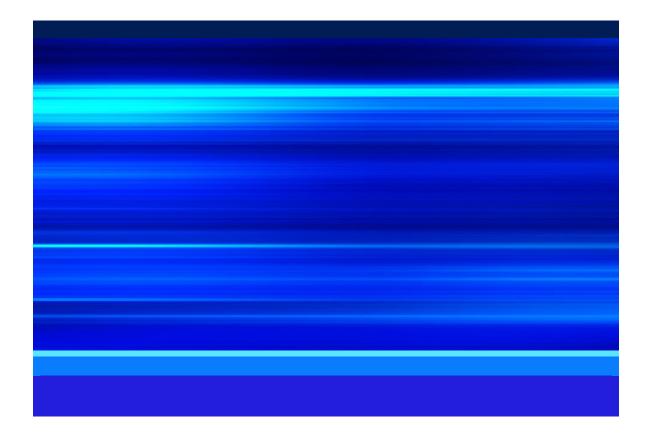
DOCKETED	
Docket Number:	23-AFC-01
Project Title:	Morton Bay Geothermal Project (MBGP)
TN #:	254937
Document Title:	Morton Bay Geothermal Project Data Response Set 4 (Revised Responses to Data Requests 12 and 13)
Description:	N/A
Filer:	Lindsey Xayachack
Organization:	Jacobs
Submitter Role:	Applicant Consultant
Submission Date:	3/8/2024 2:47:38 PM
Docketed Date:	3/8/2024

Data Response Set 4 (Revised Responses to Data Requests 12 and 13)

Submitted to California Energy Commission


Prepared by
Morton Bay Geothermal LLC

With assistance from

Jacobs

Morton Bay Geothermal Project (23-AFC-01)

March 6, 2024

Introduction

Attached are Morton Bay Geothermal LLC's¹ (Applicant) revised responses to the California Energy Commission (CEC) Staff's *Data Requests Set 4* regarding the Application for Certification (AFC) for the Morton Bay Geothermal Project (MBGP) (23-AFC-01). This submittal includes revised responses to Data Requests (DR) 12 and 13.

The responses are grouped by individual discipline or topic area. Within each discipline area, the responses are presented in the same order as presented in *Data Requests Set 4* and are keyed to the Data Request numbers.

New or revised graphics or tables are numbered in reference to the Data Request number. For example, the first table used in response to Data Request 28 would be numbered Table DR28-1. The first figure used in response to Data Request 28 would be Figure DR28-1, and so on. Figures or tables from the MBGP AFC that have been revised have a "R" following the original number, indicating a revision.

Additional tables, figures, or documents submitted in response to a data request (for example, supporting data, stand-alone documents such as plans, folding graphics, etc.) are found at the end of each discipline-specific section and are not sequentially page numbered consistently with the remainder of the document, though they may have their own internal page numbering system.

240214104911_9aa891aa

¹ An indirect, wholly owned subsidiary of BHE Renewables, LLC ("BHER").

Data Response Set 4 (Revised Responses to Data Requests 12 and 13)

Contents

Acronyms	ion	iii 4
Appen	dices	
DR 12 DR 13	Emergency Generator Specification Sheets Revised NOx Emission Estimates for the Emergency Generators	
Tables		
DR13-1 DR13-2 DR13-3	Maximum NOx Emissions from Emergency Generators Operation Air Quality Impact Results for NOx – Significant Impact Levels Operation Air Quality Impact Results for NOx – Ambient Air Quality Standards	5

240214104911_9aa891aa

Acronyms and Abbreviations

μg/m³ microgram(s) per cubic meter

AFC Application for Certification

Applicant Morton Bay Geothermal LLC

MBGP Morton Bay Geothermal Project

CAAQS California Ambient Air Quality Standards

CEC California Energy Commission

DR Data Request

EPA U.S. Environmental Protection Agency

g/kW-hr gram(s) per kilowatt-hour

lbs/hr pound(s) per hour

MW megawatt

NAAQS National Ambient Air Quality Standards

NO₂ nitrogen dioxide

NOx nitrogen oxides

Revised DRR Set 1 Morton Bay Geothermal Project Data Request Response Set 1 (Revised Responses

to Data Requests 3, 4, 7, 10 to 13, and 73 to 77)

SCR Selective Catalytic Reduction

SIL Significant Impact Level

TN Transaction Number

tpy ton(s) per year

VOC volatile organic compounds

240214104911_9aa891aa iii

2. Air Quality (DR 12-13)

Background: Diesel Engine Emissions and Impacts (DR 12-13)

The Morton Bay Geothermal Project Data Request Response Set 1 (Revised Responses to Data Requests 3, 4, 7, 10 to 13, and 73 to 77) (TN 253082) states that the project would use one Tier 3-certified fire pump and three Tier 4-certified emergency generators (collectively, the Units). In the emission estimation and impacts analysis, the applicant used vendor data for the Tier 3 fire pump and assumed Tier 4 emissions for the emergency generators. However, based on experience analyzing data center projects, staff understands that normally the selective catalytic reduction (SCR) for the Units needs time to warm up before it can reach full NOx control effectiveness. Therefore, worst-case hourly NOx emissions would include uncontrolled emissions during the warm-up period and controlled emissions for the rest of the hour. Staff needs engine manufacturer and emissions control device specifications sheets to verify the emission rates used by the applicant. Staff also needs clarification on whether the applicant would test the engines concurrently or only one engine at a time during a single hour.

Data Requests:

12. For the Units, please provide up-to-date manufacturer specification sheets showing engine and emissions control system performance specifications. This information should identify uncontrolled and controlled emissions and the warm-up time for the SCR to reach full effectiveness.

Response: The Applicant is currently proposing to use Kohler Model KD3250 diesel-fired emergency generators, driven by Kohler Model KD83V16 engines, for the MBGP. Attachment DR 12 presents a manufacturer specification sheet for the Tier 4 certified version of this engine. In the absence of manufacturer-provided data regarding the engine warm-up period, a manufacturer specification sheet for the Tier 2 certified version of this engine is also provided in Attachment DR 12. The Tier 2 emission rates were assumed to be representative of emissions during the Tier 4 engine's uncontrolled warm-up period. The warm-up period was assumed to last up to 15 minutes, based on data from similar facilities.

13. For the Units, please update the NOx emissions estimation and NO_2 impacts modeling analysis to account for uncontrolled emissions during the SCR warm-up period and controlled emissions for the rest of the hour.

Response: Nitrogen oxides (NOx) emission estimates from the three (3) 3.25-megawatt (MW) diesel-fired emergency generators have been updated to incorporate uncontrolled emissions during a 15-minute Selective Catalytic Reduction (SCR) control system warm-up period and controlled emissions for the remainder of the hour (e.g., 45 minutes). In the absence of manufacturer-provided emission rates for the engine's warm-up period, uncontrolled emissions were assumed to be represented by the engine's Tier 2 certification, as measured during a U.S. Environmental Protection Agency (EPA) D2 Cycle 5-mode Weighted test; this value is expected to be comparable to the Tier 2 standard of 6.4 grams per kilowatt-hour (g/kW-hr) for NOx and volatile organic compounds (VOC) combined. Controlled emissions were conservatively represented by the Tier 4 standard, as presented in Table 4 of Title 17 of the California Code of Regulations Section 93115.7, despite the expectation that the engine is capable of performing better than this standard.

The revised NOx emission estimates are presented in Table DR13-1. Supporting calculations, as well as a comparison to what was originally considered, are provided in Attachment DR 13. As shown, the hourly

emissions per generator are approximately three times higher than what was presented in Table 5.1-12 of Attachment DRR 7-1 of the Morton Bay Geothermal Project Data Request Response Set 1 (Revised Responses to Data Requests 3, 4, 7, 10 to 13, and 73 to 77) (Revised DRR Set 1; Transaction Number [TN] #253082).

Table DR2-1. Maximum NOx Emissions from Emergency Generators

	Per 3.25-MW Er Generator	nergency	Three 3.25-MW Emergency Generators
Pollutant	(lbs/hr)	(tpy)	(tpy)
NO _x	12.66	0.32	0.95

Note:

lbs/hr = pound(s) per hour

tpy = ton(s) per year

To determine potential air quality impacts associated with this increase in hourly and annual NOx emissions, air dispersion modeling was performed per the methodology and source characterization outlined in Section 5.1.9 of Attachment DRR 7-1 of Revised DRR Set 1 (TN #253082) with the following exception:

• Only one (1) diesel-fired emergency generator <u>or</u> the diesel fire water pump could operate in a single hour, instead of assuming all four (4) emission sources could operate in a single hour.

Although NOx emissions from the MBGP's diesel fire water pump have not changed from what was presented in Table 5.1-12 of Attachment DRR 7-1 of Revised DRR Set 1 (TN #253082), they were also modeled to determine potential impacts from all NOx-emitting sources at the facility.

Results of the revised NOx air dispersion modeling are presented in Tables DR13-2 and DR13-3. As shown, facility impacts are less than the EPA's Significant Impact Levels (SILs) and the California and National Ambient Air Quality Standards (CAAQS and NAAQS, respectively) for all nitrogen dioxide (NO2) averaging periods. In fact, these results are similar to or less than what was originally presented in Tables 5.1-30 and 5.1-31 of Attachment DRR 7-1 of Revised DRR Set 1 (TN #253082). Although the 1-hour modeled NOx emission rate for a single diesel-fired emergency generator tripled, modeling only one NOx-emitting source in a single hour (as will be done during actual facility operations) has resulted in less conservative, but still conservative modeled impacts.

Table DR13-2. Operation Air Quality Impact Results for NOx – Significant Impact Levels

Pollutant	Averaging Period	Maximum Concentration (μg/m³) ^a	Class II SIL (µg/m³)	Exceeds Class II SIL?
NO ₂	5-year average of 1-hour yearly maxima	1.39	7.55	No
	Annual maximum	0.04	1.00	No

^a Because only one diesel-fired emergency generator or the diesel fire water pump could operate in a single hour for maintenance and testing purposes, the maximum concentration presented is based on the maximum modeled impact from either the diesel fire water pump or one of the diesel-fired emergency generators.

Note:

μg/m³ = microgram(s) per cubic meter

Table DR13-3. Operation Air Quality Impact Results for NOx – Ambient Air Quality Standards

		Modeled	Background	Total	CAAQS	NAAQS	
Pollutant	Averaging Period	Conc. (µg/m³) ^a	Conc. (µg/m³)	Conc. (µg/m³)	(µg/m³)	(µg/m³)	Exceeds Standard?
NO ₂	1-hour maximum (CAAQS)	139	105	244	339		No
	5-year average of 1- hour yearly 98 th percentiles (NAAQS) ^b	1.26	65.2	66.5		188	No
	Annual maximum	0.04	17.4	17.4	57	100	No

^a Because only one diesel-fired emergency generator or the diesel fire water pump could operate in a single hour for maintenance and testing purposes, the maximum concentration presented is based on the maximum modeled impact from either the diesel fire water pump or one of the diesel-fired emergency generators.

Note

-- = Not applicable and/or no standard

Based on the above results, the MBGP will not cause or contribute to a violation of the NAAQS or CAAQS, even with incorporation of a 15-minute warm-up period for each diesel-fired emergency generator's SCR control system. As such, a cumulative impacts assessment for NOx is still not warranted. Revised modeling files will be submitted under separate cover within one (1) week of submitting this response.

^b 5-year average of 8th high.

Attachment DR 12 Emergency Generator Specification Sheets

KD3250

EPA D2 Cycle 5-mode weighted

60 Hz. Diesel Generator Set Tier 2 EPA Certified for Stationary Emergency Applications EMISSION OPTIMIZED DATA SHEET

ENGINE INFORMATION

KD83V16 Model: Bore: 175 mm (6.89 in.) Nameplate kW @ 1800 RPM: 3490 Stroke: 215 mm (8.46 in.) 4-Cycle, 16-V Cylinder Displacement: 83 L (5048 cu. in.) Type: Turbocharged, Intercooled Aspiration: **EPA Family**: RLHAL103.ESP Compression ratio: 16:0:1 EPA Certificate: RLHAL103.ESP-018 **Emission Control Device:** Direct Diesel Injection, Engine Control Module, Turbocharger, Charge Air Cooler

EXHAUST EMISSION DATA:

 $\begin{array}{lll} HC & (Hydrocarbons) & 0.54 \ g/kWh \\ NO_x & (Oxides of Nitrogen as NO_2) & 5.06 \ g/kWh \\ CO & (Carbon Monoxide) & 1.02 \ g/kWh \\ PM & (Particulate Matter) & 0.11 \ g/kWh \end{array}$

TEST METHODS AND CONDITIONS

Test Methods:

Steady-State emissions recorded per EPA CFR 40 Part 1065, and ISO8178-1 during operation at rated engine speed (+/-2%) and stated constant load (+/-2%) with engine temperatures, pressures and emission rates stabilized.

Fuel Specification:

ASTM D975 No. 2-D S15 or 40 CFR Part 1065 Petroleum Diesel Fuel.

Reference Conditions:

25 °C (77 °F) Air Inlet Temperature, 40 °C (104 °F) Fuel Inlet Temperature, 100 kPa (29.53 in Hg) Barometric Pressure; 10.7 g/kg (75 grains H2O/lb.) of dry air Humidity (required for NOx correction); Intake Restriction set to maximum allowable limit for clean filter; Exhaust Back pressure set to maximum allowable limit.

Data was taken from a single engine test according to the test methods, fuel specification and reference conditions stated above and is subjected to instrumentation and engine-to-engine variability. Tests conducted with alternate test methods, instrumentation, fuel or reference conditions can yield different results.

Data and specifications subject to change without notice.

KD3250-4

60 Hz. Diesel Generator Set

EPA D2 Cycle 5-mode weighted

Tier 4 EPA Certified for Stationary and Mobile Applications

ENGINE INFORMATION

Model: KD83V16 Bore: 175 mm (6.89 in.) Nameplate kW @ 1800 RPM: Stroke: 2644-3490 215 mm (8.46 in.) 4-Cycle, 16-V Cylinder Displacement: 83 L (5048 cu. in.) Type: Turbocharged, Intercooled Aspiration: **EPA Family:** RLHAL103.VQC Compression ratio: **EPA Certificate:** 16:0:1 RLHAL103.VQC-020 **Emission Control Device:** Direct Diesel Injection. Engine Control Module. Turbocharger. Charge Air Cooler.

Ammonia Slip Catalyst, Selective Catalytic Reduction

EXHAUST EMISSION DATA:

 $\begin{array}{lll} HC & (Hydrocarbons) & 0.01 \ g/kWh \\ NO_x & (Oxides of Nitrogen as NO_2) & 0.40 \ g/kWh \\ CO & (Carbon Monoxide) & 0.15 \ g/kWh \\ PM & (Particulate Matter) & 0.02 \ g/kWh \end{array}$

TEST METHODS AND CONDITIONS

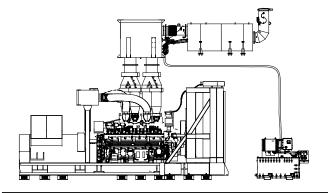
Test Methods:

Steady-State emissions recorded per EPA CFR 40 Part 1065, and ISO8178-1 during operation at rated engine speed (+/-2%) and stated constant load (+/-2%) with engine temperatures, pressures and emission rates stabilized using Ramped Mode Cycle.

Fuel Specification:

ASTM D975 No. 2-D S15 or 40 CFR Part 1065 Petroleum Diesel Fuel.

Diesel Exhaust Fluid Specification: 32.5% urea in de-ionized water meeting ISO-22241


Reference Conditions:

25 °C (77 °F) Air Inlet Temperature, 40 °C (104 °F) Fuel Inlet Temperature, 100 kPa (29.53 in Hg) Barometric Pressure; 10.7 g/kg (75 grains H2O/lb.) of dry air Humidity (required for NOx correction); Intake Restriction set to maximum allowable limit for clean filter; Exhaust Back pressure set to maximum allowable limit.

Data was taken from a single engine test according to the test methods, fuel specification and reference conditions stated above and is subjected to instrumentation and engine-to-engine variability. Tests conducted with alternate test methods, instrumentation, fuel or reference conditions can yield different results.

Data and specifications subject to change without notice.

KDxxxx-4 designates a 60 Hz generator set with a Tier 4 EPA-Certified engine.

Ratings Range

		00 HZ
Standby:	kW	3250
•	kVA	4062
Prime:	kW	2950
	kVA	3688
Continuous:	kW	2450
	kVA	3062

Standard Features

- Kohler Co. provides one-source responsibility for the generating system and accessories.
- The generator set and its components are prototype-tested, factory-built, and production-tested.
- The 60 Hz generator set offers a UL 2200 listing.
- The generator set accepts rated load in one step.
- The 60 Hz generator set meets NFPA 110, Level 1, when equipped with the necessary accessories and installed per NFPA standards.
- A standard three-year or 1000-hour limited warranty for standby applications. Five-year basic, five-year comprehensive, and ten-year extended limited warranties are also available.
- A standard two-year or 8700-hour limited warranty for prime power applications. Five-year basic and five-year comprehensive warranties are also available.
- A standard one-year warranty with unlimited hours for continuous power applications.
- Other features:
 - Kohler designed controllers for one-source system integration and remote communication. See Controller on page 4.
 - The low coolant level shutdown prevents overheating (standard on radiator models only).

General Specifications

General Specifications	
Orderable Generator Model Number	GMKD3250-4
Manufacturer	Kohler
Engine: model	KD83V16
Alternator Choices	KH07631TO4D KH07632TO4D KH09370TO4D KH07640TO4D KH08590TO4D KH09390TO4D
Performance Class	Per ISO 8528-5
One Step Load Acceptance	100%
Voltage	480 V, 600 V, 4160 V, 6600 V, or 12470V, 13200V, 13800 V
Controller	APM603
Fuel Consumption, L/hr (gal./hr) 100% at Standby	829 (219.2)
Fuel Consumption, L/hr (gal./hr) 100% at Prime Power	739 (195.3)
Fuel Consumption, L/hr (gal./hr) 100% at Continuous Power	616 (162.8)
DEF Consumption, L/hr (gal./hr) 100% at Standby	66.4 (17.5)
DEF Consumption, L/hr (gal./hr) 100% at Prime Power	66.5 (17.6)
DEF Consumption, L/hr (gal./hr) 100% at Continuous Power	58.5 (15.5)
Emission Level Compliance (KDxxxx)	Tier 4
Open Unit Noise Level @ 7 m dB(A) at Rated Load	99
Data Center Continuous (DCC) Rating (Refer to TIB-101 for definitions)	Same as the Standby Rating below

Generator Set Ratings

				130°C Standby		105°C Prime F		80°C Continuou	
Alternator	Voltage	Ph	Hz	kW/kVA	Amps	kW/kVA	Amps	kW/kVA	Amps
	277/480	3	60	3250/4062	4886	2950/3688	4436	2450/3062	3684
	2400/4160	3	60	3250/4062	564	2950/3688	512	2450/3062	425
KI IOZOGATO AD	3810/6600	3	60	3250/4062	356	2950/3688	323	2450/3062	268
KH07631TO4D	7200/12470	3	60	3250/4062	189	2950/3688	171	2450/3062	142
	7620/13200	3	60	3250/4062	178	2950/3688	162	2450/3062	134
	7970/13800	3	60	3250/4062	170	2950/3688	155	2450/3062	129
·	277/480	3	60	3250/4062	4886	2950/3688	4436	2450/3062	3684
KH07632TO4D	347/600	3	60	3250/4062	3909	2950/3688	3549	2450/3062	2947
	7200/12470	3	60	3250/4062	189	2950/3688	171	2450/3062	142

RATINGS: All three-phase units are rated at 0.8 power factor. Standby Ratings: The standby rating is applicable to varying loads for the duration of a power outage. There is no overload capability for this rating. Prime Power Ratings: At varying load, the number of generator set operating hours is unlimited. A 10% overload capacity is available for one hour in twelve. Ratings are in accordance with ISO-8528-1 and ISO-3046-1. For limited running time and continuous ratings, consult the factory. Obtain technical information bulletin (TIB-101) for ratings guidelines, complete ratings definitions, and site condition derates. The generator set manufacturer reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever.

Recommended fuel

Industrial Diesel Generator Set - KD3250-4 Tier 4 EPA-Certified for Stationary, Prime, Continuous Applications

				130°C Standby		105°C Prime F		80°C Continuou	
Alternator	Voltage	Ph	Hz	kW/kVA	Amps	kW/kVA	Amps	kW/kVA	Amps
	277/480	3	60	3250/4062	4886	2950/3688	4436	2450/3062	3684
KH09370TO4D	2400/4160	3	60	3250/4062	564	2950/3688	512	2450/3062	425
	3810/6600	3	60	3250/4062	356	2950/3688	323	2450/3062	268
KH07640TO4D	277/480	3	60	3240/4050	4871	2950/3688	4436	2440/3050	3669
KI IOOEOOTO 4D	277/480	3	60	3250/4062	4886	2950/3688	4436	2440/3050	3669
KH08590TO4D	347/600	3	60	3250/4062	3910	2960/3700	3560	2450/3062	2947
KH09390TO4D	277/480	3	60	3240/4050	4871	2940/3675	4420	2420/3025	3639

		-		
Engine Specifications	60 Hz	Diesel F	uel Consumption	DEF Consumption
Manufacturer	Kohler		Standby Rating	Standby Rating
Engine: model	KD83V16	% load	Lph (gph)	Lph (gph)
Engine: type	4-Cycle, Turbocharged,	100%	829 (219.2)	66.4 (17.5)
	Intercooled	75%	616 (162.8)	58.5 (15.5)
Cylinder arrangement	16-V	50%	427 (112.8)	44.8 (11.8)
Displacement, L (cu. in.)	83 (5048)	25%	244 (64.6)	24.4 (6.5)
Bore and stroke, mm (in.)	175 x 215 (6.89 x 8.46)	10%	138 (36.3)	12.4 (3.3)
Compression ratio	16.0:1	-	Prime Rating	Prime Rating
Piston speed, m/min. (ft./min.)	774 (2539)	% load	Lph (gph)	Lph (gph)
Main bearings: quantity, type	9, Precision Half Shells	100%	739 (195.3)	66.5 (17.6)
Rated rpm	1800	75%	560 (148.0)	56.0 (14.8)
Max. power at rated rpm, kWm (BHP)	3490 (4680)	50%	396 (104.6)	39.6 (10.5)
Cylinder head material	Cast Iron	25%	229 (60.4)	22.9 (6.0)
Crankshaft material	Steel	10%	107 (28.2)	9.6 (2.5)
Valve (exhaust) material	Steel	10%	(/	· /
Governor: type, make/model	KODEC Electronic Control	0/ 1	Continuous Rating	Continuous Rating
Frequency regulation, no-load to-full load	Isochronous	% load	Lph (gph)	Lph (gph)
Frequency regulation, steady state	±0.25%	100%	616 (162.8)	58.5 (15.5)
Frequency	Fixed	75%	474 (125.1)	47.4 (12.5)
Air cleaner type, all models	Dry	50%	336 (88.8)	33.6 (8.9)
Lubricating System	60 Hz	25%	202 (53.4)	20.2 (5.3)
Type	Full Pressure	10%	120 (31.6)	10.8 (2.8)
Oil pan capacity with filter (initial fill),	r dii r rooddi o	Radiator System		60 Hz
L (qt.) §	420 (444)	Ambient temperatu	ıre, °C (°F)	50 (122)
Oil filter: quantity, type §	8, Cartridge	Engine jacket water	er capacity, L (gal.)	375 (99)
Oil cooler	Water-Cooled	Radiator system ca	apacity, including	
§ Kohler recommends the use of Kohler	Genuine oil and filters.	engine, L (gal.)	unflace (acces)	1192 (315)
Fuel System	60 Hz	Engine jacket wate	ег пом, цртт (дртт)	2707 (715) ESP 1150 (65400)
Fuel supply line, min. ID, mm (in.)	25 (1.0)		poling water at rated	PRP 1050 (59712)
Fuel return line, min. ID, mm (in.)	19 (0.75)	. , . , ,		COP 950 (54026) ESP 1100 (62556)
Max. fuel flow , Lph (gph)	1050 (277.4)	Heat rejected to charge cooling water at PRP 950 (5402		PRP 950 (54026) COP 700 (39809)
Min./max. fuel pressure at engine supply connection, kPa (in. Hg)	- 50/50 (- 14.8/14.8)	Water pump type	, ,	Centrifugal
Maximum diesel fuel lift, m (ft.)	3.7 (12)	Fan diameter, inclu	uding blades, mm (in.)	2438 (96)
Max. return line restriction, kPa (in. Hg)	30 (8.9)	Fan, kWm (HP)		100 (134)
Fuel filter: quantity, type	3, Primary Engine Filter 2, Fuel/Water Separator		cooling air, intake and adiator, kPa (in. H ₂ O)	0.125 (0.5)

#2 Diesel ULSD

Remote Radiator System†	60 Hz
Exhaust manifold type	Dry
Connection sizes:	Class 150 ANSI Flange
Water inlet/outlet, mm (in.)	216 (8.5) Bolt Circle
Intercooler inlet/outlet, mm (in.)	178 (7.0) Bolt Circle
Static head allowable above engine, kPa (ft. H ₂ O)	250 (83.6)
† Contact your local distributor for cooling specifications based on your specific re	
Exhaust System	60 Hz
Exhaust flow at rated kW, m ³ /min. (cfm)	671 (23701)
Exhaust temperature at rated kW at	, ,
25°C (77°F) ambient, dry exhaust, °C (°F)	475 (887)
Maximum allowable back pressure, kPa (in. Hg)	See TIB-119
Exh. outlet size at eng. hookup, mm	
(in.)	See ADV drawing
Electrical System	60 Hz
Battery charging alternator:	
Ground (negative/positive)	Negative
Volts (DC)	24
Ampere rating	140
Starter motor qty. at starter motor power rating, rated voltage (DC)	Standard: 2 @ 9 kW, 24; Redundant (optional); 2 @ 15 kW, 24
Battery, recommended cold cranking amps (CCA):	,
Quantity, CCA rating each, type (with standard starters)	4, 1110, AGM
Quantity, CCA rating each, type	
(with redundant starters)	8, 1110, AGM
Battery voltage (DC)	12
Air Requirements	60 Hz
Radiator-cooled cooling air,	2022 (125000)
m ³ /min. (scfm)‡ Cooling air required for generator set	3823 (135000)
when equipped with city water cooling	
or remote radiator, based on 14°C	
(25°F) rise, m ³ /min. (scfm)‡	1214 (42887)
	ESP 258 (9100) PRP 241 (8504)
Combustion air, m ³ /min. (cfm)	COP 208 (7360)
Heat rejected to ambient air:	,
	ESP 170 (9668)
Facina IdM (Ptu/min)	PRP 160 (9099)
Engine, kW (Btu/min.)	COP 140 (7962)

Alternator, kW (Btu/min.)

‡ Air density = 1.20 kg/m³ (0.075 lbm/ft³)

Alternator	Specifications	60 Hz
Туре		4-Pole, Rotating-Field
Exciter type	e	Brushless, Permanent- Magnet Pilot Exciter
Voltage reg	gulator	Solid-State, Volts/Hz
Insulation:		NEMA MG1, UL 1446, Vacuum Pressure Impregnated (VPI)
Mater	ial	Class H, Synthetic, Nonhygroscopic
Temp	erature rise	130°C, 150°C Standby
Bearing: qu	uantity, type	2, Sealed
Coupling ty	/pe	Coupling
Amortisseu	ır windings	Full
Alternator	winding type	Form Wound
Rotor balaı	ncing	125%
Voltage reg	gulation, no-load to full-load	±0.25%
Unbalance	d load capability	100% of Rated Standby Current
Peak moto	r starting kVA:	(35% dip for voltages below)
480 V	KH07631TO4D	8996
480 V	KH09370TO4D	10941

Alternator Standard Features

- The pilot-excited, permanent magnet (PM) alternator provides superior short-circuit capability.
- All models are brushless, rotating-field alternators.
- NEMA MG1, IEEE, and ANSI standards compliance for temperature rise and motor starting.
- Sustained short-circuit current of up to 300% of the rated current for up to 10 seconds.
- Sustained short-circuit current enabling downstream circuit breakers to trip without collapsing the alternator field.
- Self-ventilated and dripproof construction.
- Superior voltage waveform from two-thirds pitch windings and skewed stator.
- Brushless alternator with brushless pilot exciter for excellent load response.

NOTE: See TIB-102 Alternator Data Sheets for alternator application data and ratings, efficiency curves, voltage dip with motor starting curves, and short circuit decrement curves.

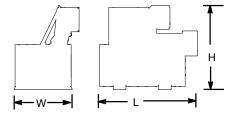
179 (10200)

Controller

APM603 Controller

Provides advanced control, system monitoring, and system diagnostics for optimum performance and compatibility.

- 7-inch graphic display with touch screen and menu control provides easy local data access
- Measurements are selectable in metric or English units
- Paralleling capability to control up to 8 generators on an isolated bus with first-on logic, synchronizer, kW and kVAR load sharing, and protective relays


Note: Parallel with other APM603 controllers only

- Generator management to turn paralleled generators off and on as required by load demand
- Load management to connect and disconnect loads as required
- Controller supports Modbus® RTU, Modbus® TCP, SNMP and BACnet®
- Integrated voltage regulator with ±0.25% regulation
- Built-in alternator thermal overload protection
- UL-listed overcurrent protective device
- NFPA 110 Level 1 capability

Refer to G6-162 for additional controller features and accessories.

BACNet® is a registered trademark of ASHRAE.

Diesel Exhaust Fluid (DEF) Tank

Approximate size, L x W x H, mm(in.):

(73.5 x 41.0 x 58.2)

Tank weight (dry), kg (lb.):

Fillable volume:

Consumable volume:

Material:

1868 x 1042 x 1479

420.6 (927 lb)

224 gallons

164 gallons

Stainless steel

Codes and Standards

- Engine-generator set is designed and manufactured in facilities certified to ISO 9001.
- Generator set meets NEMA MG1, BS5000, ISO, DIN EN, and IEC standards, NFPA 110.
- Engine generator set is tested to ISO 8528-5 for transient response.
- The generator set and its components are prototype-tested, factory-built, and production-tested.

Third-Party Compliance

• Tier 4 EPA-Certified for Stationary, Prime, and Continuous Applications

Available Approvals and Listings

- **CSA Certified**
- UL 2200 Listing

Warranty Information

- A standard three-year or 1000-hour limited warranty for standby applications. Five-year basic, five-year comprehensive, and ten-year extended limited warranties are also available.
- A standard two-year or 8700-hour limited warranty for prime power applications. Five-year basic and five-year comprehensive warranties are also available.
- · A standard one-year warranty with unlimited hours for continuous power applications.

Available Warranties for Standby Applications

- 5-Year Basic Limited Warranty
- 5-Year Comprehensive Limited Warranty
- ☐ 10-Year Major Components Limited Warranty

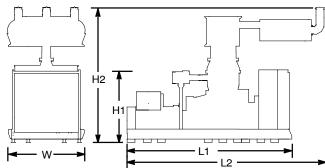
Available Warranties for Prime Applications

- 5-Year Basic Limited Warranty
- 5-Year Comprehensive Limited Warranty

Standard Features

- Closed Crankcase Ventilation (CCV) Filters
- **Customer Connection**
- Local Emergency Stop Switch
- Oil Drain and Coolant Drain Extension
- Operation and Installation Literature
- Fuel/Water Separator
- Generator Heater
- Spring Isolation Under the Skid
- Battery Rack and Cables

Available Opt	tions				
Circuit Breaker	s			Fuel System	
Туре		Rating		Flexible Fuel Lines	
Magnetic Trip		80%		Dual Fuel/Water Separator	
☐ Thermal Magne	ic Trip 🔲	100%		Restriction Gauge (for fuel/water s	eparator)
☐ Electronic Trip (,	Operation	-	Literature	
Electronic Trip v Short Time (LSI)		Manual		General Maintenance	
☐ Electronic Trip v	_	Electrically Operated (for paralleling)		NFPA 110	
Ground Fault (L				Overhaul	
Circuit Breaker	Mounting			Production	
Generator Mour				Miscellaneous	
Remote Mounte				Air Cleaner, Heavy Duty	
Bus Bar (for rem		,		Air Cleaner Restriction Indicator	
		ed Circuit Breakers		Automatic Oil Replenishment Syst	em
☐ NEMA 1 (15-50	,			Engine Fluids (oil and coolant) Add	ded
☐ NEMA 3R (15-1	200 A)		_ 🔲	Rated Power Factor Testing	
Engine Type				Weld-On Flange, DIN300	
☐ KDxxxx Tier 4 E	PA- Certifie	ed Engine		Weld- On Flange, DEF Tank	
Approvals and	Listings			Warranty (Standby Applications	only)
☐ CSA Certified				5-Year Basic Limited Warranty	
☐ IBC Certification	Request-	-Contact Factory		5-Year Comprehensive Limited Wa	arranty
UL 2200 Listing				10-Year Major Components Limite	d Warranty
u cULus Listing (fo	uel tanks or	nly)	=	Warranty (Prime Applications o	nly)
Controller				5-Year Basic Limited Warranty	
☐ Input/Output, Di	gital			5-Year Comprehensive Limited Wa	arranty
☐ Input/Output, Th	ermocoupl	e		Other	
Manual Key Swi	tch				
☐ Remote Emerge	ncy Stop S	switch			
Lockable Emerg	ency Stop	Switch	_		
Remote Serial A	nnunciator	Panel	_		
Cooling System	า				
☐ Block Heater; 10	500 W, 20	8 V, (Select 1 Ph or 3 Ph) *	Di	mensions and Weights	
☐ Block Heater; 12	2000 W, 24	0 V, (Select 1 Ph or 3 Ph) *		enerator set size, max.,	
Block Heater; 12			L1	x W x H1, mm (in.):	7650 x 3522 x 3451
* Required for A	mbient Ten	nperatures Below 5°C (41°F).	- Wi	th rear-facing SCR, max.,	(301.1 x 138.7 x 135.8)
Electrical Syste	em			x W x H2, mm (in.):	7969 x 3522 x 6262
☐ Battery, 4/12 V,	AGM (kit w	ith atv. 4)	١٨/:	th famueral facing CCD may	(313.7 x 138.7 x 246.5)


- Battery Charger
- Battery Rack and Cables
- ☐ Redundant Starters
- □ DEF Tank Heater
- Load Bank, 300 kW
 - [Recommended for Ambient Temperature > -5°C (23°F)]
- Load Bank, 600 kW
 - [Recommended for Ambient Temperature < -5°C (23°F)]

With forward-facing SCR, max., L2 x W x H2, mm (in.): 9257 x 3522 x 6262 (364.4 x 138.7 x 246.5)

Weight, radiator model, max. wet, kg (lb.): Weight, with radiator and SCR, max. wet, kg (lb.):

36472 (80407)

32513 (71707)

NOTE: This drawing is provided for reference only and should not be used for planning installation. Contact your local distributor for more detailed information.

G5-616 (KD3250-4) 10/22b Page 5

KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

DISTRIBUTED BY:		

© 2020 Kohler Co. All rights reserved.

Attachment DR 13 Revised NOx Emission Estimates for the Emergency Generators

Morton Bay Geothermal Project

MBGP Operational Emissions

Comparison of NO_X Emissions With and Without Startup Duration

March 2024

	Comparison of NO _X En	Comparison of NO _X Emissions for One Generator		Comparison of NO _X Emissions for Three Generators	
Emergency Generators	Without Startup ^b	With Startup ^c	Without Startup ^b	With Startup ^{c, d}	
Maximum Hourly Emissions (lbs/hr)	4.80	12.66	14.40	37.99	
Daily Emissions (lbs/day) ^a	9.6	25.3	19.2	50.7	
Annual Emissions (tpy)	0.12	0.32	0.36	0.95	
Annual Average Hourly Emissions (lbs/hr)	0.03	0.07	0.08	0.22	

lbs/day = pound(s) per day

lbs/hr = pound(s) per hour

tpy = ton(s) per year

230321110651_8cfdc173 Page 1 of 7

^a Daily emissions assume only 2 generators could operate in the same day for the following hours of operation at the maximum hourly emission rate: 2

^b These emissions are based on the Tier 4 emissions standards specified in 17 CCR 93115.7, Table 4.

^c These emissions account for 15-minutes of uncontrolled NO_X emissions, associated with the startup of the SCR, and are based both on vendor-provided emissions guarantees and the Tier 4 emissions standards specified in 17 CCR 93115.7, Table 4.

d Because only one diesel-fired emergency generator is expected to operate in a single hour, the maximum hourly emission rate presented here is not expected to occur during actual facility operation.

Morton Bay Geothermal Project

MBGP Operational Emissions

Generator Emission Data - Without SCR Startup Period

March 2024

Engine Information	Value
Engine Rating (kW)	3,250
Engine Rating (HP)	4,680
Annual Hours of Operations (hrs/yr)	50
Fuel Use (gal/hr)	219
Heat Input (MMBtu/hr)	30.2
Generator Count	3

kW = kilowatt gal/hr = gallon(s) per hour

HP = horsepower MMBtu/hr = million British thermal unit(s) per hour

hrs/yr = hour(s) per year

Criteria Pollutant Emissions Per Generator

Pollutant	Controlled Emission Factor (g/kW-hr)	Basis	1-Hour Emission Rate (lbs/hr)	Annual Emissons (tpy)	Annual Average Hourly Emissions (lbs/hr)
NO _X Emissions	0.67	17 CCR 93115.7, Table 4	4.80	0.12	0.027
CO Emissions	3.5	17 CCR 93115.7, Table 4	25.1	0.63	0.14
PM ₁₀ Emissions	0.03	17 CCR 93115.7, Table 4	0.21	0.01	0.001
PM _{2.5} Emissions	0.03	17 CCR 93115.7, Table 4	0.21	0.01	0.001
SO _x Emissions	0.000002	Calculated based upon 15 ppm ULSD	1.41E-05	3.53E-07	8.05E-08
VOC Emissions	0.19	17 CCR 93115.7, Table 4	1.36	0.03	0.008

g/kW-hr = gram(s) per kilowatt-hour tpy = ton(s) per year lbs/hr = pound(s) per hour USLD = Ultra low sulfur diesel

ppm = part(s) per million

Toxic Emissions Per Generator

Dallastant	Emission Factor	August Fusionisms (U.S.A.) b	Annual Emissions (tpy)	
Pollutant	(lb/MMBTU) ^a	Annual Emissions (lbs/yr) ^b		
Benzene	7.76E-04	2.35E-01	1.17E-04	
Toluene	2.81E-04	8.50E-02	4.25E-05	
Xylenes	1.93E-04	5.84E-02	2.92E-05	
Formaldehyde	7.89E-05	2.39E-02	1.19E-05	
Acetaldehyde	2.52E-05	7.62E-03	3.81E-06	
Acrolein	7.88E-06	2.38E-03	1.19E-06	
Naphthalene	1.30E-04	3.93E-02	1.97E-05	
Propylene	2.79E-03	8.44E-01	4.22E-04	
Ammonia	5 ppm slip ^c	1.69E+01	8.44E-03	
Acenaphthylene	9.23E-06	2.79E-03	1.40E-06	
Acenaphthene	4.68E-06	1.42E-03	7.08E-07	
Fluorene	1.28E-05	3.87E-03	1.94E-06	
Phenanthrene	4.08E-05	1.23E-02	6.17E-06	
Anthracene	1.23E-06	3.72E-04	1.86E-07	
Fluoranthene	4.03E-06	1.22E-03	6.10E-07	
Pyrene	3.71E-06	1.12E-03	5.61E-07	
Benz(a)anthracene	6.22E-07	1.88E-04	9.41E-08	
Chrysene	1.53E-06	4.63E-04	2.31E-07	
Benzo(b)fluoranthene	1.11E-06	3.36E-04	1.68E-07	
Benzo(k)fluoranthene	2.18E-07	6.59E-05	3.30E-08	

230321110651_8cfdc173 Page 2 of 7

Benzo(a)pyrene	2.57E-07	7.77E-05	3.89E-08
Indeno(1,2,3-cd)pyrene	4.14E-07	1.25E-04	6.26E-08
Dibenz(a,h)anthracene	3.46E-07	1.05E-04	5.23E-08
Benzo(g,h,l)perylene	5.56E-07	1.68E-04	8.41E-08

lb/MMBtu = pound(s) per million British thermal unit

^a Toxic Emission Factors from EPA's AP-42, Section 3.4, Tables 3.4-3 and 3.4-4 (EPA 1996)
 ^b Control efficiencies use industry standard of 80% control of VOCs for Tier 4 engines.

lbs/yr = pound(s) per year tpy = ton(s) per year

 $^{\rm c}$ 5 ppm ammonia slip typical estimate for SCR systems.

230321110651_8cfdc173 Page 3 of 7

Stack Parameters	Value	Units
Stack Diameter	1.04	feet
Stack Diameter	0.32	meters
Stack Height	23.52	feet
Stack Height	7.17	meters
Stack Flow	23,701	cubic feet per minute
Stack Flow	671.37	cubic meters per minute
Exit Velocity	141.33	meters per second
Stack Temperature	887	°F
Stack Temperature	748.15	К

GHG Emissions Per Generator

Source Name	Annual CO ₂ Emissions (tpy)	Annual CH ₄ Emissions (tpy)	Annual N₂O Emissions (tpy)	Annual CO₂e Emissions (tpy)
Generator 2-4	123.31	0.005	0.001	123.73

tpy = to	n(s) pe	r year
----------	---------	--------

Diesel Fuel GHG Emission Factors and Conve	Source		
CO ₂	73.96	kg/MMBtu	40 CFR 98.33, Table C-1
CH₄	3.00E-03	kg/MMBtu	40 CFR 98.33, Table C-2
N ₂ O	6.00E-04	kg/MMBtu	40 CFR 98.33, Table C-2
Default HHV	0.1380	MMBtu/gal	40 CFR 98.33, Table C-1
Density of Distillate #2	7.05	lbs/gallon	AP-42, Appendix A
Conversion	1.1023	ton/tonne	
	0.0010	tonne/kg	
	28.3168	L/ft ³	
Molar Volume of Air at STP	22.4	L/mol	

HHV = Higher Heating Value

kg/MMBtu = kilogram(s) per million British thermal unit

MMBtu/gal = million British thermal unit(s) per gallon

lbs = pound(s)

kg = kilogram(s)

L/ft³ = liter(s) per cubic foot

L = liter(s)

Global Warming Potentials		Source
$GWP CO_2 =$	1	40 CFR 98 Subpart A, Table A-1
GWP CH ₄ =	25	40 CFR 98 Subpart A, Table A-1
GWP $N_2O =$	298	40 CFR 98 Subpart A, Table A-1

230321110651_8cfdc173 Page 4 of 7

Morton Bay Geothermal Project

MBGP Operational Emissions Generator Emission Data - With SCR Startup Period March 2024

Engine Information	Value
Engine Rating (kW)	3,250
Engine Rating (HP)	4,680
Annual Hours of Operations (hrs/yr)	50
Fuel Use (gal/hr)	219
Heat Input (MMBtu/hr)	30.2
Generator Count	3
Assumed Startup Duration (min) ^a	15

kW = kilowatt gal/hr = gallon(s) per hour

HP = horsepower MMBtu/hr = million British thermal unit(s) per hour

hrs/yr = hour(s) per year a During startup, the SCR is not expected to be functional, resulting in uncontrolled NO_X emissions. A startup duration of 15 minutes was assumed based on data from similar facilities.

Criteria Pollutant Emissions Per Generator

Pollutant	Uncontrolled Emission Factor (g/kW-hr)	Controlled Emission Factor (g/kW-hr)	Basis	1-Hour Emission Rate (lbs/hr)	Annual Emissons (tpy)	Annual Average Hourly Emissions (lbs/hr)
NO _X Emissions	5.06	0.67	Vendor Provided Data and 17 CCR 93115.7, Table 4 ^a	12.66	0.32	0.072
CO Emissions		3.5	17 CCR 93115.7, Table 4	25.1	0.63	0.14
PM ₁₀ Emissions		0.03	17 CCR 93115.7, Table 4	0.21	0.01	0.001
PM _{2.5} Emissions		0.03	17 CCR 93115.7, Table 4	0.21	0.01	0.001
SO _x Emissions		0.000002	Calculated based upon 15 ppm ULSD	1.41E-05	3.53E-07	8.05E-08
VOC Emissions		0.19	17 CCR 93115.7, Table 4	1.36	0.03	0.008

 g/kW-hr = gram(s) per kilowatt-hour
 tpy = ton(s) per year

 lbs/hr = pound(s) per hour
 USLD = Ultra low sulfur diesel

 ppm = part(s) per million
 -- = Not required for demonstration

Toxic Emissions Per Generator

Pollutant	Emission Factor	Annual Emissions (lbs/yr) b	s/yr) ^b Annual Emissions (tpy)	
1 Ollutarit	(lb/MMBTU) ^a	Annual Emissions (ibs/yi)		
Benzene	7.76E-04	2.35E-01	1.17E-04	
Toluene	2.81E-04	8.50E-02	4.25E-05	
Xylenes	1.93E-04	5.84E-02	2.92E-05	
Formaldehyde	7.89E-05	2.39E-02	1.19E-05	
Acetaldehyde	2.52E-05	7.62E-03	3.81E-06	
Acrolein	7.88E-06	2.38E-03	1.19E-06	
Naphthalene	1.30E-04	3.93E-02	1.97E-05	
Propylene	2.79E-03	8.44E-01	4.22E-04	
Ammonia	5 ppm slip ^c	1.69E+01	8.44E-03	
Acenaphthylene	9.23E-06	2.79E-03	1.40E-06	
Acenaphthene	4.68E-06	1.42E-03	7.08E-07	
luorene	1.28E-05	3.87E-03	1.94E-06	
Phenanthrene	4.08E-05	1.23E-02	6.17E-06	
Anthracene	1.23E-06	3.72E-04	1.86E-07	
Fluoranthene	4.03E-06	1.22E-03	6.10E-07	
Pyrene	3.71E-06	1.12E-03	5.61E-07	
Benz(a)anthracene	6.22E-07	1.88E-04	9.41E-08	
Chrysene	1.53E-06	4.63E-04	2.31E-07	
Benzo(b)fluoranthene	1.11E-06	3.36E-04	1.68E-07	
Benzo(k)fluoranthene	2.18E-07	6.59E-05	3.30E-08	
Benzo(a)pyrene	2.57E-07	7.77E-05	3.89E-08	
ndeno(1,2,3-cd)pyrene	4.14E-07	1.25E-04	6.26E-08	
Dibenz(a,h)anthracene	3.46E-07	1.05E-04	5.23E-08	

230321110651_8cfdc173 Page 5 of 7

^a In the absence of emission rates determined during the engine's warm-up time, uncontrolled emissions are represented by the engine's Tier 2 certification, as measured during an EPA D2 Cycle 5-mode Weighted test; this value is expected to be comparable to the Tier 2 standard of 6.4 g/kW-hr for NO_x and VOC combined. Controlled emissions are conservatively represented by the Tier 4 standard, despite the expectation that the engine is capable of performing better than this standard.

Benzo(g,h,l)perylene	5.56E-07	1.68E-04	8.41E-08	
lb/MMBtu = pound(s) per million British thermal unit	^a Toxic Emission Factors from EPA's AP-42, Section 3.4, Tables 3.4-3 and 3.4-4 (EPA 1996)			
lbs/yr = pound(s) per year	^b Control efficiencies use industry standard of 80% control of VOCs for Tier 4 engines.			
tov = ton(s) per year	^c 5 ppm ammonia slip typical estimate for SCR systems.			

230321110651_8cfdc173 Page 6 of 7

Stack Parameters	Value	Units
Stack Diameter	1.04	feet
Stack Diameter	0.32	meters
Stack Height	23.52	feet
Stack Height	7.17	meters
Stack Flow	23,701	cubic feet per minute
Stack Flow	671.37	cubic meters per minute
Exit Velocity	141.33	meters per second
Stack Temperature	887	°F
Stack Temperature	748.15	K

GHG Emissions Per Generator

Source Name	Annual CO ₂ Emissions	Annual CH₄ Emissions (tpy)	Annual N₂O Emissions (tpy)	Annual CO2e Emissions
	(tpy)	Annual Ong Emissions (tpy)	Annual N2O Emissions (tpy)	(tpy)
Generator 2-4	123.31	0.005	0.001	123.73

tpy = ton(s) per year

Diesel Fuel GHG Emission Factors and Conversions			Source
CO ₂	73.96	kg/MMBtu	40 CFR 98.33, Table C-1
CH ₄	3.00E-03	kg/MMBtu	40 CFR 98.33, Table C-2
N ₂ O	6.00E-04	kg/MMBtu	40 CFR 98.33, Table C-2
Default HHV	0.1380	MMBtu/gal	40 CFR 98.33, Table C-1
Density of Distillate #2	7.05	lbs/gallon	AP-42, Appendix A
Conversion	1.1023	ton/tonne	
	0.0010	tonne/kg	
	28.3168	L/ft ³	
Molar Volume of Air at STP	22.4	L/mol	

HHV = Higher Heating Value

kg/MMBtu = kilogram(s) per million British thermal unit MMBtu/gal = million British thermal unit(s) per gallon

lbs = pound(s)

kg = kilogram(s)

L/ft³ = liter(s) per cubic foot

L = liter(s)

Global Warming Potentials		Source
GWP CO ₂ =	1	40 CFR 98 Subpart A, Table A-1
GWP CH ₄ =	25	40 CFR 98 Subpart A, Table A-1
GWP $N_2O =$	298	40 CFR 98 Subpart A, Table A-1

230321110651_8cfdc173 Page 7 of 7