DOCKETED	
Docket Number:	23-IEPR-06
Project Title:	Hydrogen
TN #:	252165
Document Title:	Presentation - Maximizing the climate benefits of hydrogen systems
Description:	Dr. Ilissa Ocko Sr. Climate Scientist II Environmental Defense Fund
Filer:	Raquel Kravitz
Organization:	Environmental Defense Fund
Submitter Role:	Public
Submission Date:	9/7/2023 3:04:00 PM
Docketed Date:	9/7/2023

Maximizing the climate benefits of hydrogen systems

Dr. Ilissa Ocko Sr. Climate Scientist II Environmental Defense Fund

IEPR Commissioner Workshop on the Potential Growth of Hydrogen September 8, 2023

Hydrogen's climate risks

Dedicated efforts are needed to ensure climate integrity of new hydrogen systems.

PRODUCTION

No H_2 production method is universally beneficial to the climate.

Need careful accounting of all climate-influencing emissions and assessment of systemwide implications.

MANAGEMENT

 \mathbf{X} H₂ is a leak-prone gas that warms the climate in the atmosphere.

Need to develop new sensors, measure/mitigate emissions, design systems that minimize emissions, include impacts in LCAs.

Can be inefficient use of clean energy and better options may be available.

Do not pursue H₂ for applications that can be easily electrified; LCAs must include all climate impacts.

Environmental Defense Fund

Hydrogen production

No H_2 production method is universally beneficial to the climate.

Can delay decarbonization of power grid if capacity not additional.
<u>Need to ensure new capacity or capacity that otherwise would be curtailed or retired.</u>

- Can increase GHG emissions through changes in land use and/or diverting resources, or encouraging new biomass production.
- Only use waste biomass that has no use or recyclability (such as ag/forestry residues, non-recyclable or compostable municipal solid waste (MSW), sewage sludge, waste cooking oils).

☑ Range in CC efficiencies and CCUS does not address methane emissions.
☑ Require capture tech designed to achieve ≥ 95% efficiency and require upstream methane emissions below 0.2%.

Hydrogen management

 H_2 is a leak-prone gas that warms the climate in the atmosphere.

H₂ EMISSIONS

- **Tiny:** smallest molecule in existence; 8x lighter than methane
- **No data:** We have not been measuring intentional and unintentional emissions; sensor tech capable of site-wide emissions not yet available
- **Concerning:** Similar infrastructure to natural gas which leaks more than originally thought; properties of H₂ make it harder to contain

WARMING

- Indirect greenhouse gas: Chemically breaks down in the atmosphere and result is increase in potent, short-lived greenhouse gases
- Studied for decades: Chemistry known since 1970s; warming effects studied since early 2000s
- Science robust: Recent study showed high confidence in warming effects from multiple models

Hydrogen management

 H_2 is a leak-prone gas that warms the climate in the atmosphere.

H₂ EMISSIONS

- **Tiny:** smallest molecule in existence; 8x lighter than methane
- **No data:** We have not been measuring intentional and unintentional emissions; sensor tech capable of site-wide emissions not yet available
- **Concerning:** Similar infrastructure to natural gas which leaks more than originally thought; properties of H₂ make it harder to contain

--→ Amount unknown

Esquivel-Elizondo et al. 2023

WARMING

- Indirect greenhouse gas: Chemically breaks down in the atmosphere and result is increase in potent, short-lived greenhouse gases
- Studied for decades: Chemistry known since 1970s; warming effects studied since early 2000s
- Science robust: Recent study showed high confidence in warming effects from multiple models

--→ Scientific consensus

Sand et al. 2023

Scientific consensus that H₂ is indirect greenhouse gas that increases short-lived GHGs.

Н

H₂O

 \sim 1/4 of emitted H₂ is oxidized in atmosphere in 1-3 years

OH

Η,

OPOSPHERE

Scientific consensus that H₂ is indirect greenhouse gas that increases short-lived GHGs.

Scientific consensus that H₂ is indirect greenhouse gas that increases short-lived GHGs.

Scientific consensus that H_2 is indirect greenhouse gas that increases short-lived GHGs.

Seriousness depends on how much is emitted

Hydrogen emissions

There are intentional and unintentional emissions of hydrogen throughout the value chain.

Hydrogen emissions

H₂

There are intentional and unintentional emissions of hydrogen throughout the value chain.

Leakage • Permeation • Diffusion • Residual • Venting • Purging • Boil-off

PRODUCTION

Electrolysis (L,R,Pu) SMR (L,R,V,Pu)

Esquivel-Elizondo et al. 2023

CONVERSION & STORAGE

Compression (L,V,Pe) Liquefaction (L) Above ground gas (L,Pe) Above ground liquid (L,Pe,V,B) Underground (L,Pe,V,Pu)

DISTRIBUTION

H₂ HYDROGEN

Pipelines (L,D,V) Tube trailer gas (L,P) Truck liquid (B) Shipping (L,B) Liquid handling (L,V,B) Refueling gas (L,Pe,V,Pu) Refueling liquid (L,B,Pu)

APPLICATION

Industry (L,R) Buildings (L,P) Power gen FC (L,V,Pu) Power gen ICE, gas turbine (L,V,Pu)

Hydrogen emissions

Total amount of H₂ currently emitted into atmosphere unknown, only have best guesses.

Total value chain emissions estimates: <1% to 20%

A Sole Countries

Jaiotac

STIPP

Line services

States of States nisionolo C LIGO

And lines

e fordital

Sillsendrote

Filing

allealle STIL S

and the second s

Contraction of the second

Salt Sales

1 Sauce and a second

Esquivel-Elizondo et al. 2023

Second Second due or sie

Sel Sel

Climate implications

Climate benefit of switching to hydrogen depends on emissions and time.

Climate implications

Climate benefit of switching to hydrogen depends on emissions and time.

Ocko and Hamburg 2022

Minimizing hydrogen emissions

Several actions can be taken immediately to minimize emissions and maximize benefits.

R&D for sensor equipment capable of detecting small leaks

Measure Emissions

Test sensor tech and support measurement campaigns

Mitigate emissions

Identify leakage mitigation measures, venting/purging alternatives, and best practices

Emissions Programs

Incorporate plans for Monitoring, Reporting, Verification and Leak Detection and Repair programs

Include in decisions

Incorporate emissions risks into decisions on where and how to best deploy H₂

Minimizing hydrogen emissions

Several actions can be taken immediately to minimize emissions and maximize benefits.

Develop sensors

R&D for sensor equipment capable of detecting small leaks

Measure Emissions

Test sensor tech and support measurement campaigns

Mitigate emissions

Identify leakage mitigation measures, venting/purging alternatives, and best practices

L___→ EDF launching field campaign

Emissions Programs

Incorporate plans for Monitoring, Reporting, Verification and Leak Detection and Repair programs

Include in decisions

Incorporate emissions risks into decisions on where and how to best deploy H₂

Hydrogen use

Can be inefficient use of clean energy and better options may be available.

Decision-making tools e.g. LCAs

- Do not yet include warming effects from hydrogen emissions and exclusively consider long-term climate impacts (via Global Warming Potential (GWP) with 100-year time horizon which masks near-term warming impacts of hydrogen and methane).
- Need to incorporate hydrogen emissions risks and multiple timescales in order to accurately assess climate impacts of a specific technology.

Hydrogen's climate risks

Dedicated efforts are needed to ensure climate integrity of new hydrogen systems.

PRODUCTION

No H_2 production method is universally beneficial to the climate.

Need careful accounting of all climate-influencing emissions and assessment of systemwide implications.

MANAGEMENT

 \mathbf{X} H₂ is a leak-prone gas that warms the climate in the atmosphere.

Need to develop new sensors, measure/mitigate emissions, design systems that minimize emissions, include impacts in LCAs.

Can be inefficient use of clean energy and better options may be available.

Do not pursue H₂ for applications that can be easily electrified; LCAs must include all climate impacts.

Environmental Defense Fund

References and resources

Esquivel-Elizondo, S, AH Mejia, T Sun, E Shrestha, SP Hamburg, IB Ocko, <u>Wide</u> range in estimates of hydrogen emissions from infrastructure, *Frontiers in Energy Research*, 11 (2023) – <u>EDF complementary blog post</u>

Ocko, IB, SP Hamburg, <u>Climate consequences of hydrogen emissions</u>, *Atmos. Chem. Phys.*, 22, 9349–9368 (2022) – <u>EDF complementary blog post</u>

Sand, M, RB Skeie, M Sandstad, et al., <u>A multi-model assessment of the Global</u> <u>Warming Potential of hydrogen</u>, *Commun Earth Environ*, 4, 203 (2023) – <u>EDF</u> <u>complementary blog post</u>

