DOCKETED	
Docket Number:	19-TRAN-02
Project Title:	Medium- and Heavy-Duty Zero-Emission Vehicles and Infrastructure
TN #:	258370
Document Title:	Presentation - Innovative Strategies for Accelerating MDHD Site Energization in POU Territories
Description:	Presentation slides that were presented at the Innovative Strategies for Accelerating MDHD Site Energization in POU Territories staff workshop on July 31, 2024.
Filer:	Michelle Vater
Organization:	California Energy Commission
Submitter Role:	Energy Commission
Submission Date:	8/7/2024 11:57:44 AM
Docketed Date:	8/7/2024

California Energy Commission

Innovative Strategies for Accelerating MDHD Site Energization in POU Service Territories July 31, 2024

- Meeting is being recorded
- Virtual participation possible through Zoom or telephone
- Meeting event webpage: <u>https://www.energy.ca.gov/event/workshop/2024-</u>07/workshop-innovative-strategies-accelerating-mdhd-site-energization-pou
- Docket location: <u>https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber=19-TRAN-02</u>
- Submit written comments to Docket 19-TRAN-02 and "Accelerating Medium- and Heavy-Duty Site Energization"

Deadline for comments: Tuesday, August 16, 2024, 5:00 P.M.

- Welcome and Housekeeping
- Overview of the Clean Transportation Program
- Projections of EV charger needs in POU service territories
- POU perspectives on charger deployment needs, trends in applications, and innovative approaches to swift energization
- Technology solutions to accelerate energization of large TE loads
- Case Study 9MW in 5 months Prologis, LADWP, and Mainspring Collaboration at Denker Avenue Microgrid
- Public comment
- Closing remarks/Next Steps

Overview of the Clean Transportation Program

July 31, 2024

Kate Reid, Air Resources Engineer Truck, Bus, and Goods Movement

California's Electric Vehicle Goals 2025 - 2045

2025

1.5 MILLION EV'S SOLD

INCLUDING 10,000 FAST CHARGERS

250,000 CHARGERS INSTALLED

200 OPEN HYDROGEN STATIONS

2035

100%

ELECTRIC SALES FOR NEW PASSENGER VEHICLES

ELECTRIC OPERATIONS

HEAVY-DUTY VEHICLES

FOR MEDIUM- AND

100%

5

2045

Z

100%

ELECTRIC OPERATIONS FOR DRAYAGE TRUCKS AND OFF-ROAD VEHICLES & EQUIPMENT

- Transportation pollution burdens vulnerable and disadvantaged communities most
- AB 118 (2007) created Clean Transportation Program
- Up to \$100 million per year
- AB 126 (2023) reauthorized through July 1, 2035

Three Ways CEC is Advancing the ZEV Transition

ZEV infrastructure planning and analysis

Regulations and charging standards

L	
40	

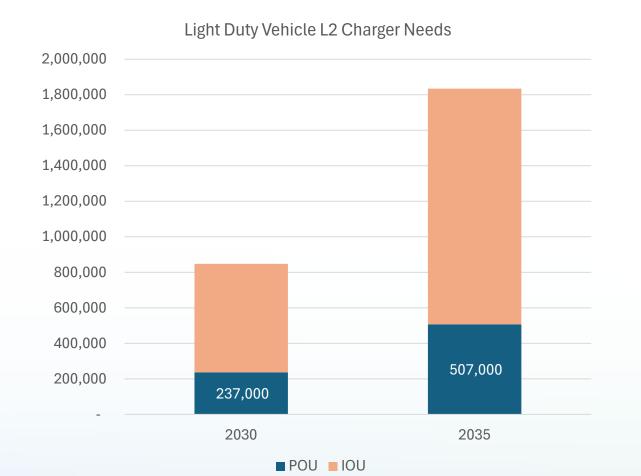
Funding programs for ZEV charging and refueling infrastructure, manufacturing, and workforce development

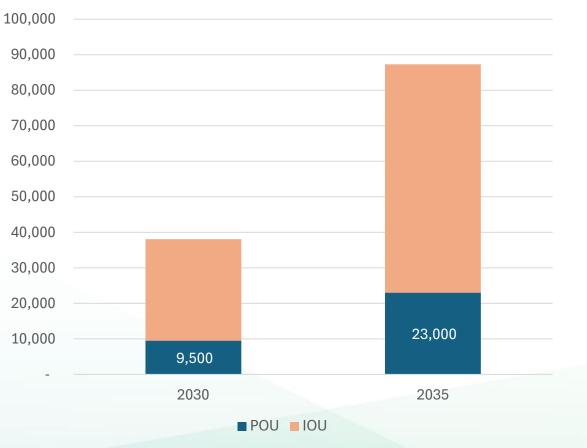
Photo credit: CEC

Projections of EV Charger Needs in POU Service Territories

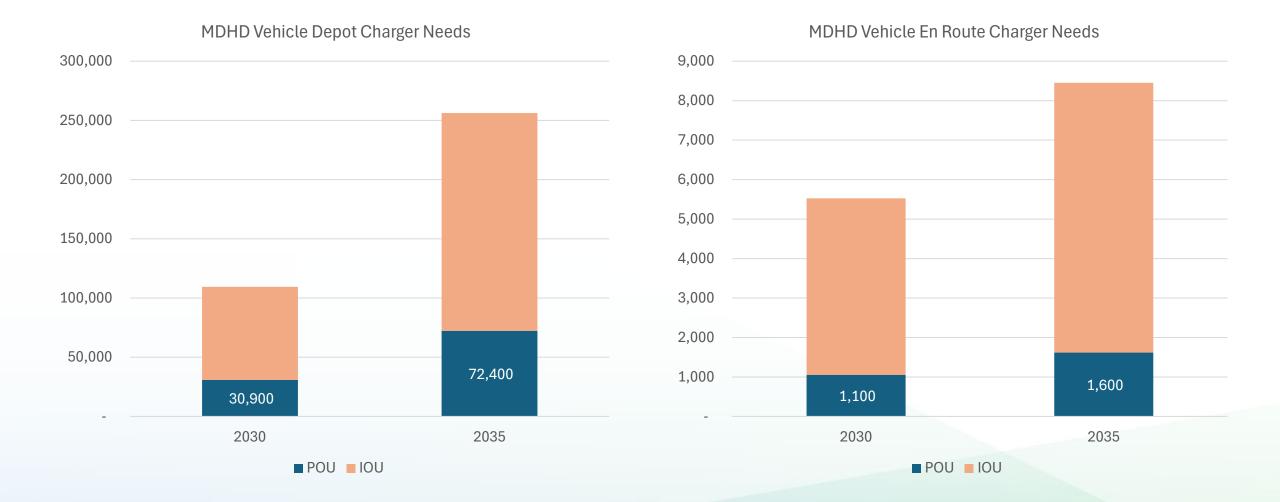
July 31, 2024

Adam Davis, Air Pollution Specialist Infrastructure Modeling and Assessment

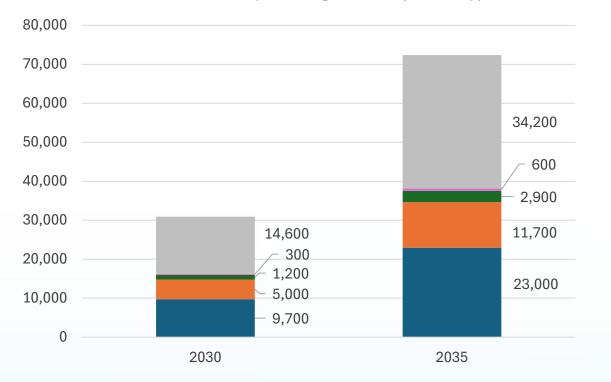

Source: CEC


• 2035: 100% ZEV light-duty sales

Source: CEC


- 2035: 100% ZEV operations for drayage trucks
- 2035: 100% ZEV off-road vehicles and equipment, where feasible
- 2045: 100% ZEV operations for medium- and heavy-duty vehicles, where feasible.

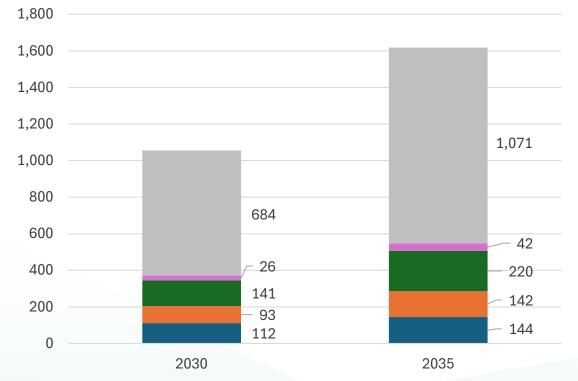
Light Duty Vehicle DC Charger Needs


Statewide infrastructure needs (MDHD)

11

MDHD Vehicle Depot Charger Needs (POU only)

Other POUs


Colton Electric Utility Department

Imperial Irrigation District

Sacramento Municipal Utility District

Los Angeles Department of Water & Power

MDHD Vehicle En Route Charger Needs (POU only)

Other POUs

Colton Electric Utility Department

Imperial Irrigation District

Sacramento Municipal Utility District

Los Angeles Department of Water & Power

We are currently developing the scenarios for the AB 2127 Third Electric Vehicle Charging Infrastructure Assessment

Please contact us if you would like data from the second assessment (including breakouts for your territories) or suggestions for the third assessment.

- Adam Davis <u>adam.davis@energy.ca.gov</u>
- Fuad Un-Noor <u>fuad.unnoor@energy.ca.gov</u>

Publicly Owned Utilities

Panel Discussion

POU Panel Participants

- Paul Rodriguez, Imperial Irrigation District
- Harry Marks, Sacramento Municipal Utility District
- Jessica Sutorus, City of Colton Electric Utility

POU Panel Discussion

- What trends are you seeing in applications for serving large EV charging sites such as medium- and heavy-duty truck depots?
- How long does it take to provide service to large multi-MW customers and what are the slowest steps in the process?
- Have applications to serve large EV charging deployments required larger capacity projects to serve them?
 - If additional larger capacity projects are needed, how much time does this/could this add to a project?
- Have you used or considered temporary power solutions or flexible connections to energize sites while permanent infrastructure is constructed?
- Do you feel that you have a good estimate of how many chargers you will need in your region by 2025, 2030, and beyond to serve MDHD vehicles?
- What are the technical, policy, or procedural barriers to use of temporary power, flexible service agreements, or other innovative bridging solutions?
 - How can CA state agencies help you energize projects sooner?
 - What should the CEC consider modifying in our funding programs to help support temporary power solutions or flexible connections options by MDHD site hosts?

POU Panel Participants

- Paul Rodriguez, Imperial Irrigation District
- Harry Marks, Sacramento Municipal Utility District
- Jessica Sutorus, City of Colton Electric Utility

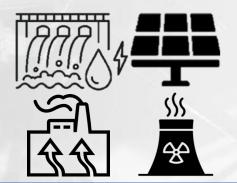
Imperial Irrigation District

CEC: Innovative Strategies for Accelerating MDHD Site Energization in POU Territories

Paul Rodriguez, P.E. Deputy Manager Power Department July 31, 2024

Background

The Imperial Irrigation District (IID) was established in 1911 and entered the power business in 1936. Serving Imperial and Coachella Valleys and a small portion of San Diego County, IID has a service area of **6,471 square miles with over 161,000** residential and commercial customers.



Service Territory

- Historic peak: **1,152MW**Average load: **410MW**
- Transmission Lines: **1,780mi**
- Voltage:230,161,92,34.5 kV
- Six Interconnecting lines: 1-230kV SDG&E; 2-230kV SCE; 2-161kV WAPA; 1-161kV APS
 Distribution Lines: 5,004 mi
 Voltage:13.2kV
 Distribution Substations: 67

- Divers Resource portfolio: Connected Generation Capacity of over 2,200MW
 - Hydro, Geothermal, Solar, Nuclear, Biomass and Thermal Units

Over **132MW** of rooftop solar and **140MWh** or Grid Battery Storage.

20

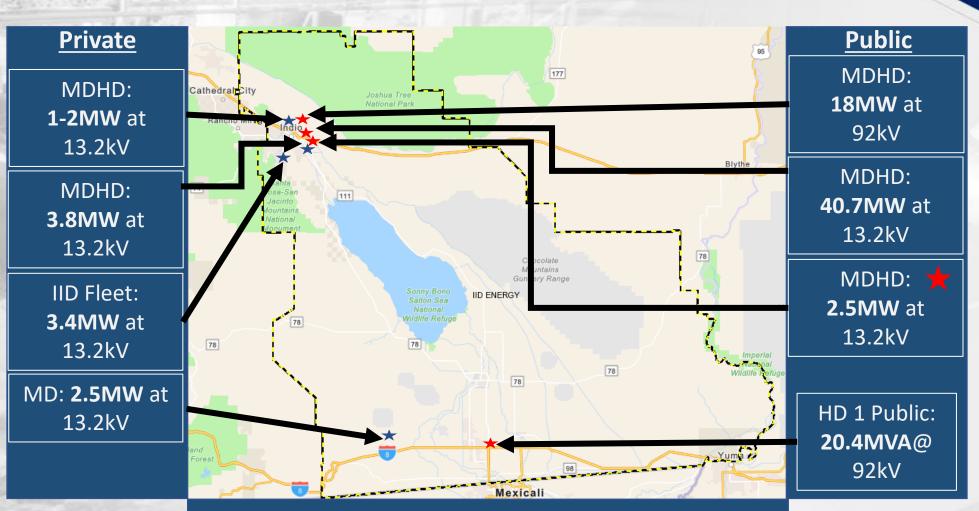
Corridors for MDHD Sites

- Two major interstates run through IID's service territory the I-8 and I-10
- The Imperial County freight highway system enables goods to move from the international border with Mexico through the Calexico West and Calexico East POEs.
 - The Coachella Valley has the I-10 corridor that connect long beach port and Inland Empire hubs to the greater

Phoenix area.

Freight Range

Model	Range miles (mi)	Charging Time minutes (mn)	Battery Capacity kilowatt hour (kWh)
Kenworth T680E	150 mi	125mn (80%)	396 kWh
Peterbilt 579EV	150 mi	120mn (90%)	400 kWh
Freightliner eCascadia	150-230 mi	90mn (80%)	291 - 438 kWh
Volvo VNR Electric	275 mi	90mn (80%)	565 kWh
Nikola Tre BEV	330 mi	160mn (80%)	733 kWh
Tesla Semi	500 mi	30mn (70%)	500 - 1,000 kWh
	1000		2


WWW.IID.COM

1070

Interconnection Request

century of service

23

Increase of 93MW
Equivalent to 23% of IID current average load

WWW.IID.COM

Grid Constraints

- Distribution substations have reached full capacity.
- MDHD Charging stations required locations near major freight routs.

Operational Complexity

- The unknown load profiles for these charging stations complicate the timeof-use structure.
- Exploring connecting directly to 161kV voltage class for distribution substations.

Construction of distribution substations has significantly increase in the last 4 years.

WWW.IID.COM

Distributions transformers and breakers have doubled in cost

MDHD Electrification Challenges for IID

Equipment Lead Times

- In the past years Breaker lead times have gone from 12 wks to 110-204wks
- Transformers from 26wks to 54-130wks
- Customers are struggling with switchgear procurement

Equipment Regulation

CARB action to phaseout SF6 complicates building of new substations. Alternate equipment cost 3 times more.

Electrification of IID fleet is extremely challenging. Specifically Heavy equipment (lineman trucks)

Overall Capital Risk

Given the challenges with current EV charging vehicles the possibility of stranded assets is a true risk for POUs.

Large investment in infrastructure without expected energy usage can create 4 financial hardships on POUs

Solutions

Joint Powers Authority (JPA)

- In collaboration with the City of Indio, a JPA was formed to fund the construction of new electrical infrastructure in the city of Indio
- This will address substation capacity issues and facilitate the desired growth within the city.

Energy Infrastructure Partnership

- The partnership is open to public and private entities seeking will-serve letters for areas that have exceeded distribution capacity.
- Pro-rata approach for allocating capacity and costs for new distribution substations.

Planned changes to Engineering Criteria

- Substation Criteria to accommodate 40-50MVA Banks
- Larger conductor and cable for substation getaways
- Procuring outside USA for long lead equipment (xfrm/Breakers)

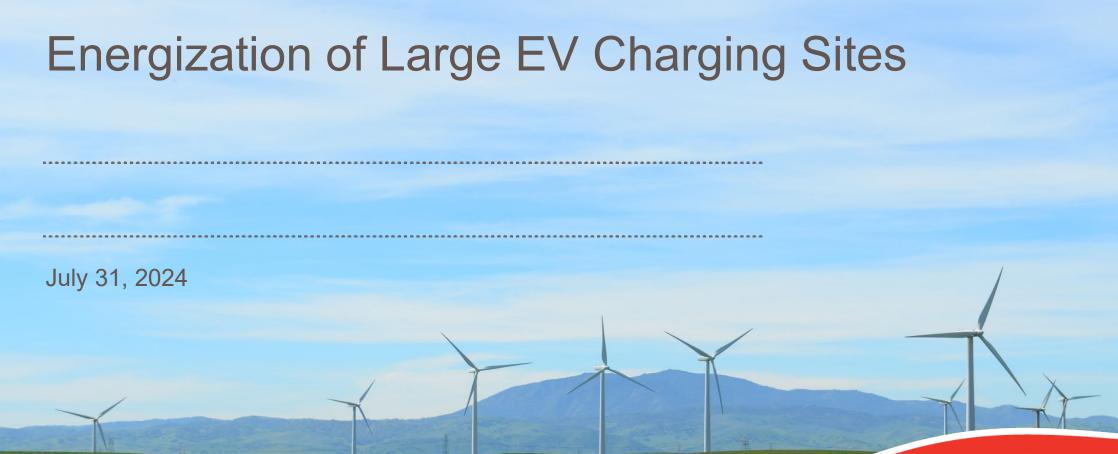
Solutions Cont.

- Several customers have explored microgrid solutions to address capacity issues.
- A notable example of a successful microgrid deployment is Imperial Western Products (IWP).
 - IWP is located in the city of Coachella
 - The project offset 1.2 MW from a distribution circuit freeing capacity

Electrification Workshops

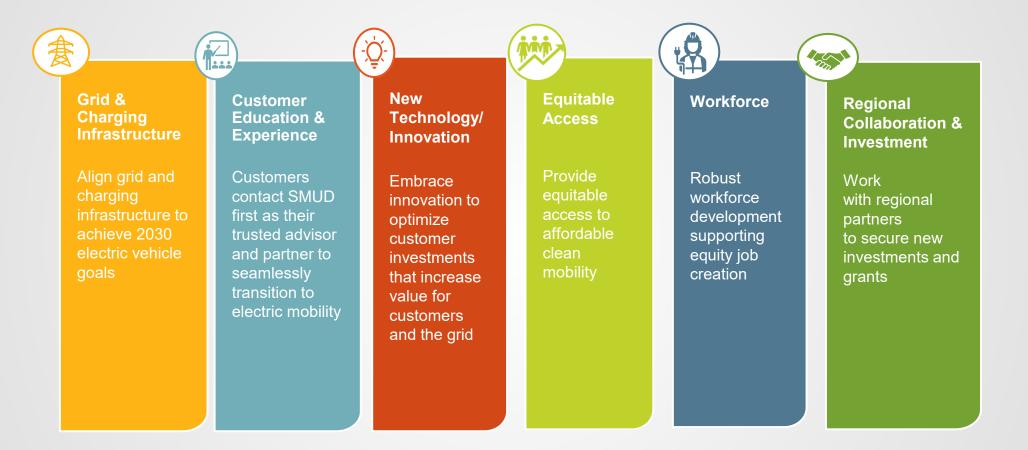
- IID has hosted two electrification workshops, inviting cities, counties, school districts, and the general public to learn about the challenges and initiatives IID is undertaking to prepare for the electrification of vehicles and homes.
- IID emphasizes the importance of early planning and outreach to our customer service department to initiate applications and studies for increased loads.

Grant Funding

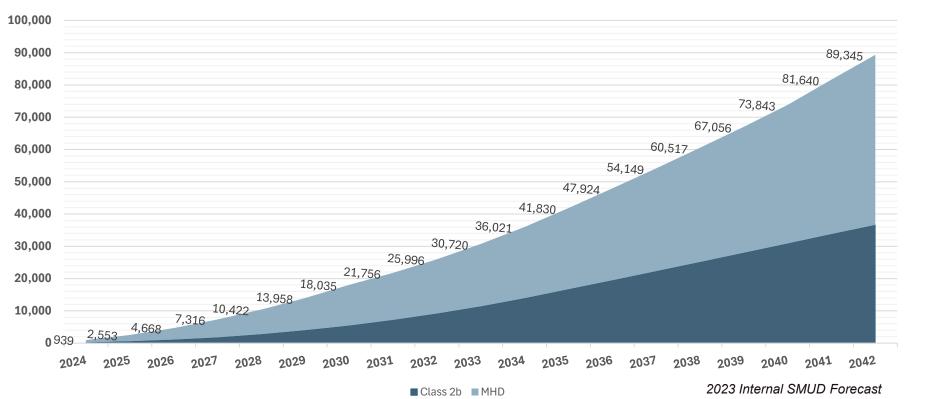

- IID is actively pursuing grants to support grid electrification
- Most recent grant is for the boarder region via the EPA Climate Pollution Reduction Grant.
- This funding can potentially aid in developing fueling infrastructure, including substations.

POU Panel Participants

- Paul Rodriguez, Imperial Irrigation District
- Harry Marks, Sacramento Municipal Utility District
- Jessica Sutorus, City of Colton Electric Utility

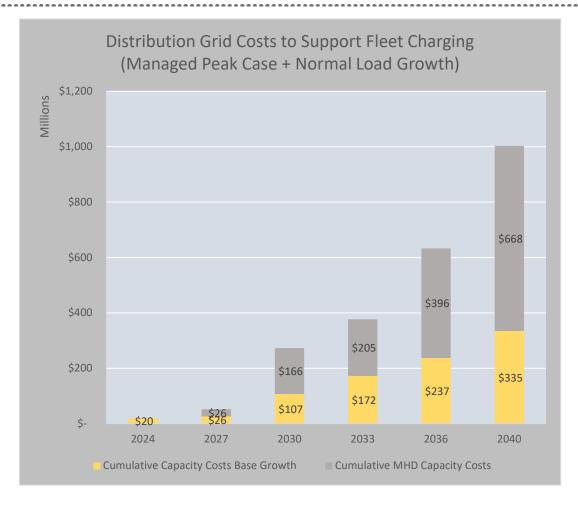

Powering forward. Together.

SMUD's Zero Carbon Plan: A flexible road map



Electric Vehicle Strategy – 6 Objectives

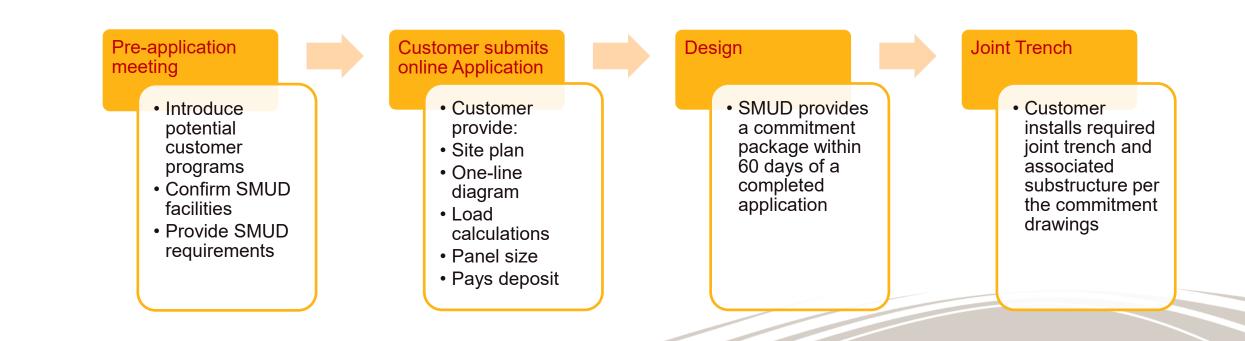
MDHD EV Forecast



MDHD Forecast: Class 2b & MDHD

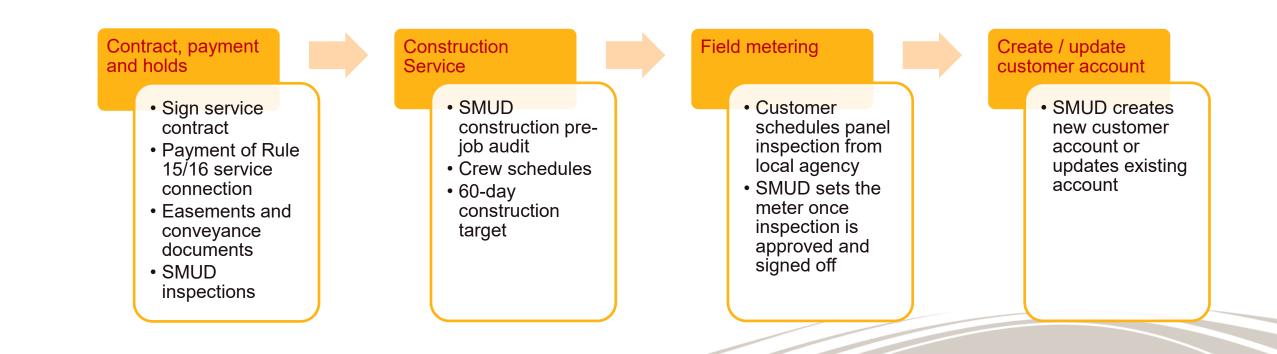
• Forecast aligned to ACF compliance deadlines

Fleet System Impact Costs



- Load growth
 associated with fleet
 charging (under a
 managed charging
 scenario) increased
 SMUD capacity
 infrastructure costs by
 \$670 million
- Only a few active new business requests for fleet charging but expecting an increase over the next five years

New Business Process


(New service request or upgrade of existing service)

New Business Process

(New service request or upgrade of existing service)

General Project Timelines

New service requests < 3 MW demand load

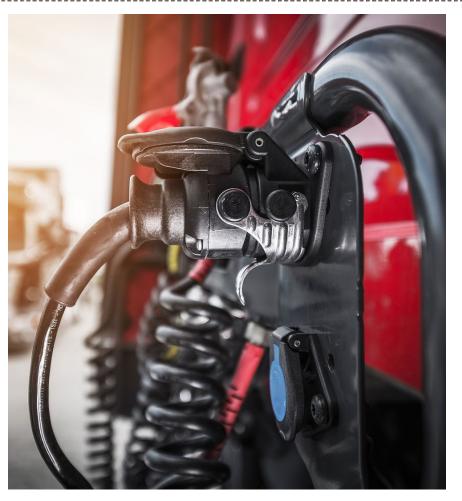
- 4 6 months on average, after completed application, for SMUD's work
- Overall timeline depends on customer achievement of milestones

New service requests > 3 MW demand load

- Requires engineering review to determine if load can be served by local distribution or sub-transmission
- If circuit or substation upgrades required, 2 4 years to complete land acquisition, design, procurement of major equipment, and construction

Flexible Connections

- Short-term operating agreements that limit charging during certain hours and times of year until capacity upgrades are complete
- Dynamic system controls that maximize charging based on current system conditions and loading
- Utilize BES with control systems


Large EV charging projects

Heavy Duty EV Charging station

- 29 MW of demand load
- 13.2 MW of DER
- Customer constructing dedicated substation and taking 69 kV subtransmission service
- Project schedule SND summer of 2025

MDHD rental fleet charging facility

- Customer requested service max demand of 3 MW
- Substation project required with in service date of summer 2026
- Customer agreed to short-term
 agreement to limit charging during off peak hours



POU Panel Participants

- Paul Rodriguez, Imperial Irrigation District
- Harry Marks, Sacramento Municipal Utility District
- Jessica Sutorus, City of Colton Electric Utility

COLTON CIVIC CENTER Your Neighborhood. Your City. Your Power.

Colton Electric Utility (CEU) Introduction

Population-56,000 Service Area- 16 sq. miles 16,000 - Residential Customers 2700-**Commercial Customers** 95 MW Peak

Colton is located along Interstate 10 in Southern California, about 60 miles east of Los Angeles.

TRENDS in applications for large EV charging sites such as medium and heavy-duty truck depots

CEUs experience: 2 service requests YTD

- 1-Developer has completed zoning change amendments to build before doing a capacity study with the utility.
- Distribution Studies are required because the distribution system was designed for the original land use zoning.
- Developers will market the project and contact every elected official before they even have a will-serve letter from the utility

How long does it take to provide service to large multi-MW customers and what are the slowest steps in the process?

- If the capacity is available, the process for approval/permits can be completed within 2-3 months if the design and equipment specified meet all the requirements as outlined in CEU's rules and regulations.
- If not available project must be phased over 1-2 years
- The slowest step in the process is the final installation because of the availability of equipment from the customer side.

Do applications to serve large EV charging deployments require larger capacity projects to serve them? If additional larger capacity projects are needed, how much time does this/could this add to a project?

-14MW available capacity 4MW

Greenlane announced its new EV truck charging corridor along Interstate 15 in California. Courtesy of Greenlane

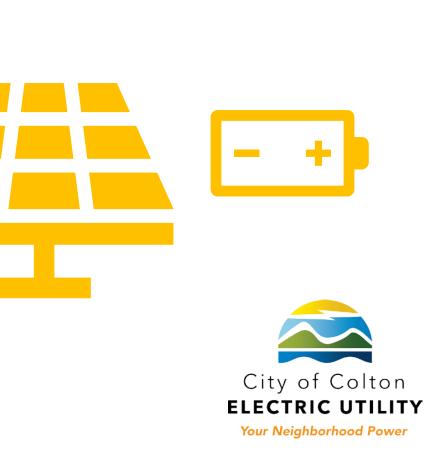
Have you used or considered temporary power solutions or flexible connections to energize sites while permanent infrastructure is constructed?

Hybrid

• CEU will phase the project development

Do you feel that you have a good estimate of how many chargers you will need in your region by 2025, 2030, and beyond to serve MDHD vehicles?

-No


What are the technical, policy, or procedural barriers to use of temporary power, flexible service agreements, or other innovative bridging solutions?

How can CA state agencies help you energize projects sooner?

Provide technical assistance for smaller utilities who do not have experience with projects this large.

• What should the CEC consider modifying in our funding programs to help support temporary power solutions or flexible connection options by MDHD site hosts?

Assist with the impacts of adding distributed generation to the project if the smaller utility is not AMI. In many cases, small utilities do not have advanced billing capabilities. The programming of a CIS system to allow this distributed generation can cause 3-6 months of project delays.

Jessica Sutorus, a a a a a a a a a **Environmental Conservation Supervisor for the City of Colton Electric Utility** (909) 370-5561 sutorus@coltonca.gov

Technology Solutions

Panel Discussion

Technology Solutions Participants

- Vipul Gore, Gridscape Solutions
- Emil Youssefzadeh, WattEV
- Drew Felker, Critical Loop

Innovative Solutions Panel Discussion

- Provide an overview of your solution and how it can help power EV charging while permeant utility service is completed.
- What are you hearing from large EV charging customers and what projects or deployments do you have planned or ongoing?
- What are the biggest technical, policy, or procedural challenges to deploying these innovative solutions?
- What recommendations do you have for addressing the barriers?

Technology Solutions Participants

- Vipul Gore, Gridscape Solutions
- Emil Youssefzadeh, WattEV
- Drew Felker, Critical Loop

Microgrids & EV Fleet Charging Resilience Hubs

Vipul Gore President & CE0 07/31/2024

EV Charging Hub Infrastructure

- Local Sustainable Power plant (Solar Microgrid) to deliver power to EV Chargers
- DC fast Chargers to Charge Zero Emission EV vehicles

Develop a model for to transition away from fossil fuel to clean energy.

Objective:

Start charging for 26 Evs with a local sustainable power plant.

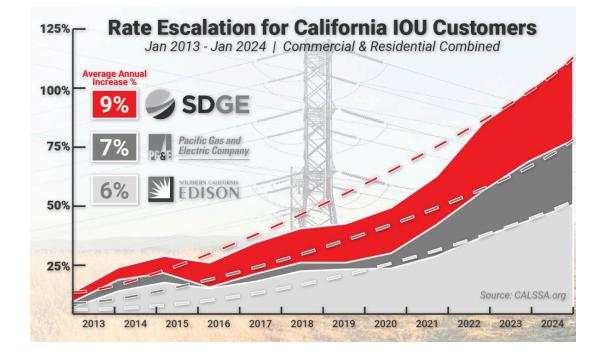
The Background

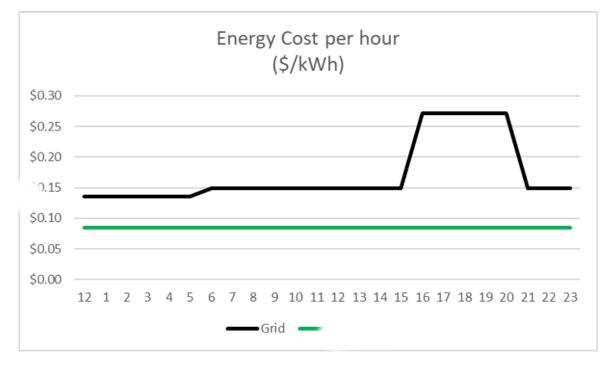
Problem:

- As EV adoption booms, deploying charging infrastructure that supports electric cars remains a challenge.
- The significant load growth from an EV fleet can potentially exceed the capacity of the local infrastructure, leading to capital-intensive upgrades on customer side of meter and on the distribution network or impact charging timings.
- Without an EV charging load management strategy, electrification of cars could mean a new rate class, leading to higher demand charges and on-peak volumetric bill impacts.

Solution:

11111


- This is where a local sustainable power plant helps overcome these barriers to adoption.
- Local Power Plants streamline the deployment of charging infrastructure while lowering energy costs, reducing carbon emissions and 24x7 availability.



Utility Energy Costs Increase Each Year

Utility Rates Fluctuate Throughout the Day

Why Solar Microgrid for Power- In a nutshell

• Cost-Effective

- ✓ Known yearly cost of escalation
- Lower cost than Utility (ROI less than 10 years)

- Locally sourced sustainable energy
 Meet Climate action goals.
- Model for complete transition away from Fossil fuel and resiliency (important for meeting Company Climate Action goals)

Need for Local Sustainable Power Plant

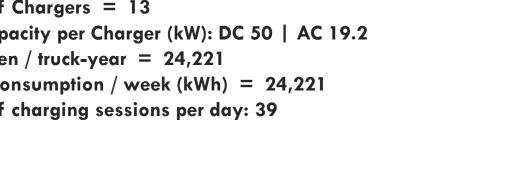
Dynamic EV Charging Load Management on AC side

- EV cars charging creates huge demand loads.
 - If this is not carefully managed locally, the utility will impose huge demand charges.
 - On Plug-out, large renewable power can suddenly be exported to the grid, & the utility transformer risks overload.
 - Scheduled Smart Solar & Battery EV Charging ---- when TOU rates are expensive.
 - Enables a Plan to Schedule EV charging with best economic optimization.

EV charger/dispenser DC load Management

- Different DC connectors/dispensers can impose imbalance on the DC side when multiple EVs are connected.
- Multiplexing

Future-proofing EV Fleet Charging with V2G/V2B technology


- \bullet Most of the EVs will be enabled for bidirectional V2G/V2B technology.
- \bullet Select a system that's V2G/V2B technology & integrated with microgrid.

EV Charging Hub Design Concept

- PV Size: 777 kW Ο
- **BESS/ Microgrid Size (Large):** 900 Ο kWh
- Number of chargers: 13 Ο
- Number of EVs = 260
 - EV capacity (kWh): 100-200 0
- Number of Chargers = 13 0
 - Capacity per Charger (kW): DC 50 | AC 19.2 0
- Miles driven / truck-year = 24,2210
- Average consumption / week (kWh) = 24,2210
- Number of charging sessions per day: 39 0

Local Power Plant Cost- Benefit Analysis

A.L.D

Auto Dealers		
Interval Data	Evsim	
Tariff	BEV-2-5	
Additional Comments	PGE-NEM3, 04.01.24	
Meter ID		
Option Name	auto	
Annual Site Load (kWh)	1,259,514	
Annual Load Factor		
PV & BESS		
Existing PV (kW)	(
Rooftop PV (kW)	772	
Carport PV (kW)	(
Ground Mount PV (kW)	(
Total New PV (kW)	77	
Total Solar Size (kW)	77	
Total Solar Production (kWh)	1,261,647	
Solar Offset	100%	
BESS Size (kWh)	900	
Resiliency Allocation (kWh)	90	
Peak/Cost Shaving Allocation (kWh)	810	
Cost Avoidance		
Energy Costs	\$375,546	
Demand Costs	\$(
Annual Bill Before MG (2026)	\$375,540	
Energy Costs	\$101,35	
Demand Costs	\$0	
Annual Bill After MG (2026)	\$101,355	
Utility Cost Avoidance (2026)	\$274,19	
Cost Offset	73.09	
Resilience		
Maximum Resiliency Hours	96.25	
Average Resiliency Hours		
Minimum Resiliency Hours		
Critical Load (%)	10%	

333

Project Cost	
PV Cost	\$3,205,125
Rooftop PV cost	\$2,913,750
Carport PV cost	\$0
Ground Mount PV cost	\$0
Estimated Installation cost	\$0
Project Management	\$291,375
BESS Cost	\$1,339,195
BESS System Costs (not including tax)	\$769,500
Resiliency	\$85,500
Total BESS Equipment Cost	\$855,000
BESS System Tax	\$76,950
BESS System Delivery	\$85,500
Estimated Installation cost	\$100,000
Commission and Testing	\$100,000
Project Management	\$121,745
EV Costs	\$114,000
Additional Costs	\$100,000
Additional Infrastructure costs	\$100,000
Additional Trenching costs	\$0
Additional Project Management	\$0
Equipment and Services Total	
Total Project Cost	\$4,758,320
Estimated Incentives	
Sales Tax Refund	\$0
ITC (30%)	\$1,427,496
Total Incentive	\$1,427,496
Effective Cost	\$3,330,824
System OAM (Annual)	\$14,000
Solar OAM (Annual)	\$11,655
Net Utility Cost Avoidance (2026)	\$248,536

Option Name	autoD
Tariff	BEV-2-S
Annual Site load (kWh)	1,259,514
Total Solar Size (kW)	777
Total Solar Production (kWh)	1,261,647
Solar Offset	100%
BESS Size (kWh)	900
Resiliency Allocation (kWh)	90
Peak/Cost Shaving Allocation (kWh)	810
Utility Cost Avoidance (2026)	
Energy Costs	\$375,546
Demand Costs	\$0
Annual Bill before MG	\$375,546
Energy Costs	\$101,355
Demand Costs	\$0
Annual Bill After MG	\$101,355
Utility Cost Avoidance (2026)	\$274,191
Cost Offset	73%
Average Resiliency Hours	23.77
Critical Load (%)	10%
Project Cost	
PV Costs	\$3,205,125
BESS Costs	\$1,339,195
EV Costs	\$114,000
Additional Costs	\$100,000
Project Total	\$4,758,320
Net Savings (25 years) Effective Cost	\$12,219,384
	3,330,824
Incentives	\$1,427,496
ITC (30%) Total Incentive	\$1,427,496
Annual OAM	\$25,655
System OAM	\$14,000
Solar OAM (doesn't include cleaning)	\$14,000
25 Years Cash Purchase Term	<i>Ş11,033</i>
Year 1 cash flow	\$274,191
Cumulative Cash Flow (25 years)	\$7,818,197
cumulative cash now (25 years)	<i>\$1,</i> 010,137
Option Name	autoD
Total Solar Size (KW)	777
BESS Size (kWh)	900
Project Cost	\$4,758,320
Utility Net Savings (25 years)	\$12,219,384
Year 1 Cash Flow	\$274,191
	<i>\\\\\\\\\\\\\</i>

About Gridscape

- Largest small to midsize locally sustainable Power Plant (microgrid) Developer and Technology Provider for Sites and/or Fleet EV Charging.
- Product Centric Approach (vs Project Centric Methodology) for scalability.
- Software driven
 - No Technology obsolescence
 - ✓ Dynamically configurable (change operational mode on-demand)

Full Energy Management including demand charge reduction, TOU arbitrage, resiliency, & grid services.

Multi-site Interconnected network of local power plants.

Experience with interconnection agreements: PG&E, SCE, SDG&E, SMUD

60+ microgrids contracted or Deployed in 5 years

Gridscape Fleet EV Microgrid Solutions

- Local renewable power generation with Solar PV Carports and/or other sources (Wind, Fuel Cells, etc.).
- Right-sized Microgrid BESS system to offset 100% energy and local resiliency needs.
- Dynamic, Al software-driven on-grid/off-grid operations to maximize energy savings, renewable self-generation and resilience.
- Smart Al-based Dynamic Load Management to reduce huge utility demand charges and utility transformer overloads for sudden load changes (plug-in/plug-out of electric buses).
- V2B/V2G integrated system to maximize ancillary grid service revenue and secondary energy backup.

Technology Overview:

Gridscape is a pioneering renewable energy management system. Gridscape Microgrid, comprises of distinct hardware and software elements.

Hardware component

- Vertically Integrated System: Designed and manufactured inhouse for seamless compatibility and optimal performance.
- Scalable Deployment: Ensures flexibility and efficiency in implementing renewable energy solutions.
- Future-Proof Design: Enables easy upgrades with evolving technology without compromising quality or integration.

Software component

- EnergyScope: Al and ML-driven software powers the vertically integrated system. It provides real-time data visualization and intelligent management.
- Distributed Energy Resource Management: Empowers efficient utilization and coordination of renewable resources for maximum effectiveness.

<u>The Synergy</u>

- Hardware: Facilitates costeffective deployment and smooth integration.
- Software: Enhances operational efficiency and enables dynamic energy management.
- Together: Gridscape Microgrid offers a sustainable, adaptable solution for the future of energy management.

Gridscape Integrated Microgrid: Innovations

Hardware Innovations:

- 1. Microgrid Box Hardware:
- Vertically Integrated & Modular Design
- Scalable from 75 kWh to 9.1 MWh
- Built-in BMS for Future Battery Packs
- Over-the-Air Software Updates
- Standardized Installation & Maintenance
- 2. Commercial Smart Service Panel:
- Plug-and-Play Solution
- Coordination of Microgrids & BESS Systems
- Significant Cost & Time Savings
- Extended Battery Lifetime
- 3. Multi-Vehicle V2B Charging Platform:
- Enhances Microgrid Resilience
- Utilizes EVs for VPP Grid Services

Software Innovations:

- 1. EnergyScope DERMS:
- AI/ML-based Energy Management
- Real-time Visualization
- Seamless On/Off-Grid Transition
- Automatic Load Shedding

2. Gridscape VPP Grid Service:

- Integration with VPP Grid Services
- Enables Revenue Generation
- FERC 2222 Compliance

Current Projects in Contract or Deployed

		Solar Size	Microgrid BESS		
Site Name	Number of	301a1 312e	Size	Utility	Status
	Microgrids	kW	kWh	,	
Ava Community Energy (City of					
Hayward, Fremont, Berkeley, San	61	10,000	20.000		Design Phase, Expected
Leandro, Pleasanton, Oakland,	61	10,000	20,000	PG&E	Operation Q2, 2026
Livermore, and Emeryville)					
Bay Area, CA Town of San Anselmo Solar and					
BESS Microgrid	1	94	225	PG&E	Design Phase, Expected
San Anselmo, CA	-	54	225	1 GOL	Operation Q2, 2025
Placer County Office of Education					Desire Disease Francesteri
Solar PV and EVSE	1	235	-	PG&E	Design Phase, Expected
Rocklin, CA					Operation Q1, 2025
Kern Valley High School	1	418	975	SCE	Design Phase, Expected
Lake Isabella, CA	1	410	375	SCE	Operation Q2, 2025
San Jose City Community College					Design Phase, Expected
Campus-wide Microgrid	1	1,440	2,600	PG&E	Operation Q1, 2025
San Jose, CA					
Chabot Community College					Permitting Process,
Campus-wide Microgrid	1	1,060	3,000	PG&E	Expected Operation Q4,
Hayward, CA					2024
Lancaster Community Microgrid					
(3 Schools + 2 Residential	5	2,500	3,750	SCE	Design Phase, Expected
Communities)					Operation Q4, 2024
Lancaster, CA					Descritting Drosoco
City of San Diego		000	2 250	CDCE	Permitting Process,
(8) Critical Facilities	8	980	2,250	SDGE	Expected Operation Q4,
San Diego, CA					2024 Construction
City of Fontana	5	1,418	1,560	SCE	Completed, Expected
(5) Critical Facilities Fontana, CA	5	1,410	1,500	JCL	Operation Q3, 2024
City of Hayward					Operation Q3, 2024
Fire Station 6	1	225	240	PG&E	Operational
Hayward, CA	-	225	2.10		operational
Imperial Western Products (IWP)	1	842	1 200	110	Operational
Coachella, CA	1	842	1,300	IID	Operational
Holiday Inn Hotels (2)	2	740	480	PG&E	Operational
Milpitas, CA		, 40	-00		
San Pasqual Band of Mission					
Indians	1	180	480	SDGE	Operational
Community Microgrid					
San Diego County, CA SMUD Microgrid & EV Charging					
Infrastructure	1	60	112	SMUD	Operational
Sacramento, CA	1	50	112	500	operational
City of Fremont					
(3) Fire Stations	3	122	360	PG&E	Operational
Fremont CA					
Affordable Housing Units	2	248	480	SCE	Operational
Willowbrook, CA	2	240	400	JUL	operational
American Red Cross	1	62	60	PG&E	Operational
San Leandro, CA	00	20.624	37 073		
Total	96	20,624	37,872		

Testimonials

"The City of Fremont's collaboration with local company Gridscape Technologies is a textbook example of a

beneficial public/private partnership. Gridscape's vision of piloting solar-battery microgrids at critical

municipal facilities to showcase the company's technology dovetailed with the City's goals of reducing

emissions, lowering utility bills, and bolstering resiliency. Gridscape secured State funding and worked closely

with City staff to develop the necessary contracts, to secure permits, and to construct and put the microgrids in service without adversely impacting Fire Department operations. We are pleased to have been able to showcase the cutting-edge technology of a local firm while also securing many benefits for City operations and the community."

- Mayor Lily Mei, City of Fremont

"We're excited to partner with Gridscape on our Resilient Critical Facilities microgrid portfolio to deliver a more resilient and sustainable energy future. With their strong commitment to clean energy and successful track record, exemplified by their work on the Fremont fire station microgrid, Gridscape is the perfect partner for this project. Together, we'll address the challenges of the rapidly changing energy landscape and bring sustainable and affordable energy solutions to our communities."

- JP Ross, VP Local Development, Electrification & Innovation, EBCE

"This is going to save the city money over the long haul. There's the savings from the energy perspective. There's also the resiliency component. This is a safety measure for the city as well. Too often climate action is framed as sacrifice — that we will need to give things up to have a healthy, livable planet, this project proves that it is not always the case".

- Council President Sean Elo-Rivera (District 9)

"The Chabot College district has been working with Gridscape for 18 months now. At every step of in the process, our expectations have been met with positive results. I fully recommend Gridscape to those looking to implement solar microgrids."

- Owen Letcher, Vice Chancellor, Faculties, Bond Programs & Operations

"The best technology aligns with operational realities and by collaborating with Gridscape, we have managed to achieve exactly that. Gridscape is helping us solve both climate and operational challenges in the most effective way." - Dr. Matthew Kritscher. VP Student Services

Case Study

Microgrids	29
Total Microgrid Size	6,200 k₩h
Estimated utility cost avoided (25 yr)	\$60,690,440
GHG Reductions	1814 MT/yr
Financing Partner	SunWealth
EPC	
Agreement Term	

*

.

Microgrids	8
Total Microgrid Size	2175 kWh
1 st Year Savings	\$420,854
GHG Reductions	2,175 MT/yr
Financing Partner	Shell
EPC	Green Realities
Agreement Term	25

Microgrids	1
Total Microgrid Size	1200 kWh
1 st Year Savings	\$174,305
GHG Reductions	595 MT/yr
Grant Provider	CEC
EPC	Green Realities
Agreement Term	10

Microgrids	3
Total Microgrid Size	360 kWh
Estimated energy cost saved (10 yr)	\$300,000
GHG Reductions	99,645 lbs/yr
Grant Provider	CEC
Agreement Term	10

Microgrids	1
Total Microgrid Size	480 kWh
Annual energy cost saving	\$78,286.
GHG Reductions	112 MT/yr
Grant Provider	DOE
EPC	Industria Power
Agreement Term	10

Project: SMUD

Site:

Utility Headquarter Commercial Building / Parking Lot / Public Charging

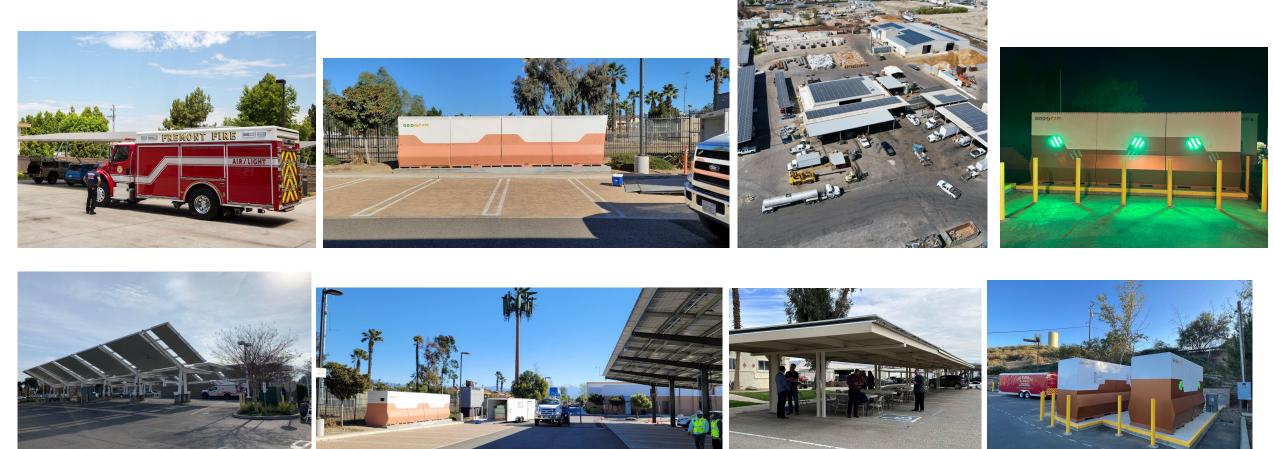
Infrastructure

- 100 KW Solar Carport System
- 112 kWhr 2nd Life Li-On Energy Storage System
- EnergyScope[™] Microgrid Controller & DERMS
- One Ultra-fast 175 kW DC Fast Charger (ABB)
- Ten AC L2 EV Charging Stations
- 21 KV Microgrid Recloser

Operations

- Public Charging Open to public since Dec 2019
- Total Number of Charging transactions: 2,035
- Total Revenue Collected: \$4,402
- Total Energy Dispensed: 22.2 MWh

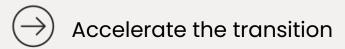
Total Grid Power Import:


• 0.075% of 22.2MWh (incl Demand Response events)

Project Images

www.grid-scape.com

Technology Solutions Participants


- Vipul Gore, Gridscape Solutions
- Emil Youssefzadeh, WattEV
- Drew Felker, Critical Loop

Technology Solutions Panel

Watt E 1/

2024 EV We WattEV 0

About WattEV	01	Customer Feedback	05
Our Solutions	02	Challenges	06
Charging Infrastructure	03	Addressing the Barriers	07
Projects	04	Future Outlook	08

About WattEV

FOUNDED	2020
HEADQUARTERS	LONG BEACH, CA
FLEET SIZE	180 BY 2025
LINES OF BUSINESS	TURN-KEY DEVELOPER, OPERATOR, AND SOLUTIONS PROVIDER TO THE HD TRANSPORTATION SECTOR
GLOBAL	LARGEST HD CHARGING DEPOTS NETWORK IN THE NATION
GOALS	OVER 110 MW CAPACITY BY 2026
OPERATIONS	CA, OR, TX, AZ, WA

To accelerate the transition to allelectric transportation in the heavy duty trucking industry.

To harness the power of technology and data to make a positive shift in the health of our air, our planet, and our people.

Innovative Solutions

Powering the Future of Electric

Transportation

Charging Infrastructure

WattEV is leading the market in Heavy-Duty charging infrastructure with 5 depots in operation and 15 in the pipeline. The strategically located charging depots ensure that sustainable transportation solutions are not just a future aspiration but a present reality.

Oregon

California

Nevada

Arizona

,0

WattEV

Ongoing and Planned Projects

Continuously expanding charging infrastructure

Implementing MCS capable chargers

Partnering with Fortune 500 retailers to support their electrification goals

Increase fleet size

California Charging Network

Customer Feedback

Key areas of interest:

Reliability and Efficiency

Minimize downtime, maximize operational efficiency

Scalability

As EV fleets grow, customers are looking for scalable charging solutions

Sustainability

Align with corporate ESG goals and reduce carbon footprint

Cost-Effectiveness

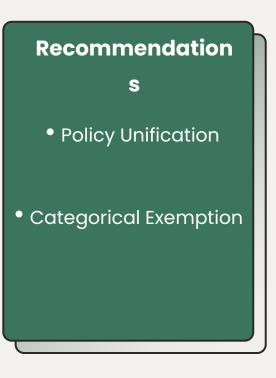
Cost-effective solutions providing ROI

Delivering Solutions that Drive the Future of Sustainable Transportation

Challenges in Deployment

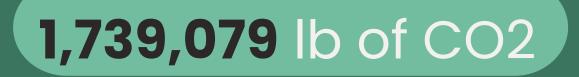
Regulatory: Obtaining official approval to develop electric truck stops

Causes delays in project implementations and environmental benefits


2 Energy: Grid limitations and utility programs

Causes challenges to the deployment of charging infrastructure

Addressing the Barriers


Current Progress AB 1236 is a significant step forward Limitation: Helpful but

not sufficient to address all barriers

Future Outlook

emissions saved

Thank You.

info@wattev.com

(949) 916 - 2751

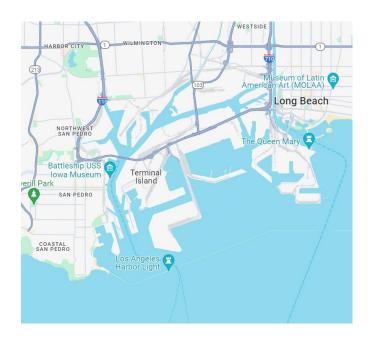
www.wattev.com

Technology Solutions Participants

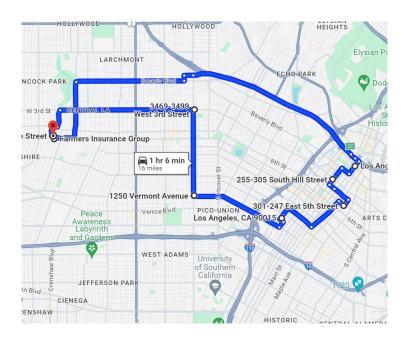
- Vipul Gore, Gridscape Solutions
- Emil Youssefzadeh, WattEV
- Drew Felker, Critical Loop

Drew Felker drew@criticalloop.com 925-784-5355

www.criticalloop.com



Our Scalable System: 250KWh \rightarrow MWh+, 250kW \rightarrow MW+



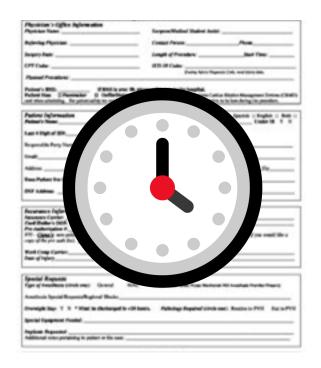
Deployment Types

Hubs

Range Extension

Temporary Lots

Barriers to Deployment


Cost of Equipment

Space Constraints at Location

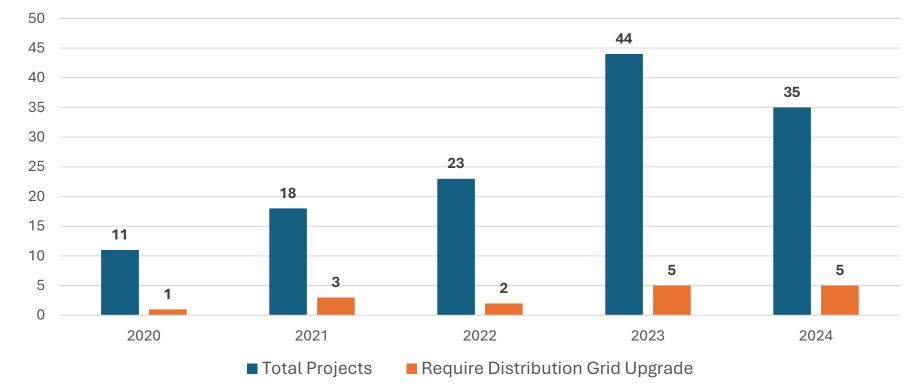
Rule 21 Interconnection

Recommended Support:

- Continue grant programs to help increase scale and reduce costs
- Streamline and make templates for Regulations for Rule 21 Interconnection

Drew Felker drew@criticalloop.com 925-784-5355

www.criticalloop.com



Case Study

Case Study – 9MW in 12 Months

Prologis, LADWP, and Mainspring Collaboration at Denker Avenue Microgrid

Large Transportation Projects

Proposed On-Site Microgrid

- Prologis proposed microgrid in Q2 2023
- LADWP initially denied proposal as it did not meet requirements
- Concerns were raised that generators would be used to sell power
- Expect to send station designs to customers by August 2024
- Overhead line extension and two substations in a box required
- Supply chain concerns with customer equipment
- Estimated energization in Q2 2026

next generation sustainability solutions

Prologis is a critical waypoint for the global economy

\$2.7 TRILLION

is the economic value of goods flowing through our distribution centers each year, representing:

4.0%

of GDP for the 19 countries where we do business

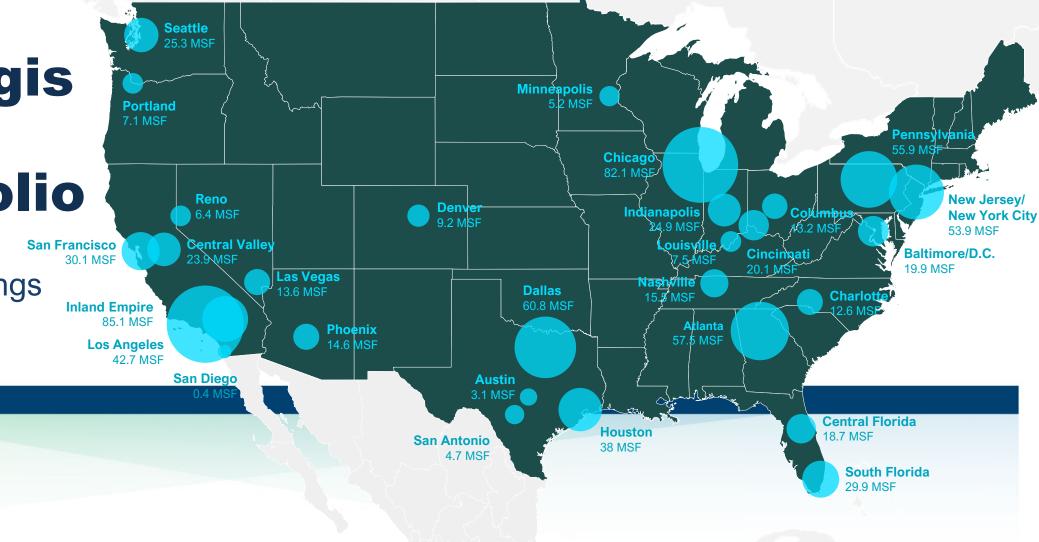
2.8%

of the World's GDP

1.1 MILLION

employees under Prologis' roofs

1. Source: Oxford Economics, IMF, Prologis Research as of December 31, 2022.


Prologis Park Redlands, Redlands, California

S5

PROLOGIS[®]

Prologis U.S. Portfolio 618 MSF San Francisc 3,241 buildings

3,241 buildings5,396 acresInland Empire85.1 MSFLos Angeles

We build logistics centers to meet our customers' needs

We build around 40 million square feet per year globally

Speculative Builds

Build logistics facilities to meet the expected needs in a particular market

Build-to-Suit

Build logistics facilities to customers' requirements

Data Centers

Build data centers in key markets to meet growing demand

Prologis Mobility

Providing charging infrastructure to our customers where it's needed most.

Workplace Charging

Passenger vehicle charging for distribution center employees to empower your team's sustainability.

Distribution Centers


Onsite fleet charging at Prologis and non-Prologis warehouses for drayage, last mile delivery, yard tractors, forklifts and more.

Hubs

Subscription based fleet charging at dedicated sites along common routes and near key locations.

Charging As A Service (CaaS)

Simplifying Fleet Electrification

9MW in 12 months North America's Largest Truck Charging Project

961.3T/dCharge pointsH²-to-EV ready

6MW 3h energy storage 3MW generation capacity

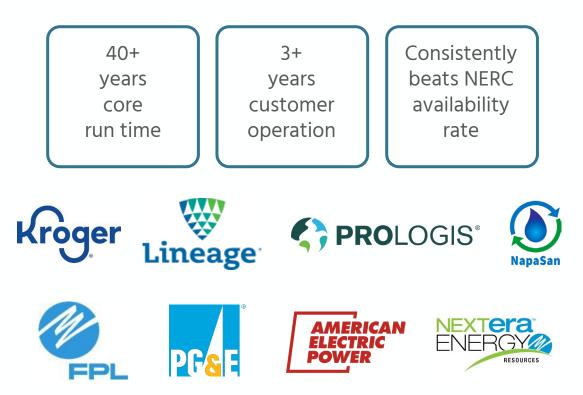
Location: Torrance, California

Key features

- Linear generators, BESS, DCFCs
- Working with grid upgrade timelines
- Additional reliability when grid joins
- Renewable Natural Gas & H² flexible

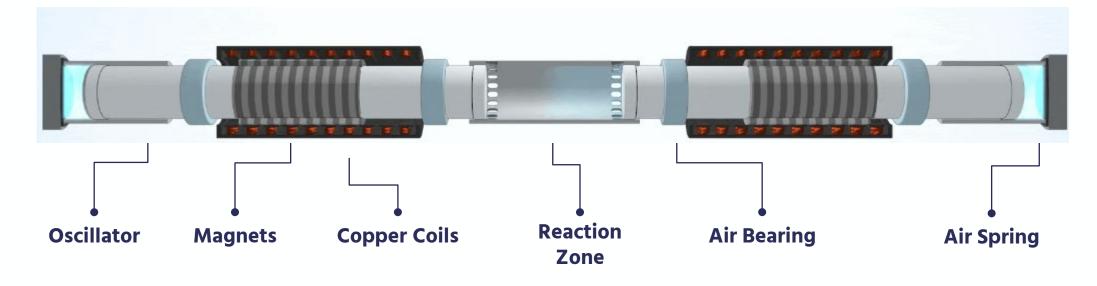

Fast, low-cost, clean power for EV fleet operators

May 2024

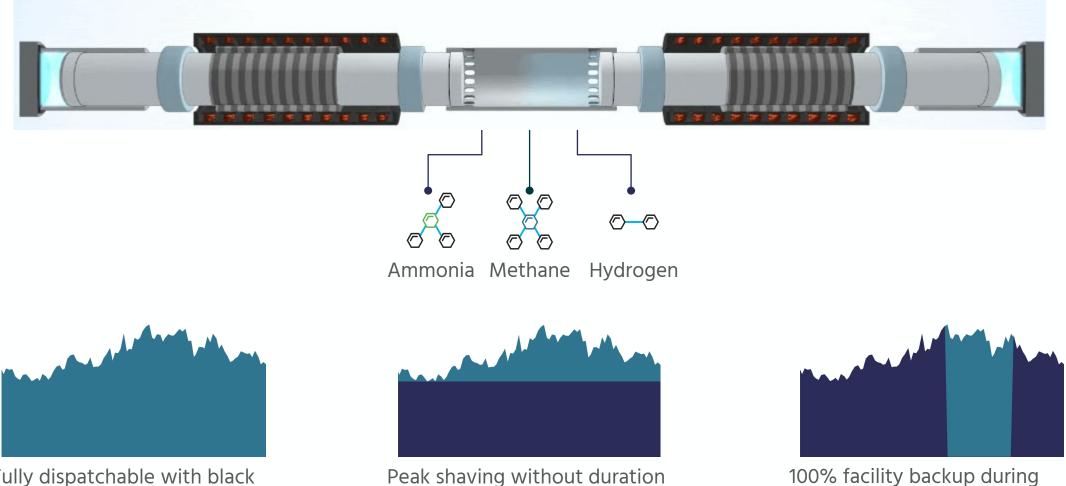


Proven commercial results for top-tier customers

Rapidly expanding nationwide footprint



In-field power generation experience



Core technology enabling low cost and emission performance

High Efficiency enabled by direct conversion of linear motion into electricity
 Ultra-Low Emissions enabled by low-temperature, non-combustion reaction without a flame or burning
 Low Maintenance & High Reliability enabled by having only two moving parts riding on air

Fuel and operational flexibility unlocks evolving use-cases

limitations

Fully dispatchable with black start and island capability

108

outages

Grid

MSE

Public Comment

Two ways to provide comments:

- 1. Use the raise hand function in Zoom:
 - Zoom Phone Controls:
 - *6 Toggle mute/unmute.
 - *9 Raise hand.
 - Please introduce yourself by stating your name and affiliation.
 - Keep questions under 3 minutes to allow time for others.

- 2. Type questions in the Q&A Box in Zoom:
 - Please provide name and affiliation.

Docket #: 19-TRAN-02

E-Commenting System:

<u>https://efiling.energy.ca.gov/EComment/EComment.aspx?docketnumber=19-</u> <u>TRAN-02</u>

Email Docket Unit: DOCKET@energy.ca.gov

Reference: "Accelerating Medium- and Heavy-Duty Site Energization"

All comments due by 5:00 p.m. on August 16, 2024.

Thank You!

