DOCKETED	
Docket Number:	23-IEPR-06
Project Title:	Hydrogen
TN #:	252173
Document Title:	Presentation - Combustion of Hydrogen Blends in Mitsubishi Gas Turbines
Description:	3A. Carlos Koeneke, Mitsubishi Power
Filer:	Raquel Kravitz
Organization:	Mitsubishi Power
Submitter Role:	Public
Submission Date:	9/7/2023 3:34:05 PM
Docketed Date:	9/7/2023

MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES GROUP

Combustion of Hydrogen Blends in Mitsubishi Gas Turbines

CALIFORNIA ENERGY COMMISSION Potential Growth of Hydrogen Workshop Sep 8, 2023

- 1. Industry and Insurance Concerns on Handling Hydrogen
- 2. Hydrogen co-firing in Gas Turbine Long and Successful History
- 3. Diffusion vs Dry Low NOx (DLN) Hydrogen Combustion in Gas Turbines
- 4. Successful Demonstrations co-firing Hydrogen with DLN Combustors
- 5. Takasago Hydrogen Park Concept
- 6. Questions

Fast Facts:Hydrogen Generation

- Long history (50 years) of operating on Hydrogen fuel blends in gas turbines
- Numerous projects in the range of 50% hydrogen co-firing
- Projects with over 80% hydrogen with hundreds of thousands of hours of operation
- Many projects with different fuel characteristics
- Over 4 million hours of experience with hydrogen fuels on gas turbines
- Impacts to piping and gas turbine materials are well understood with decades of experience

Hydrogen-Fired DLN Gas Turbine Combustor Development

Two DLN combustor technologies that can operate on hydrogen and achieve low plant emissions levels without water or steam injection

Georgia Power McDonough Advanced Class GT (1,500 °C) Power Station

Base Load NOx Emission Remained Unchanged with H2 > 20%

Turndown reduced by 10%

Takasago Hydrogen Park: Verification of Hydrogen Technology

*2 BESS: Battery Energy Storage Systems

- Mitsubishi Power Gas Turbines have accumulated decades of Hydrogen co-firing operation using diffusion combustors
- Successful hydrogen combustion tests have demonstrated that 30% hydrogen and natural gas cofiring can be applied without significant changes to the existing DLN natural gas turbine facilities
- A successful hydrogen co-firing demonstration at Georgia Power 1,500 °C Advanced Class Gas Turbine indicates that existing NOx Emissions levels can be maintained or even improved.
- Mitsubishi Power Validation facility T-Point 2 is being retrofitted with hydrogen generation equipment that will allow ON-DEMAND validation of hydrogen technology (*Hydrogen Park* facility).
- The experienced derived from the Takasago Hydrogen Park operation will facilitate optimization of future hydrogen projects, including ACES.

MOVE THE WORLD FORW>RD

