DOCKETED			
Docket Number:	23-IEPR-06		
Project Title:	Hydrogen		
TN #:	252210		
Document Title:	Presentation - Hydrogen Analysis for Electricity Generation in the 2023 IEPR		
Description:	****This document supersedes TN252170*** 2A. Jennifer Campagna		
Filer:	Raquel Kravitz		
Organization:	California Energy Commission		
Submitter Role:	Energy Commission		
Submission Date:	9/11/2023 8:52:32 AM		
Docketed Date:	9/11/2023		

California Energy Commission

Title: Hydrogen Analysis for Electricity Generation in the 2023 IEPR Presenter: Jennifer Campagna, Supervisor, Energy Assessments Division Date: September 8, 2023

Presentation Overview

- Background
- Analysis Overview
- Challenges Overview
- Preliminary Takeaways

Background

- Senate Bill 1075 (Skinner, Statutes of 2022)
 - Study and model potential growth for "green" (clean renewable) hydrogen
 - Legislation required analysis of electric and transportation sectors
 - CARB Scoping Plan & Senate Bill 100 analysis, *2022 IEPR* envision other H₂ uses, particularly hard-to-electrify applications
 - Results of SB 1075 analysis in 2023 and 2025 IEPRs
- Governor Office actions on hydrogen

Analysis Overview

Challenge: Renewable Energy Needs/Electrolyzers

1 MW of renewable capacity produces enough H₂ to power only 0.142 MW of combined cycle gas turbine (CCGT) power: 7x

Energy flow (as electricity or hydrogen)

Storage of

Hydrogen

Renewable Electricity Generation

Best (but unrealistic) Assume 50 case: 100% of power is MWh/tonne H₂ consumed by electrolyzer. Assume hybrid PV-wind capacity factor of 35%

Electrolyzer

Hydrogen

Assume compression energy is taken from

the power grid

Conversion via Fuel Cells or Combustion

Assume: a Combined

Cycle Gas Turbine

(CCGT) plant, 44%

efficiency, (85%)

capacity factor,

fuel is 100% H₂

Electricity Grid

Source: Guidehouse

5

Challenge: Requires > 500 Large Electrolyzers

Electrolyzer specifications from Cummins show output and physical footprint

PEM Electrolyzers | HyLYZER® Series

Product	H2 Flow (Nm ^{s/} h)	System efficiency (kWh/kg)	Equivalent power rating (MW)*	Output pressure (bar)	Outdoor / Indoor	Size Process module	Size Power module
HyLYZER® 200-30	200	≤ 55	1	30	Outdoor	40ft container	20ft container
HyLYZER® 250-30	250	≤ 55	1,25	30	Outdoor	40ft container	20ft container
HyLYZER [®] 400-30	400	≤ 54	2	30	Outdoor	40ft container	40ft container
HyLYZER® 500-30	500	≤ 54	2,5	30	Outdoor	40ft container	40ft container
HyLYZER* 1000-30	1000	≤ 51	5	30	Indoor	27.7ft x 7.5ft 8.5m x 2.3m	14.8ft x 8.2ft 4.5m x 2.5m
HyLYZER* 4000-30	(4000)	≤ 51	20	30	Indoor	50ft x 25ft 15.2m x 7.5m	23ft x 30ft 7m x 9m

Source: Cummins

Challenge: Massive Delivery Volume

Options for hydrogen delivery to power plant

Trucks:

- Liquefying hydrogen adds cost and requires cooling infrastructure.
- Gaseous form demands compression.
- Unfeasible for power plants due to the immense volume needed.

Pipelines:

- Blending with natural gas (e.g., 5% blending) would not result in clean firm combustion.
- New dedicated hydrogen pipelines would benefit from co-located facilities.

Onsite electrolysis at power plants resolves delivery problem but still has issues.

- GIS review of existing CA gas-fired generators

 Only 33 to 40 have land space nearby to locate electrolyzers
 Does not include renewable generation or water requirements
 Does not include storage requirements to hold hydrogen
 - Need almost as many storage tanks as electrolyzers
 - Largest liquid H₂ storage tank (owned by NASA) holds 4700 cubic meters of H₂

Challenge: Onsite Production Requires Storage

Challenge: Cost For Electrolyzers

Assume Total Capital Requirement (TCR) of \$1500/kw (2023) for electrolyzers and size them to 80% of renewables capacity.

- Replacing Scoping Plan's 215 Bcf CH₄ with H₂ takes about 537 electrolyzers
- Average 2023-2045 Capital Outlay (electrolyzer costs fall over time)

Electric output from Gas	33.3 GW
Electrolyzer capacity required	81.3 GW
Average electrolyzer TCR used	\$879/kW
Total electrolyzer capital requirement	\$71.5 B

- Excludes cost of the renewable electricity, compression or liquefaction, delivery, and storage and ignores capacity factor/operating pattern uncertainties
- Production tax credits help (only 10 years unless renewed)

Proximity to DACs

Switching to H₂ does not eliminate combustion.

- H₂ has greater NOx emissions control needs.
- Prioritize plants in DACs for conversion.
- Address in next phase/2025 IEPR.

Preliminary Takeaways

Explored current challenges and identified areas needing additional analysis

 H_2 potential => substitute H_2 for CH_4 in 2045 resource mix

- Takes 662 Bcf of H₂ (~1.7 Billion kg) to replace the 215 Bcf gas burn shown in Scoping Plan 2045
- Requires about **537** large electrolyzers, ignoring hourly burn profile
- Operating the electrolyzers will require 7x more renewable capacity than will generate with the $\rm H_2$
- Difficult to move that much hydrogen from production sites to power plants absent new pipelines
- 33 to 40 power plants may have space to co-locate electrolyzers and avoid delivery issue
- Need to store the H₂ from hour produced to hour combusted
- Estimated cost of electrolyzers is \$71.5 Billion (assuming purchased over next twenty years and costs come down over time)

Thank you!

