DOCKETED					
Docket Number:	23-IEPR-03				
Project Title:	Electricity and Gas Demand Forecast				
TN #:	251620				
Document Title:	Presentation by Richard Jensen for August 15, 2023 IEPR Workshop				
Description:	N/A				
Filer:	Stephanie Bailey				
Organization:	California Energy Commission				
Submitter Role:	Commission Staff				
Submission Date:	8/15/2023 9:19:01 AM				
Docketed Date:	8/15/2023				

Inputs & Assumptions for IEPR Electricity System Modeling

California Energy Commission

Richard Jensen August 15, 2023

Supply Analysis Branch, Energy Assessments Division California Energy Commission

PLEXOS Model and Model Settings

Data Inputs & Sources

Modeling Assumptions

PLEXOS Model & CEC IEPR Database

- By Energy Exemplar
 - Production Cost Model

- Least Cost Dispatch Optimization
- Licensed by many CA / Western Interconnect Regulatory Agencies and Utilities
- CEC IEPR database
 - Public data, available to all, must license PLEXOS to use / read

Uses

- Greenhouse gas emissions in electricity sector
- Modeling natural gas demand for electricity generation – CA Gas Report
- Wholesale electricity prices for rate forecasting
- Time Dependent Valuation Efficiency Division

Users

- Academic Institutions & Students
- CA Electric & Gas Utilities
- Consulting firms

- Regional (Zonal) aggregation of Loads & Resources
- IEPR studies are "deterministic"
- Every hour of forecast "horizon" simulated
- One day "look-ahead" for better results
- "Linear" modeling approach for significant time savings

Input Data & Sources

- State and Federal-level data sources
 - California
 - CEC (demand forecast, NG prices)
 - QFER (historical gen data, MW, new adds)
 - CPUC Preferred System Plan (RE additions)
 - Western Interconnect data from WECC & EIA
 - Plant characteristics
 - Demand forecast (outside CA)
 - Policy information (state RPS, clean energy)

- Utility Integrated Resource Plans (IRPs)
 - Loads, resources, "preferred plans", compliance methods
 - Not uniform in any way between states
 - Lengthy, very detailed, many throughout western states

Modeling Input Examples – Physical System

- Plant Characteristics (CEC, EIA)
 - Capacity, efficiency, planned retirements, monthly hydro gen
- Demand profiles
 - Hourly load profiles at utility / BAA level (CEC, EIA, WECC Anchor Data Set (ADS))
 - Load Modifiers (AAEE, BTMPV)
- Modeling System Constraints
 - Minimum generation, import / export limits (MW)

Modeling Input Examples – Economic Variables & Sources

– Fuel Prices

- Natural gas (CEC), coal and uranium (EIA)
- Wheeling rates for imports / exports (ADS, consultant reports)
 - No costs for internal CA flows, no CO2 calc for exports
- Variable operation & maintenance costs ADS
- CO2 prices (CA and AB)
- Start costs for thermal plants ADS
- Moody's Deflator for inflation adjustment

Modeling Assumptions

- Resource additions "generic" (unnamed, yet to be built) to meet RPS
 - Locations, resource types, capacity
- Hydroelectric generation
 - Plant monthly average for past 15-years
- Policy driven assumptions
 - Renewable portfolio standard, clean energy mandates are met

Modeling Assumptions (cont.) – CA RPS / Battery Adds.

Year	Solar	Battery	Wind	Offshore Wind	Geothermal	OOS Wind
2023	3,410	3,025	1,377	0	89	0
2024	5,610	8,598	1,707	0	89	0
2026	10,010	10,103	3,198	120	159	0
2030	14,996	11,181	3,198	195	1,135	1,500
2032	18,160	12,357	3,198	1,708	1,135	1,500
2035	25,660	16,434	3,198	1,708	1,135	1,500

Modeling Assumptions (cont.)

• Planned retirements, additions, fuel-switching for out of state plants based on available information

- Once through cooling units
 - Natural gas units essentially retired
 - Diablo Canyon retiring in 2024 and 2025 subject to extension
- Transmission expansion in western interconnect
 Follow ADS lead

Thank you! For follow-up questions: Richard Jensen Richard.Jensen@Energy.ca.gov