		
2. COMPANY NAME:			
3. COMPANY MAILING ADDRESS:			
STREET/P.O. BOX:			
CITY:	STATE:	9-DIGIT ZIP CODE:	
4. FACILITY NAME:			
5. FACILITY MAILING ADDRESS:			
STREET/P.O. BOX:			
CITY:	STATE:	9-DIGIT ZIP CODE:	
6. RESPONSIBLE OFFICIAL (AS DEFINED IN 40 CFR 70.2 AND MDAQMD RULE 1201)			
NAME:	TITLE:	PHONE NUMBER	
7. TITLE V PERMIT CONTACT PERSON			
NAME:	TITLE:	PHONE NUMBER	
8. TYPE OF ORGANIZATION:			
9. CAM (COMPLIANCE ASSURANCE MONITORING) PLANS			
Are you required to submit a CAM plan for any emissions unit at this facility? I Yes No If yes, submit a CAM plan for each emissions unit as an attachment to the application. See attached CAM plan instructions for more detail.			

14306 Park Avenue, Victorville, CA 92392 | Tel: (760)245-1661

10. ALTERNATE OPERATING SCENARIOS			
Does this application request alternative operating scenarios pursuant to Rule 1203(E)?			
11. RISK MANAGEMENT PLAN			
Has this facility been required to prepare a federal Risk Management Plan pursuant to Section 112(r) of the federal Clean Air Act			
and 40 CFR Part 68? 🔀 Yes 🗌 No			
If yes, has the federal Risk Management Plan been submitted to the implementing agency? 🔀 Yes $\Box$ No			
If a federal Risk Management Plan is required but has not been submitted to the implementing agency, provide a detailed explanation as an attachment to the application.			
12. STRATOSPHERIC OZONE			
Does the facility conduct any activities that are regulated by the federal protection of stratospheric ozone requirements in 40			
CFR Part 82? 🗙 Yes 🗌 No			
13. ACID RAIN			
Is this facility subject to the acid rain requirement in 40 CFR Part 72 through 40 CFR Part 78? 🗙 Yes 🗆 No			
14. MAJOR SOURCE STATUS			
Is this facility a major source of greenhouse gases, as defined in MDAQMD Rule 1211? 🗙 Yes 🗌 No			
Is this facility a major source of any of the following pollutants:			
🗆 VOCs 🔲 Particulate Matter 🔀 Carbon Monoxide 🗔 Nitrogen Oxides 🗔 Sulfur Dioxides			
Lead HAP			
15. PERMIT SHIELDS			
Does the current Title V permit for this facility include any permit shields? 🗙 Yes 🗌 No			
If yes, is the basis for each permit shield still correct? 🔀 Yes $\square$ No			
If the current Title V permit contains any permit shield for which the basis is no longer correct, provide a detailed explanation as an attachment to the application. If you are requesting an additional permit shield, complete the attached Permit Shield Request form.			
16. CERTIFICATION BY RESPONSIBLE OFFICIAL			
Based on information and belief formed after reasonable inquiry, information and statements in the submitted application package, including all accompanying reports, and required certifications are true accurate and complete. I declare, under penalty of perjury under the laws of the state of California, that the forgoing is correct and true:			
Signature: Date: Date:			

14306 Park Avenue, Victorville, CA 92392 | Tel: (760)245-1661

SECTION 2: MDAQMD Form 1202E2-B

Application Certification

# **Mojave Desert Air Quality Management District**

# TITLE V PERMIT RENEWAL APPLICATION – APPLICATION CERTIFICATION

#### I. FACILITY INFORMATION

1. FACILITY NAME: Blythe Energy Project

#### 2. FACILITY ID: 2262

3. TITLE V PERMIT #:130202262

#### II. TITLE V PERMIT CERTIFICATION (Read each statement carefully and check one):

- The current Title V permit has been reviewed and it has been determined that equipment descriptions are correct, and all requirements are still applicable.
  *The current Title V permit is included in this application with proposed redline changes to clarify CEMS monitoring requirements.
- The current Title V permit has been reviewed and errors have been found in equipment descriptions and/or permit requirements. A copy of the Title V permit is attached with redline changes. Permit application and/or modification forms are enclosed, as applicable.
- III. COMPLIANCE CERTIFICATION (Read each statement carefully and check all for confirmation):
- Based on information and belief formed after reasonable inquiry, the equipment identified in this application will continue to comply with the applicable federal requirement(s), except for those requirements listed in the "Title V Non-Compliant Operations Report". -All equipment currently in compliance
- Based on information and belief formed after reasonable inquiry, the equipment identified in this application will comply with applicable federal requirement(s) that will become effective during the permit term, on a timely basis, except for those requirements listed in the "Title V Non-Compliant Operations Report". -N/A
- Corrected information will be provided to the District when I become aware that incorrect or incomplete information has been submitted.

Based on information and belief formed after reasonable inquiry, information and statements in the submitted application package, including all accompanying reports, and required certifications are true accurate and complete. I declare, under penalty of perjury under the laws of the state of California, that the forgoing is correct and true.

Signature of Responsible Official

10-8-2021

Date

Aaron Honor

Name of Responsible Official (please print)

Plant General Manager

Title of Responsible Official (please print)

14306 Park Avenue, Victorville, CA 92392 | Tel: (760)245-1661

# SECTION 3: MDAQMD Form 1202E2-D

List of Exempt Equipment

# Mojave Desert Air Quality Management District

# TITLE V PERMIT RENEWAL APPLICATION – LIST OF EXEMPT EQUIPMENT

#### I. FACILITY INFORMATION

2. FACILITY ID: 2262

3. TITLE V PERMIT #: 130202262

#### II. SUMMARY OF EQUIPMENT EXEMPT FROM PERMIT REQUIREMENTS (INCLUDING PORTABLE)

		T	
4. EXEMPT EQUIPMENT DESCRIPTION	5. VENTING TO CONTROL (PERMIT #)	6. CONTROL DEVICE DESCRIPTION	7. BASIS FOR EXEMPTION (e.g. Rule 219(D)(2)(b))
Internal combustion environ loss than			
Internal combustion engines less than			MDAQMD Rule 219(E)(2)(a)
50 hp			
Natural gas and/or LPG combustion units			MDAQMD Rule 219 (E)(2)(b)
less than 2 MMBtu/hr Portable internal combustion engines			G 17. 19
in the Statewide Registration Program			MDAQMD 219 (E)(2)(d)
Aqueous and anhydrous ammonia storage			
tanks		Tanks are not vented to atmosphere	MDAQMD 219(d)
Refrigeration units			MDAQMD 219 (E)(4)(b)
Space heaters			MDAQMD 219 (E)(4)(e)
Lubricating oil transfer and storage			MDAQMD 219(E)(15)(h)
Machining equipment and associated			MDAQMD Rule 219 (E)(7)
control devices			
Oil/water separators			MDAQMD Rule 219(E)(13)(y)
Sulfuric acid storage tank			MDAQMD 219(E)(15)(a)(i)
Propane tanks (Liquefied gas)			MDAQMD 219(E)(15)(b)
Diesel transfer and storage			MDAQMD 219(E)(15)(c)(i)
Used oil transfer and storage equipment less than 793-gallon capacity			MDAQMD 219(E)(15)(e)
		1	SIN 22

SECTION 4: MDAQMD Form 1202E2-E

Potential Emissions Report, Criteria Pollutants HAPs Potential Greenhouse Gas Emission Report

# **Mojave Desert Air Quality Management District**

# TITLE V PERMIT RENEWAL APPLICATION – POTENTIAL EMISSIONS REPORT, CRITERIA POLLUTANTS & HAPS

#### I. FACILITY INFORMATION

1. FACILITY NAME: Blythe Energy Project
2. FACILITY ID: 2262
3. TITLE V PERMIT #: 130202262

#### II. POTENTIAL ANNUAL EMISSIONS

4. EMISSION UNIT	5. EQUIPMENT	6. POTENTIAL ANNUAL EMISSIONS							
(APPLICATION OR PERMIT #)	DESCRIPTION	NOx (TPY)	VOC (TPY)	PM10 (TPY)	PM2.5 (TPY)	SOx (TPY)	CO (TPY)	Other: HAPs (TPY)	Other: (TPY)
B007953	natural gas fueled combustion turbine generator	97	24	56.9		12	175	3.78	
B007954	natural gas fueled combustion turbine generator	97	24	56.9		12	175	3.78	
B007955	natural gas burners w/in HRSG	combined with B007953	combined with B007953	combined with B007953		combined with B007953	combined with B007953	combined with B007953	
B007956	natural gas burners w/in HRSG	combined with B007954	combined with B007954	combined with B007954		combined with B007954	combined with B007954	combined with B007954	
B007957	wet cooling tower			2.4				0.0034	
B007958	air and water circulation, treatment & handling equipment			2.4				0.0007	
E007961	IC engine, emergency fire pump	0.24	0.02	0.02		0.02		0.199	
E009492	propane IC Engine, emergency generator	0.003	0.002	0.0001	0.0001	0.000009	0.003	2.36	
	facility-wide limits	97	24	56.9		12	175		
			c	-					

14306 Park Avenue, Victorville, CA 92392 | Tel: (760)245-1661

# **Mojave Desert Air Quality Management District**

## TITLE V PERMIT RENEWAL APPLICATION – POTENTIAL GREENHOUSE GAS EMISSIONS REPORT

#### I. FACILITY INFORMATION

1. FACILITY NAME: Blythe Energy Project	
2. FACILITY ID: 2262	
3. TITLE V PERMIT #: 130202262	

#### II. POTENTIAL ANNUAL EMISSIONS

4. EMISSION UNIT	5. EQUIPMENT	6. POTENTIAL ANNUAL EMISSIONS							
(APPLICATION OR PERMIT #)	DESCRIPTION	CO2	N ₂ O	CH₄	HFCs	PFCs	SF ₆	Other:	CO ₂ (e)
		(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)
B007953	natural gas fueled combustion turbine generator	924,575.5	1.7	17.2					925,467.2
B007954	natural gas fueled combustion turbine generator	924,575.5	1.7	17.2					925,467.2
B007955	natural gas burners w/in HRSG	62,471.3	0.1	1.2					62,531.5
B007956	natural gas burners w/in HRSG	62,471.3	0.1	1.2					62,531.5
B007957	wet cooling tower								
B007958	air and water circulation, treatment & handling equipment								
E007961	IC engine, emergency fire pump	1,379.8	0.0	0.1					1,384.4
E009492	propane IC engine, emergency generator	779.9	0.0	0.0					782.5

14306 Park Avenue, Victorville, CA 92392 | Tel: (760)245-1661

Note: Effective May 7, 2016 total fuel use in the two gas turbines and two duct burners (Permit # B007954, B007954, B007956, and B007956) shall not exceed 31,852,800 mmBtu in any rolling 12-month period. PTE calculations for this application are based on a maximum combined rolling 12-month heat input of 33,217,920 mmBtu, calculated by applying the maximum hourly heat input designated for each piece of equipment over 8760 annual operating hours.

	Emission Factor	Potential Emission Rate	
Pollutant Name	(lb/MMCF) ¹	(Ton/yr)	
Acetaldehyde	3.61E-02	0.31	
Acrolein	5.78E-03	0.05	
Arsenic	1.19E-05	0.00	
Benzene	1.08E-02	0.09	
Beryllium	7.15E-07	0.00	
1,3-Butadiene	3.88E-04	0.00	
Cadmium	6.55E-05	0.00	
Chromium	8.34E-05	0.00	
Ethyl benzene	2.89E-02	0.25	
Formaldehyde ²	4.26E-02	0.37	
Hexane	1.07E-01	0.92	
Lead	2.98E-05	0.00	
Manganese	2.26E-05	0.00	
Mercury	1.55E-05	0.00	
Nickel	1.25E-04	0.00	
PAHs/POMs	2.03E-03	0.02	
Naphthalene [PAH, POM]	1.17E-03	0.01	
Propylene oxide	2.62E-02	0.23	
Selenium	1.43E-06	0.00	
Toluene	1.17E-01	1.01	
Xylenes	5.78E-02	0.50	
	Total	3.76	
(1) All emis	ssion factors from WEBFIRE, exc	cept as noted.	
(2) Formaldel	yde emission rate is based on s	source test data.	

	Emission Factor	Potential Emission Rate
Pollutant Name	(lb/mmgal) ¹	(Ton/yr)
Arsenic	1.63E-06	0.000
Cadmium	4.06E-06	0.000
Copper	4.06E-06	0.000
Lead	2.02E-06	0.000
Manganese	4.06E-05	0.001
Mercury	4.06E-07	0.000
Nickel	4.06E-06	0.000
Selenium	4.06E-06	0.000
Zinc	4.06E-05	0.001
	Total	0.0034
(1) Emission f	actors from Supplemental Health R	isk Assessment (HRA)
	dated December 2003.	

Pollutant Name	Emission Factor (lb/kgal) ¹	Potential Emission Rate (Ton/yr)	
Acetaldehyde	7.23E+00	0.38	
Acrolein	6.06E+00	0.32	
Benzene	1.45E+00	0.08	
1,3-Butadiene	8.04E-01	0.04	
Ethyl benzene	6.14E-02	0.00	
Ethylene dibromide	5.34E-02	0.00	
Formaldehyde	2.73E+01	1.44	
Hexane	7.78E-01	0.04	
PAHs/POMs	1.48E-01	0.01	
Toluene	7.44E-01	0.04	
Xylenes	2.81E-01	0.01	
	Total	2.36	

(1) Emission factors sourced from EPA AP-42 as summarized in "MDAQMD DEFAULT EMISSION FACTORS FOR INTERNAL COMBUSTION ENGINES (ICE)" spreadsheet

	Potential Emission Rate
Pollutant Name	(Ton/yr)
Acetaldehyde	1.05E+00
Acrolein	4.20E-01
Arsenic	8.04E-04
Benzene	2.75E-01
Beryllium	1.23E-05
1,3-Butadiene	6.23E-02
Cadmium	1.49E-03
Chromium	1.44E-03
Copper	5.25E-04
Ethyl benzene	5.02E-01
Ethylene dibromide	2.81E-03
Formaldehyde	2.28E+00
Hexane	1.89E+00
Lead	9.02E-04
Manganese	3.58E-03
Mercury	4.35E-04
Nickel	2.67E-03
PAHS/POMS	4.61E-02
Propylene oxide	4.51E-01
Naphthalene	2.02E-02
Selenium	9.25E-04
Toluene	2.07E+00
Xylenes	1.01E+00
Zinc	4.37E-03
Total	10.09
Potential Emission Rate repr combustion turbines with du	ct burners, one emergency
fire pump chiller, cooling towe genera	

SECTION 5: MDAQMD Form 1202E2-F

Compliance Assurance Monitoring Applicability Determination

# **Mojave Desert Air Quality Management District**

## TITLE V PERMIT RENEWAL APPLICATION – COMPLIANCE ASSURANCE MONITORING APPLICABILITY DETERMINATION FORM

#### I. FACILITY INFORMATION

1. FACILITY NAME: Blythe Energy Project

2. FACILITY ID: 2262

3. TITLE V PERMIT #: 130202262

#### II. CAM STATUS SUMMARY FOR EMISSION UNITS

4. Based on the criteria in the instructions (check one and attach additional pages as necessary):

a. There are no emission units with control devices at this Title V facility.

b. There are emission units with control devices at this Title V facility, and the CAM applicability is shown below for each unit. A CAM plan is attached for each affected emissions unit. (None)

	6. EQUIPMENT DESCRIPTION			9. UNCONTROLLED POTENTIAL	10. EXEMPT FROM CAM BY 40 CFR	11. IS A CAM PLAN
(APPLICATION OR PERMIT #		7. POLLUTANT TYPE	8. PTE (tons/year)	EMISSIONS EXCEED THE MAJOR SOURCE THRESHOLD AND USE A CONTROL DEVICE?	64.2(b)(1)? (ENTER YES OR NO. IF YES, STATE THE REASON FOR EXEMPTION)	REQUIRED?
C007959	selective catalytic reduction system	NOx	5,680.3	yes	40 CFR 64.2(b)(1)(vi)	No
C007960	selective catalytic reduction system	NOx	5,630.4	yes	40 CFR 64.2(b)(1)(vi)	No

Note: Uncontrolled NOx PTE is calculated by applying the P75 Monitoring Plan Maximum Emission Rate (MER) of 0.6840 lb/mmBtu for CT-1/DB-1 and 0.6780 lb/mmBtu for CT-2/DB-2 over a maximum of 8760 annual operating hours with the maximum heat input of the combined combustion turbine and duct burner system.

14306 Park Avenue, Victorville, CA 92392 | Tel: (760)245-1661

SECTION 6 40 CFR 75 and 40 CFR 60 Monitoring Clarifications

## 40 CFR 75 and 40 CFR 60 Monitoring Clarifications Blythe Energy 09/30/2021

Blythe Energy consists of two combustion turbine generators ("CTGs") for electrical generation, Unit 1 and Unit 2, that were issued a renewed Operating Permit (130202262) on 11/18/17. A renewed Acid Rain Program Permit (ORIS Code 55295) was issued on 12/5/16. A Final Prevention of Significant Deterioration Permit (SE 02-01) was issued on 4/25/07. The combustion turbines are equipped with Continuous Emission Monitoring Systems ("CEMS") that measure NO_x, CO, and NH₃, as well as O₂, which serves as the diluent.

The NO_x and CO analyzers are each configured with two scale ranges with a span value equal to the corresponding upper range value. The low range for the NO_x analyzer is set to 0-10 ppm, and the high range is set to 0-100 ppm. The low range for the CO analyzer is set to 0-20 ppm, and the high range is set to 0-1200 ppm. The O₂ analyzer range is set to 0-25%. The NH₃ analyzer is a tunable Diode Laser ("TDL"). In accordance with the Operating Permit, the facility follows a District approved procedure for NH₃ as defined in the facility's QA/QC Plan and is not further discussed in this document.

40 CFR 75 and 40 CFR 60 contain parallel monitoring requirements that are similar but not identical; also, 40 CFR 75 contains more monitoring provisions and options than 40 CFR 60. This document summarizes the use of 40 CFR 75 QA test schedules, grace periods, and RATA load requirements in lieu of certain 40 CFR 60 specifications, or lack thereof.

The NO_x CEMS utilizes the 40 CFR 75 harmonization provisions of 40 CFR 60.334(b) for Subpart GG compliance. In addition to the Subpart GG NO_x limit, the NO_x CEMS utilizes 40 CFR 75 Appendix B provisions for monitoring compliance with other permit limits according to the PSD Permit. CO CEMS are used to demonstrate compliance with various emission limits specified in the Operating Permit, and it is monitoring for these limits that the facility adopts certain 40 CFR 75 provisions, as outlined below.

# 1. Cylinder Gas Audits ("CGAs") / Linearity Checks

A CGA is a two-point audit, conducted with low- and mid-level calibration gases, required by 40 CFR 60 Appendix F Procedure 1. CGAs are conducted each calendar quarter, with the exception of the quarter in which the RATA is performed. Ongoing QA audits (i.e. CGAs and RATAs) shall occur no closer than 2 months. A linearity check is conducted with low-, mid- and high-level calibration gases, required by 40 CFR 75 Appendix B Section 2.2.1. 40 CFR 75 Appendix A Section 6.2 exempts low analyzer ranges (i.e. less than or equal to 30 ppm) from the linearity check. For the CO CEMS, the facility utilizes the Part 60 CGA requirements with the following exceptions:

a. The CGA frequency shall follow 40 CFR 75 Appendix B Sections 2.2.1 and 2.2.4. Specifically, a CGA shall be required at least once during each QA operating quarter, not to exceed four calendar quarters, plus a 168-unit operating hour grace period following the expiration of a required CGA. CGAs will be conducted no less than 30 days apart, to the extent practicable.

b. Analyzer ranges less than or equal to 30 ppm (i.e. CO low range) are exempt from CGA requirements [40 CFR 75 Appendix A Section 6.2].

*QA operating quarter* means a calendar quarter in which there are at least 168 unit operating hours. *Unit operating hour* means a clock hour during which a unit combusts any fuel, either for part of the hour or for the entire hour.

# 2. Relative Accuracy Test Audits (RATAs)

The Part 60 RATA is required once every four calendar quarters while operating at more than 50 percent of normal load. In lieu of these requirements, the facility adopts the following Part 75 RATA requirements:

- All RATA testing shall be conducted at least once every four QA operating quarters but no less frequently than once every eight calendar quarters as provided in 40 CFR 75 App. B, §2.3.1.1. If RATA testing is not completed within this timeframe, a 720 unit operating hour grace period may be used, as provided in 40 CFR 75 App. B, §2.3.3.
- b. All RATA testing shall be conducted at the normal load level(s) as determined in accordance with 40 CFR 75 Appendix A Section 2.3.1.3(a) in lieu of 40 CFR 60 Appendix B Performance Specification 2 Section 8.4.1 that specifies to conduct the RATA "while operating at more than 50 percent of normal load".

# **Basis for Harmonizing**

The 40 CFR 75 Appendix B timelines take into account intermittent operating usage in determining the frequency of QA testing while the older and less refined 40 CFR 60 Appendix F provisions are based solely on elapsed calendar time. Conformance with 40 CFR 60 Appendix F RATA and CGA timelines, then, can cause significant economic and logistical difficulties, particularly during limited operating quarters. The procedures for determining normal load levels for RATA testing that are described in 40 CFR 75 Appendix A ensure that RATA testing occurs under representative operating conditions and emission concentrations when tested.

SECTION 7 Red-lined Copy of Current Operating Permit



# FEDERAL OPERATING PERMIT

Permit No.: **130202262** Company: **Blythe Energy, LLC** 

Facility: Blythe Energy Project

Issue date: **11/18/17** Expiration date: **11/18/22** 

# Mojave Desert Air Quality Management District

14306 Park Avenue Victorville, CA 92392-2310 760.245.1661 • Fax 760.245.2022 Email: **permitting@MDAQMD.ca.gov** 

www.MDAQMD.ca.gov • @MDAQMD

Signed and issued by BRAD POIRIEZ EXECUTIVE DIRECTOR/ AIR POLLUTION CONTROL OFFICER

# PERMIT REVISIONS

## November 6, 2019 Administrative Modification

Update of responsible official, alternate facility "site" contact and Facility "Site" Contact phone number.

## November 1, 2019 Significant Modification

**Processed by Roseana Brasington** 

Part III, page III-X condition 15: Condition modified to remove VOC emissions testing of the turbines every 5 years under hot, warm, cold startup conditions. Requirement proposed for removal is replaced by hard emissions rates based on approved historical test data.

## November 18, 2017 Permit Renewal & Significant Modification Processed by Roseana Brasington

Cover page updated with renewal dates and executive director

Part I updated to include new responsible official and facility contact, updated permit descriptions and removal of permit units no longer existing at the facility

Part II updated for consistency with current applicable requirements

Part III, page III-44 (significant modification) condition 7, CO limit increased to include CO emissions from SEP. SEP permits have been cancelled. Condition 8 which referenced combined emissions from BEP & SEP (one facility under Regulation XIII) has been removed in its entirety.

Part III, rule cites and formatting updated, permit descriptions updated, permit unit which no longer exists at facility removed from Part III.

Parts IV and V not substantively changed

Part VI Acid Rain Permit and application updated to current.

Part VII SIP Rule table updated

## December 18, 2015 Significant Modification:

Processed by Roseana Brasington

Page I-5 Updated Alternative Facility "Site" Contact

Pages III-25 through III-27

Modified permit conditions for combustion turbines B007953 and B007954

Condition 2: reduced maximum permitted fuel sulfur content

Condition 4: reduced lb/hr PM10 emissions limit

Condition 6: reduced lb/day PM₁₀ emissions limit

Condition 7: reduced ton/year SO_X and PM₁₀ emission limits

## **April 24, 2015 Significant Modification:**

Processed by Roseana Brasington

Page I-5: Removed reference to model/serial numbers for the steam generator and steam

condensing turbine. Model and serial numbers for the combustion turbines have been provided and are reflected in the current permits.

Page III-25: Removed reference to model/serial numbers for the steam generator and steam condensing turbine. Model and serial numbers for the combustion turbines have been provided and are reflected in the current permits.

Pages III-26-III-27: added annual average emission concentration limit for NOx, annual average mass emission limits for CO and 12-month rolling fuel use limit for the gas turbines, reduced annual NOx, CO and PM10 emission limits and clarified that the emissions limits include all Blythe Energy Project permitted equipment and updated condition language for consistency with District permit. Facility name typographical error corrected.

Page III-29: Removed Authority to Construct permit condition which required the surrender of emission reduction credits. The facility has satisfied the offset requirement.

Page III-34. E007961, permit condition updated and corrected to reflect testing and maintenance hours allowed under CCR Section 93115.6

# July 29, 2014 Administrative Modification:

Processed by R.N. Brasington

Updated the following: owner/company name, owner mailing address, facility name, responsible official, facility site contact and alternative facility site contact.

# July 2, 2012 Administrative Title V Renewal and Title IV Acid Rain Permit revision (by:

Samuel J Oktay, PE); Revised Rule 1113 references, Page II-15 through II-16; added Rule SIP History Reference, Page VII-48; Revised Rule 442 references; Page II-13; Page II-23 added 40 CFR 98 reference for GHG reporting; added 40 CFR 63 Subpart ZZZZ requirements to permits E007961, E008981, and E009492; Pages I-7; III-33 through III-34, III-34 through III-36, and III-36 through III-38 respectively; page III-25 clarified conditions 6 & 7 for permits B007953 & B007954 regarding VOC limits; page III-26 clarified condition 10 for permits B007953 & B007954; changed Permit # C010833, Pages I-7 and III-38 to read Unit 2; Title IV Acid Rain Permit revisions VI-44 through VI-46; Phase II Application added to pages VI-47 through VI-49.

# April 11, 2011 Administrative Modification:

Updated physical address due to incorporation into City of Blythe city limits (no change to location of facility), and updated responsible official.

# April 8, 2010 Administrative Modification described as follows:

Intro; Addition of oxidation catalyst to each Combustion Turbine Generator/Heat Recovery Steam Generator unit. The design of the units are accommodating to the retrofit of the oxidation catalyst. An emission decrease is anticipated but current permit limits will remain unchanged. Permit is revised as follows:

Part I

-Description revised to include two oxidation catalysts.

-Section 1.PART III, ITEM A- added Oxidation Catalyst description.

Part III

-Permits B007953 and B007954, revised condition #10 to include reference to Oxidation Catalyst. Deleted reference to future installation of OC (condition #28), renumbered following condition.

MDAQMD Federal Operating Permit130202262 BLYTHE ENERGY, INC. November 18, 2017 -Permits B007955 and B007956, updated condition #3 specifying OC installed and applicable permit numbers thereof.

-Added permit units C010832 ("new" subpart L) and C010833, creating subparts L and M respectively.

Changes made by C. Anderson

# TABLE OF CONTENTS

# Page

Title Pag	e1					
Permit Revision Revisions						
Table of	Contents5					
Part I	Introductory InformationI-6 through I-9					
Part II	Applicable Requirements and Emissions Limitations II-10 through II-25					
Part III	Monitoring Recordkeeping, Reporting and Testing Requirements III-26 through III-39					
Part IV	Standard Federal Operating Permit ConditionsIV-40 through IV-42					
Part V	Operational Flexibility ProvisionsV-43 through V-44					
Part VI	Title IV Acid Rain PermitVI-45 through VI-56					
Part VII	Conventions, Abbreviations, and Definitions					

# PART I INTRODUCTORY INFORMATION

# A. <u>FACILITY IDENTIFYING INFORMATION:</u>

Owner/Company Name:	Blythe Energy, Inc.
Facility Names:	Blythe Energy Project
Facility Location:	385 N Buck Blvd, Blythe, CA 92225
Mailing Address:	P.O. Box 1210, Blythe, CA 92226
Federal Operating Permit Number:	130202262
MDAQMD Company Number:	1302
MDAQMD Facility Number:	2262
Responsible Official:	Steve Brussee Sr. Manager, Environment & Safety - Power ASUS 909-622-3308
Facility "Site" Contact(s):	Ramon Campos Compliance Manager 760-921-1364 ramon.campos@altagas.ca
Alternate Facility "Site" Contact(s):	Aaron Honor Plant General Manager 760-921-1360 aaron.honor@altagas.ca
Nature of Business:	Electric Power Generation
SIC/NAICS Code:	4911/221112- Electric Power Generation
Facility Coordinates	UTM (m) 714609 (E) / 3721719 (N)

# B. <u>FACILITY DESCRIPTION:</u>

The plant uses two F-Class Siemens V84.3A combustion turbine generators (CTGs) with dedicated heat recovery steam generators (HRSGs) to produce electricity. Inlet air to the CTGs is filtered and, during seasonally warm conditions, conditioned with chilled air supported by a mechanical draft wet cooling tower (chiller). Compressed air and natural gas are mixed and combusted in the turbine combustion chamber. Lean pre-mixed air and low-NOx combustors are used to minimize NOx formation during combustion. Exhaust gas from the combustion chamber is expanded through a multi-stage power turbine, which drives both the air compressor and electric power generator. Heat from the exhaust gas is then recovered in the HRSG.

Each HRSG is equipped with a duct burner to provide supplementary firing during high ambient temperatures to maintain constant steam production to the condensing steam turbine generator (STG). A Selective Catalytic Reduction (SCR) system is used to reduce NOx emissions. An Oxidation Catalyst is used to reduce CO and VOC. Steam is produced in each HRSG and flows to the STG. The STG drives an electric generator to produce electricity. STG exhaust steam is condensed in a surface condenser with water from the main cooling tower.

The project site has a 303 bhp emergency diesel-fueled internal combustion engine that drives a water pump for fire suppression and a propane fueled 114 bhp internal combustion engine that drives an emergency electrical power generator.

# C. <u>FACILITY PERMITTED EQUIPMENT:</u>

- 1. PERMIT B007953 COMBUSTION TURBINE GENERATOR POWER BLOCK (CT1) consisting of: Natural gas fueled Siemens F Class Model V84.3A(2) Serial No. 800436 combustion turbine generator power block producing approximately 260 MW(e) with a connected heat recovery steam generator and a steam condensing turbine (shared with B007954), maximum turbine heat input of 1776 MMBtu/hr.
- PERMIT B007954 COMBUSTION TURBINE GENERATOR POWER BLOCK (CT2) consisting of: Natural gas fueled Siemens F Class Model V84.3A(2) Serial No. 800437 combustion turbine generator power block producing approximately 260 MW(e) with a connected heat recovery steam generator and a steam condensing turbine (shared with B007953), maximum turbine heat input of 1776 MMBtu/hr.
- 3. PERMIT B007955 DUCT BURNER UNIT 1: Natural gas burner located within the heat recovery steam generator covered by B007953, maximum heat input of 120 MMBtu/hr. Manufacturer is Forney, model # 1002-WPS-C1 and serial #17130.
- 4. PERMIT B007956 DUCT BURNER UNIT 2: Natural gas burner located within the heat recovery steam generator covered by B007954, maximum heat input of 120 MMBtu/hr. Manufacturer is Forney, model # 1002-WPS-C1 and serial #17202.
- 5. PERMIT B007957 A Marathon Model 9B 445TTFN4573AA wet cooling tower with water circulation, treatment and handling equipment and air circulation equipment, including the following:

Capacity	Equipment Name	Order
250.00	Cooling Cell Fan #8, Motor Serial No. MU402450-2/22-02	1
250.00	Cooling Cell Fan #7, Motor Serial No. MU402450-2/22-01	2
250.00	Cooling Cell Fan #6, Motor Serial No. MU402450-2/22-05	3

Capacity	Equipment Name	
250.00	Cooling Cell Fan #5, Motor Serial No. MU402450-2/22-03	4
250.00	Cooling Cell Fan #4, Motor Serial No. MU402450-2/22-06	5
250.00	Cooling Cell Fan #3, Motor Serial No. MU402450-2/22-07	6
250.00	Cooling Cell Fan #2, Motor Serial No. MU402450-2/22-04	7
250.00	Cooling Cell Fan #1, Motor Serial No. MU402450-2/22-08	8
1000.00	Circulating Water Pump #12, Johnson Serial No. 01JB1129B	9
1000.00	Circulating Water Pump #11, Johnson Serial No. 01JB1129A	10

6. PERMIT B007958 Water circulation, treatment and handling equipment and air circulation equipment, including units as follows:

Capacity	Equipment Name	Order
250.00	Cooling Cell Fan #12, BAC Model CXV-T08 Serial No. U025323712	1
250.00	Cooling Cell Fan #11, BAC Model CXV-T08 Serial No. U025323711	2
250.00	Cooling Cell Fan #10, BAC Model CXV-T08 Serial No. U025323710	3
250.00	Cooling Cell Fan #9, BAC Model CXV-T08 Serial No. U025323709	4
250.00	Cooling Cell Fan #8, BAC Model CXV-T08 Serial No. U025323708	5
250.00	Cooling Cell Fan #7, BAC Model CXV-T08 Serial No. U025323707	6
250.00	Cooling Cell Fan #6, BAC Model CXV-T08 Serial No. U025323706	7
250.00	Cooling Cell Fan #5, BAC Model CXV-T08 Serial No. U025323705	8
250.00	Cooling Cell Fan #4, BAC Model CXV-T08 Serial No. U025323704	9
250.00	Cooling Cell Fan #3, BAC Model CXV-T08 Serial No. U025323703	10
250.00	Cooling Cell Fan #1, BAC Model CXV-T08 Serial No. U025323701	11
250.00	Cooling Cell Fan #2, BAC Model CXV-T08 Serial No. U025323702	12
750.00	Chiller Recirulating Pump #4, Cascade Serial No. 16061	13
750.00	Chiller Recirulating Pump #3, Cascade Serial No. 16060	14
750.00	Chiller Recirulating Pump #2, Cascade Serial No. 16059	15
750.00	Chiller Recirulating Pump #1, Cascade Serial No. 16058	16

- 7. PERMIT C007959 SCR UNIT 1 consisting of: SELECTIVE CATALYTIC REDUCTION system with a catalyst located within the power train covered by B007953 and an ammonia injection system. Manufacturer is Haldor Topsoe; model H05.331cpsi MODULE.
- 8. PERMIT C007960 SCR UNIT 2 consisting of: SELECTIVE CATALYTIC REDUCTION system with a catalyst located within the power train covered by B007954 and an ammonia injection system. Manufacturer is Haldor Topsoe; model H05.331cpsi MODULE.
- 9. PERMIT C010832 OXIDATION CATALYST UNIT 1 consisting of: Oxidation Catalyst located within the duct burner covered by B007955. Manufacturer is Johnson Matthey; model is Honeycat, serial number 200cpsi.

- 10. PERMIT C010833 OXIDATION CATALYST UNIT 2 consisting of: Oxidation Catalyst located within the duct burner covered by B007956. Manufacturer is Johnson Matthey; model is Honeycat, serial number 200cpsi.
- PERMIT E007961 NON-CERTIFIED DIESEL IC ENGINE, EMERGENCY FIRE PUMP consisting of: Year of Manufacture 2002; USEPA Family Name NA; CARB Executive Order NA; Tier 0, One John Deere, Diesel fired internal combustion engine, Model No. 6081HF001 and Serial No. RG6081H145432, Direct Injected, Turbo Charged, producing 303 bhp with 6 cylinders at 2200 rpm while consuming a maximum of 14 gal/hr. This equipment powers a Pump.
- 12. PERMIT E009492 PROPANE IC ENGINE, EMERGENCY GENERATOR (CHILLER BLDG) consisting of: One Ford, Propane fired internal combustion engine, Model No. WSG106816005E-NA and Serial No. 01-11- 012316, Direct Injected, Inter Cooled, producing 114 bhp with 4 cylinders at 1800 rpm while consuming a maximum of 12 gal/hr. This equipment powers a Generator.

# PART II

# FACILITYWIDE APPLICABLE REQUIREMENTS; EMISSIONS LIMITATIONS; MONITORING, RECORDKEEPING, REPORTING AND TESTING REQUIREMENTS; COMPLIANCE CONDITIONS; COMPLIANCE PLANS

# A. <u>REQUIREMENTS APPLICABLE TO ENTIRE FACILITY AND EQUIPMENT:</u>

- 1. A permit is required to operate this facility. [Rule 203 - *Permit to Operate*]
- The equipment at this facility shall not be operated contrary to the conditions specified in the District Permit to Operate. [Rule 203 - Permit to Operate]
- 3. The Air Pollution Control Officer (APCO) may impose written conditions on any permit. [Rule 204 - *Permit Conditions*]
- Commencing work or operation under a permit shall be deemed acceptance of all the conditions so specified.
   [Rule 204 *Permit Conditions*]
- Posting of the Permit to Operate is required on or near the equipment or as otherwise approved by the APCO/District.
   [Rule 206 Posting of Permit to Operate]
- Owner/Operator shall not willfully deface, alter, forge, or falsify any permit issued under District rules.
   [Rule 207 Altering or Falsifying of Permit]
- Permits are not transferable.
   [Rule 209 *Transfer and Voiding of Permit*;]
- The APCO may require the Owner/Operator to provide and maintain such facilities as are necessary for sampling and testing. [Rule 217 - *Provision for Sampling And Testing Facilities*]
- 9. The equipment at this facility shall not require a District permit or be listed on the Title V permit if such equipment is listed in Rule 219 and meets the applicable criteria contained in Rule 219 (B). However, any exempted insignificant activities/equipment are still subject to all applicable facility-wide requirements.
  [SIP Pending: Rule 219 Equipment Not Requiring a Written Permit]
- 10. The Owner/Operator of this facility shall obtain a Federal Operating Permit for operation of this facility.

[Rule 221 - Federal Operating Permit Requirement]

- 11. Owner/Operator shall pay all applicable MDAQMD permit fees. [Rule 301 - *Permit Fees*]
- 12. Owner/Operator shall pay all applicable MDAQMD Title V Permit fees. [Rule 312 - *Fees for Federal Operating Permits*]
- 13. Stack and point source visible emissions from this facility, of any air contaminant (including smoke) into the atmosphere, shall not equal or exceed Ringelmann No. 1 for a period or periods aggregating more than three minutes in any one hour:
  - (a) While any unit is fired on Public Utilities Commission (PUC) grade natural gas, Periodic Monitoring for combustion equipment is not required to validate compliance with the Rule 401 Visible Emissions limit. However, the Owner/Operator shall comply with the recordkeeping requirements stipulated elsewhere in this permit regarding the logging of fuel type, amount, and suppliers' certification information.
  - (b) While any unit is fired on diesel fuel, Periodic Monitoring, in addition to required recordkeeping, <u>is</u> required to validate compliance with Rule 401 Visible Emissions limit as indicated below:

(i). Reciprocating engines equal or greater than 1000 horsepower, firing on only diesel with no restrictions on operation, a visible emissions inspection is required every three (3) months or during the next scheduled operating period if the unit ceases firing on diesel/distillate within the 3-month time frame.

(ii). Diesel Standby and emergency reciprocating engines using California low sulfur fuels require no additional monitoring for opacity.

(iii). Diesel/Distillate-Fueled Boilers firing on California low sulfur fuels require a visible emissions inspection after every 1 million gallons diesel combusted, to be counted cumulatively over a 5-year period.

(iv). On any of the above, if a visible emissions inspection documents opacity, an U.S. Environmental Protection Agency (EPA) Method 9 "Visible Emissions Evaluation" shall be completed within 3 working days, or during the next scheduled operating period if the unit ceases firing on diesel/distillate within the 3 working day time frame.

[Rule 204 - *Permit Conditions*] [Rule 401 - *Visible Emissions*]

14. Owner/Operator is limited to use of the following quality fuels for fuel types specified elsewhere in this permit: PUC quality natural gas fuel - sulfur compounds shall not exceed 800 parts per million (ppm) calculated as hydrogen sulfide at standard conditions; diesel fuel - sulfur content shall not exceed 0.0015 percent by weight. Compliance with Rule 431 fuel sulfur limits is assumed for PUC quality natural gas fuel and CARB certified diesel fuel. Records shall be kept on-site and available for review by District, state, or federal personnel at any time. The sulfur content of non-CARB certified diesel fuel shall be determined by use of American Society for Testing and Materials (ASTM) method D 2622-82 or ASTM method D 2880-71, or equivalent.

[40 CFR 70.6 (a)(3)(i)(B) - Periodic Monitoring Requirements] [Rule 431 - Sulfur Content of Fuels;]

- 15. Emissions of fugitive dust from any transport, handling, construction, or storage activity at this facility shall not be visible in the atmosphere beyond the property line of the facility. [Rule 403 *Fugitive Dust*;]
- 16. Owner/Operator shall comply with the applicable requirements of Rule 403.2 unless an "Alternative PM₁₀ Control Plan" (ACP) pursuant to Rule 403.2(G) has been approved. [Rule 403.2 *Fugitive Dust Control for the Mojave Desert Planning Area*]
- 17. Owner/Operator shall not discharge into the atmosphere from this facility, particulate matter (PM) except liquid sulfur compounds, in excess of the concentration at standard conditions, shown in Rule 404, Table 404 (a).
  - (a) Where the volume discharged is between figures listed in the table the exact concentration permitted to be discharged shall be determined by linear interpolation.
  - (b) This condition shall not apply to emissions resulting from the combustion of liquid or gaseous fuels in steam generators or gas turbines.
  - (c) For the purposes of this condition, emissions shall be averaged over one complete cycle of operation or one hour, whichever is the lesser time period.

[Rule 404 - Particulate Matter Concentration]

- 18. Owner/Operator shall not discharge into the atmosphere from this facility, solid PM including lead and lead compounds in excess of the rate shown in Rule 405, Table 405(a).
  - (a) Where the process weight per hour is between figures listed in the table, the exact weight of permitted discharge shall be determined by linear interpolation.
  - (b) For the purposes of this condition, emissions shall be averaged over one complete cycle of operation or one hour, whichever is the lesser time period.
  - [Rule 405 Solid Particulate Matter, Weight]
- 19. Owner/Operator shall not discharge into the atmosphere from this facility, from any single source of emissions whatsoever, sulfur compounds, which would exist as a liquid or gas at standard conditions, calculated as sulfur dioxide (SO₂), greater than or equal to 500 ppm by volume.
   [Rule 406 Specific Contaminants]

20. Owner/Operator shall not discharge into the atmosphere from this facility, carbon monoxide (CO) exceeding 2000 ppm measured on a dry basis, averaged over a minimum of 15 consecutive minutes.

(a) The provisions of this condition shall not apply to emissions from internal combustion engines.

[Rule 407 - Liquid and Gaseous Air Contaminants]

21. Owner/Operator shall not build, erect, install, or use any equipment at this facility, the use of which, without resulting in a reduction in the total release of air contaminants to the atmosphere, reduces or conceals an emission that would otherwise constitute a violation

of Chapter 3 (commencing with Section 41700) of Part 4, of Division 26 of the Health and Safety Code or of District Rules.

- (a) This condition shall not apply to cases in which the only violation involved is of Section 41700 of the Health and Safety Code, or of District Rule 402.
   [Rule 408 *Circumvention*]
- Owner/Operator shall not discharge into the atmosphere from this facility from the burning of fuel, combustion contaminants exceeding 0.23 gram per cubic meter (0.1 grain per cubic foot) of gas calculated to 12 percent of carbon dioxide (CO₂) at standard conditions averaged over a minimum of 25 consecutive minutes. [Rule 409 *Combustion Contaminants*;]
- 23. APCO, at his/her discretion, may refrain from enforcement action against an Owner/Operator of any equipment that has violated a technology-based emission limitation, including but not limited to conditions contained in any permit issued by the District establishing such emission limitation, provided that a Breakdown has occurred and:
  - (a) Any breakdown that results in emissions exceeding a technology-based emission limitation is reported to the District within one hour of such breakdown or within one hour of the time a person knew or reasonably should have known of the occurrence of such breakdown; and
  - (b) An estimate of the repair time is provided to the District as soon as possible after the report of the breakdown; and
  - (c) All reasonable steps are immediately taken to minimize the levels of emissions and to correct the condition leading to the excess emissions.
  - (d) The equipment is operated only until the end of a cycle or twenty-four (24) hours, whichever is sooner, at which time it shall be shut down for repairs unless a petition for an emergency variance has been filed with the clerk of the Hearing Board in accordance with Regulation V.
  - (e) If the breakdown occurs outside normal District working hours, the intent to file an emergency variance shall be transmitted to the District in a form and manner prescribed by the APCO.

[Rule 430 - Breakdown Provisions]

- 24. Owner/Operator of this facility shall not discharge into the atmosphere emissions in excess of the following from VOC containing materials or from organic solvents which are not VOCs unless such emissions have been reduced by at least 85%:
  - (a) VOCs from all VOC containing materials, Emissions Units, equipment or processes subject to this rule, in excess of 540 kilograms (1,190 pounds) per month per Facility.
  - (b) a non-VOC organic solvent in excess of 272 kilograms (600 pounds) per day as calculated on a thirty (30) day rolling average.
  - (c) The provisions of this condition shall not apply to:
    - (1) The manufacture of organic solvents, or the transport or storage of organic solvents, or the transport or storage of materials containing organic solvents.

- (2) The emissions of VOCs from VOC-containing materials or equipment which are subject to the rules of Regulation IV or which are exempt from air pollution control requirements by said rules.
- (3) The spraying or other employment of organic solvents as insecticides, pesticides or herbicides.
- (4) The use of equipment or materials for which other requirements are specified in source specific rules of Regulation XI after the compliance dates specified in such source specific rules.
- (5) The use of 1-1-1 Trichloroethane.
- (6) Aerosol products

[Rule 442 – Usage of Solvents]

- 25. Owner/Operator shall not set open outdoor fires unless in compliance with Rule 444. Outdoor fires burned according to an existing District permit are not considered "open outdoor fires" for the purposes of Rule 444 (reference Rule 444(B)(10)). [Rule 444 – Open Outdoor Fires]
- 26. Owner/Operator of this facility shall comply with the Organic Solvent Degreasing Operations requirements of Rule 1104 when engaged in wipe cleaning, cold solvent cleaning, and/or vapor cleaning (degreasing) operations for metal/non-metal parts/products. These requirements are listed as follows:
  - (a) All degreasers shall be equipped with a cover, which reduces solvent evaporation and minimizes disturbing the vapor zone.
  - (b) A permanent, conspicuous label summarizing the applicable operating requirements contained in Rule 1104. In lieu of a label, operating instructions may be posted near the degreaser where the operators can access the proper operating requirements of this rule.
  - (c) <u>Cold Solvent Degreasers Freeboard Requirements:</u>
    - (i) Cold solvent degreasers using only low volatility solvents, which are not agitated, shall operate with a freeboard height of not less than 6 inches.
    - (ii) Cold solvent degreasers using only low volatility solvents may operate with a freeboard ratio equal to or greater than 0.50 when the cold solvent degreaser has a cover, which remains closed during the cleaning operation.
    - (iii) Any cold solvent degreasers using solvent which is agitated, or heated above  $50^{\circ}C (120^{\circ}F)$  shall operate with a freeboard ratio equal to or greater than 0.75.
    - (iv) A water cover may be used as an acceptable control method to meet the freeboard requirements, when the solvent is insoluble in water and has a specific gravity greater than one.
  - (d) <u>Cold Solvent Degreasers Cover Requirements:</u>
    - (i) Cold solvent degreasers using high volatility solvent shall have a cover that is a sliding, rolling or guillotine (bi-parting) type, which is designed to easily open and close without disturbing the vapor zone.
  - (e) <u>Cold Solvent Degreasers Solvent Level Identification:</u>
    - (i) A permanent, conspicuous mark locating the maximum allowable solvent level conforming to the applicable freeboard requirements.

- (f) <u>All Degreasers shall comply with the following operating requirements:</u>
  - (i) Any solvent cleaning equipment and any emission control device shall be operated and maintained in strict accord with the recommendations of the manufacturer.
  - (ii) Degreasers shall not be operating with any detectable solvent leaks.
  - (iii) All solvent, including waste solvent and waste solvent residues, shall be stored in closed containers at all times. All containers for any solvent(s) shall have a label indicating the name of the solvent/material they contain.
  - (iv) Waste solvent and any residues shall be disposed of by one of the following methods: a commercial waste solvent reclamation service licensed by the State of California; or a federally or state licensed facility to treat, store or dispose of such waste; or the originating facility may recycle the waste solvent and materials in conformance with requirements of Section 25143.2 of the California Health and Safety Code.
  - (v) Degreasers shall be covered to prevent fugitive leaks of vapors, except when processing work or to perform maintenance.
  - (vi) Solvent carry-out shall be minimized by the following methods:
    - (a) Rack workload arranged to promote complete drainage
    - (b) Limit the vertical speed of the power hoist to 3.3 meters per minute (11 ft/min) or less when such a hoist is used.
    - (c) Retain the workload inside of the vapor zone until condensation ceases.
    - (d) Tip out any pools of solvent remaining on the cleaned parts before removing them from the degreaser if the degreasers are operated manually.
    - (e) Do not remove parts from the degreaser until the parts are visually dry and not dripping/leaking solvent. (This does not apply to an emulsion cleaner workload that is rinsed with water within the degreaser immediately after cleaning.)
  - (vii) The cleaning of porous or absorbent materials such as cloth, leather, wood or rope is prohibited.
  - (viii) Except for sealed chamber degreasers, all solvent agitation shall be by either pump recirculation, a mixer, or ultrasonics.
  - (ix) The solvent spray system shall be used in a manner such that liquid solvent does not splash outside of the container. The solvent spray shall be a continuous stream, not atomized or shower type, <u>unless</u>, the spray is conducted in a totally enclosed space, separated from the environment.
  - (x) For those degreasers equipped with a water separator, no solvent shall be visually detectable in the water in the separator.
  - (xi) Wipe cleaning materials containing solvent shall be kept in closed containers at all times, except during use.
  - (xii) A degreaser shall be located so as to minimize drafts being directed across the cleaning equipment, the exposed solvent surface, or the top surface of the vapor blanket.
  - (xiii) A method for draining cleaned material, such as a drying rack suspended above the solvent and within the freeboard area, shall be used so that the

drained solvent is returned to the degreaser or container.

- (g) <u>Rule 442 Applicability:</u> Any solvent using operation or facility which is <u>not</u> subject to the source-specific Rule 1104 shall comply with the provisions of Rule 442. Any solvent using operation or facility which is exempt from all or a portion of the volatile organic compound (VOC) limits, equipment limits or the operational limits of Rule 1104 shall be subject to the applicable provisions of Rule 442.
- (h) <u>Solvent Usage Records:</u> Owner/Operator subject to Rule 1104 or claiming any exemption under Rule 1104, Section (E), shall comply with the following requirements:
  - (1) Maintain and have available during an inspection, a current list of solvents in use at the facility which provides all of the data necessary to evaluate compliance, including the following information separately for each degreaser, as applicable:
    - (i) product name(s) used in the degreaser, and
    - (ii) the mix ratio of solvent compounds mixtures of solvents are used, and
    - (iii) VOC content of solvent or mixture of compounds as used, and
    - (iv) the total volume of the solvent(s) used for the facility, on a <u>monthly</u> <u>basis</u>, and
    - (v) the name and total volume applied of wipe cleaning solvent(s) used, on a monthly basis.
  - (2) Additionally, for any degreaser utilizing an add-on emission control device/system as a means of complying with provisions of Rule 1104 shall, on a monthly basis, maintain records of key system operating and maintenance data. Such data are recorded for the purpose of demonstrating continuous compliance during periods of emission producing activities. The data shall be recorded in a manner as prescribed by the District.
  - (3) Documentation shall be maintained on site of the disposal or on-site recycling of any waste solvent or residues.
  - (4) Records shall be retained (at facility) and available for inspection by District, state or federal personnel for the previous 5-year period as required by this Title V / Federal Operating Permit (Reference Rule 1203(D)(1)(d)(ii)).

[Rule 1104 - Organic Solvent Degreasing Operations]

27. Owner/Operator's use of *Architectural Coatings* at this facility shall comply with the applicable requirements of Rule 1113, including the VOC limits specified in Rule 1113, part C, Table of Standards, as listed below: [Rule 1113 - *Architectural Coatings*]

Coating Category	Limit
Primary Coatings	
Flat Coatings	50
Nonflat Coatings	100
Nonflat-High Gloss Coatings	150
Specialty Coatings	
Aluminum Roof Coatings	400
Basement Specialty Coatings	400
Bituminous Roof Coatings	50
Bituminous Roof Primers	350
Bond Breakers	350
Concrete Curing Compounds	350
Concrete/Masonary Sealers	100
Driveway Sealers	50
Dry Fog Coatings	150
Faux Finishing Coatings	350
Fire Resistive Coatings	350
Floor Coatings	100
Form-Release Compounds	250
Graphic Arts Coatings (Sign Paints)	500
High Temperature Coatings	420
Industrial Maintenance Coatings	250
Low Solids Coatings	120a
Magnesite Cement Coatings	450
Mastic Texture Coatings	100
Metallic Pigmented Coatings	500
Multi-Color Coatings	250
Pre-Treatment Wash Primers	420
Primers, Sealers, and Undercoaters	100
Reactive Penetrating Sealers	350
Recycled Coatings	250
Roof Coatings	50
Rust Preventative Coatings	250
Shellacs:	
Clear	730
Opaque	550
Specialty Primers, Sealers, and Undercoaters	100
Stains	250

Stone Consolidants	450
Swimming Pool Coatings	340
Traffic Marking Coatings	100
Tub and Tile Refinish Coatings	420
Waterproofing Membranes	250
Wood Coatings	275
Wood Preservatives	350
Zinc-Rich Primers	340

- 28. Owner/Operator's use of *Wood Products Coatings* at this facility shall comply with the applicable requirements of Rule 1114, including the VOC limits specified in Rule 1114, part C, Table of Standards, as listed below:
  - (1) <u>VOC Content of Coatings & Adhesives</u>
    - (a) Any Owners and/or Operators of Wood Products Coating Application Operations shall not apply any Coating or Adhesive to a Wood Product which has a VOC Content, including any VOC-containing material added to the original Coating supplied by the manufacturer, which exceeds the applicable limit specified below, unless emissions to the atmosphere are controlled by air pollution abatement equipment with an Overall Control Efficiency of at least 85 percent. Any Coating subject to this rule that meets either of the two VOC Content limit formats (grams per liter or pounds per gallon [lb/gal]) is in compliance with this subsection.

		On and After 7/1/97		On and After 7/1/2005
Coating	Current Limit g/L (lb/gal)	Column I or g/L (lb/gal)	Column II g/L (lb/gal)	g/L (lb/gal)
Clear Sealers	680 (5.7)	550 (4.6)	680 (5.7)	275 (2.3)
Clear Topcoat	680 (5.7)	550 (4.6)	275 (2.3)	275 (2.3)
Pigmented Primers, Sealers and Undercoats	600 (5.0)	550 (4.6)	600 (5.0)	275 (2.3)
Pigmented Topcoats	600 (5.0)	550 (4.6)	275 (2.3)	275 (2.3)

LIMITS Grams of VOC Per Liter of Coating, Less Water and Less Exempt Compounds (VOC Content)

 (i) Effective July 1, 1997, a person or facility shall use Coatings on Wood Products that comply with either all VOC Content limits in Column I or all VOC Content limits in Column II. A person or facility that applies a Pigmented Primer, Sealer or Undercoat, but not a Clear Topcoat or Pigmented Topcoat, to a Wood Product shall be subject to column I for that product. (ii) Notwithstanding the requirements of subsection (C)(1)(a)(i), a person or facility that applies a topcoat and a primer, sealer or undercoat to a Shutter may, until July 1, 2005, choose to comply with the VOC Content limits specified below for that Shutter:

	t Compounds (VOC Content)
Coating	g/L (lb/gal)
Clear Sealers	275 (2.3)
Clear Topcoat	680 (5.7)
Pigmented Primers, Sealers & Undercoats	275 (2.3)
Pigmented Topcoats	600 (5.0)

(b)	LIMITS
	Grams of VOC Per Liter of Coating,
	Less Water and Less Exempt Compounds (VOC Content)

(c) LIMITS Grams of VOC Per Liter of Coating, Less Water and Less Exempt Compounds (VOC Content)

		On and After 7/1/97	On and After 7/1/2005
Coating	Current Limit g/L (lb/gal)	g/L (lb/gal)	g/L (lb/gal)
Fillers	500 (4.2)	500 (4.2)	275 (2.3)
High-Solid Stains	700 (5.8)	550 (4.6)	350 (2.9)
Inks	500 (4.2)	500 (4.2)	500 (4.2)
Mold-Seal Coatings	750 (6.3)	750 (6.3)	750 (6.3)
Multi-Colored Coatings	685 (5.7)	685 (5.7)	275 (2.3)
Low-Solids Stains, Toners and Washcoats	800 (6.7)	480 (4.0)	120 (1.0)
Adhesives	250 (2.1)	250 (2.1)	250 (2.1)

[Rule 1114 - Wood Products Coating Operations]

29. Owner/Operator's use of *Metal Parts and Products Coatings* at this facility shall comply with the applicable requirements of Rule 1115, including the VOC limits specified in Rule 1115, as listed below:

Owner/Operator shall not apply to metal parts and products any coatings, including any VOC-containing materials added to the original coating supplied by the manufacturer, which

contain VOC in excess of the limits specified below <u>unless</u> emissions to the atmosphere are controlled to an equivalent level by air pollution abatement equipment with a capture and control system Combined Efficiency of at least 85 percent:

(Grams of VOC Per Liter of Coating, Less Water and Less Exempt Compounds)				
Coating	Air I	Dried	Bak	ed
	g/L	(lb/gal)	g/L	(lb/gal)
General	420	(3.5)	360	(3.0)
Military Specification	420	(3.5)	360	(3.0)
Etching Filler	420	(3.5)	420	(3.5)
Solar-Absorbent	420	(3.5)	360	(3.0)
Heat-Resistant	420	(3.5)	360	(3.0)
High-Gloss	420	(3.5)	360	(3.0)
Extreme High-Gloss	420	(3.5)	360	(3.0)
Metallic	420	(3.5)	420	(3.5)
Extreme Performance	420	(3.5)	360	(3.0)
Prefabricated Architectural				
Component	420	(3.5)	275	(2.3)
Touch Up	420	(3.5)	360	(3.0)
Repair	420	(3.5)	360	(3.0)
Silicone-Release	420	(3.5)	420	(3.5)
High Performance				
Architectural	420	(3.5)	420	(3.5)
Camouflage	420	(3.5)	420	(3.5)
Vacuum-Metalizing	420	(3.5)	420	(3.5)
Mold-Seal	420	(3.5)	420	(3.5)
High-Temperature	420	(3.5)	420	(3.5)
Electric-Insulating Varnish	420	(3.5)	420	(3.5)
Pan-Backing	420	(3.5)	420	(3.5)
Pretreatment Wash Primer	420	(3.5)	420	(3.5)
Clear Coating	520	(4.3)	520	(4.3)
[Rule 1115 - Metal Parts and Products Coating Operations]				

LIMITS
ams of VOC Per Liter of Coating, Less Water and Less Exempt Compounds

31. Owner/Operator shall comply with all applicable requirements of 40 CFR Part 68; Risk Management Program.
 [40 CFR 68]

 ^{30.} Owner/Operator shall comply with all requirements of the District's Title V Program, MDAQMD Rules 1200 through 1210. [Regulation XII - Federal Operating Permits]

# B. <u>FACILITY-WIDE MONITORING, RECORDKEEPING, AND REPORTING</u> <u>REQUIREMENTS:</u>

- Any data and records generated and/or kept pursuant to the requirements in this federal operating permit (Title V Permit) shall be kept current and on site for a minimum of five (5) years from the date generated. Any records, data, or logs shall be supplied to District, state, or federal personnel upon request.
   [40 CFR 70.6(a)(3)(ii)(B); Rule 1203(D)(1)(d)(ii)]
- 2. Any Compliance/Performance testing required by this Federal Operating Permit shall follow the administrative procedures contained in the District's <u>Compliance Test</u> <u>Procedural Manual</u>. Any required annual Compliance and/or Performance Testing shall be accomplished by obtaining advance written approval from the District pursuant to the District's <u>Compliance Test Procedural Manual</u>. All emission determinations shall be made as stipulated in the Written Test Protocol accepted by the District. When proposed testing involves the same procedures followed in prior District approved testing, then the previously approved Written Test Protocol may be used with District concurrence. [Rule 204 Permit Conditions]
- 3. Owner/Operator of permit units subject to Comprehensive Emissions Inventory Report / Annual Emissions Determinations for District, state, and federal required Emission Inventories shall monitor and record the following for each unit:
  - (a) The cumulative annual usage of each fuel type. The cumulative annual usage of each fuel type shall be monitored from utility service meters, purchase or tank fill records.
  - (b) Fuel suppliers' fuel analysis certification/guarantee including fuel sulfur content shall be kept on site and available for inspection by District, state or federal personnel upon request. The sulfur content of diesel fuel shall be determined by use of ASTM method D2622-82, or (ASTM method D 2880-71, or equivalent). Vendor data meeting this requirement are sufficient.

[40 CFR 70.6(a)(3)(B) – Periodic Monitoring Requirements] [Rule 204 - Permit Conditions]

[Federal Clean Air Act: §110(a)(2)(F, K & J); §112; §172(c)(3); §182(a)(3)(A & B); §187(a)(5); § 301(a) and in California Clean Air Act, Health and Safety Code §§39607 and §§44300 et seq.]

4. (a) Owner/Operator shall submit Compliance Certifications as prescribed by Rule 1203(F)(1) and Rule 1208, in a format approved by MDAQMD. Compliance Certifications by a Responsible Official shall certify the truth, accuracy and completeness of the document submitted and contain a statement to the effect that the certification is based upon information and belief, formed after a reasonable inquiry; the statements and information in the document are true, accurate, and complete.

[40 CFR 70.6(c)(5)(i); Rule 1208; Rule 1203(D)(1)(vii-x)]

(b) Owner/Operator shall include in any Compliance Certification the methods used for monitoring such compliance.

[40 CFR 70.6(c)(5)(ii); Rule 1203(D)(1)(g)(viii)]

(c) Owner/Operator shall comply with any additional certification requirements as specified in 42 United States Code (U.S.C.) §7414(a)(3), Recordkeeping, Inspections, Monitoring and Entry (Federal Clean Air Act §114(a)(3)) and 42 U.S.C. §7661c(b), Permit Requirements and Conditions (Federal Clean Air Act §503(b)), or in regulations promulgated thereunder.

[Rule 1203 (D)(1)(g)(x)]

 (d) On an <u>annual</u> basis, of any given year, Owner/Operator shall submit a *Compliance Certification Report* to the APCO/District pursuant to District Rule 1203 on the following schedule:

Due by July 5

Each report shall be certified to be true, accurate, and complete by "The Responsible Official" and a copy of this annual report shall also be contemporaneously submitted to the EPA Region IX Administrator. Compliance Certification Form/Format shall be obtained from MDAQMD Compliance Section.

[40 CFR 72.90.a and Rule 1203 (D)(1)(g)(v - x)]

5. Owner/Operator shall submit, on a semi-annual basis, a *Monitoring Report* to the Air Pollution Control Officer (APCO) / District. Each *Monitoring Report* shall be submitted each semi-annual compliance period on the following schedule:

Report covering June 5 – December 5	Due by January 5
Report covering December 4 – June 4	Due by July 5

This *Monitoring Report* shall be certified to be true, accurate, and complete by "The Responsible Official" and shall include the following information and/or data:

- (a) Summary of deviations from any federally enforceable requirement in this permit.
- (b) Summary of all emissions monitoring and analysis methods required by any Applicable Requirement / federally enforceable requirement.
- (c) Summary of all periodic monitoring, testing or record keeping (including test methods sufficient to yield reliable data) to determine compliance with any Applicable Requirement / federally enforceable requirement that does not directly require such monitoring.

An alternate Monitoring Report format may be used upon prior approval by MDAQMD. [Rule 1203(D)(1)(e)(i)]

6. Owner/Operator shall promptly report all deviations from Federal Operating Permit

requirements including, but not limited to, any emissions in excess of permit conditions, deviations attributable to breakdown conditions, and any other deviations from permit conditions. Such reports shall include the probable cause of the deviation and any corrective action or preventative measures taken as a result of the deviation. [Rule 1203(D)(1)(e)(ii) and Rule 430(C)]

Prompt reporting shall be determined as follows:

- (a) For deviations involving emissions of air contaminants in excess of permit conditions including but not limited to those caused by a breakdown, prompt reporting shall be within one hour of the occurrence of the excess emission or within one hour of the time a person knew or reasonably should have known of the excess emission. Documentation and other relevant evidence regarding the excess emission shall be submitted to the District within sixty (60) days of the date the excess emission was reported to the District. [SIP Pending: Rule 430 -Breakdown Provisions as amended 12/21/94 and submitted 2/24/95]
- (b) For other deviations from permit conditions not involving excess emissions of air contaminants shall be submitted to the District with any required monitoring reports at least every six (6) months. [Rule 1203(D)(1)(e)(i)]
- 7. If any facility unit(s) should be determined not to be in compliance with any federallyenforceable requirement during the 5-year permit term, then Owner/Operator shall obtain a *Schedule of Compliance* approved by the District Hearing Board pursuant to the requirements of MDAQMD Regulation 5 (Rules 501 - 518). In addition, Owner/Operator shall submit a *Progress Report* on the implementation of the *Schedule of Compliance*. The *Schedule of Compliance* shall contain the information outlined in (b), below. The *Progress Report* shall contain the information outlined in (c), below. The *Schedule of Compliance* shall become a part of this Federal Operating Permit by administrative incorporation. The *Progress Report* and *Schedule of Compliance* shall comply with Rule 1201(I)(3)(iii) and shall include:
  - (a) A narrative description of how the facility will achieve compliance with such requirements; and
  - (b) A Schedule of Compliance which contains a list of remedial measures to be taken for the facility to come into compliance with such requirements, an enforceable sequence of actions, with milestones, leading to compliance with such requirements and provisions for the submission of *Progress Reports* at least every six (6) months. The Schedule of Compliance shall include any judicial order, administrative order, and/or increments of progress or any other schedule as issued by any appropriate judicial or administrative body or by the District Hearing Board pursuant to the provisions of Health & Safety Code §42350 et seq.; and
  - (c) *Progress Reports* submitted under the provisions of a *Schedule of Compliance* shall include: Dates for achieving the activities, milestone, or compliance required in the schedule of compliance; and dates when such activities, milestones or compliance were achieved; and an explanation of why any dates in the schedule

measures adopted due to the failure to meet dates in the schedule of compliance. [Rule 1201 (I)(3)(iii); Rule 1203 (D)(1)(e)(ii); Rule 1203 (D)(1)(g)(v)]

## C. <u>FACILITY-WIDE COMPLIANCE CONDITIONS:</u>

- Owner/Operator shall allow an authorized representative of the MDAQMD to enter upon the permit holder's premises at reasonable times, with or without notice. [40 CFR 70.6(c)(2)(i); Rule 1203(D)(1)(g)(i)]
- Owner/Operator shall allow an authorized representative of the MDAQMD to have access to and copy any records that must be kept under condition(s) of this Federal Operating Permit.
   [40 CFR 70.6(c)(2)(ii); Rule 1203(D)(1)(g)(ii)]
- Owner/Operator shall allow an authorized representative of the MDAQMD to inspect any equipment, practice or operation contained in or required under this Federal Operating Permit. [40 CFR 70.6(c)(2)(iii); Rule 1203(D)(1)(g)(iii)]
- Owner/Operator shall allow an authorized representative of the MDAQMD to sample and/or otherwise monitor substances or parameters for the purpose of assuring compliance with this Federal Operating Permit or with any Applicable Requirement. [40 CFR 70.6(c)(2)(iv); Rule 1203(D)(1)(g)(iv)]
- 5. Owner/Operator shall remain in compliance with all Applicable Requirements / federally enforceable requirements by complying with all compliance, monitoring, record-keeping, reporting, testing, and other operational conditions contained in this Federal Operating Permit. Any noncompliance constitutes a violation of the Federal Clean Air Act and is grounds for enforcement action; the termination, revocation and re-issuance, or modification of this Federal Operating Permit; and/or grounds for denial of a renewal application.
  [1203 (D)(1)(f)(ii)]
- Owner/Operator shall comply in a timely manner with all applicable requirements / federally enforceable requirements that become effective during the term of this permit. [Rule 1201 (I)(2); Rule 1203(D)(1)(g)(v)]
- Owner/Operator shall insure that all applicable subject processes comply with the provisions of 40 CFR 61, *National Emission Standards for Hazardous Air Pollutants*, subpart A, *General Provisions*, and subpart M, *Asbestos*.
  [40 CFR 61, subparts A and M]. Note: Blythe Energy, Inc. Power Plant is an asbestos-free facility and will remain so.
- 8. Owner/Operator shall comply with all applicable requirements of 40 CFR 98, the

Mandatory Greenhouse Gas Reporting rule. [40 CFR 98]

## PART III

## EQUIPMENT SPECIFIC APPLICABLE REQUIREMENTS; EMISSIONS LIMITATIONS; MONITORING, RECORDKEEPING, REPORTING AND TESTING REQUIREMENTS; COMPLIANCE CONDITIONS; COMPLIANCE PLANS

## EQUIPMENT DESCRIPTIONS:

PERMIT CONDITIONS; (UNLESS OTHERWISE STATED ALL CONDITIONS RESULT FROM RULE 204 - PERMIT CONDITIONS; VERSION IN SIP = CARB EX. ORDER G-73, 40 CFR 52.220(C)(39)(II)(B) - 11/09/78 43 FR 52237; CURRENT RULE VERSION = 07/25/77:

## A. PERMIT B007953 COMBUSTION TURBINE GENERATOR POWER BLOCK

(CT1) consisting of: Natural gas fueled Siemens F Class Model V84.3A(2) Serial No. 800436 combustion turbine generator power block producing approximately 260 MW(e) with a connected heat recovery steam generator and a steam condensing turbine (shared with B007954), maximum turbine heat input of 1776 MMBtu/hr.

## B. PERMIT B007954 COMBUSTION TURBINE GENERATOR POWER BLOCK

(CT2) consisting of: Natural gas fueled Siemens F Class Model V84.3A(2) Serial No. 800437 combustion turbine generator power block producing approximately 260 MW(e) with a connected heat recovery steam generator and a steam condensing turbine (shared with B007953), maximum turbine heat input of 1776 MMBtu/hr.

- 1. Operation of this equipment shall be conducted in compliance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.
- 2. This equipment shall be exclusively fueled with pipeline quality natural gas with a sulfur content not exceeding 0.5 grains per 100 dscf on a twenty-four hour basis and not exceeding 0.25 grains per 100 dscf on a rolling twelve month average basis, and shall be operated and maintained in strict accord with the recommendations of its manufacturer or supplier and/or sound engineering principles.
- 3. This equipment is subject to the federal NSPS codified at 40 CFR Part 60, Subparts A (General Provisions) and GG (Standards of Performance for Stationary Gas Turbines). This equipment is also subject to the Prevention of Significant Deterioration (40 CFR 51.166) and Federal Acid Rain (Title IV) programs. Compliance with all applicable provisions of these regulations is required.
- 4. Emissions from this equipment (including its associated duct burner) shall not exceed the following emission limits at any firing rate, except for CO, NOx, and VOC during

periods of startup, shutdown and malfunction:

- a. Hourly rate, computed every 15 minutes, verified by CEMS and annual compliance tests:
  - i. NOx as NO2 the most stringent of 19.80 lb/hr or 2.5 ppmvd corrected to 15% oxygen and averaged over one hour
  - ii. NOx as NO2 effective May 7, 2016, 2.0 ppmvd corrected to 15% oxygen and averaged over a rolling 12 month period.
  - iii. CO the most stringent of 17.5 lb/hr or 4.0 ppmvd corrected to 15% oxygen and averaged over three hours
  - iv. CO 10 lb/hr averaged over a rolling 12-month period
- b. Hourly rates, verified by annual compliance tests or other compliance methods in the case of SOx:
  - i. VOC as CH4 2.9 lb/hr (based on 1 ppmvd corrected to 15% oxygen)
  - ii. SOx as SO2 2.7 lb/hr (based on 0.5 grains/100 dscf fuel sulfur)
  - iii. PM10 6.2 lb/hr
- 5. Emissions of CO and NOx from this equipment shall only exceed the limits contained in Condition 4 during startup and shutdown periods as follows:
  - a. Startup is defined as the period beginning with ignition and lasting until either the equipment complies with all Condition 4 operating permit limits for two consecutive 15-minute averaging periods or four hours after ignition, whichever occurs first. Shutdown is defined as the period beginning with the lowering of equipment from base load and lasting until fuel flow is completely off and combustion has ceased.
  - b. The emissions from each startup or shutdown event shall not exceed the following, verified by CEMS:
    - i. NOx 376 lb
    - ii. CO 3600 lb
  - c. Effective May 7, 2016, the CO emissions from all startup and shutdown events at both power blocks, averaged over a rolling 12-month period, shall not exceed 750 lb/event, verified by CEMS.
- 6. Aggregate emissions from B007953 and B007954, including the associated duct burners, shall not exceed the following emission limits, based on a calendar day summary:
  - a. NOx 5762 lb/day, verified by CEMS
  - b. CO 8004 lb/day, verified by CEMS
  - c. VOC as CH4 239 lb/day, verified by compliance tests and hours of operation in steady-state, pre-mix mode.
  - d. SOx as SO2 130 lb/day, verified by fuel sulfur content and fuel use data
  - e. PM10 298.5 lb/day, verified by compliance tests and hours of operation
- 7. Emissions from all Blythe Energy Project I permit units at this facility (as listed in Part I.A.1 of this Permit), including the cooling towers, shall not exceed the following emission limits, based on a rolling 12 month summary:
  - a. NOx 97 tons/year, verified by CEMS
  - b. CO 175 tons/year, verified by CEMS

- c. VOC as CH4 24 tons/year, verified by compliance tests and hours of operation in steady-state, pre-mix mode
- d. SOx as SO2 12 tons/year, verified by fuel sulfur content and fuel use data

e. PM10 - 56.9 tons/year, verified by compliance tests and hours of operation These limits shall apply to all emissions from all Blythe Energy Project permit units at this facility (as listed in Part I.A.1, of the Federal Operating Permit), and shall include emissions during all modes of operation, including startup, shutdown and malfunction.

- 8. Particulate emissions from this equipment shall not exceed opacity equal to or greater than twenty percent (20%) for a period aggregating more than three (3) minutes in any one (1) hour, excluding uncombined water vapor.
- 9. This equipment shall exhaust through a stack at a minimum height of 130 feet.
- 10. *For Permit B007953 only:* The owner/operator (o/o) shall not operate this equipment after the initial commissioning period without the selective catalytic NOx reduction system with valid District permit C007959, as well as the oxidation catalyst with valid District permit C010832 installed and fully functional.
- 10. *For Permit B007954 only:* The owner/operator (o/o) shall not operate this equipment after the initial commissioning period without the selective catalytic NOx reduction system with valid District permit C007960 as well as the oxidation catalyst with valid District permit C010833 installed and fully functional.
- 11. The o/o shall provide stack sampling ports and platforms necessary to perform source tests required to verify compliance with District rules, regulations and permit conditions. The location of these ports and platforms shall be subject to District approval.
- 12. Emissions of NOx, CO, oxygen and ammonia slip shall be monitored using a Continuous Emissions Monitoring System (CEMS). Each CEMS shall be operational whenever the associated combustion turbine generator is in operation, including during periods of startup, shutdown and malfunction. Turbine fuel consumption shall be monitored using a continuous monitoring system. Stack gas flow rate shall be monitored using either a Continuous Emission Rate Monitoring System (CERMS) meeting the requirements of 40 CFR Part 75 Appendix A or a stack flow rate calculation method. The o/o shall install, calibrate, maintain, and operate these monitoring systems according to a District-approved monitoring plan and MDAQMD Rule 218, and they shall be installed prior to initial equipment startup. Six (6) months prior to installation the operator shall submit a monitoring plan for District review and approval.
- 13. The o/o shall conduct all required compliance/certification tests in accordance with a District-approved test plan. Thirty (30) days prior to the compliance/certification tests the o/o shall provide a written test plan for District review and approval. Written notice of the compliance/certification test shall be provided to the District ten (10) days prior to the tests so that an observer may be present. A written report with the results of such compliance/certification tests shall be submitted to the District within forty-five (45) days

after testing.

- 14. The o/o shall perform the following annual compliance tests in accordance with the MDAQMD Compliance Test Procedural Manual. The test report shall be submitted to the District no later than six weeks prior to the expiration date of this permit. The following compliance tests are required:
  - a. NOx as NO2 in ppmvd at 15% oxygen and lb/hr (measured per USEPA Reference Methods 19, 20, or 7E). If testing is performed at 90%-100% of rated capacity, then the annual calibration RATA associated with the NOx CEMS in use on these units may be used in lieu of the required annual EPA Reference Method 20, as long as all of the requirements of prior test notification, proper test result submittal, etc., are followed.
  - b. VOC as CH4 in ppmvd at 15% oxygen and lb/hr (measured per USEPA Reference Methods 25A and 18).
  - c. SOx as SO2 in ppmvd at 15% oxygen and lb/hr.
  - d. CO in ppmvd at 15% oxygen and lb/hr (measured per USEPA Reference Method 10).
  - e. PM10 in mg/m3 at 15% oxygen and lb/hr (measured per USEPA Reference Methods 5 and 202 or CARB Method 5)
  - f. Flue gas flow rate in dscfm.
  - g. Opacity (measured per USEPA Reference Method 9).
  - h. Ammonia slip in ppmvd at 15% oxygen.
- 15. VOC emissions during startup and shutdown periods will be calculated by the CEMS using the following emissions factors:

## For Permit B007953 CTG1 only:

- a. startup events: 0.0048 lb/mmBtu
- b. shutdown events: 0.0220 lb/mmBtu

## For Permit B007954 CTG2 only:

a. startup events: 0.0056 lb/mmBtu

## 16. Continuous monitoring systems shall be installed, calibrated, certified, maintained, and operated in accordance with the following:meet the following acceptability testing requirements from 40 CFR 60 Appendix B:

- a. For NOx and oxygen, 40 CFR 75 appendices A and B Performance Specification 2.
- b. For oxygen, Performance Specification 3.
- c. For CO, 40 CFR 60 Appendix B Performance Specification 4 and 40 CFR 60 Appendix F except that:
  - i. The CGA frequency will follow 40 CFR 75 Appendix B Sections 2.2.1 and 2.2.4. Specifically, a CGA will be required at least once during each QA operating quarter, not to exceed four calendar quarters, plus a 168-unit operating hour grace period will apply following the expiration of a required CGA. CGAs will be conducted no less than 30 days apart, to the extent practicable.
  - ii. Analyzer ranges less than or equal to 30 ppm (i.e. CO low range) will be exempt from CGA requirements.
  - iii. All RATA testing shall be conducted at least once every four QA operating quarters but no less frequently than once every eight calendar quarters as provided in 40 CFR 75 App. B, §2.3.1.1. If RATA testing is not completed within this timeframe, a 720 unit operating hour grace period may be used, as provided in 40 CFR 75 App. B, §2.3.3.b. All RATA testing shall be conducted at the normal load level(s) as determined in accordance with 40 CFR 75 Appendix A Section 2.3.1.3(a).
- d. For stack gas flow rate, Performance Specification 6 (if CERMS is installed).
- e. For ammonia, a District approved procedure that is to be submitted by the o/o.

17. The o/o shall submit to the Air Pollution Control Officer (APCO) and USEPA Region IX the following information for the preceding calendar quarter by January 30, April 30, July 30 and October 30 of each year this permit is in effect. Each January 30 submittal shall include a summary of the reported information for the previous year. This information shall be maintained on site for a minimum of five (5) years and shall be provided to District personnel on request:

- a. Operating parameters of emission control equipment, including but not limited to ammonia injection rate, NOx emission rate and ammonia slip.
- b. Total plant operation time (hours), number of startups, hours in startup, and hours in shutdown period.
- c. Date and time of the beginning and end of each startup and shutdown period.
- d. Average plant operation schedule (hours per day, days per week, weeks per year).
- e. All continuous emissions data reduced and reported in accordance with the Districtapproved CEMS protocol.
- f. Maximum hourly, maximum daily, total quarterly, and total calendar year emissions of NOx, CO, PM10, VOC and SOx (including calculation protocol).
- g. Total monthly and rolling 12-month emissions of NOx, CO and PM10 from all permit units.
- h. Total monthly and rolling 12-month fuel use in the gas turbines and duct burners.
- i. Average NOx concentration and average CO mass emission rate, for all operating periods except during startup, shutdown and malfunction, for each gas turbine and associated duct burner, calculated on a rolling 12-month basis.
- j. Average CO emissions from all startups and shutdowns of the gas turbines, on a per event basis, calculated on a rolling 12-month basis.
- k. Fuel sulfur content (monthly laboratory analyses, monthly natural gas sulfur content reports from the natural gas supplier(s), or the results of a custom fuel monitoring schedule approved by USEPA for compliance with the fuel monitoring provisions of 40 CFR 60 Subpart GG).
- 1. A log of all excess emissions, including the information regarding malfunctions/breakdowns required by Rule 430.
- m. Any permanent changes made in the plant process or production, which would affect air pollutant emissions, and indicate when changes were made.
- n. Any maintenance to any air pollutant control system (recorded on an as-performed basis).
- 18. Effective May 7, 2016, total fuel use in the two gas turbines and two duct burners (Permit #B007953 COMBUSTION TURBINE GENERATOR POWER BLOCK (CT1), Permit #B007954 COMBUSTION TURBINE GENERATOR POWER BLOCK (CT2), Permit #B007955 DUCT BURNER UNIT 1 and Permit #B007956 DUCT BURNER UNIT 2) shall not exceed 31,852,800 MMBtu in any rolling 12-month period.
- C. <u>PERMIT B007955 DUCT BURNER UNIT 1:</u> Natural gas burner located within the heat recovery steam generator covered by B007953, maximum heat input of 120 MMBtu/hr. Manufacturer is Forney, model # 1002-WPS-C1 and serial #17130.

## PERMIT CONDITIONS:

1. Operation of this equipment shall be conducted in accordance with all data and specifications submitted with the application under which this permit is issued unless

otherwise noted below.

- 2. This equipment shall be exclusively fueled with natural gas and shall be operated and maintained in strict accord with the recommendations of the manufacturer/supplier and/or sound engineering principles.
- 3. This duct burner shall not be operated unless the combustion turbine generator with valid District permit B007953, selective catalytic reduction system with valid District permit C007959, and oxidation catalyst C010832 are in operation.
- 4. Fuel use by this equipment shall be recorded and maintained on site for a maintained on site for a minimum of five (5) years and shall be provided to District, State or Federal personnel on request.
- **D.** <u>**PERMIT B007956 DUCT BURNER UNIT 2:**</u> Natural gas burner located within the heat recovery steam generator covered by B007954, maximum heat input of 120 MMBtu/hr. Manufacturer Forney, model # 1002-WPS-C1 and serial #17202.

PERMIT CONDITIONS:

- 1. Operation of this equipment shall be conducted in accordance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.
- 2. This equipment shall be exclusively fueled with natural gas and shall be operated and maintained in strict accord with the recommendations of the manufacturer/supplier and/or sound engineering principles.
- 3. This duct burner shall not be operated unless the combustion turbine generator with valid District permit B007954, selective catalytic reduction system with valid District permit C007960, and oxidation catalyst C010833 are in operation.
- 4. Fuel use by this equipment shall be recorded and maintained on site for a minimum of five (5) years and shall be provided to District, State or Federal personnel on request.
- E. <u>PERMIT C007959 SCR UNIT 1 consisting of:</u> Selective Catalytic Reduction system with a catalyst located within the power train covered by B007953 and an ammonia injection system. Manufacturer is Haldor Topsoe; model HO5.331cpsi.

PERMIT CONDITIONS:

1. Operation of this equipment shall be conducted in compliance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.

- 2. This equipment shall be operated and maintained in strict accord with the recommendations of its manufacturer or supplier and/or sound engineering principles.
- 3. This equipment shall be operated concurrently with the combustion turbine generator with valid MDAQMD permit B007953.
- 4. Ammonia shall be injected whenever the selective catalytic reduction system has reached or exceeded 550 deg Fahrenheit. Except during periods of startup and shutdown, ammonia slip shall not exceed 10 ppmvd (corrected to 15% oxygen), averaged over three hours.
- 5. Ammonia injection by this equipment in pounds per hour shall be recorded and maintained on site for a minimum of five (5) years and shall be provided to District, State or Federal personnel on request.
- F. <u>PERMIT C007960 SCR UNIT 2</u> consisting of: SELECTIVE CATALYTIC REDUCTION system with a catalyst located within the power train covered by B007954 and an ammonia injection system. Manufacturer is Haldor Topsoe; model HO5.331cpsi

## PERMIT CONDITIONS:

- 1. Operation of this equipment shall be conducted in compliance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.
- 2. This equipment shall be operated and maintained in strict accord with the recommendations of its manufacturer or supplier and/or sound engineering principles.
- 3. This equipment shall be operated concurrently with the combustion turbine generator with valid MDAQMD permit B007954.
- 4. Ammonia shall be injected whenever the selective catalytic reduction system has reached or exceeded 550 deg Fahrenheit. Except during periods of startup and shutdown, ammonia slip shall not exceed 10 ppmvd (corrected to 15% oxygen), averaged over three hours.
- 5. Ammonia injection by this equipment in pounds per hour shall be recorded and maintained on site for a minimum of five (5) years and shall be provided to District, State or Federal personnel on request.

## G. <u>PERMIT C010832 OXIDATION CATALYST, UNIT 1</u> consisting of: Oxidation Catalyst System with a catalyst located within the power train covered by B007953. Johnson Matthey, Honeycat, serial number 200cpsi.

- 1. Operation of this equipment shall be conducted in compliance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.
- 2. This equipment shall be operated and maintained in strict accord with the recommendations of its manufacturer or supplier and/or sound engineering principles.
- 3. This equipment shall be operated concurrently with the combustion turbine generator with valid District permit B007953.
- H. <u>PERMIT C010833 OXIDATION CATALYST, UNIT 2</u> consisting of: Oxidation Catalyst System with a catalyst located within the power train covered by B007954. Johnson Matthey, Honeycat, serial number 200cpsi.
- 1. Operation of this equipment shall be conducted in compliance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.
- 2. This equipment shall be operated and maintained in strict accord with the recommendations of its manufacturer or supplier and/or sound engineering principles.
  - 3. This equipment shall be operated concurrently with the combustion turbine generator with valid District permit B007954.
- I. <u>PERMIT B007957 (Main Cooling Tower)</u> consisting of: A Marathon Model 9B 445TTFN4573AA wet cooling tower with water circulation, treatment and handling equipment and air circulation equipment, including the following:

Capacity	Equipment Name	Order
250.00	0.00 Cooling Cell Fan #8, Motor Serial No. 1 MU402450-2/22-02	
250.00	Cooling Cell Fan #7, Motor Serial No. MU402450-2/22-01	2
250.00	Cooling Cell Fan #6, Motor Serial No.3MU402450-2/22-053	
250.00	Cooling Cell Fan #5, Motor Serial No. MU402450-2/22-03	4

Capacity Equipment Name		
250.00	Cooling Cell Fan #4, Motor Serial No. 5 MU402450-2/22-06	
250.00	Cooling Cell Fan #3, Motor Serial No. MU402450-2/22-07	
250.00	Cooling Cell Fan #2, Motor Serial No. 7 MU402450-2/22-04	
250.00	Cooling Cell Fan #1, Motor Serial No. 8 MU402450-2/22-08	
1000.00	00.00 Circulating Water Pump #12, Johnson Serial No. 9 01JB1129B	
1000.00	Circulating Water Pump #11, Johnson Serial No. 01JB1129A	10

- 1. Operation of this equipment shall be conducted in compliance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.
- 2. This equipment shall be operated and maintained in strict accord with the recommendations of its manufacturer or supplier and/or sound engineering principles.
- 3. The drift rate shall not exceed 0.0006 percent with a maximum circulation rate of 146,000 gallons per minute for the Main Cooling Tower. The maximum hourly PM10 emission rate shall not exceed 0.546 pounds per hour from both the Main and the Chiller Cooling Towers, as calculated per the written District-approved protocol.
- 4. Whenever the power plant is in operation, the operator shall perform tests of the blowdown water quality once in every seven day period at a minimum; to clarify, if at any time during that same seven day period the power plant has run, then the owner operator shall perform blow-down water quality tests. The operator shall maintain a log, which contains the date and result of each blow-down water quality test, and the resulting mass emission rate. This log shall be maintained on site for a minimum of five (5) years and shall be provided to District, State or Federal personnel on request.
- 5. The operator shall conduct all required cooling tower water quality tests in accordance with a District-approved test and emissions calculation protocol.
- 6. A maintenance procedure shall be established that states how often and what procedures will be used to ensure the integrity of the drift eliminators. This procedure shall be submitted to the District for approval at least thirty (30) days prior to construction and shall be kept on-site and available to District personnel on request.

J. <u>PERMIT B007958 (Chiller Cooling Tower)</u> consisting of: A Water circulation, treatment and handling equipment and air circulation equipment, including units as follows:

Capacity	Equipment Name	Order	
250.00	Cooling Cell Fan #12, BAC Model CXV-T08 Serial No. U025323712	1	
250.00	Cooling Cell Fan #11, BAC Model CXV-T08 Serial No. U025323711	2	
250.00	Cooling Cell Fan #10, BAC Model CXV-T08 Serial No. U025323710	3	
250.00	Cooling Cell Fan #9, BAC Model CXV-T08 Serial No. U025323709	4	
250.00	Cooling Cell Fan #8, BAC Model CXV-T08 Serial No. U025323708	5	
250.00	0.00 Cooling Cell Fan #7, BAC Model CXV-T08 Serial No. 6 U025323707		
250.00	Cooling Cell Fan #6, BAC Model CXV-T08 Serial No. 7 U025323706		
250.00	Cooling Cell Fan #5, BAC Model CXV-T08 Serial No. 8 U025323705		
250.00	Cooling Cell Fan #4, BAC Model CXV-T08 Serial No. 9 U025323704		
250.00	00 Cooling Cell Fan #3, BAC Model CXV-T08 Serial No. 10 U025323703		
250.00	0.00Cooling Cell Fan #1, BAC Model CXV-T08 Serial No.11U02532370111		
250.00	00 Cooling Cell Fan #2, BAC Model CXV-T08 Serial No. 12 U025323702		
750.00	Chiller Recirulating Pump #4, Cascade Serial No. 16061 13		
750.00	Chiller Recirulating Pump #3, Cascade Serial No. 16060 14		
750.00	00 Chiller Recirulating Pump #2, Cascade Serial No. 16059 15		
750.00	Chiller Recirulating Pump #1, Cascade Serial No. 16058	16	

- 1. Operation of this equipment shall be conducted in compliance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.
- 2. This equipment shall be operated and maintained in strict accord with the recommendations of its manufacturer or supplier and/or sound engineering principles.

- 3. The drift rate shall not exceed 0.0006 percent with a maximum circulation rate of 22,000 gallons per minute for the Chiller Cooling Tower. The maximum hourly PM10 emission rate shall not exceed 0.546 pounds per hour from both the Main and the Chiller Cooling Towers, as calculated per the written District-approved protocol.
- 4. Whenever the power plant is in operation, the operator shall perform weekly tests of the blow-down water quality. The operator shall maintain a log, which contains the date and result of each blow-down water quality test, and the resulting mass emission rate. This log shall be maintained on site for a minimum of five (5) years and shall be provided to District, State or Federal personnel on request.
- 5. The operator shall conduct all required cooling tower water quality tests in accordance with a District-approved test and emissions calculation protocol. Thirty (30) days prior to the first such test the operator shall provide a written test and emissions calculation protocol for District review and approval.
- 6. A maintenance procedure shall be established that states how often and what procedures will be used to ensure the integrity of the drift eliminators. This procedure shall be submitted to the District for approval at least thirty (30) days prior to construction and shall be kept on-site and available to District personnel on request.

## K. <u>PERMIT E007961 NON-CERTIFIED DIESEL IC ENGINE, EMERGENCY FIRE</u> <u>PUMP</u> consisting of: Year of Manufacture 2002; USEPA Family Name NA; CARB Executive Order NA; Tier 0, One John Deere, Diesel fired internal combustion engine, Model No. 6081HF001 and Serial No. RG6081H145432, Direct Injected, Turbo Charged, producing 303 bhp with 6 cylinders at 2200 rpm while consuming a maximum of 14 gal/hr. This equipment powers a Pump.

- This equipment shall be installed, operated and maintained in strict accord with those recommendations of the manufacturer/supplier and/or sound engineering principles which produce the minimum emissions of contaminants. Unless otherwise noted, this equipment shall also be operated in accordance with all data and specifications submitted with the application for this permit. [40 CFR Part 63, Subpart ZZZZ]
- This unit shall only be fired on ultra-low sulfur diesel fuel, whose sulfur concentration is less than or equal to 0.0015% (15 ppm) on a weight per weight basis per CARB Diesel or equivalent requirements. [Title 17 CCR 93115]
- 3. A non-resettable hour meter with a minimum display capability of 9,999 hours shall be installed and maintained on this unit to indicate elapsed engine operating time.

[Title 17 CCR 93115; 40 CFR §63.6625(f)]

- 4. This unit shall be limited to use for emergency power, defined as in response to a fire or due to low fire water pressure. In addition, this unit shall be operated no more than 20 hours per year for testing and maintenance, excluding compliance source testing. Time required for source testing will not be counted toward the 20 hour per year limit. [Title 17 CCR 93115.6]
- 5. The requirements of section 93115.6, the hour limits indicated above, do not apply to inuse emergency fire pump assemblies that are driven directly by stationary diesel-fueled CI engines and only operated the number of hours necessary to comply with the testing requirements of National Fire Protection Association (NFPA) 25 "Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems," 2002 edition, which is incorporated herein by reference. [Title 17 CCR 93115.3]
- 6. The owner/operator (o/o) shall maintain an operations log for this unit current and onsite, either at the engine location or at an on-site location, for a minimum of five (5) years, and provided to District, State and Federal personnel upon request. The log shall include, at a minimum, the information specified below:
  - a. Date of each use and duration of each use (in hours), using the engines hour meter;
  - b. Reason for use (testing & maintenance, emergency, required emission testing);
  - c. Monthly and calendar year operation in terms of fuel consumption (in gallons) and total hours;
  - d. Monthly and rolling 12-month total CO, NOx and PM₁₀ emissions, calculated based on monthly fuel use and District-approved emission factors;
  - e. Fuel sulfur concentration (the o/o may use the supplier's certification of sulfur content if it is maintained as part of this log).

[40 CFR §63.6655(f); Rule 204 - Permit Conditions; Version in SIP = CARB Ex. Order G-73, 40 CFR 52.220(c)(39)(ii)(B) - 11/09/78 43 FR 52237; Current Rule Version = 07/25/77]

- 7. The owner/operator shall conduct inspections in accord with the following schedule. All inspections must occur at least annually regardless of operating hours.
  - a. Change oil and filter every 500 hours of operation or annually, whichever comes first, or use an oil change analysis program to extend oil change frequencies per the requirements in 40 CFR 63.6625(i);
  - b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first; and
  - c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.

[40 CFR Part 63.6630(a); Table 2d.4.; Subpart ZZZZ]

8. The owner/operator shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of

the engine, not to exceed 30 minutes. [40 CFR 63.6625(h)].

9. This unit is subject to the requirements of the Airborne Toxic Control Measure (ATCM) for Stationary Compression Ignition Engines Title 17 CCR 93115 and 40 CFR 63 Subpart ZZZZ (RICE NESHAPs). In the event of conflict between conditions and the referenced regulatory citations, the more stringent requirements shall govern. [Title 17 CCR 93115; 40 CFR 63, Subpart ZZZZ]

## L. <u>PERMIT E009492 PROPANE IC ENGINE, EMERGENCY GENERATOR</u>

(CHILLER BLDG) consisting of: One Ford, Propane fired internal combustion engine, Model No. WSG106816005E-NA and Serial No. 01-11- 012316, Direct Injected, Inter Cooled, producing 114 bhp with 4 cylinders at 1800 rpm while consuming a maximum of 12 gal/hr. This equipment powers a Generator.

- This equipment shall be installed, operated and maintained in strict accord with those recommendations of the manufacturer/supplier and/or sound engineering principles which produce the minimum emissions of contaminants. Unless otherwise noted, this equipment shall also be operated in accordance with all data and specifications submitted with the application for this permit. [40 CFR Part 63, Subpart ZZZZ]
- 2. This ICE shall only be fired on propane (LPG). [District Rule 1302]
- A non-resettable hour meter with a minimum display capability of 9,999 hours shall be installed and maintained on this unit to indicate elapsed engine operating time.
   [40 CFR §63.6625(f)]
- This unit shall be limited to use for emergency power, defined as in response to a fire or when commercially available power has been interrupted. In addition, this unit shall be operated no more than 100 hours per year for testing and maintenance, excluding compliance source testing. Time required for source testing will not be counted toward the 100 hour per year limit.
   [40 CFR Part 63, Subpart ZZZZ]
- 5. The o/o shall maintain an operations log for this unit current and on-site (or at a central location) for a minimum of five (5) years, and this log shall be provided to District, State and Federal personnel upon request. The log shall include, at a minimum, the information specified below:
  - a. Date of each use and duration of each use (in hours);
  - b. Reason for use (testing & maintenance, emergency, required emission testing);
  - c. Monthly and calendar year operation in terms of fuel consumption (in gallons)

and total hours;

- Monthly and rolling 12-month total CO, NOx and PM₁₀ emissions, calculated based on monthly fuel use and District-approved emission factors.
   [40 CFR §63.6655(f)]
- 6. The owner/operator shall conduct inspections in accord with the following schedule. All inspections must occur at least annually regardless of operating hours.
  - a. Change oil and filter every 500 hours of operation or annually, whichever comes first; or use an oil change analysis program to extend oil change frequencies per the requirements in 40 CFR 63.6625(i);
  - b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first;
  - c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.
  - [40 CFR Part 63.6640; Table 2d.5, Subpart ZZZZ]
- The owner/operator shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes.
   [40 CFR 63.6625(h)]
- 8. This unit is subject to the requirements of 40 CFR 63 Subpart ZZZZ (RICE NESHAPs). In the event of conflict between conditions and the referenced regulatory citation, the more stringent requirements shall govern.
   [ 40 CFR 63, Subpart ZZZZ]

## PART IV STANDARD FEDERAL OPERATING PERMIT CONDITIONS

## A. <u>STANDARD CONDITIONS:</u>

- If any portion of this Federal Operating Permit is found to be invalid by the final decision of a court of competent jurisdiction the remaining portion(s) of this Federal Operating Permit shall not be affected thereby.
   [40 CFR 70.6(a)(5); Rule 1203(D)(1)(f)(i)]
- Owner/Operator shall comply with all condition(s) contained herein. Noncompliance with any condition(s) contained herein constitutes a violation of the Federal Clean Air Act and of MDAQMD Regulation XII and is grounds for enforcement action; termination, revocation and re-issuance, or modification of this Federal Operating Permit; and/or grounds for denial of a renewal of this Federal Operating Permit. [40 CFR 70.6(a)(6)(i); Rule 1203(D)(1)(f)(ii)]
- It shall not be a defense in an enforcement action brought for violation(s) of condition(s) contained in this Federal Operating Permit that it would have been necessary to halt or reduce activity to maintain compliance with those condition(s).
   [40 CFR 70.6(a)(6)(ii); Rule 1203(D)(1)(f)(iii)]
- This Federal Operating Permit may be modified, revoked, reopened or terminated for cause.
   [40 CFR 70.6(a)(6)(iii); Rule 1203(D)(1)(f)(iv)]
- 5. The filing of an application for modification; a request for revocation and re-issuance; a request for termination; notifications of planned changes; or anticipated noncompliance with condition(s) does not stay the operation of any condition contained in this Federal Operating Permit.
   [40 CFR 70.6(a)(6)(iii); Rule 1203(D)(1)(f)(v)]
- 6. The issuance of this Federal Operating Permit does not convey any property rights of any sort nor does it convey any exclusive privilege.
   [40 CFR 70.6(a)(6)(iv); Rule 1203(D)(1)(f)(vi)]
- Owner/Operator shall furnish to the MDAQMD, within a reasonable time as specified by the MDAQMD, any information that the MDAQMD may request in writing.
   [40 CFR 70.6(a)(6)(v); Rule 1203(D)(1)(f)(vii)]

Owner/Operator shall furnish to District, state or federal personnel, upon request, copies of any records required to be kept pursuant to condition(s) of this Federal Operating Permit.
 CEP 70 ((c)(C(c)) Prils 1202(D)(1)(D(c)⁽ⁱⁱⁱ⁾)]

[40 CFR 70.6(a)(6)(v); Rule 1203(D)(1)(f)(viii)]

- 9. Any records required to be generated and/or kept by any portion of this Federal Operating Permit shall be retained by the facility Owner/Operator for at least five (5) years from the date the records were created.
   [40 CFR 70.6(a)(3)(ii)(B); Rule 1203(D)(1)(d)(ii)]
- 10. Owner/Operator shall pay all applicable fees as specified in MDAQMD Regulation III, including those fees related to permits as set forth in Rules 301 and 312.
   [40 CFR 70.6(a)(7); Rule 1203(D)(1)(f)(ix)]
- 11. Owner/Operator shall not be required to revise this permit for approved economic incentives, marketable permits, emissions trading or other similar programs provided for in this permit.
  [40 CFR 70.6(a)(8); Rule 1203(D)(1)(f)(x)]
- 12. Compliance with condition(s) contained in this Federal Operating Permit shall be deemed compliance with the Applicable Requirement underlying such condition(s). The District clarifies that "only" Applicable Requirements listed & identified elsewhere in this Title V Permit are covered by this Permit Shield and does not extend to any unlisted/unidentified conditions pursuant to the requirements of 40 CFR 70.6(f)(1)(i). [40 CFR 70.6(f)(1)(i); Rule 1203(G)(1)]
- 13. The Permit Shield set forth above, in condition 12 of Part IV, shall not be construed to limit the emergency powers of USEPA as set forth in 42 U.S.C. §7603. [40 CFR 70.6(f)(3)(i); Rule 1203(G)(3)(a)]
- 14. The Permit Shield set forth above, in condition 12 of Part IV, shall not be construed to limit liability for violations, which occurred prior to the issuance of this Federal Operating Permit.
  [40 CFR 70.6(f)(3)(ii); Rule 1203(G)(3)(b)]
- 15. The Permit Shield set forth above, in condition 12 of Part IV, shall not be construed to alter any Applicable Requirement Contained in the Acid Rain Program.
  [40 CFR 70.6(f)(3)(iii); Rule 1203(G)(3)(c)]
- 16. The Permit Shield set forth above, in condition 12 of Part IV, shall not be construed to limit the ability of USEPA or the MDAQMD to obtain information pursuant to other provisions of law including but not limited to 42 U.S.C. §7414. [40 CFR 70.6(f)(3)(iv); Rule 1203(G)(3)(d)]
- 17. The Permit Shield set forth above, in condition 12 of Part IV, shall not be construed to apply to emissions trading pursuant to provisions contained in an applicable State

Implementation Plan. [40 CFR 70.4(b)(12)(ii)(B); Rule 1203(G)(3)(e)]

- The Permit Shield set forth above, in condition 12 of Part IV, shall not be construed to apply to changes made which are not expressly allowed by this Federal Operating Permit. [40 CFR 70.4(b)(14)(iii); Rule 1203(G)(3)(f)]
- 19. The Permit Shield set forth in Part IV, condition 12, shall not be construed to apply to changes made pursuant to the Significant Permit Modification provisions until such changes are included in this Federal Operating Permit.
  [40 CFR 70.5(a)(1)(ii), 70.7(e)(2)(vi); Rule 1203 (G)(3)(g)]
- If Owner/Operator performs maintenance on, or services, repairs, or disposes of appliances, Owner/Operator shall comply with the standards for Recycling and Emissions Reduction pursuant to 40 CFR Part 82, Subpart F. These requirements are Federally Enforceable through this Title V Permit.
   [40 CFR Part 82, Subpart F]
- 21. If Owner/Operator performs service on motor vehicles when this service involves the ozone-depleting refrigerant in the motor vehicle air conditioner (MVAC), Owner/Operator shall comply with the standards for Servicing of Motor Vehicle Air Conditioners pursuant to all the applicable requirements as specified in 40 CFR Part 82, Subpart B. These requirements are Federally Enforceable through this Title V Permit. [40 CFR Part 82, Subpart B]
- 22. Notwithstanding the testing requirements contained elsewhere in this Title V Permit, any credible evidence may be used to establish violations, including but not limited to; reference test methods, engineering calculations, indirect estimates of emissions, CEMS data, and parametric monitoring data. Data need not be required to be collected in a Title V permit in order to be considered credible. [Section 113(a) of the Clean Air Act]
- Owner/operator desiring to renew this Federal Operating Permit shall submit an application for renewal at least six (6) months, but no earlier than eighteen (18) months, prior to the expiration date of this Federal Operating Permit.
   [40 CFR 70, Rule 1202(B)(3)(b)]

## PART V OPERATIONAL FLEXIBILITY

## A. <u>ALTERNATIVE OPERATING SCENARIO(S):</u>

## B. <u>OFF PERMIT CHANGES:</u>

- I. Permitee may make a proposed change to equipment covered by this permit that is not expressly allowed or prohibited by this permit if:
  - A. Permitee has applied for and obtained all permits and approvals required by MDAQMD Regulation II and Regulation XII unless the equipment involved in the change is exempt from obtaining such permits and approvals pursuant to the provisions of Rule 219; and
    - 1. The proposed change is not:
      - a. Subject to any requirements under Title IV of the Federal Clean Air Act; or [See 1203(E)(1)(c)(i)d]
      - b. A modification under Title I of the Federal Clean Air Act; or
      - c. A modification subject to Regulation XIII; and [See 1203(E)(1)(c)(i) d]
      - d. The change does not violate any Federal, State or Local requirement, including an applicable requirement; and [See 1203(E)(1)(c)(i)c]
      - e. The change does not result in the exceedance of the emissions allowable under this permit (whether expressed as an emissions rate or in terms of total emissions). [See 1203(E)(1)(c)(i)e]
- II. Procedure for "Off Permit" Changes
  - A. If a proposed "Off Permit Change" qualifies under Part V, Section (B)(I)(A)(1) above, permitee shall implement the change as follows:
    - 1. Permitee shall apply for an Authority To Construct permit pursuant to the provisions of Regulation II. [See 1203(E)(1)(c)(i)b]
    - 2. In addition to the information required pursuant to the provisions of Regulation II and Regulation XIII such application shall include:
      - a. A notification that this application is also an application for an "Off Permit" Change pursuant to this condition; and [See 1203(E)(1)(c)(i)b]
      - b. A list of any new Applicable Requirements which would apply as a result of the change; and [See 1203(E)(1)(c)(i)b.]
      - c. A list of any existing Applicable Requirements, which would cease to apply as a result of the change. [See 1203(E)(1)(c)(i)c]
    - 3. Permitee shall forward a copy of the application and notification to USEPA upon submitting it to the District. [See 1203(E)(1)(c)(i)a]
  - B. Permitee may make the proposed change upon receipt from the District of the Authority to Construct Permit or thirty (30) days after forwarding the copy of the notice and application to USEPA whichever occurs later. [See 1203(E)(1)(c)(i)a

and g]

- C. Permitee shall attach a copy of the Authority to Construct Permit and any subsequent Permit to Operate, which evidences the Off Permit Change to this Title V permit. [See 1203(E)(1)(c)(i)f]
- D. Permitee shall include each Off-Permit Change made during the term of the permit in any renewal application submitted pursuant to Rule 1202(B)(3)(b). [See 1203(E)(1)(c)(i)f]
- III. Other Requirements:
  - A. The provisions of Rule 1205 Modifications do not apply to an Off Permit Change made pursuant to this condition.
  - B. The provisions of Rule 1203(G) Permit Shield do not apply to an Off Permit Change made pursuant to this condition. [See 40 CFR 70.4(b)(i)(B)]

[Rule 1203(E)(1)(c)]

## PART VI Title IV Acid Rain Permit

Effective Dates:	December 5, 2016 to December 5, 2021
Issued to:	BLYTHE ENERGY, INC.
Plant Site Location:	385 N. Buck Blvd. Blythe, CA 92225
Type of Facility:	Combined Cycle Generation Facility
SIC Code:	4911 – Electric Power Generation
ORIS Code:	55295

## DESIGNATED REPRESENTATIVE

Name: Jason Allen

Title: Vice President of Operations - Power

## FACILITY CONTACT PERSONS

Name:	Bill Cotton
-------	-------------

Title: Plant General Manager

Name: Ramon Campos

Title: Compliance Manager

## ACID RAIN PERMIT CONTENTS

- PERMIT APPLICATION see page VI-46
   The owners and operators of the source must comply with the standard requirements and special provisions set forth in the application submitted for this source.
- Applicable Requirements

   a. SO2 allowance allocated under this permit and NOx requirements for each affected unit:

	12/5/16-12/5/21
SO2 allowances under Table 2 of 40 CFR Part 73	None
NOx limit, 40 CFR Part 76	none

## b. Standard Requirements

Citation	Requirement
40 CFR 72	Owner/Operator of Blythe Energy Project shall
Rule 1210	comply with all applicable provisions of 40 CFR 72, Permits Regulation (Title IV) and their Title
	IV permit application as indicated in this
	combined, Federal Operating Permit / Title IV
	Acid Rain Permit, Part VIII.
40 CFR 72	Owner / Operator shall comply with all listed
Rule 1210	compliance conditions contained within this Title
	IV Acid Rain Permit and associated Title V
	Permit.
40 CFR 70.6(a)(1)(ii)	Where an applicable requirement of the Act is
	more stringent than an applicable requirement
	of Title IV regulations, both provisions shall be
	incorporated into the permit and is enforceable
	by the Administrator.
Monitoring, 40 CFR Part 72, Section 72.9(b)	1) The owners and operators and, to the extent applicable, designated representative of each
	affected source and each affected unit at the
	source shall comply with the monitoring
	requirements as provided in part 75 of this
	chapter.
	(2) The emissions measurements recorded and
	reported in accordance with part 75 of this
	chapter shall be used to determine compliance
	by the source or unit, as appropriate, with the
	Acid Rain emissions limitations and emissions
	reduction requirements for sulfur dioxide and
	nitrogen oxides under the Acid Rain Program.
	(3) The requirements of part 75 of this chapter
	shall not affect the responsibility of the owners
	and operators to monitor emissions of other

November 18, 2017
pollutants or other emissions characteristics at
the unit under other applicable requirements of
the Act and other provisions of the operating
permit for the source.
The designated representative of an affected
source and each affected unit at the source
shall submit the reports and compliance
certifications required under the Acid Rain
-
Program, including those under subpart I of
this part and part 75 of this chapter.
(1) Unless otherwise provided, the owners and
operators of the source and each affected unit
at the source shall keep on site at the source
each of the following documents for a period
of 5 years from the date the document is
created. This period may be extended for
cause, at any time prior to the end of 5 years, in
writing by the Administrator or permitting
authority.
(i) The certificate of representation for
the designated representative for the
source and each affected unit at the
source and all documents that
demonstrate the truth of the statements
in the certificate of representation, in
accordance with §72.24; provided that
the certificate and documents shall be
retained on site at the source beyond
such 5-year period until such
documents are superseded because of
the submission of a new certificate of
representation changing the designated
representative.
(ii) All emissions monitoring
information, in accordance with part 75
-
of this chapter; provided that to the
extent that part 75 provides for a 3-year
period for recordkeeping, the 3-year
period shall apply.
(iii) Copies of all reports, compliance
certifications, and other submissions
and all records made or required under
the Acid Rain Program.

	(iv) Copies of all documents used to complete an Acid Rain permit application and any other submission under the Acid Rain Program or to demonstrate compliance with the requirements
Section 113(a) of the Clean Air Act	of the Acid Rain Program. Notwithstanding the testing requirements contained elsewhere in this combined Title IV / V Permit, any credible evidence may be used to establish violations, including but not limited to; reference test methods, engineering calculations, indirect estimates of emissions, CEMS data, and parametric monitoring data. Data need not be required to be collected in a Title V permit in order to be considered credible.

## 3) Statement of Basis

The Mojave Desert Air Quality Management District issues this permit pursuant to Regulation XII, Rule 1210 and Titles IV and V of the Clean Air Act. Questions or comments regarding this permit should be addressed to:

Brad Poiriez, Executive Director Mojave Desert Air Quality Management District 14306 Park Avenue Victorville, CA 92392 760-245-1661 760-245-2022 (fax)

This Acid Rain Permit applies to the following units:

MDAQMD	DESCRIPTION	BASIS
PERMIT		
NUMBER		
B007953	COMBUSTION TURBINE	40 CFR Part 72.6(a)(3)(i)
B007956	GENERATOR POWER	
	BLOCK (CT1)	
	DUCT BURNER UNIT 1	
B007954	COMBUSTION TURBINE	40 CFR Part 72.6(a)(3)(i)
B007956	GENERATOR POWER	
	BLOCK (CT2)	
	DUCT BURNER UNIT 2	

Comments, notes and justifications regarding this Acid Rain Program permit

- Pursuant to 40 CFR Part 72.6(a)(3)(i), the affected units specified above meet the 72.2 definition for a new utility unit and are subject to the acid rain permit requirements of 72.9(a). The affected units do not qualify for a new unit exemption pursuant to 40 CFR 72.7(b)(1) since each serves a generator with a nameplate capacity greater than 25 MW.
- The affected units specified above are not listed in table-2 of 40 CFR Part 73, therefore, the operator is not required to obtain SO2 allowances under the Acid Rain Program.
- This unit is not subject to the NOx requirements from 40 CFR Part 76 as this unit is not capable of firing on coal



United States Environmental Protection Agency Acid Rain Program

OMB No. 2060-0258 Approval expires 12/31/2021

## **Acid Rain Permit Application**

For more information, see instructions and 40 CFR 72.30 and 72.31.

This submission is: new revised if for ARP permit renewal

#### STEP 1

Identify the facility name, State, and plant (ORIS) code.

* 7	Blythe Energy Facility (Source) Name	CA	55295	
oue.	- denty (eduloe) Name	State	Plant Code	

#### STEP 2

Enter the unit ID# for every affected unit at the affected source in column "a."

a	b
Unit ID#	Unit Will Hold Allowances in Accordance with 40 CFR 72.9(c)(1)
1	Yes
2	Yes
	Yes

EPA Form 7610-16 (Revised 8-2019)

Facility (Source) Name (from STEP 1)

#### STEP 3

#### Permit Requirements

Read the standard requirements.

- (1) The designated representative of each affected source and each affected unit at the source shall: Submit a complete Acid Rain permit application (including a compliance plan) under 40 CFR (i) part 72 in accordance with the deadlines specified in 40 CFR 72.30; and
  - Submit in a timely manner any supplemental information that the permitting authority determines is necessary in order to review an Acid Rain permit application and issue or deny an Acid Rain permit;
- (2) The owners and operators of each affected source and each affected unit at the source shall:
  - () Operate the unit in compliance with a complete Acid Rain permit application or a superseding Acid Rain permit issued by the permitting authority; and
  - (ii) Have an Acid Rain Permit.

#### Monitoring Requirements

- (1) The owners and operators and, to the extent applicable, designated representative of each affected source and each affected unit at the source shall comply with the monitoring requirements as provided in 40 CFR part 75.
- (2) The emissions measurements recorded and reported in accordance with 40 CFR part 75 shall be used to determine compliance by the source or unit, as appropriate, with the Acid Rain emissions limitations and emissions reduction requirements for sulfur dioxide and nitrogen oxides under the Acid Rain Program.
- (3) The requirements of 40 CFR part 75 shall not affect the responsibility of the owners and operators to monitor emissions of other pollutants or other emissions characteristics at the unit under other applicable requirements of the Act and other provisions of the operating permit for the source.

#### Sulfur Dioxide Requirements

- (1) The owners and operators of each source and each affected unit at the source shall:
  - (i) Hold allowances, as of the allowance transfer deadline, in the source's compliance account (after deductions under 40 CFR 73.34(c)), not less than the total annual emissions of sulfur dioxide for the previous calendar year from the affected units at the source; and (ii) Comply with the applicable Acid Rain emissions limitations for sulfur dioxide.
- (2) Each ton of sulfur dioxide emitted in excess of the Acid Rain emissions limitations for sulfur dioxide shall constitute a separate violation of the Act.
- (3) An affected unit shall be subject to the requirements under paragraph (1) of the sulfur dioxide requirements as follows:
  - (i) Starting January 1, 2000, an affected unit under 40 CFR 72.6(a)(2); or
  - (ii) Starting on the later of January 1, 2000 or the deadline for monitor certification under 40 CFR part 75, an affected unit under 40 CFR 72.6(a)(3).
- (4) Allowances shall be held in, deducted from, or transferred among Allowance Tracking System accounts in accordance with the Acid Rain Program.
- (5) An allowance shall not be deducted in order to comply with the requirements under paragraph (1) of the sulfur dioxide requirements prior to the calendar year for which the allowance was allocated.
- (6) An allowance allocated by the Administrator under the Acid Rain Program is a limited authorization to emit sulfur dioxide in accordance with the Acid Rain Program. No provision of the Acid Rain Program, the Acid Rain permit application, the Acid Rain permit, or an exemption under 40 CFR 72.7 or 72.8 and no provision of law shall be construed to limit the authority of the United States to terminate or limit such authorization.
- (7) An allowance allocated by the Administrator under the Acid Rain Program does not constitute a property right.

#### Nitrogen Oxides Requirements

The owners and operators of the source and each affected unit at the source shall comply with the applicable Acid Rain emissions limitation for nitrogen oxides.

Blythe Energy

Facility (Source) Name (from STEP 1)

#### STEP 3, Cont'd.

#### Excess Emissions Requirements

- (1) The designated representative of an affected source that has excess emissions in any calendar year shall submit a proposed offset plan, as required under 40 CFR part 77.
- (2) The owners and operators of an affected source that has excess emissions in any calendar year shall:
  - Pay without demand the penalty required, and pay upon demand the interest on that penalty, as required by 40 CFR part 77; and
  - (ii) Comply with the terms of an approved offset plan, as required by 40 CFR part 77.

#### Recordkeeping and Reporting Requirements

- (1) Unless otherwise provided, the owners and operators of the source and each affected unit at the source shall keep on site at the source each of the following documents for a period of 5 years from the date the document is created. This period may be extended for cause, at any time prior to the end of 5 years, in writing by the Administrator or permitting authority:
  - (i) The certificate of representation for the designated representative for the source and each affected unit at the source and all documents that demonstrate the truth of the statements in the certificate of representation, in accordance with 40 CFR 72.24; provided that the certificate and documents shall be retained on site at the source beyond such 5-year period until such documents are superseded because of the submission of a new certificate of representation changing the designated representative;
  - (ii) All emissions monitoring information, in accordance with 40 CFR part 75, provided that to the extent that 40 CFR part 75 provides for a 3-year period for recordkeeping, the 3-year period shall apply.
  - (iii) Copies of all reports, compliance certifications, and other submissions and all records made or required under the Acid Rain Program; and,
  - (iv) Copies of all documents used to complete an Acid Rain permit application and any other submission under the Acid Rain Program or to demonstrate compliance with the requirements of the Acid Rain Program.
- (2) The designated representative of an affected source and each affected unit at the source shall submit the reports and compliance certifications required under the Acid Rain Program, including those under 40 CFR part 72 subpart I and 40 CFR part 75.

#### Liability

- (1) Any person who knowingly violates any requirement or prohibition of the Acid Rain Program, a complete Acid Rain permit application, an Acid Rain permit, or an exemption under 40 CFR 72.7 or 72.8, including any requirement for the payment of any penalty owed to the United States, shall be subject to enforcement pursuant to section 113(c) of the Act.
- (2) Any person who knowingly makes a false, material statement in any record, submission, or report under the Acid Rain Program shall be subject to criminal enforcement pursuant to section 113(c) of the Act and 18 U.S.C. 1001.
- (3) No permit revision shall excuse any violation of the requirements of the Acid Rain Program that occurs prior to the date that the revision takes effect.
- (4) Each affected source and each affected unit shall meet the requirements of the Acid Rain Program.
- (5) Any provision of the Acid Rain Program that applies to an affected source (including a provision applicable to the designated representative of an affected source) shall also apply to the owners and operators of such source and of the affected units at the source.
- (6) Any provision of the Acid Rain Program that applies to an affected unit (including a provision applicable to the designated representative of an affected unit) shall also apply to the owners and operators of such unit.
- (7) Each violation of a provision of 40 CFR parts 72, 73, 74, 75, 76, 77, and 78 by an affected source or affected unit, or by an owner or operator or designated representative of such source or unit, shall be a separate violation of the Act.

Blythe Energy	Blytl	ne	En	erg	1
---------------	-------	----	----	-----	---

Facility (Source) Name (from STEP 1)

#### STEP 3, Cont'd.

#### Effect on Other Authorities

No provision of the Acid Rain Program, an Acid Rain permit application, an Acid Rain permit, or an exemption under 40 CFR 72.7 or 72.8 shall be construed as:

- (1) Except as expressly provided in title IV of the Act, exempting or excluding the owners and operators and, to the extent applicable, the designated representative of an affected source or affected unit from compliance with any other provision of the Act, including the provisions of title I of the Act relating to applicable National Ambient Air Quality Standards or State Implementation Plans:
- (2) Limiting the number of allowances a source can hold; provided, that the number of allowances held by the source shall not affect the source's obligation to comply with any other provisions of the Act:
- (3) Requiring a change of any kind in any State law regulating electric utility rates and charges, affecting any State law regarding such State regulation, or limiting such State regulation, including any prudence review requirements under such State law;
- (4) Modifying the Federal Power Act or affecting the authority of the Federal Energy Regulatory Commission under the Federal Power Act; or,
- (5) Interfering with or impairing any program for competitive bidding for power supply in a State in which such program is established.

#### Certification

Read the certification statement, sign, and date.

STEP 4

I am authorized to make this submission on behalf of the owners and operators of the affected source or affected units for which the submission is made. I certify under penalty of law that I have personally examined, and am familiar with, the statements and information submitted in this document and all its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment.

# Name Andreas Mehlich

Signature

Date 06/02/2021

# SEPA Instructions for the Acid Rain Program Permit Application

The Acid Rain Program requires the designated representative to submit an Acid Rain permit application for each source with an affected unit. A complete Certificate of Representation must be received by EPA before the permit application is submitted to the Title V permitting authority. A complete Acid Rain permit application, once submitted, is binding on the owners and operators of the affected source and is enforceable in the absence of a permit until the Title V permitting authority either issues a permit to the source or disapproves the application.

Please type or print. If assistance is needed, contact the Title V permitting authority.

- STEP 1 A Plant Code is a 4 or 5 digit number assigned by the Department of Energy's (DOE) Energy Information Administration (EIA) to facilities that generate electricity. For older facilities, "Plant Code" is synonymous with "ORISPL" and "Facility" codes. If the facility generates electricity but no Plant Code has been assigned, or if there is uncertainty regarding what the Plant Code is, send an email to the EIA. The email address is <u>EIA-860@eia.gov</u>.
- STEP 2 In column "a," identify each unit at the facility by providing the appropriate unit identification number, consistent with the identifiers used in the Certificate of Representation and with submissions made to DOE and/or EIA. Do not list duct burners. For new units without identification numbers, owners and operators must assign identifiers consistent with EIA and DOE requirements. Each Acid Rain Program submission that includes the unit identification number(s) (e.g., Acid Rain permit applications, monitoring plans, quarterly reports, etc.) should reference those unit identification numbers in exactly the same way that they are referenced on the Certificate of Representation.

#### Submission Deadlines

For new units, an initial Acid Rain permit application must be submitted to the Title V permitting authority 24 months before the date the unit commences operation. Acid Rain permit renewal applications must be submitted at least 6 months in advance of the expiration of the acid rain portion of a Title V permit, or such longer time as provided for under the Title V permitting authority's operating permits regulation.

#### Submission Instructions

Submit this form to the appropriate Title V permitting authority. If you have questions regarding this form, contact your local, State, or EPA Regional Acid Rain contact, or call EPA's Clean Air Markets Hotline at (202) 343-9620.

#### Paperwork Burden Estimate

The public reporting and record keeping burden for this collection of information is estimated to average 8 hours per response. Burden means the total time, effort, or financial resources expended by persons to generate, maintain, retain, or disclose or provide information to or for a Federal agency. This includes the time needed to review instructions; develop, acquire, install, and utilize technology and systems for the purposes of collecting, validating, and verifying information, processing and maintaining information, and disclosing and providing information; adjust the existing ways to comply with any previously applicable instructions and requirements; train personnel to be able to respond to a collection of information; search data sources; complete and review the collection of information; and transmit or otherwise disclose the information. An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB control number.

Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including through the use of automated collection techniques to the Director, Collection Strategies Division, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Ave., NW., Washington, D.C. 20460. Include the OMB control number in any correspondence. **Do not send the completed form to this address.** 

## PART VII CONVENTIONS, ABREVIATIONS, DEFINITIONS

## A. <u>CONVENTIONS:</u>

The following referencing conventions are used in this federal operating permit:

40 CFR Part 60, Standards of Performance for New Stationary Sources (NSPS) 40 CFR Part 60, Appendix F, Quality Assurance Procedures 40 CFR Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAPS) 40 CFR Part 61, Subpart M, National Emission Standards for Asbestos 40 CFR Part 63--National Emission Standards For Hazardous Air Pollutants For Affected Source Categories 40 CFR Part 72, Permits Regulation (Acid Rain Program) 40 CFR Part 73, Sulfur Dioxide Allowance System 40 CFR Part 75, Continuous Emission Monitoring 40 CFR Part 75, Subpart D, Missing Data Substitution Procedures 40 CFR Part 75, Appendix B, Quality Assurance and Quality Control Procedures 40 CFR Part 75, Appendix C, Missing Data Estimating Procedures 40 CFR Part 75, Appendix D, Optional SO₂ Emissions Data Protocol 40 CFR Part 75, Appendix F, Conversion Procedures 40 CFR Part 75, Appendix G, Determination of CO₂ Emissions

## B. <u>OTHER CONVENTIONS</u>:

- 1. Unless otherwise noted, a "day" shall be considered a 24-hour period from midnight to midnight (i.e., calendar day).
- 2. The process unit identifications represent the District permit number designations. These numbers are not sequential. The use of District permit numbers provides continuity between the District and Federal Operating Permit systems.

## C. <u>ABBREVIATIONS</u>

Abbreviations used in this permit are as follows:

CFR	Code of Federal Regulations
APCO	Air Pollution Control Officer
bhp	brake horsepower
Btu	British thermal units
CCR	California Code of Regulations
CEMS	continuous emissions monitoring system
CO	carbon monoxide
$\rm CO_2$	carbon dioxide
District	Mojave Desert Air Quality Management District (formed July 1993)
MDAQMD	Mojave Desert Air Quality Management District (formed July 1993)

	November 18, 2
MD	Mojave Desert Air Quality Management District (formed July 1993)
SB	San Bernardino County APCD (1975 to formation of MDAQMD)
gr/dscf	grains per dry standard cubic foot
gpm	gallons per minute
gph	gallons per hour
hp	horse power
H&SC	California Health and Safety Code
lb	pounds
lb / hr	pounds per hour
lb / MM Btu	pounds per million British thermal units
MM Btu	million British thermal units
MM Btu/hr	million British thermal units per hour
MW	Megawatt electrical power
MW(e) net	net Megawatt electrical power
NH ₃	ammonia
NMOC	non-methane organic compounds
NO _x	oxides of nitrogen
NO ₂	nitrogen dioxide
O2	oxygen
pН	pH (acidity measure of solution)
PM10	particulate matter less than 10 microns aerodynamic diameter
ppmv	parts per million by volume
psig	pounds per square inch gauge pressure
QA	quality assurance
rpm	revolutions per minute
RVP	Reid vapor pressure
SCAQMD	South Coast Air Quality Management District
scfm	standard cubic feet per minute
scfh	standard cubic feet per hour
SIC	Standard Industrial Classification
SIP	State of California Implementation Plan
SO _x	oxides of sulfur
$SO_2$	sulfur dioxide
tpy	tons per year
TVP	true vapor pressure

## D. <u>MDAQMD RULE SIP HISTORY</u>

District Rule Number	District Rule Title	SIP Rule Version	SIP Citation	Federally Enforceable
203	Permit to Operate	1/7/77	Approved 11/9/78, 43 FR 52237, 40 CFR 52.220(c)(39)(ii)(B) and 40 CFR 52.220(c)(31)(vi)(C)	Y
204	Permit Conditions	1/9/76	Approved 11/9/78, 43 FR 52237, 40 CFR 52.220(c)(39)(ii)(B) and 40 CFR 52.220(c)(31)(vi)(C)	Y
206	Posting of Permit to Operate	1/9/76	Approved 11/9/78, 43 FR 52237, 40 CFR 52.220(c)(39)(ii)(B) and 40 CFR 52.220(c)(31)(vi)(C)	Y
207	Altering or Falsifying of Permit	1/9/76	Approved 11/09/78, 43 FR 52237, 40 CFR 52.220(c)(39)(ii)(B) and 52.220(c)(31)(vi)(C)	Y
209	Transfer and Voiding of Permit	1/9/76	Approved 11/9/78, 43 FR 52237, 40 CFR 52.220(c)(39)(ii)(B) and 40 CFR 52.220(c)(31)(vi)(C)	Y
217	Provision for Sampling And Testing Facilities	1/9/76	Approved 11/9/78, 43 FR 52237, 40 CFR 52.220(c)(39)(ii)(B) and 40 CFR 52.220(c)(31)(vi)(C)	Y
218	Stack Monitoring	7/25/79	Approved 9/28/81, 46 FR 47451,40 CFR 52.220(c)(65)(ii)	Y

SIP Rule Citations for Mojave Desert Air Quality Management District Rules

				1001 10, 2017
219	Equipment Not Requiring a Written Permit	6/6/77	Approved 11/9/78, 43 FR, 52237, 40 CFR 52.220(c)(31)(vi)(C), 40 CFR 52.220(c)(32)(iv)(C), and 40 CFR 52.220(c)(39)(ii)(B)	Y
221	Federal Operating Permit Requirement	12/21/94	Approved 2/5/96, 61 FR 4217, 40 CFR 52.220(c)(216)(i)(A)( 2)	Y
301	Permit Fees	Not in SIP	Applicable Version = Most current amendment, Applicable via Title V Program interim approval 02/05/96 61 FR 4217	Y
312	Fees for Federal Operating Permits	Not in SIP	Applicable Version = Amended: 12/21/94, Applicable via Title V Program interim approval 02/05/96 61 FR 4217	Y
401	Visible Emissions	7/25/1977	Approved 9/8/78, 43 FR 4001, 40 CFR 52.220(c)(39)(ii)(C)	Y
403	Fugitive Dust	7/25/1977	Approved 9/8/78, 43 FR 4001, 40 CFR 52.220(c)(39)(ii)(B)	Y

r			110 / 01	1001 10, 2017
403.2	Fugitive Dust Control for the Mojave Desert Planning Area	9/22/96	Approved 12/9/98, 63 FR 67784, 40 CFR 52.220(c)(194)(i)(H)( 1)	Y
404	Particulate Matter Concentratio n	7/25/77	Approved 12/21/78, 43 FR 59489, 40 CFR 52.220(c)(42)(xiii)(A)	Y
405	Solid Particulate Matter, Weight	7/25/77	Approved 12/21/78, 43 FR 59489, 40 CFR 52.220(c)(42)(xiii)(A) ; Approved 6/14/78, 43 FR 25684, 40 CFR 52.220(c)(32)(iv)(A)	Y
406	Specific Contaminants	7/25/1977 (sub divis ion (a))	Approved, 12/21/78, 43 FR 59489, 40 CFR 52.220(c)(42)(xiii)(A)	Y
407	Liquid and Gaseous Air Contaminants	5/7/76	Approved 9/8/78, 43 FR 40011; 40 CFR 52.220(c)(39)(ii)(C)	Y
408	Circumvention	5/7/76	Approved 9/8/78, 43 FR 40011; 40 CFR 52.220(c)(39)(ii)(C); Approved 6/14/78, 43 FR 25684, 40 CFR 52.220(c)(32)(iv)(A)	Y
409	Combustion Contaminants	5/7/76	Approved 9/8/78; 43 FR 40011; 40 CFR 52.220(c)(39)(ii)(C); Approved 6/14/78, 43 FR 25684, 40 CFR 52.220(c)(32)(iv)(A)	Y

				nber 18, 2017
430	Breakdown Provisions	Not in SIP	Applicable Version = Amended: 12/21/94, Applicable via Title V Program interim approval 02/05/96 61 FR 4217	Y
431	Sulfur Content of Fuels	10/8/1976	Approved 9/8/1978, 43 FR 40011, 40 CFR 52.220(c)(37)(i)(B) and 40 CFR 52.220(c)(39)(ii)(B)	Y
442	Usage of Solvents	2/27/06	Approved 09/17/2007, 72 FR 52791, 40 CFR 52.220(c)(347)(i)(C)( 1)	Y
900	Standards of Performance for New Stationary Sources	2/28/11	Delegated by USEPA	Y
1000	National Emissions Standards from Hazardous Air Pollutants	2/28/11	Delegated by USEPA	Y
1104	Organic Solvent Degreasing Operations	9/28/94	Approved: 4/30/96, 61 FR 18962, 40 CFR 52.220(c)(207)(I)(D)( 2)	Y
1113	Architectural Coatings	4/23/12	Approved: 1/03/14, 79 FR 364, 40 CFR 52.220(c)(428)(i)(C)	Y

1115	Metal Parts and Products Coating Operations	4/22/96	Approved 12/23/97, 62 FR 67002, 40 CFR 52.220(c)(239)(i)(A)( 2)	Y
1161	Cement Kilns	3/25/02	Approved 1/2/02, 67 FR 19, 40 CFR 52.220(c)(287)(i)(A)( 1)	Y
1302	NSR - Procedure	3/25/96	Approved 11/13/1996, 61 FR 58133, 40 CFR 52.220(c)(239)(i)(A)( 1)	Y
Regulation XII	Federal Operating Permits	1201- 1210 : 9/26/ 05 1200 & 1211 : 2/28/ 11	SIP: Not SIP. Final Title V Program Approval 11/21/03 68 FR 65637; Partial Withdrawal of approval 10/15/02 67 FR 63551; Notice of Deficiency 05/22/02 67 FR 35990; Approval 12/17/01 66 FR 63503; Interim Approval 02/05/96 61 FR 4217	

Final Determination/Decision - Statement of Basis Blythe Energy Project September 5, 2023 A-2

## Appendix B Public Notice

Noticing Methods include the following, per District Rule 1207 (A)(1)(a) and District Rule 1302(D)(2) and (3):

- Published in newspapers of general circulation *Riverside Press Enterprise* (Riverside County) and the *Daily Press* (San Bernardino County).
- Mailed and/or emailed to MDAQMD contact list of persons requesting notice of actions (see the contact list following the Public Notice in this Appendix.
- Posted on the MDAQMD Website at the following link: <u>https://www.mdaqmd.ca.gov/permitting/public-notices-advisories/public-notices-permitting</u>