DOCKETED	
Docket Number:	21-ESR-01
Project Title:	Energy System Reliability
TN #:	253179
Document Title:	Presentation of Lead Commissioner Workshop on Senate Bill 423 Emerging Renewable and Firm Zero Carbon Resources 11-17-2023
Description:	Presentation for 11-17-2023 Workshop by the CEC
Filer:	Xieng Saephan
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	11/17/2023 8:31:02 AM
Docketed Date:	11/17/2023

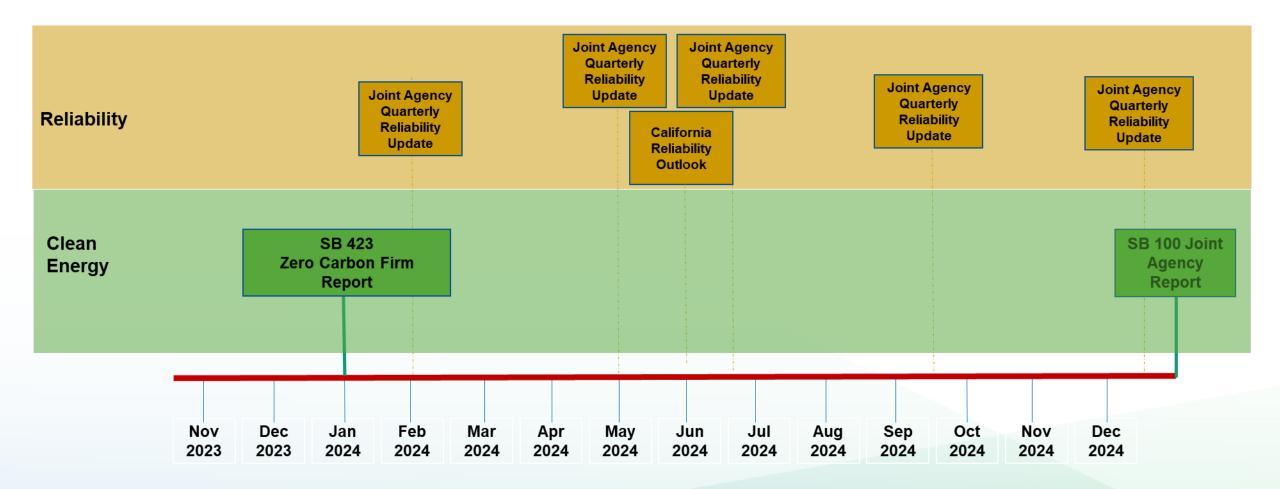
SB 423 Firm Zero-carbon Resources Workshop

November 17, 2023

- Q&A and Comments: Zoom Q&A function
- Administrative questions: Zoom Chat function
- Public comments due December 1, 2023
- CEC Docket 21-ESR-01

Comments from the Dais

- Introduction: SB 423 Requirements and Goals of Today's Workshop
 - Liz Gill
- Firm Zero-carbon Resource Technology Assessment
 - Chie Hong Yee Yang
- SB 423 Reliability Analysis
 - Hannah Craig
- Question and Answer



- <u>Identifying commercially feasible and nearly feasible firm zero-carbon resources</u> that can enhance grid reliability while reducing greenhouse gas, air contaminant, and air pollutant emissions.
- <u>Evaluating the potential need</u> for these resources, considering various cost and performance scenarios to incorporate renewable energy into the grid on a <u>daily, multi-day, and seasonal basis</u>.
- <u>Identifying barriers to the development</u> of these resources and proposing solutions, including options for procurement by various entities.
- Recommending changes to research, demonstration projects, and energy incentives to enhance the contributions of zero-carbon resources to grid reliability, with a focus on reducing emissions in disadvantaged communities.
- Evaluating load-serving entities' resource plans under extreme weather conditions and assessing their resilience, especially during prolonged periods of low renewable energy generation.
- Assessing the use of energy storage to achieve the goals set forth in this section.

- Identify and assess readiness, cost, and characteristics of firm zerocarbon resources
- Identify barriers to firm zero-carbon resource deployment
- Evaluate the role of firm zero-carbon resources in resource portfolios
- Evaluate portfolios under extreme weather events

Related Clean Energy and Reliability Efforts

- Present preliminary information on the readiness, cost and performance attributes of firm zero-carbon technologies
- Present preliminary results of reliability modeling assessing:
 - The relative reliability value of firm zero-carbon resources
 - The reliability of portfolios under extreme weather events

SB 423 Firm Zero-carbon Resources

Chie Hong Yee Yang, Energy Assessments Division

November 17, 2023

- What is Firm Zero-carbon
- Identification Assessment of Firm Zero-carbon Resources
- Reliability of Load Serving Entity (LSE) Integrated Resource Plans (IRPs)
- Recommended Changes to R&D Projects
- Barriers
- Conclusions and Recommendations

Defining Firm Zero-carbon Resources

"Firm zero-carbon resources are electrical resources that can individually, or in combination, deliver zero-carbon electricity with high availability for the expected duration of multiday extreme or atypical weather events, including periods of low renewable energy generation, and facilitate integration of eligible renewable energy resources into the electrical grid and the transition to a zero-carbon electrical grid."

Working Definition

Firm Zero-carbon Resources are resources or combination of resources that reliably produce zero-carbon electricity on demand, ensuring a consistent and stable power supply for extended periods and/or are eligible for the Renewable Portfolio Standard (RPS). For the purposes of this analysis, a firm zero-carbon resource must satisfy the following criteria:

Provides steady electricity output

- No stand-alone wind or solar resources
- Zero-carbon fuels storage (e.g., hydrogen storage, reservoirs)
- Natural gas pairing with CCUS allowable (100% capture rate or partial counting for less than 100%
- Flex fuel may be acceptable
- Enables multi-day operations
 - Able to operate during subsequent days of an extreme event
 - Systems must be dispatchable or baseload not necessarily 24/7

Resources	Technologies						
Solar/Wind + Storage	Solar/Onshore Wind/Offshore Wind + Storage (Lithium-Ion)						
Long-Duration Energy Storage	Flow, Iron Air, Zinc, Compressed Air Energy Storage – must be charged with clean energy						
Hydropower	Pumped Storage Hydro, Large Hydro, Small Hydro						
Geothermal	Conventional Hydrothermal, Enhanced Geothermal Systems						
Renewable Natural Gas	Thermochemical (Gasification and Pyrolysis), Anaerobic Digestion, and Landfills						
Hydrogen	Fuel Cells, Combustion Turbines, Reciprocating Engines, Non-Combustion and Non-Fuel Cell Gas Fueled Generators, Hydrogen Storage						
Carbon Capture	Point Source Capture						
Fission	Small Modular Reactors						
Fusion	Inertial Confinement Fusion, Magnetic Confinement Fusion						

Local Reliability

• Resiliency¹

System Reliability

• Emissions

Resources	Role	
Solar/Wind + Storage		
Long-Duration Energy Storage (LDES)		
Hydropower		
Geothermal		
Renewable Natural Gas (RNG)		
Hydrogen		
Modular Fission Reactors		
Fusion		
Carbon Capture		

Technology Readiness

Technology Readiness Levels (TRL) are a systematic metric that is used to assess the maturity of a particular technology.

- TRL 1 Basic Principles Observed
- TRL 2 Technology Concept Formulated
- TRL 3 Proof of Concept
- **TRL 4** Technology Validated in Lab
- **TRL 5** System Prototype Demonstrated in Relevant Environment
- TRL 6 System Model or Prototype Demonstrated a Relevant Environment
- **TRL 7** System Prototype Demonstrated in an Operational Environment
- **TRL 8** Actual System Completed and Qualified
- **TRL 9** Full-Scale Deployment

Source: <u>https://www.directives.doe.gov/directives-documents/400-series/0413.3-</u> EGuide-04a-admchg1/@@images/file

	Technolo	gy Rea	diness	Level	(TRL)			
Resources	Technology							
	Solar + Storage							
Solar/Wind + Storage	Onshore Wind + Storage							
	Offshore Wind + Storage							
	LFP							
	NMC							
Long Dunstion Friend	Vanadium Redox							
Long-Duration Energy Storage (LDES)	Zinc Bromine							
Storage (LDLS)	Iron Air							
	Zinc (non-flow)							
	aCAES							
	PSH - Lock							
	Large Hydro - Lock							
Hydropower	Large Hydro – Run-of-River							
	Small Hydro – Lake							
	Small Hydro – Run-of-River							
	Dry Steam							
Geothermal	Flash Steam							
	Binary Steam							
	Thermochemical							
Renewable Natural Gas (RNG)	Anaerobic Digestion							
(KNO)	Landfill Gas							
	Fuel Cells							
Undrogon	Combustion Turbines							
Hydrogen	Reciprocating Engines							
	NCNFC Generators							
Small Modular Reactors	Water Reactors							
	Amine Solvents							
Carbon Canturo	Swing Adsorption (TSA, VSA, TVSA)							
Carbon Capture	Membranes							
	Cryogenic							
		3	4	5	6	7	8	9
			-	TRL				

CAPEX								Fixed O&M								
								Fixed Oam								
Resources	Technology							Resources	Technology							
Solar/Wind + Storage								Solar/Wind + Storage	Solar + Storage							
Long - Duration Energy								Long - Duration Energy	LFP		J.					
Storage (LDES)	NMC							Storage (LDES)	NMC		I.					
	Vanadium Redox								Vanadium Redox		1					
	Zinc Bromine								Zinc Bromine		1					
	Iron Air								Iron Air							
	Zinc (non - flow)								Zinc (non - flow)							
	aCAES								aCAES							
Hydropower	PSH - Lock							Hydropower	PSH - Lock							
	Large Hydro - Lock								Large Hydro - Lock							
	Large Hydro – Run - of - River								Large Hydro – Run - of - River							
	Small Hydro – Lake								Small Hydro – Lake							
	Small Hydro – Run - of - River								Small Hydro – Run - of - River							
Geothermal	Hydro / Flash							Geothermal	Hydro / Flash							
	Hydro / Binary								Hydro / Binary							
	NF EGS / Flash								NF EGS / Flash							
	NF EGS / Binary								NF EGS / Binary							
	Deep EGS / Flash								Deep EGS / Flash							
	Deep EGS / Binary								Deep EGS / Binary							
Renewable Natural Gas								Renewable Natural Gas	Gasification							
(RNG)	Anaerobic Digestion							(RNG)	Anaerobic Digestion							
	Landfill Gas								Landfill Gas							
Hydrogen	Fuel Cells							Hydrogen	Fuel Cells							
	Combustion Turbines								Combustion Turbines							
	Reciprocating Engines								Reciprocating Engines							
	NCNFC Generators								NCNFC Generators							
Small Modular Reactors								Small Modular Reactors	Small Modular Reactor							
Carbon Capture	New 97% CCS + Combined Cycle Turbine							Carbon Capture	New 97% CCS + Combined Cycle Turbine							
	New 95% CCS + Combined Cycle Turbine								New 95% CCS + Combined Cycle Turbine							
	95% CCS Retrofit for Combined Cycle Turbine								95% CCS Retrofit for Combined Cycle Turbine							
	so to easily a contract of compliced cycle fulbille	ок	5K	10K	15K	20K 25	SV.	-	•	0		100	20	00 300	4	00
		UK	эк			20K 23	л			ľ						
				CAPI	E X (\$/kW)							FIX	ed U&	•M (\$/kW -	yr)	

Capacity factor is a measure that represents the actual output of a power plant or energy system over time, compared to its maximum potential output if it operated at full capacity continuously.

- expressed as a percentage
- higher capacity factor indicates consistent operation.

	Capacity Factor	or				
Resources	Technology					
Solar/Wind +	Solar + Storage					
Storage	Onshore Wind + Storage					
	Offshore Wind + Storage					
Hydropower	Large Hydro - Lock					
	Large Hydro – Run-of-River					
	Small Hydro – Lake					
	Small Hydro – Run-of-River					
Geothermal	Hydro / Flash					
	Hydro / Binary					
	NF EGS / Flash					
	NF EGS / Binary					
	Deep EGS / Flash					
	Deep EGS / Binary					
Renewable	Thermochemical					
Natural Gas	Anaerobic Digestion					
(RNG)	Landfill Gas					
Hydrogen	Fuel Cells					
	Combustion Turbines					
	Reciprocating Engines					
Small Modular	Pressurized Water Reactor (PWR)					
Reactors	Boiling Water Reactor (BWR)					
		0%	20%	40%	60%	80%
				Capacity	/ Factor	

Round trip efficiency (RTE) is a measure of how well a system can convert and then recover energy, expressed as the percentage of energy output compared to the energy input in a complete cycle.

Efficiency is a measure of how well a power plant converts the energy in its fuel into electricity.

 How effectively a power plant generates electricity from the fuel it uses

	Round Trip	o Effi	cienc	c y			
Resources	Technology						
Solar/Wind +	Solar + Storage						
Storage	Onshore Wind + Storage						
	Offshore Wind + Storage						
	LFP						
Energy Storage	NMC						
(LDES)	aCAES						
	Vanadium Redox						
	Zinc Bromine						
	Iron Air						
	Zinc (non-flow)						
		40%	50%	60%	6 709	6 80	%
				Effi	iciency		
	Efficiency						
Resources	Technology						
Hydropower	PSH - Lock						
Hydrogen	Fuel Cells						
	Combustion Turbines						
	Reciprocating Engines						
	NCNFC Generators						
Carbon Capture	Amine Solvents						
	Swing Adsorption (TSA, VSA, TVSA)						
	Membranes						
	Cryogenic						
	Cryogenic	60	% 7	70%	80%	90%	100

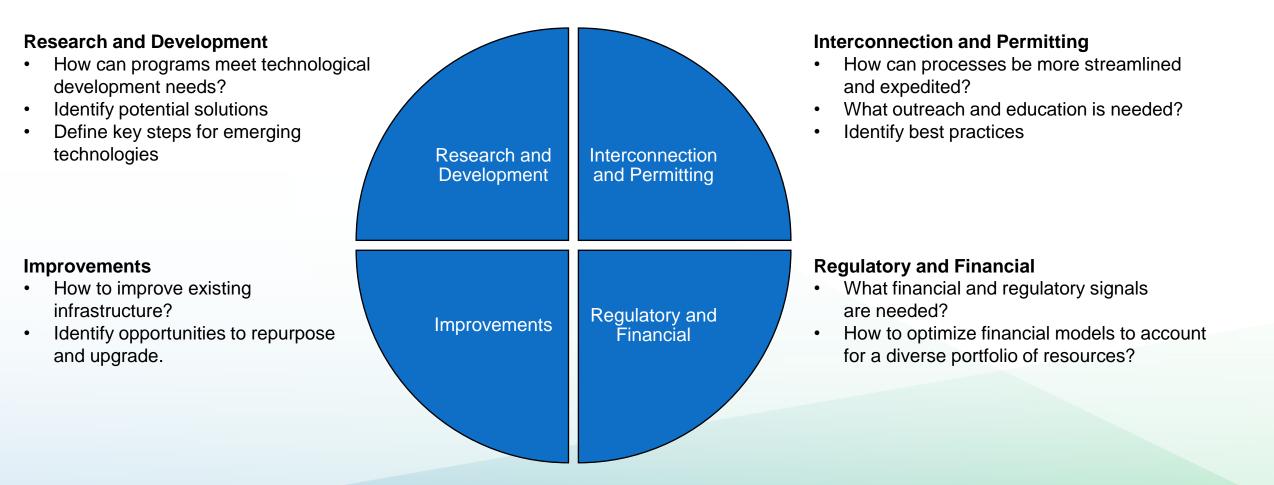
Note: RTE for hybrid/co-located systems is based on storage technology only.

Research programs, funding and incentives

- Electric Program Investment Charge EPIC
- Long Duration Energy Storage (LDES) Program
- Clean Hydrogen Program (AB 209)
- \$1.2 billion federal funding for Hydrogen Hub
- Active Gas Research and Development projects supporting hydrogen production and use

https://www.energy.ca.gov/publications/2023 /eos-energy-storage-utility-demonstrationnon-flammable-aqueous-zinc-battery

https://www.cnbc.com/2021/08/25/form-energy-raises-240million-on-iron-air-battery-promise.html


https://fuelcellsworks.com/news/u-s-department-ofenergy-makes-historic-award-of-up-to-1-2-billion-fora-regional-clean-hydrogen-hub-in-california/

EPC-19-045, Invinity Vanadium Flow Battery installed at the fire station run by the Soboba Band of Luiseno Indians

Four overarching themes for key takeaways. Each theme encompasses various crucial elements from the extensive takeaway list, and a detailed breakdown, for each resource, will be provided in the release of the draft report.

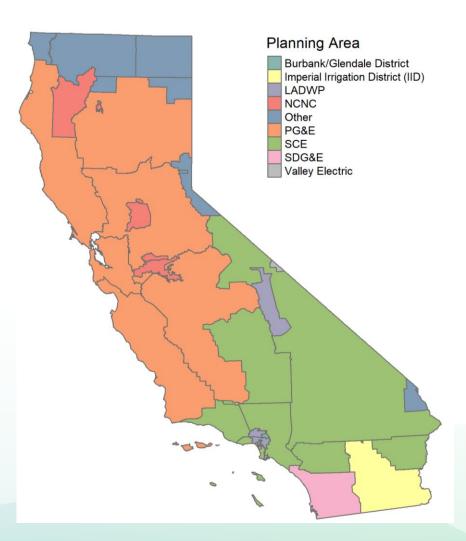
Question and Answer

SB 423 Reliability Analysis

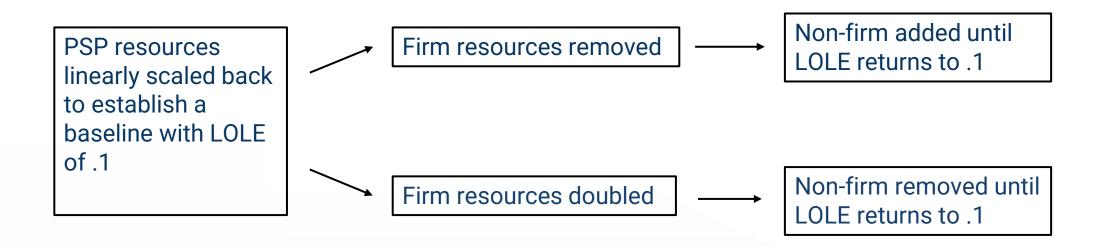
Hannah Craig, Energy Assessments Division November 16, 2023


- <u>Evaluating the potential need</u> for these resources, considering various cost and performance scenarios to incorporate renewable energy into the grid on a <u>daily, multi-day, and seasonal basis</u>.
- Evaluating load-serving entities' resource plans under extreme weather conditions and assessing their resilience, especially during prolonged periods of low renewable energy generation.

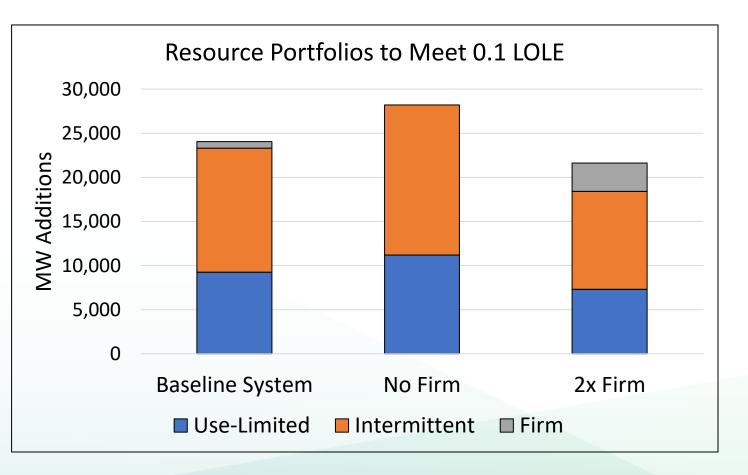
- **Modeling Objective #1:** How does incorporating more firm resources into the portfolio affect the requirement for other resources?
 - Provide high level insight into the tradeoffs associated with firm and non-firm resources in a reliable system.
- Modeling Objective #2: What reliability concerns can occur with existing resource plans during multi-day weather events in the near and mid term?
 - Identify what multi-day weather events are of most concern.
 - Assess the greatest risks within those multi-day weather events.



- Stochastic model utilizes15 weather years from 2007-2021
- CPUC demand profiles based on the 2022 CED and wind/solar shapes generated from NREL weather data
- Each weather year is run with 20 outage samples, using forced outage data from GADS


- CEC model includes full detail on CA power plants but does not model WECC in detail.
- CAISO has a 5,500 MW import constraint at peak and the state has a 12,400 MW constraint for all hours of the day.
- New resources based on the Preferred System Plan adopted in 2021.
- Results reported statewide.

Modeling Objective #1: How does incorporating more firm resources into the portfolio affect the requirement for other resources?



The result is three portfolios with the same LOLE and 0x, 1x, 2x firm resources.

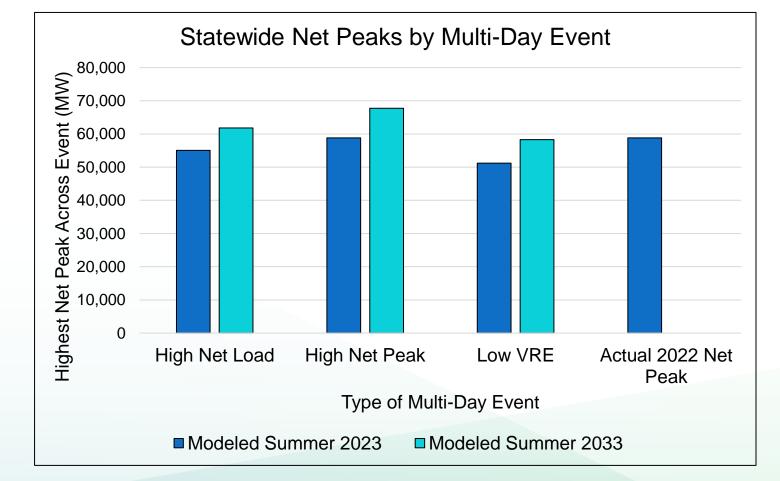
	Resources
	Biomass ST
Firm	Geothermal
	16-Hour Storage
Use-Limited	Storage
OSe-Limited	Demand Response
	Onshore Wind
Intermittent	Offshore Wind
mermittent	OOS Wind
	Solar

- Reliability can be met with firm or nonfirm resources.
 - It requires about 20% more dispatchable use-limited resources to replace reliability benefits of firm resources.
 - The non-firm resources will generate significantly more renewable energy overall, since so much of the firm portfolio is hydro storage.
- Other factors such as cost, feasibility and renewable energy production should be considered in resource planning and procurement.

	Baseline	No Firm	2x Firm
Firm	1,608	0	3,216
Use-Limited	9,260	+1,944	-1,945
Intermittent	14,050	+2,949	-2,951

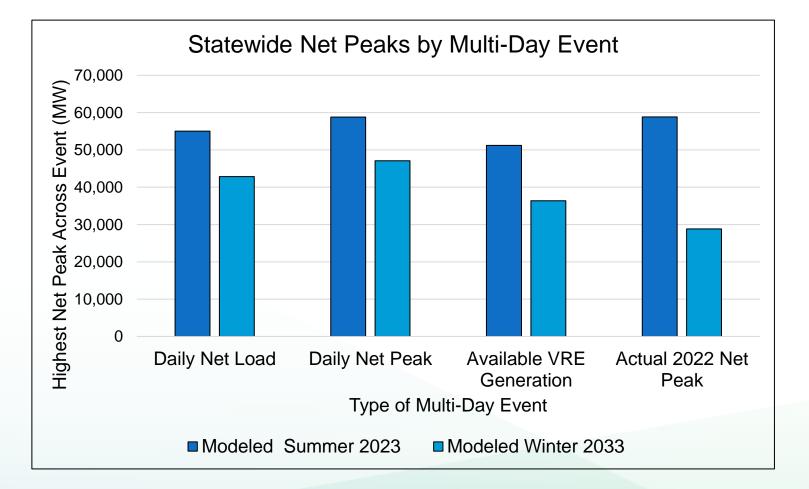
Modeling Objective #2: What reliability concerns can occur during multiday weather events in the near and mid term?

A broad range of "Multi-Day" events are captured, which include 2-7 day events.

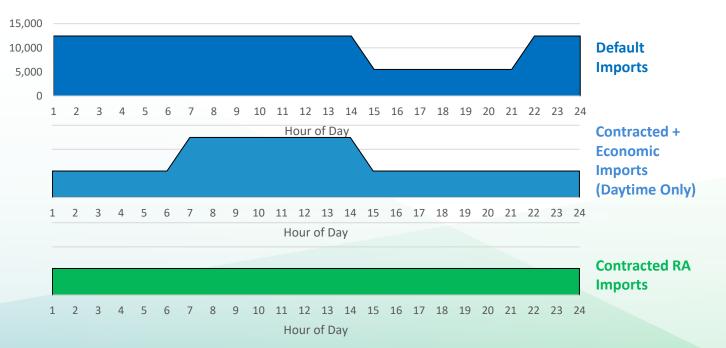

- The initial analysis used the 2023 economic year for identification of periods of high risk
- Analysis focused on 3-day events, as roughly 80% of the 2-6 day events are coincident with the 3-day period.

The following are calculated for every season for weather years 2007-2017:

- Daily Net Load (MWh) Gross Load VRE Generation
 - Identifies times when the power system would be stressed to provide high-levels of energy for multiple days coincident with load.
 - This case is primarily focused on quantifying the impact of *energy constraints* on system reliability.
- Daily Net Peak (MW) Rolling Average of the peak gross load VRE
 - Identifies when the system experiences multiple peak demand days in a row
 - This case is primarily focused on quantifying the impact of *capacity constraints* on system reliability.
- VRE Share (%)- VRE as percentage of Gross Load
 - Identifies when wind and solar make up the smallest percentage of resources serving load
 - This case is primarily focused on quantifying the impact of sustained, multi-day low renewable availability on system reliability.


Multi Day Event Demand Peaks

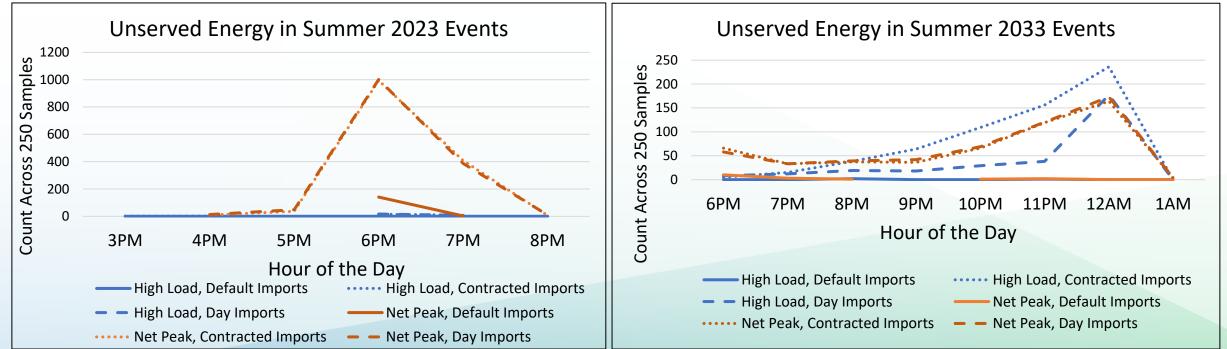
- Peaks in Modeled Summer 2023 high net peak event are comparable to September 2022.
- High Load Event net peaks are not far behind.
- Net peaks in the low renewable generation scenario are significantly lower than the other two.


- Winter peaks are far below summer peaks, even in 2033.
- The demand shapes are based on the 2022 CED, which doesn't include as much building electrification

- 3-day stress periods were modeled with 250 outage samples and four separate import cases
- Goal of the import stress cases is to see whether issues occur when energy is
 restricted to the system and whether outages are caused by peak capacity
 shortfalls on certain days or long periods of high energy need.

	Definition
Default Imports	5,500 MW at peak, 12,400 MW other hours
Contracted + Economic Imports	5,500 MW at peak and overnight, 12,400 MW midday
Contracted RA Imports only	5,500 MW all hours
No Imports	0 imports all hours

Multi-Day Event Results


- Summer remains more challenging than winter, even in 2033.
- High net peaks are more challenging than extended periods of high load.
- Economic imports improve summer reliability even outside the traditional 3pm-9pm peak window.

	Summer Stress Tests							V	Vinter St	ress Test	S	
		2023		2033 Full PSP				2023		2	033 Full PS	P
Imports Sensitivities	High Load Energy	High Load Peak	Low VRE Event	High Load Energy	High Load Peak	Low VRE Event	High Load Energy	High Load Peak	Low VRE Event	High Load Energy	High Load Peak	Low VRE Event
Default Imports	0%	36%	0%	1%	4%	0%	0%	0%	0%	0%	0%	0%
Contracted + Economic Imports (daytime only):	6%	100%	0%	61%	100%	1%	0%	0%	0%	0%	0.4%	0%
Contracted RA Imports only	5%	100%	0%	72%	100%	2%	0%	0%	0%	0%	0%	0%
No Imports	100%	100%	99.6%	100%	100%	100%	0%	0%	0%	0%	22%	0%

Probability of unserved energy in the sample

Primary Challenge Shifts from Net Peak to Overnight by 2033

- In 2023, unserved energy is an issue at net peak
- In 2033, expansion of energy storage leads to less unserved energy overall, less unserved energy at net peak, but more issues late at night when batteries are depleted
- The high load event experiences challenges with charging batteries sufficiently when imports are restricted during the day

- Analysis will be continued in future releases of the CRO and the IEPR.
- Expansions on the topic may include:
 - New demand forecast incorporates more building electrification will affect analysis of multi-day events in winter and value of resources providing energy overnight.
 - Value of firm resources may change when modeling out to 2045 with more restrictions on gas plants, such as decreased capacity, decreased capacity factors, or both.
 - More analysis on how other reliability indicators like Expected Unserved Energy or Loss of Load Hour are affected by portfolios with more firm resources.
 - More analysis on how additional firm resources affect system operations.

Public Comment

Zoom App/Online

• Click "raise hand"

Telephone

- Press *9 to raise hand
- Press *6 to mute/unmute

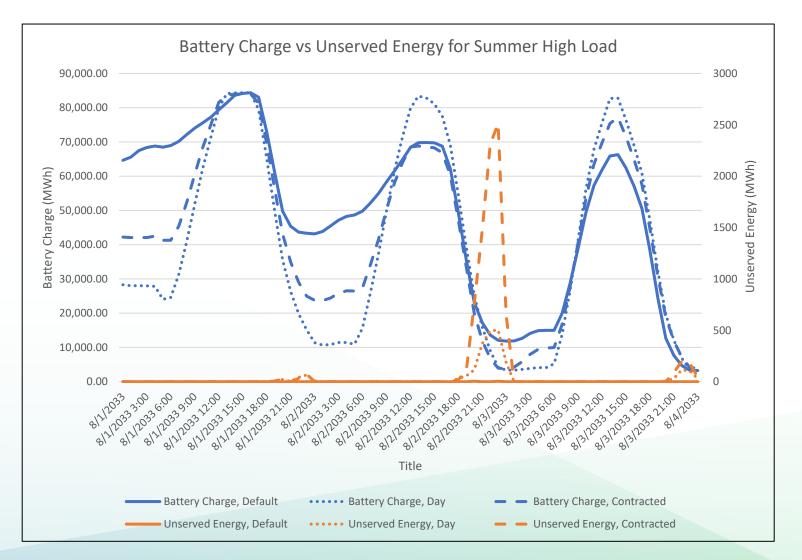
When called upon

- CEC will open your line
- Unmute on your end
- Spell name and state affiliation, if any
- 3 minutes or less per speaker, 1 speaker per entity

3-MINUTE TIMER

For Phone Participation: Dial (669) 900-6833 or (888) 475-4499 Enter Webinar ID: 839 9341 7102

Appendix


- SB 423 requires the study of LSE's plans under multi-day extreme and atypical weather events that occur at least as frequently as once per ten years
- Historical extreme dates were selected representing net load, net energy, and renewable energy minimums over a 3-day period.

Summer 2023	Weather Year Date	Daily Net Peak	Daily Net Energy
	8/1/2017	53,388	890,417
Daily Net Load	8/2/2017	55,047	1,003,179
	8/3/2017	53,255	986,909
	8/31/2017	58,039	950,482
Daily Net Peak	9/1/2017	58,815	877,420
	9/2/2017	58,310	880,638
	9/18/2016	48,032	703,266
Available VRE Generation	9/19/2016	50,901	823,848
	9/20/2016	51,196	875,981
2022 Heat Event	9/6/2022	58,841	1,004,160

Winter 2033	Weather Year Date	Daily Net Peak	Daily Net Energy	
Daily Net Load	12/20/2010	42,841	840,113	
	12/21/2010	41,034	823,134	
	12/22/2010	38,411	777,819	
Daily Net Peak	12/4/2013	42,890	526,300	
	12/5/2013	47,116	678,284	
	12/6/2013	44,222	730,061	
Available VRE Generation	1/22/2013	36,371	719,256	
	1/23/2013	36,280	718,782	
	1/24/2013	35,844	715,609	
2022 Dec Peak	12/14/2022	28,839	423,754	

Summer High Load Event 2033

 The 2033 high load event is both capacity restricted (cannot store enough energy in batteries to make it through peak) and energy restricted (cannot get enough energy on the system to charge batteries completely)

- Spring event sees no risk
- Fall event (October 25) risk driven from variety of factors.
 - Simulated '23 Fall Net Peak = 50 GW
 - Simulated '23 Summer Net Peak = 58 GW
- 2.5GW less Hydro, 2 GW more Maintenance
- Less VRE Available

	Spring Stress Tests					Fall Stress Tests				
	2023		2033 - Full PSP		2023		2033 - Full PSP			
Imports Sensitivities	High Load Energy	High Load Peak	Low VRE Event	High Load Energy	High Load Peak	Low VRE Event	High Load Energy & Peak	Low VRE Event	High Load Energy & Peak	Low VRE Event
Default Imports	0%	0%	0%	0%	0%	0%	0%	0%	0.4%	0%
Contracted + Economic Imports (daytime only):	0%	0%	0%	0%	0%	0%	0%	0%	19%	0%
Contracted RA Imports only	0%	0%	0%	0%	0%	0%	0%	0%	14%	0%
No Imports	0%	0%	0%	8%	0%	0%	100%	0%	100%	0%