DOCKETED	
Docket Number:	17-AAER-10
Project Title:	Irrigation Controllers
TN #:	253615
Document Title:	Landscape Irrigation Controllers Staff Workshop Presentation (12-11-2023)
Description:	N/A
Filer:	Soheila Pasha
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	12/14/2023 1:19:53 PM
Docketed Date:	12/14/2023

Landscape Irrigation Controllers

Staff Workshop

Appliance Efficiency Branch December 11, 2023

Workshop Agenda

10:30 AM	Welcome & Logistics	Peter Strait
10:35 AM	Opening Remarks	Chair Hochschild
10:45 AM	CEC Staff Presentation	Soheila Pasha
11:30 AM	Open Discussion and Comment	
12:30 PM	Adjourn	

House-Keeping Rules

- All lines are muted.
- Comments will be taken at the end of the presentation.
- For general clarifying question type your question in the Q&A section.
- To comment raise hand to speak
 - \circ Online: Raise your hand, host will give you the ability to speak, then caller must push unmute.
 - Cell phone: Raise your hand by pushing *9, host will give you the ability to speak, then caller must push *6 to mute and unmute.
- This workshop will be recorded.
- State your name and affiliation when speaking.

Workshop Agenda

10:30 AM Welcome & Logistics

Peter Strait

- 10:35 AM Opening Remarks
- 10:45 AM CEC Staff Presentation
- 11:30 AM Open Discussion and Comment
- 12:30 PM Adjourn

Chair Hochschild

Soheila Pasha

Opening Remarks

Chair David Hochschild California Energy Commission

Workshop Agenda

10:30 AM Welcome & Logistics

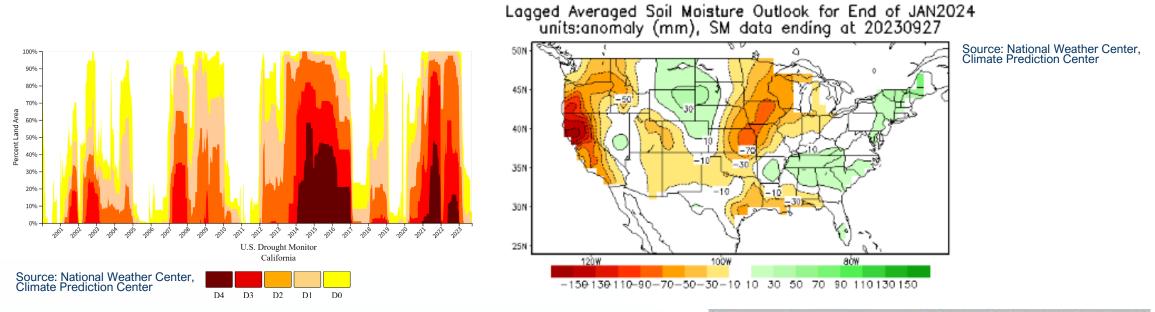
Peter Strait

- 10:35 AM Opening Remarks
- **10:45 AM CEC Staff Presentation**

Chair Hochschild

Soheila Pasha

- 11:30 AM Open Discussion and Comment
- 12:30 PM Adjourn

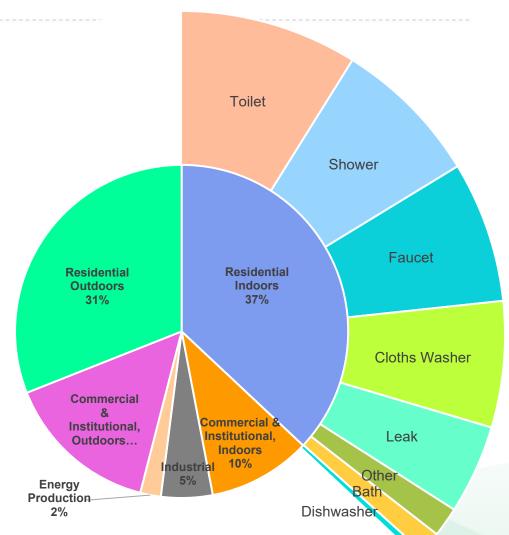

Landscape Irrigation Controllers

Staff Workshop

Soheila Pasha, Ph.D. December 11, 2023

Drought Situation

- Prominent drought levels becoming more prevalent year over year.
- Drought in California is expected to persist despite last year's rains.



Folsom Lake Photos by: California Department of Water Resources

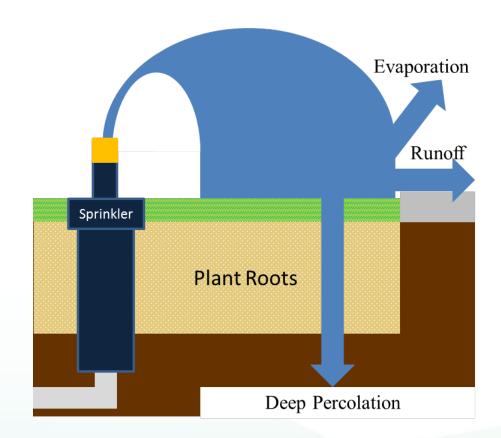
Water Consumptions for Various Applications

- About half of all water used is for outdoors.
- Residential outdoor consumes more water than any single household water consuming fixture.
- Single family homes use more than 88,000 Gallons per year for their landscape.

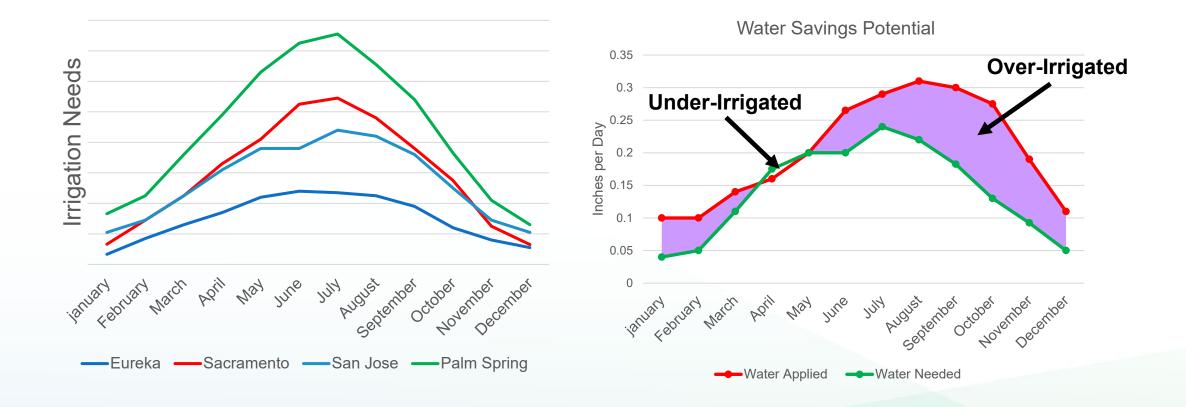
Sources: 1. Public Policy Institute of California: Water Use in California's Communities. 2. Water Research Foundation: Residential End Uses of Water.

Benefits of Adequate Landscape Watering

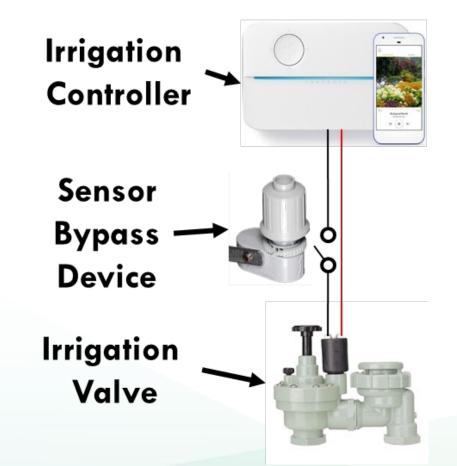
- Over-watering and under-watering are both damaging to landscapes and crops.
- Benefits of adequate watering: • Healthier plants
 - $\ensuremath{\circ}$ Saving water resources
 - \circ Saving energy
 - \odot Saving money (utilities and plants)
 - Environmental benefits


Source: https://oneilstreeservice.com

Irrigation Water Use


- Over-Irrigation can cause:

 Water run-off
 Deep Percolation
 Evaporation
 Standing water (poor drainage)
- Californians apply 50 percent more irrigation water than is needed.


Time and Amount of Irrigation are Important

Landscape Irrigation Controllers

- Controllers are timing devices that send signals to open or close irrigation values.
- Controllers schedule irrigation by:
 - \circ Time clock
 - \circ Weather data
 - \circ Soil moisture

Staff Proposal: Scope

•

٠

Hose-bib controllers

Battery-operated controllers

Central control irrigation systems

In-Scope:

- Clock timer controllers
- Weather-based controllers
- Soil moisture-based controllers

Single Outlet Controllers With Hose Bibb Splitter

Multiple Outlet Controller

Clock Timer Controller Weather-Based Controller

Out-of-Scope:

• Manual-watering timers

Staff Proposal: Definitions

- "Landscape irrigation controller" means a timing device that controls one or more valves used to engage irrigation of a landscape. Landscape Irrigation Controller does not include manual watering timers.
- "Soil moisture-based landscape irrigation controller" means a landscape irrigation controller that is sold with a soil moisture sensor mechanism and that enables or disables an irrigation event at preset or selected soil moisture values.

Staff Proposal: Definitions

"Weather-Based Landscape Irrigation Controller" means a landscape irrigation controller that is capable of creating or modifying irrigation schedules based on evapotranspiration (ET) principles by:

1. Storing historical crop evapotranspiration (ETc) data characteristics of the site and modifying these data with an onsite sensor;

2. Using onsite weather sensors as a basis for calculating real-time ETc;

3. Using a central weather station as a basis for ETc calculations and transmitting the data to individual users from remote sites; or

4. Using onsite weather sensors.

Staff Proposal: Test Procedure

Staff's proposal aligns with the U.S. EPA WaterSense Program:

- Weather-based landscape irrigation controllers:
 ANSI/ASABE S627 (October 2022) with some modifications
- Soil-Moisture-based landscape irrigation controllers: ANSI/ASABE S633 (May 2020) with some modifications

Staff Proposal: Standards

- Landscape irrigation controllers shall be weather-based, soil moisture-based, or both.
- Weather-based landscape irrigation controllers: meet U.S. EPA WaterSense specification for weather-based controllers.
- Soil moisture-based landscape irrigation controllers: meet U.S. EPA WaterSense specification for soil moisture-based controllers.

All landscape irrigation controllers shall:

- Preserve programmed settings when power is lost without relying on an external battery
- Have zone-specific programming or store at least 3 programs
- Indicate when not receiving weather / local sensor input (as applicable)
- Accommodate specific watering restrictions
- Accommodate percent watering change

Proposed Standards: All Irrigation Controllers (Continued)

All landscape irrigation controllers shall (continued):

Revert to historical data or percentage adjust feature if signal is lost

 Allow manual operation for troubleshooting, with automatic return to an automated mode afterward

Proposed Standards: Weather-Based Irrigation Controllers

Weather-based landscape irrigation controllers shall:

- Be capable of interfacing with a rainfall device or soil moisture sensor
- Ensure irrigation adequacy by supplying no less than 80 percent of water needed to maintain landscape
- Limit over-irrigation to 10 percent or less for each individual zone, and 5 percent or less on average across all zones

Proposed Standards: Soil Moisture-Based Irrigation Controllers

Soil moisture-based landscape irrigation controllers shall:

- \odot Be capable of interfacing with a rainfall device
- Allow enabling and disabling irrigation at 20, 40, and 60 percent depletion levels
- Meet precision and responsiveness targets (on next slides)
- Shall enable and disable irrigation after the soil moisture sensor mechanism is placed in a freezer for three days and thawed to prefreeze medium temperature

Proposed Standards: Soil Moisture-Based Irrigation Controllers (Continued)

• **Precision:** Relative average deviation (RAD) of the enable and disable readings across 3 depletion levels shall be 10 percent or less.

	Enable Irrigation			Disable Irrigation		
	Depletion Level 20%Depletion Level 40%D		Depletion Level 60%	Depletion Level 20%	Depletion Level 40%	Depletion Level 60%
Replica#1	R _(E-1-20)	R _(E-1-40)	R _(E-1-60)	R _(D-1-20)	R _(D-1-40)	R _(D-1-60)
Replica#2	R _(E-2-20)	R _(E-2-40)	R _(E-2-60)	R _(D-2-20)	R _(D-2-40)	R _(D-2-60)
Replica#3	R _(E-3-20)	R _(E-3-40)	R _(E-3-60)	R _(D-3-20)	R _(D-3-40)	R _(D-3-60)
Average Deviations (AD)	AD _(E-20)	AD _(E-40)	AD _(E-60)	AD _(D-20)	AD _(D-40)	AD _(D-60)

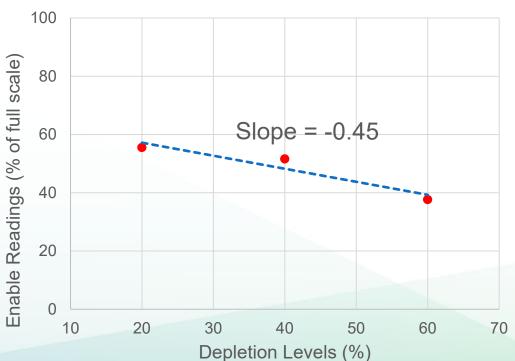
$$AD_{(E/D-DL)} = \frac{\sum_{i=1}^{3} \left| R_{(E/D-i-DL)} - \overline{R}_{(E/D-DL)} \right|}{3} / \overline{R}_{(E/D-DL)}$$

Where: $\overline{R}_{(E/D-DL)} = \frac{\sum_{i=1}^{3} R_{(E/D-i-DL)}}{3}$ and DL= 20%, 40%, 60%

• RAD is the average of 6 average deviations:

$$RAD = [AD_{(E-20)} + AD_{(E-40)} + AD_{(E-60)} + AD_{(D-20)} + AD_{(D-40)} + AD_{(D-60)}] / 6$$

23



Proposed Standards: Soil Moisture-Based Irrigation Controllers (Continued)

• **Responsiveness to soil moisture changes:** The absolute value of the slope of the least-square-regression line for three points represented by the average readings ($R_{(E/D-DL)}$) on Y-axis and depletion levels (DL) on X-axis shall be greater or equal to 0.01, for both enable irrigation and disable irrigation.

$$\overline{R}_{(E/D-DL)} = \frac{\sum_{i=1}^{3} R_{(E/D-i-DL)}}{3}$$

Depletion Level (DL)= 20%, 40%, 60%

Staff Proposal: Certification and Marking Requirements

- Manufacturers would be required to certify each model of landscape irrigation controller to the CEC's appliance efficiency database
- Manufacturers would be required to mark each controller with:
 - Manufacturer name, brand name or trademark
 - Model number
 - Date of manufacture

Technical Feasibility

- Proposed standards are aligned with U.S. EPA WaterSense programs for weather-based and soil moisture-based irrigation controllers.
- U.S. EPA WaterSense product website shows about 960 weatherbased and soil moisture-based irrigation controllers.
- U.S. EPA WaterSense certified products are from multiple different manufacturers.
- Proposed standards are technically feasible and there are no intellectual property barriers.

Proposed standards:

- Are cost effective to California consumers
- Save significant amounts of water and embedded electricity used for water pumping, treatment, and delivery
- Decrease the need for investing in costly, large-scale infrastructure projects to supply more water
- Reduce operating costs for water utilities to collect and treat wastewater before releasing it back into the environment

Per Unit Costs and Savings

Product Type	Design Life	Water	Water Savings	Life-Cycle Water
	(Years)	Savings (%)	(Gal/yr)	Saving (Gal)
Irrigation Controllers	15	15%	13,265	198,981

Water Rate (\$/1000 Gal)	Water Cost Savings (\$/yr)	Water Cost Life-Cycle Savings (\$)	Incremental Costs (\$)	Life-Cycle Net Benefit (\$)	Pay Back Period (Years)	Benefits to Cost Ratio
\$6.13	\$74.42	\$915.03	\$24.83	\$890.20	0.33	36.85

Note: a 3 percent discount rate is applied to calculate the net present values.

Statewide Costs and Savings

Product	1st Year Sales in CA (units/yr)	1st Year Water Savings (million gal/yr)	1st Year Initial Costs (\$million/yr)	1st Year Water Costs Savings (\$million/yr)
Irrigation Controllers	399,846	4,005	\$7.1	\$22.5

Product	Stock Turn Over Year	Embedded Electricity Savings (GWh/Yr)	Stock Turnover Water Savings (million gal/yr)	Stock Turnover Water Costs Savings (\$million/yr)
Irrigation Controllers	Year 15 th	213.3	59,830	\$275

Note: a 3 percent discount rate is applied to calculate the net present values.

Environmental Impacts

- Proposed standards:
 - \circ Improve air quality by reducing greenhouse gases emitted in the production of energy used to transport and treat water.
 - Have no adverse environmental impacts.
 - Do not result in early disposal of non-compliant products.
- The materials found in compliant products do not contain any hazardous materials.
 - \circ The proposed standards do not require the use of any specific material to improve the efficiency of the product.
- The marking requirement can be accomplished with existing marking techniques and does not cause a significant environmental impact.

Equity of the Impacts and Benefits

- Proposed standards are cost effective for low-income households with a pay back period of less than six months.
 - Rental households benefit slightly more as they don't typically pay for the upfront costs.

Discounted Water Rate (\$/1000 Gal)	Water Cost Life-Cycle Savings (\$)	Incremental Costs (\$)	Life-Cycle Net Benefit (\$)	1st Year Cost Savings (\$)	Period	Benefits to Cost Ratio
\$4.29	\$640.52	\$24.83	\$615.69	\$52.09	0.48	25.80

Note: a 3 percent discount rate is applied to calculate the net present values.

• Low-income families equally receive the environmental benefits: reduced greenhouse gas and criteria pollutant emissions.

What Happens Next

- CEC staff will review all comments received.
- Proposed regulation will be revised if needed.
- If there are changes affecting staff analysis, CEC staff will update and publish the final staff analysis report.
- The CEC will start a formal rulemaking for landscape irrigation controllers.

Thank You!

Workshop Agenda

- 10:30 AM Welcome & Logistics
- 10:35 AM Opening Remarks
- 10:45 AM CEC Staff Presentation

Peter Strait

Chair Hochschild

Soheila Pasha

- 11:30 AM Open Discussion and Comment
- 12:30 PM Adjourn

Comments

- Comments are due by 5:00 p.m. on January 8, 2024.
- Oral comments will be accepted at the end of the workshop today.
- To submit electronically:
 - o Go to https://www.energy.ca.gov/proceeding/irrigation-controllers

Click on "Submit Comment (17-AAER-10)"

- To send a digital copy: email to <u>docket@energy.ca.gov</u>, include "docket number 17-AAER-10" and "Landscape Irrigation Controllers" in the subject line.
- To send a hard copy, mailed to:

California Energy Commission Docket Unit, MS-4 Docket No. 17-AAER-10 715 P Street Sacramento, California 95814

Document Availability

- Today's workshop is a part of the pre-rulemaking process.
- All documents related to the Landscape Irrigation Controllers prerulemaking, including this presentation, are available on the Energy Commission's website at (Docket# 17-AAER-10): <u>https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber=17-AAER-10</u>