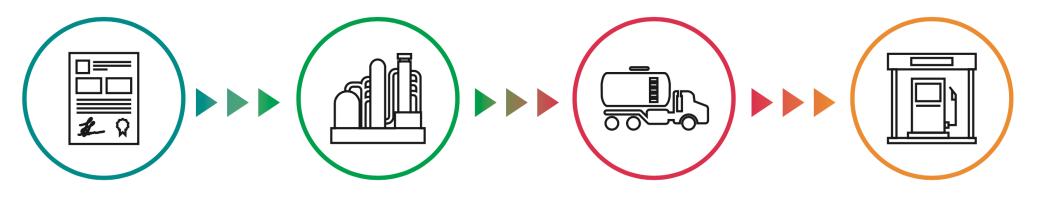
DOCKETED				
Docket Number:	23-OIIP-01			
Project Title:	Order Instituting Informational Proceeding on Maximum Gross Gasoline Refining Margin and Penalty			
TN #:	253351			
Document Title:	Presentation - MGGRM Economics 101 - Price Theory and Regulation			
Description:	MGGRM Economics 101: Price Theory and Regulation			
Filer:	Donnie Cox			
Organization:	Vanderbilt University and UC Davis			
Submitter Role:	Public Agency			
Submission Date:	11/28/2023 12:42:38 PM			
Docketed Date:	11/28/2023			

MGGRM Economics 101: Price Theory and Regulation

Matthew Zaragoza-Watkins

Vanderbilt University and UC Davis


Presented at the California Energy Commission SB X1-2 Workshop: Refining Margin Establishment and Penalty Determination on November 28, 2023

The California Gas Price Gouging and Transparency Law (SB X1-2)

- "Although preventable capacity limitations and inventory shortages played a role in the third quarter of 2022 price increases, they cannot account for all of those increases..."
- Authorizes the California Energy Commission (CEC) to set a maximum gross gasoline refining margin (MGGRM) and a penalty for refiners that exceed it

The fuel price influence chain

Fuel Price Influence Chain

NYMEX

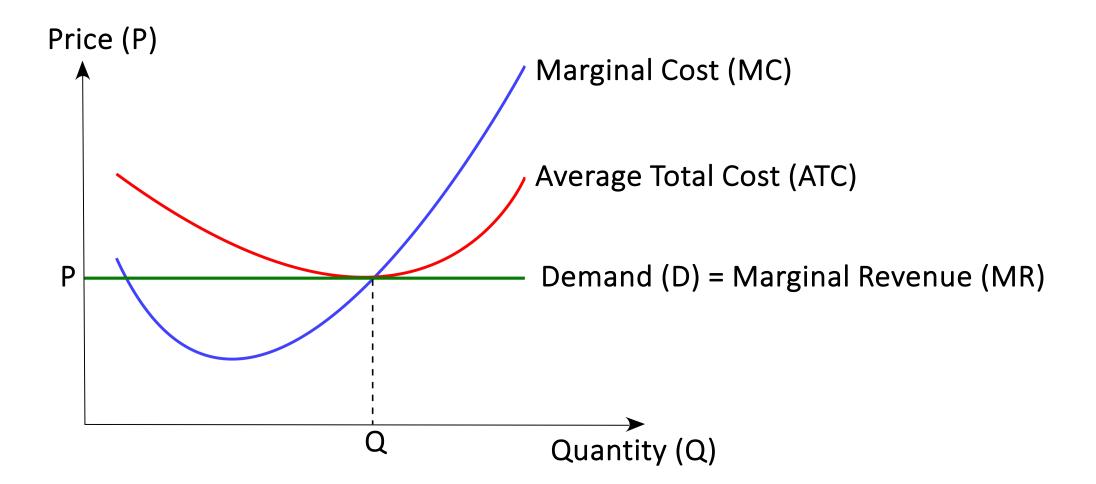
Paper market, influenced by big-scale regional and international factors.

SPOT MARKET

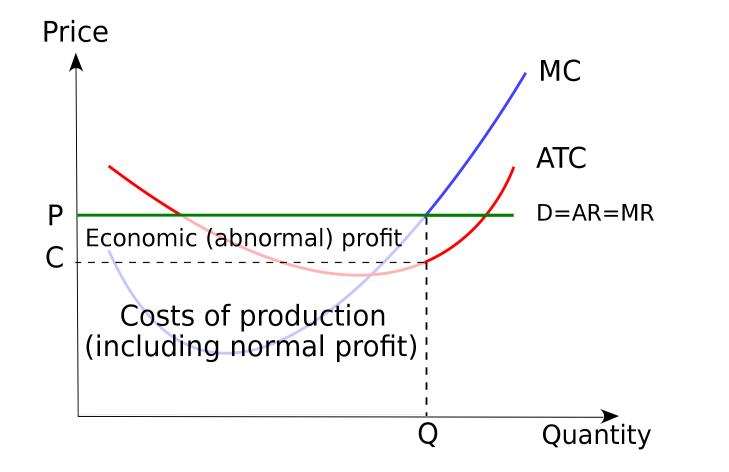
Physical market, high volume, located at refinery hubs. Reacts to NYMEX and regional supply news.

RACK MARKET

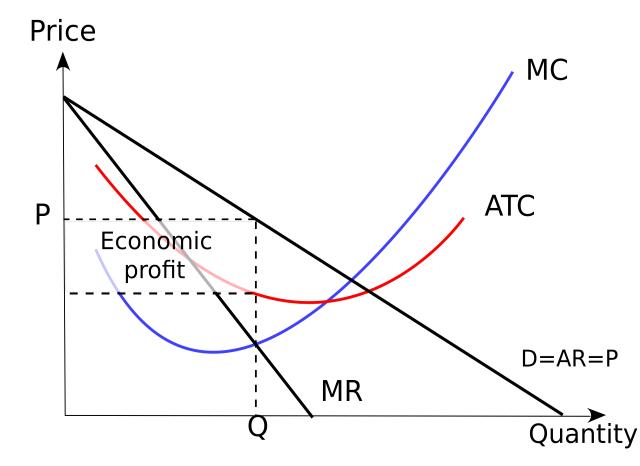
Smaller volume market, often located off a pipeline. Follows spot market direction, changing at 6pm each day.


RETAIL MARKET

Street price for gasoline and diesel. Follows rack pricing, though reaction time is usually two/three days later.

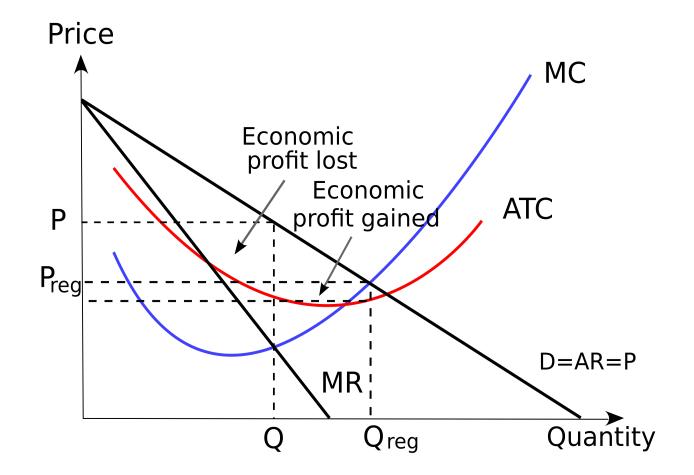

Consider an industry with large fixed costs...

- Electricity generation, transmission, and distribution
- Natural gas extraction, processing, transmission, and distribution
- Petroleum extraction, refining, transmission, and distribution


Perfect competition in the long run

Perfect competition in the short run

Imperfect competition in the short run



California Oil Refinery Locations and Capacities

Refinery Name	Barrels Per Day	% of California Crude Oil Capacity	CARB Diesel	CARB Gasoline
Marathon Petroleum Corp., Los Angeles Refinery*	363,000	21.22%	Yes	Yes
Chevron U.S.A. Inc., El Segundo Refinery	269,000	15.73%	Yes	Yes
Chevron U.S.A. Inc., Richmond Refinery	245,271	14.34%	Yes	Yes
PBF Energy, Torrance Refinery	160,000	9.35%	Yes	Yes
PBF Energy, Martinez Refinery	156,400	9.14%	Yes	Yes
Valero Energy, Benicia Refinery	145,000	8.48%	Yes	Yes
Phillips 66, Los Angeles Refinery	139,000	8.13%	Yes	Yes
Phillips 66, Rodeo San Francisco Refinery**	90,200	5.27%	Yes	Yes
Valero Energy, Wilmington Refinery	85,000	4.97%	Yes	Yes

Sources: Source: U.S. EIA, CEC Transportation Fuels Data.

Imperfect competition with price regulation

Key takeaways

- In the long run, competitive firms produce at minimum ATC
 - Prices can be above and below minimum ATC in the short run
 - In the short run, firms only shutdown when price is below AVC
- Firms in concentrated industries can exercise market power
 In California, petroleum refining appears to be a concentrated industry
- A price cap can induce regulated firms to increase short-run output
 - In the long-run, capped prices must be above ATC for firms not to exit

Some additional considerations

- Does the firm engage in other activities (i.e., besides refining) that contribute to its gross gasoline refining margin?
- Does the firm produce other products that affect its incentives?
- Is the firm engaged in vertical arrangements that affect its incentives?
- What is the opportunity costs of producing gasoline in the short run? In the long run?

Thank you!

mdzwatkins@ucdavis.edu