DOCKETED		
Docket Number:	23-ERDD-01	
Project Title:	Electric Program Investment Charge (EPIC)	
TN #:	251427	
Document Title:	Presentation - Grid Modernization Research Scoping Workshop	
Description:	N/A	
Filer:	Elyse Kedzie	
Organization:	California Energy Commission	
Submitter Role:	Commission Staff	
Submission Date:	8/1/2023 10:47:45 AM	
Docketed Date:	8/1/2023	

Grid Modernization Research Scoping Workshop

Qing Tian, Ph.D. P.E.

July 21, 2023

- > This workshop will be recorded.
- Workshop slides and the Zoom recording will be posted on our webpage, <u>https://www.energy.ca.gov/event/workshop/2023-</u> 07/grid-modernization-research-scoping-workshop
- Participants will be muted during the presentation. Please chat your questions in the Q&A window.

Time	Topics
9:30 am	 Information on a Future Solicitation Background Potential Solicitation Concepts Questions for Stakeholders
10:00 am	 Stakeholder Presentations Clyde Loutan and Peter Klauer – California ISO Juan Castaneda - Southern California Edison Omid Sarvian - Pacific Gas and Electric Company Ben Kroposki - National Renewable Energy Laboratory Jake Gentle - Idaho National Laboratory
11:00 am	Panel Discussion
11:30 am	Public Comments
12:00 pm	Adjourn

- ~\$130 million annual budget, funded by ratepayer surcharge from IOUs.
- Invests in pre-commercial technology innovation complementing other state activities including standards, regulations, and incentives for commercial technologies.
- Provide electricity ratepayer benefits including improved safety, reliability, affordability, environmental sustainability, and equity.

To access report:

https://www.energy.ca.gov/publications/2021/electric-programinvestment-charge-proposed-2021-2025-investment-planepic-4

- Triple electricity grid capacity
- Sustainable expansion of clean electricity generation
- Accelerating advancements in emerging technologies

Future Grid and challenges

• Move toward a distributed and inverter-centric system

- Potential challenges
 - Grid disturbances/faults
 - Power quality and grid inertia
 - Renewable curtailment
 - \circ Grid congestion
 - Cybersecurity

Segments	FY 21-25 EPIC 4 Research Initiatives	
0000	Technology Demonstrations to Address Grid Congestion in a Decarbonized California	
	Demonstrate Technologies to Maintain Reliability and Power Quality in the Inverter-centric Grid of the Future	
CYRC A CYRC A	Furthering Cybersecurity with Highly Modulatable Grid Resources	

Why Are We Seeking Your Input?

- A forthcoming grant funding opportunity: <u>up to \$28M</u> to drive the advancement of technologies for grid modernization.
- To ensure high-impact research, seeking input to inform solicitation development.

Purpose of Forthcoming Solicitation

- Accelerate technology advancements to meet SB100 goals
- Drive grid modernization
- Prepare for the imminent transition to the inverter-centric grid

Advancing Grid Enhancing Technologies for Increased Transmission Capacity

Research Scope:

- Demonstrate Grid Enhancing Technologies (GETs):
 - Power Flow Control
 - Dynamic Line Rating
 - Advanced Conductor Technologies
 - Energy Storage (excluded)
- Increase Transmission Capacity within Existing Rights-of-way
- Collect Cost and Performance data
- Facilitate Broader Deployment and Commercialization
- Advance Cybersecurity Protection

Research Concepts	Technology Advancement	Expected Outcomes
#1 Targeted assessment of transmission congestion and benefits of GETs	 Advanced modeling and analysis Integrated resource planning for renewables and electrification Assessment of transmission issues and risks of renewable curtailment Techno-economic analysis of GETs 	 Comprehensive evaluation of GETs Optimal resource allocation and infrastructure development Policy recommendation

Research Concepts	Technology Advancement	Expected Outcomes
#2 Demonstration of GETs to mitigate grid congestion	 Technology deployment and demonstration Cybersecurity enhancement Cost and performance evaluation Standardization and market facilitation 	 Transmission congestion relief Transmission upgrade deferral Renewables curtailment relief Technology commercialization

Sustaining Reliability and Power Quality in an Inverter-Centric Grid

Research Scope:

- Support Secure and Reliable Inverter Operations
- Improve Situational Awareness and Maintain System Stability
- Inform Standards, Protocols, and Best Practices
- Advance Cybersecurity Protection

Source: B. Kroposki et al., "Achieving a 100% Renewable Grid – Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy,"

Research Concepts	Technology Advancement	Expected Outcomes
#3 Wide Area Monitoring, Protection and Control of Modern Power Systems	 Advanced sensors, measurement techniques, and software system System inertia measurement, and forecast Big data and analytics Advanced grid visualization Grid event detection and forecast Protection and control schemes 	 Proactive grid management Mitigating disturbances and preventing blackout. Improved system security and reliability

Research Concepts	Technology Advancement	Expected Outcomes
#4 Development and demonstration of grid forming inverters	 Performance testing and validation Grid support function optimization Advanced control strategy development and demonstration Testing and implementation of cybersecurity protocols Best practices and standards 	 Advanced grid functions and capabilities to support grid and ride-through grid disturbances Blackstart without synchronized machines Maintaining system stability Standardized framework for deployment

Questions for stakeholders

- What specific research gaps or technology advancements should be prioritized to enhance grid reliability, resiliency, and flexibility to meet SB100 goals?
- What target metrics can be used to assess the efficacy of grid modernization technologies in mitigating grid congestion, ensuring system reliability, and enhancing operational flexibility?
- Are there developed technologies or lessons learned and best practices from other regions including internationally that could be applied to grid modernization efforts in California?
- What collaboration opportunities exist between stakeholders, utilities, technology providers, research institutions, and government agencies to accelerate grid modernization research and implementation?
- What other considerations or requirements should be incorporated into the future GFO?

Panel Presentation and Discussion

Clyde Loutan California ISO

Peter Klauer California ISO

Juan Castaneda SCE

Omid Sarvian PG&E

Ben Kroposki NREL

Jake Gentle INL

Comments and Questions

- Three ways to provide feedback or ask questions:
- 1. Use the raise hand function in Zoom:
 - Zoom Phone controls:
 - *6 Toggle mute/unmute.
 - *9 Raise hand.
 - Please introduce yourself by stating your name and affiliation.
- 2. Type comments and questions in the question function on Zoom:
 - Please provide name and affiliation.
 - Please indicate which discussion questions you are commenting on (E.g., 1a, 1b, 2, etc.).
- 3. Submit written comments & questions:
 - Send written comments & questions to <u>docket@energy.ca.gov</u> by no later than **August 25**, **2023**, **5 p.m. PST**.
 - Include docket number 23-ERDD-01 and "Staff Workshop on Grid Modernization Research" in the subject line

Questions

Qing Tian, Ph.D. P.E. qing.tian@energy.ca.gov (916) 776-0820