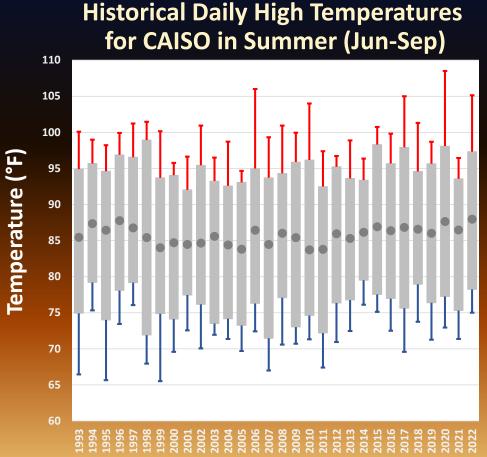
DOCKETED	
Docket Number:	23-IEPR-03
Project Title:	Electricity and Gas Demand Forecast
TN #:	251664
Document Title:	Presentation - Development of future weather variants for demand forecast
Description:	2B. Onur Aydin, Lumen_23-08-18_IEPR_Presentation
Filer:	Raquel Kravitz
Organization:	Lumen Energy Strategy
Submitter Role:	Public
Submission Date:	8/17/2023 3:44:12 PM
Docketed Date:	8/17/2023

Development of future weather variants for demand forecast

Presented by ONUR AYDIN

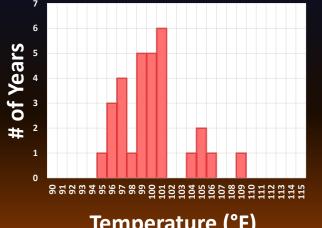
IEPR Commissioner Workshop on Load Modifier Scenario Development

Need for future weather variants


Goal: Develop a set of hourly **weather variants** reflecting the range of potential weather outcomes in a given future year, which is essential for characterizing electricity demand forecast under normal and extreme conditions.

- Strong relationship between temperatures and demand levels, driven by cooling-related use in summer and heating-related use in winter
- August 2020 and September 2022 heat waves underscored the importance of capturing the effects of changes in magnitude, duration, and timing of unprecedented extreme heat events
- Using a long historical record over multiple decades can expand the range of weather conditions, but data from decades ago are less representative of today and future climate conditions
- This challenge previously recognized by the CEC staff and stakeholders; Interim solutions considered shortening the historical window or applying heavier weights to more recent years, but there are inherent limitations

Need for richer spectrum of weather events

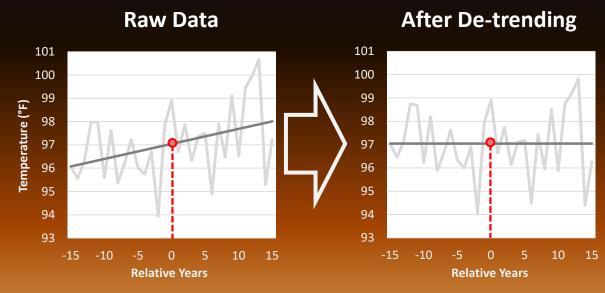


90% of summer days

coldest summer day

Frequency Distribution

Temperature (°F)


- Historical record is powerful and mostly indisputable (excluding measurement errors); but it represents just one realization of potential outcomes
- Statistical techniques can "fit" a distribution, but won't capture emerging, novel weather patterns related to climate change

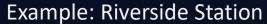
Motivation for de-trended dataset

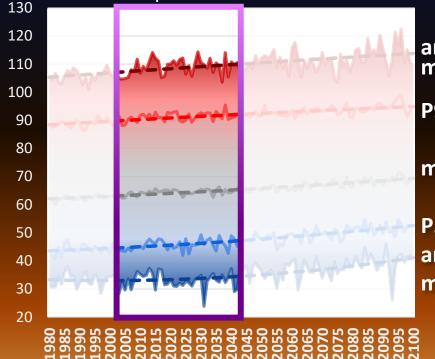
Developing a de-trended hourly weather and climate data library based on latest climate projections can improve demand normalization process and can be readily integrated with the existing framework.

Example for Illustration

Trendline shows temperatures increase by 2°F on average from 96°F to 98°F over 30-years

De-trending centers temperatures at 97°F as the level expected for forecast year

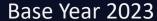

- Integrating the latest high-resolution climate projections is needed to plan for emerging, novel weather patterns
- With only a limited subset of climate simulations downscaled and localized at the hourly granularity, drawing from a rolling window of 30+ years centered around forecast year increases the size of the ensemble of weather variants needed for demand forecasting
- De-trending the projections within each window ensures that the dataset reflects the expectations of the forecast year

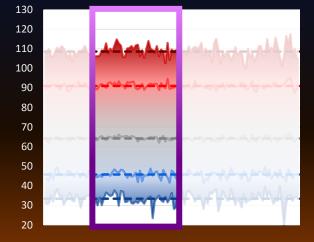


Temperature (°F

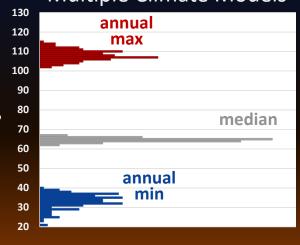
De-trending by temperature levels

Historical & Projected Temperatures


annual max


P95

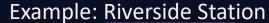
median

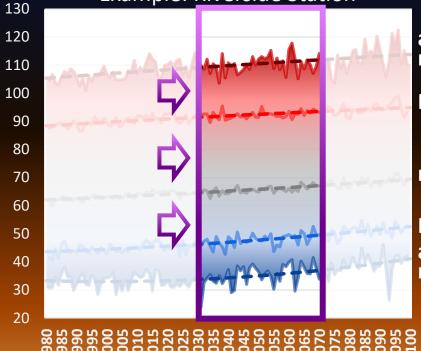

P5 annual min

De-trended Temperatures

Frequency Distribution Multiple Climate Models

- De-trending by temperature level (quantile) recognizes that anticipated climate change effects are not uniform
- Hourly chronological order is maintained to preserve inter- and intra-daily autocorrelations important for demand forecasting
- A rolling window avoids potential use of weather patterns from distant past/future that may not be applicable for the forecast year



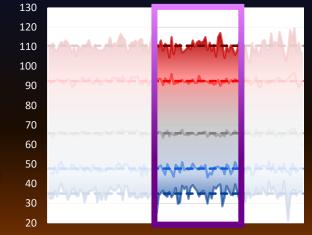


Temperature (°F)

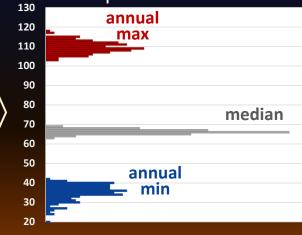
De-trending for future years

Historical & Projected Temperatures


annual max


P95

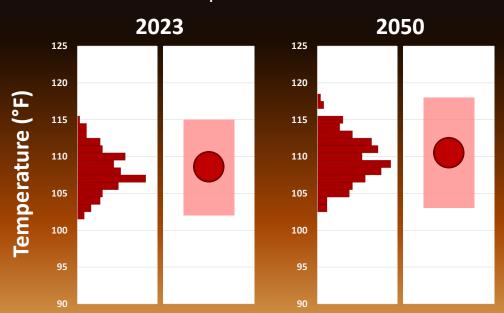
median


P5 annual min

De-trended Temperatures

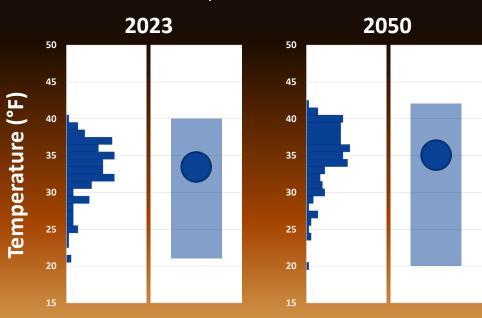
Frequency Distribution Multiple Climate Models

- Center of the rolling 30- to 50-year window used to develop weather variants shifts with the forecast year
- Expectations for each temperature level moves along the long-term trendline (shown in dashes)
- Variability around that expectation also changes as new future years are considered and past years are gradually dropped



Changes in distribution of temperatures

Distribution of potential outcomes influenced by both upward trends <u>and</u> increased variability in projected temperatures. Different effects on normal (e.g., 1-in-2 years) and more extreme (e.g., 1-in-10 years) conditions.


Annual Maximum Temperatures

Example: Riverside Station

Annual Minimum Temperatures

Example: Riverside Station

THANK YOU

LEARN MORE ABOUT WARP TO RESILIENCE AND JOIN OUR MAILING LIST FOR STUDY UPDATES

www.lumenenergystrategy.com/resilience

