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Electricity systems are undergoing the most fundamental shifts 
since their inception. As with any transition, benefits and bur-
dens may fall unequally, and some may be left behind1,2. A 

growing body of literature has documented persistent social dispar-
ities in customer adoption of distributed energy resources (DERs), 
with a particular focus on behind-the-meter solar photovoltaic 
(PV) systems. Residential PV adoption patterns have perpetuated 
financial3–5, racial6 and cumulative7 inequities, even beyond those 
stemming from the typical requirements of owner-occupied house-
holds with favourable site characteristics8–10. In response, federal 
and state programmes intended to support more equitable uptake 
have emerged3,6,11.

The distribution grid’s ability to accommodate new PV systems 
depends on where and how they interconnects12–14. As deployment 
increases, grid limits will hinder new connections, leading to costly 
project delays15–17 or interconnection denials18, and/or necessitate 
circuit upgrades19,20. As we near the limits of DER deployment that 
the existing distribution equipment can accommodate, policymak-
ers and regulators will need to establish criteria for which grid 
upgrades are worth increasing customer rates. If grid limits are not 
considered, further inequities may emerge.

To our knowledge, no systematic analyses have yet considered 
how equitably the existing grid can accommodate DERs. Studies of 
equity in PV deployment have focused on previous or existing adop-
tion4–7, rather than what the future may hold. Researchers evaluat-
ing grid capacity for DERs have focused on technical circuit models 
or isolated case studies rather than full electric grids, and have not 
considered customer demographics14,21–25. There is, therefore, a gap 
in our understanding of how grid limits within and across utility 
territories may impact future DER deployment, and the potential 
implications for equity and access to DERs. We do not ascribe cau-
sation to lower hosting capacity in certain communities. Rather, we 
strive to document disparities so that future policies do not exacer-
bate patterns of inequity and may even improve the state of affairs.

In this study we investigated the magnitude and distribution of 
electric grid constraints for DERs on circuits operated by California’s 
two largest investor-owned utilities (IOUs), Pacific Gas and Electric 
(PG&E) and Southern California Edison (SCE), which together 

serve over 30 million people. We focused on identifying where con-
straints may limit DER growth and asked whether they may differ-
entially impact demographic groups. We found that the distribution 
grid restrains households’ ability to adopt DERs across these two 
IOU territories, and that hosting capacity is unevenly distributed. 
When all grid constraints were considered, we found that over half 
of residential households served by PG&E and SCE (57 and 59%, 
respectively) lack adequate hosting capacity for 4.5 kW of solar PV, 
the amount required to offset 100% of their annual electricity con-
sumption, on average. In PG&E’s territory, 39% of households lack 
access to even the least power-intensive new loads (space and water 
heating or level 1 electric vehicle (EV) charging), while 64% lack 
access to level 2 EV charging. Notably, hosting capacity for DERs 
decreases for households in increasingly Black-identifying and dis-
advantaged communities. Correlations between hosting capacity 
and race are the starkest among a variety of demographic indicators 
analysed, including those relating to income, housing characteristics 
and education. We do not make causal claims but seek to illuminate 
important correlations that exist in the data, which here include 
disparate access to grid resources falling along lines of race. This 
work points to the need for grid planners everywhere to analyse the 
equity of electrical capacity for DER adoption and demonstrates a 
way to do this. Such an analysis should be an input to planned grid 
upgrades so that the grid itself does not become a limitation to equi-
table DER uptake in the future.

Growth in DERs raises issues for equity and the grid
We were motivated here by two separate and robust sets of find-
ings in the literature: that there exist inequities in DER adoption 
and that the electric distribution grid itself imposes limits on where 
DERs can interconnect. We considered how grid limits may impede 
continued DER deployment and assessed how they overlap with 
customer demographics. In doing so, we have built on the existing 
literature by (1) considering the importance of technical grid limits, 
which have largely been ignored in previous work on equity in DER 
adoption, and (2) using those grid constraints to consider the future 
equities of DER deployment, whereas others have focused on exist-
ing adoption.

Inequitable access to distributed energy resources 
due to grid infrastructure limits in California
Anna M. Brockway   1,2, Jennifer Conde3 and Duncan Callaway   1,2 ✉

Persistent social disparities in the adoption of distributed energy resources (DERs) have prompted calls for enabling more 
equitable uptake. However, there are indications that limits inherent to grid infrastructure may hinder DER adoption. In this 
study we analysed grid limits to new DER integration across California’s two largest utility territories. We found that grid limits 
reduce access to solar photovoltaics to less than half of households served by these two utilities, and may hinder California’s 
electric vehicle adoption and residential load electrification goals. We connected these results to demographic characteristics 
and found that grid limits also exacerbate existing inequities: households in increasingly Black-identifying and disadvantaged 
census block groups have disproportionately less access to new solar photovoltaic capacity based on circuit hosting capacity. 
Our results illuminate the need for equity goals to be an input in the design of policies for prioritizing grid upgrades.
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A rich literature has emerged concerning the inequities of solar 
PV adoption. Despite similar motivations for adopting solar26, 
low- and moderate-income (LMI) communities experience dis-
proportionately low PV penetration rates3–5, even where there is 
relatively high potential for solar3. While policies designed to foster 
more equitable uptake have made a difference11 and middle-income 
households have slowly increased their relative share of PV4, low- 
and moderate-income households still lag behind.

Minority households are disproportionately vulnerable to energy 
poverty in the United States27. Yet PV adoption, which can reduce 
household electricity bills, skews to white-majority census tracts6. 
When multiple inequities are considered, persistently lower adop-
tion is found in disadvantaged communities7, as measured by the 
metrics in California’s CalEnviroScreen indicator, which was devel-
oped to reflect the cumulative impact of environmental, socioeco-
nomic and public health stresses28.

Socioeconomic factors have also been found to influence EV 
adoption29. Yet just as the electric grid is a necessary enabling 
resource for DERs, public charging is an enabling technical resource 
for EV ownership, and public charging access is less widespread in 
low-income and minority communities30.

To date DER deployment has perpetuated social inequities, 
and in the future, electric grid limits may constrain DER growth. 
Electric power systems in the United States were designed to rely 
on centralized power sources, but DERs, such as solar PV and EVs, 
now contribute growing shares of electricity supply and demand. 
Well-sited DERs can defer capacity upgrades14, boost sagging line 
voltages, and reduce power losses31. However, DERs can also disrupt 
circuit protection schemes, increase thermal loading, cause overvol-
tages and create dangerous islanding conditions32,33.

These grid impacts arise from increased current flow beyond 
what local equipment can handle. They may be avoided if both 
generation and load DERs are sited in the same location and their 
operation is synchronized in time; however, even if they comple-
ment each other on average, operating variations due to customer 
behaviour and weather will necessitate storage or demand response 
to fully defer system constraints. As these technologies are not man-
dated in California today, we have left this nuance to follow-on work 
and focused here on where DERs may connect to distribution cir-
cuits without necessitating complementary technologies.

The hosting capacity is the allowable capacity of DERs that an 
electric circuit can accommodate without upgrades. Calculating 
hosting capacity is not straightforward and several methodologies 
have emerged34–36. They differ in which circuit constraints are con-
sidered and which numerical methods are used to calculate viola-
tions (see Supplementary Note 1 for details). In California, hosting 
capacity information is available through Integration Capacity 
Analysis (ICA) maps, which also include data on existing distrib-
uted generation37,38 (Supplementary Note 2). Hosting capacity 
values include the additional PV and load capacities that can be 
connected to a line segment without violating thermal, power qual-
ity/voltage or protection constraints37. PV capacity is reported with 
operational flexibility (OpFlex; in which case reverse power flow 
is not allowed beyond the substation bus) and without OpFlex (in 
which case reverse flow is allowed) constraints37.

In this study we assessed how grid constraints may impact the 
equity of DER access. California offers a ripe case study of the 
implications of employing DERs to expand clean energy capacity. 
Aggressive policies and a responsive market have helped California 
lead the nation in PV capacity and EV adoption (Supplementary 
Note 3). Behind-the-meter PV comprised almost 30% of the state’s 
solar PV capacity at the end of 201939, and is expected to remain a 
major category of renewables deployment due to a diversity of sup-
porting policies40,41. Substantial economic benefits are available to 
California households that adopt rooftop solar42. In this context, 
disparate rates of access (whether due to structural or grid limits) 

are important, and we assessed here the extent to which making 
access to renewable energy specific to the location of one’s home 
and the circuit to which it is connected may strain California’s 
access and equity goals.

Despite documented inequities in current deployment, all rate-
payers currently pay for the grid upgrades necessary to accommo-
date projected DER growth. Upgrade decisions have been based in 
part on historic deployment patterns, and SCE estimates that it will 
cost US$14–44 million annually from 2021 to 2023 to reinforce its 
circuits for DERs43.

In California, small DERs have so far been allowed to bypass 
interconnection study requirements19. However, state regulators 
have indicated that hosting capacity values may be considered in 
future DER interconnection rules to avoid violating location-specific 
penetration limits37,38,44. Future grid upgrades with socialized costs, 
therefore, are not a guarantee. Policies that seek to address inequi-
ties in DER deployment will need to consider the limits imposed 
by the electric grid as it exists today, or investments associated with 
upgrading it.

Grid limits reduce access to DERs across utility territories
We calculated the proportion of households with DER access at 
deployment thresholds in the range 1.5–10.0 kW per household 
to account for varying capacity estimates for PV and load DERs 
(see Methods), for each DER type and for each census block group 
(CBG) within each utility territory (see Eqs. (14) and (15) in 
Methods). We found that per-household hosting capacity for load 
and generation DERs (Supplementary Note 4) varies widely across 
the PG&E and SCE service territories (Fig. 1 and Extended Data 
Figs. 1–3). We present the results for household access within each 
full utility territory and summary statistics by CBG in Figs. 2 and 3 
(see Supplementary Tables 1–3 and Supplementary Figs. 1 and 2 for 
selected values and full results). The PG&E results pertain only to 
those sections of the territory with ICA data.

We found that the constraints on distributed generation limit 
how much PV can be deployed on distribution circuits in California. 
Due to thermal, power quality and protection grid constraints, 31 
and 25% of households in the PG&E and SCE territories, respec-
tively, lack access to 4.5 kW of behind-the-meter PV (which is, on 
average, enough to balance 100% of annual electricity usage). These 
values consider both the existing generation already deployed on 
circuit lines as well as remaining hosting capacity. With OpFlex 
constraints, substantially more households, approximately 57 and 
59% served by PG&E and SCE, respectively, lack access to 4.5 kW 
of rooftop PV. Therefore, under current grid conditions, sufficient 
capacity exists for less than half of households to adopt PV.

These numbers are highly sensitive to the deployment threshold 
used (Fig. 2). More households can adopt smaller PV sizes, although 
23% (16% if OpFlex constraints are disregarded) in both territories 
still lack access to even 1.5 kW. At 10 kW, 78 and 79% of PG&E and 
SCE households, respectively, lack access (49 and 38% if OpFlex 
constraints are disregarded).

Fewer households can adopt PV if only remaining hosting 
capacity is considered. Approximately 77 and 70% of households 
served by PG&E and SCE, respectively, then lack access to solar (41 
and 30% if OpFlex constraints are disregarded). This observation 
illustrates a tension around equitable deployment: if grid capac-
ity is occupied by early adopters, efforts to improve equity in PV 
adoption may be caught in a race with continuing adoption among 
already well-represented demographic groups for the circuit host-
ing capacity that remains.

Physical building suitability may further reduce household 
access: based on data generated by previous researchers9,10, we esti-
mate that approximately 15% of small buildings in PG&E’s territory 
and 9% in SCE’s territory cannot host 1.5 kW of PV (Fig. 3). When 
combined with grid limits, the proportion of households lacking 
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Fig. 1 | Household access varies by DER type and location. a–i, Per-household hosting capacity for PV (a,d,g), PV with OpFlex (b,e,h) and  
load (c,f,i) across the PG&E and SCE service territories (a–c), a portion of PG&E’s service territory, including parts of San Joaquin County (and  
the city of Stockton; d–f), and a portion of SCE’s service territory, including parts of Los Angeles and Orange counties (g–i). The code for the different 
colours and lines shown in all the maps is given in b. White areas indicate regions served by other utilities or, within PG&E’s territory, locations  
with no ICA data. High-resolution versions of these maps are available in Extended Data Figs. 1–3 and at https://github.com/Energy-MAC/
GridLimitsforDERs.
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access to 1.5 kW of behind-the-meter PV increases, in PG&E’s ter-
ritory, from 16 to 27–30% under the worst- and best-case scenarios 
for combined suitability. In SCE’s territory, the proportion of house-
holds lacking access increases from 16 to 23–25%. Similar declines 
in access occur for the OpFlex case.

We also found that constraints on load may challenge the adop-
tion of EVs and electrification technologies. The grid may require 
upgrades to meet electrification goals and air-conditioning needs; 
otherwise, it could hinder climate change mitigation and adapta-
tion45 efforts in California. However, the extent to which load DERs 
will stress the distribution grid requires further research. While 
ICA maps show hosting capacity by circuit segment for generation 
and load, IOU circuit analyses have so far focused on generation. 
Load information, particularly in SCE’s territory, may systemati-
cally underestimate circuit hosting capacity46. Moreover, existing 
load analyses are technology-agnostic and IOUs could improve data 
interpretability by including analyses of specific load DERs, includ-
ing EVs, air conditioning and heat pumps for space and water heat-
ing, which all have time-varying use profiles.

Based on currently available load data, widespread adoption of 
even the least power-intensive applications could strain distribu-
tion grids. Using a 1.5 kW demand threshold to analyse access to 
space and water heaters (together 1.6 kW) and level 1 EV charging 
(1.4–1.9 kW), we estimate that 39 and 74% of households served by 
PG&E and SCE, respectively, lack sufficient grid capacity for either 
electrified heating or EV charging (Fig. 2a). In PG&E’s territory, 
64% of households lack the grid access to install a level 2 EV charger.

If households implement all the climate change mitigation 
strategies that we considered, namely the conversion of natural 
gas-powered space and water heaters to electric, EV level 2 charg-
ing and new air-conditioning units, hosting capacity will be severely 
limited (Fig. 2). Although the full extent of distribution grid impacts 

from increasing load is not yet known, it is clear that the grid cannot 
currently accommodate fully electric homes across the state.

Grid limits reinforce demographic disparities in DER access
Variations in access across utility territories prompted us to con-
sider how hosting capacity may be correlated with variables related 
to infrastructure, service, geography and demographics (see 
Supplementary Tables 6–8 and Supplementary Note 9 for variable 
descriptions). We were particularly interested in whether differ-
ences in hosting capacity may reflect demographic variations. We 
constructed linear and non-linear models to understand which 
variables, if any, may correlate to per-household hosting capac-
ity. The model results indicate that no single demographic feature 
dominates in relative importance over the rest (see Supplementary 
Note 5 and Supplementary Fig. 3 for a full discussion). However, 
we did find notable relationships between consumer demograph-
ics and access to circuit capacity. In examining these, we focused 
on the demographic categories discussed in prior literature on  
DER adoption.

First, we validated our approach by examining the relationships 
between demographic indicators and existing distributed gen-
eration, and found that our results broadly support previous find-
ings. For race and ethnicity, we observed higher median levels of 
existing distributed generation per household in CBGs with more 
non-Latinx white- and Latinx-identifying populations than Black- 
or Asian-identifying populations (Fig. 4a). For CBGs with more 
Black- and Asian-identifying populations, very few households are 
represented at higher percentages, leading to wide confidence inter-
vals and indefinite trends above approximately 50%. Existing gen-
eration per household also declines overall with increasing diversity 
in the population. For disadvantaged communities (as defined 
in CalEnviroscreen28), we found stronger correlations between  
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Fig. 5 | Hosting capacity for additional demographic variables. a,b, Median existing generation or hosting capacity for the CalEnviroScreen indicators 
of pollution (a) and population (b). c,d, Median existing generation or hosting capacity for income variables, analysing the proportions of the poorest 
and wealthiest households (c) and the median household income (d). e,f, Median existing generation or hosting capacity for housing characteristics, 
considering the proportions of single-unit and owner-occupied households (e) and median year of house build (f). The confidence intervals shown are 
50% (darker band) and 90% (lighter band).
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existing distributed generation and population metrics (measures of 
sensitive population and linguistic isolation, Fig. 5b) than pollution 
metrics (Fig. 5a; similar to Lukanov and Krieger7), most notably for 
the percentile of linguistic isolation in the population, which could 
reflect an information barrier to DER adoption. For income, our 
analysis supports previous findings that wealthier communities are 
more likely to have already installed DERs4,5. This effect broadly 
holds for the poorest and wealthiest CBGs (Fig. 5c), as well as the 
median household income (Fig. 5d), with some drop-off for data 
points representing fewer households. Finally, as expected for types 
of housing8–10, existing generation capacity increases sharply with 
the percentage of owner-occupied and single-unit households, as 
well as with the median year of construction for residential housing 
(Fig. 5e,f).

Then, we extended our analysis to consider how total circuit 
hosting capacity for PV (existing plus remaining) and load (remain-
ing capacity only, focusing on PG&E) correlates with these same 
demographic indicators.

With respect to race and ethnicity, we found that the total cir-
cuit capacity for generation decreases with increasing percentages 
of Black-identifying residents, and is disproportionately lower for 
CBGs with Black-identifying populations than for other racial and 
ethnic groups. Specifically, the trends in total circuit capacity for 
PV, with and without OpFlex constraints, show a notably lower 
capacity in Black-identifying CBGs than in non-Latinx white-, 
Latinx- and Asian-identifying CBGs for both utilities. To better see 
these differences, we plotted locally estimated scatterplot smooth-
ing (LOESS) curves for the difference in median existing genera-
tion and hosting capacity between non-Latinx white-identifying 
population percentages and the other racial and ethnic groups  
(Fig. 4b). While the differences with Latinx- and Asian-identifying 
CBGs are small, the total circuit capacity is substantially lower for 
Black-identifying CBGs and largely decreases as Black-identifying 
percentages increase. This suggests that distribution circuits cannot 
currently support the same PV deployment, whether or not OpFlex 
constraints are active, in neighbourhoods with higher Black popu-
lations relative to other racial and ethnic groups. Circuit capacity 
values for remaining load are less interpretable (see the discussion 
above), but we see here that, in the PG&E territory, less circuit  

capacity is available with increasing percentages of Black-identifying 
residents than for other races.

Disadvantaged communities, as identified by the CalEnviroScreen 
sensitive and linguistically isolated population indicators28, also 
experience inequitable circuit capacity for PV deployment. Some 
of the starkest trends occur for the population indicators: median 
generation hosting capacity decreases with sensitive populations 
above the 50–60th (for PG&E) and 30–50th (for SCE) percentiles, 
and decreases with linguistic isolation above the 20th (for PG&E) 
and 40th (for SCE) percentiles (Fig. 5b). The most disadvantaged 
populations in the state therefore face systematically lower circuit 
hosting capacity for PV. Opportunities for future DER deployment, 
especially of technologies that can shift electricity consumption pat-
terns, such as solar plus storage, may be particularly salient for these 
communities47, which tend to bear disproportionate local pollution 
impacts from California’s natural gas peaker plants48.

Income trends for circuit capacity are less consistent, suggesting 
that income variations are insufficient for explaining the relation-
ships between circuit capacity and Black-identifying and disad-
vantaged communities. For the poorest households, the clearest 
trends are found in SCE’s territory, where the hosting capacity for 
PV tends to decline slightly with increasing proportions of poor 
households. As the proportion of wealthy households increases, 
the total circuit capacity shows a slightly downward tendency 
in PG&E’s territory, but stays relatively flat in SCE’s territory  
(Fig. 5c). Above the 80th percentile, wide divergences in data 
are observed due to relatively few households falling into the 
highest-income bins. The circuit capacity for PV largely declines 
with median household income in PG&E’s territory (excepting 
some values representing relatively few households in high-income 
brackets), but increases with median income up to approximately 
US$100,000 in SCE’s territory (Fig. 5d). These mixed results 
suggest that the clearer trends for racial and ethnic groups and 
CalEnviroScreen population indicators are not driven by underly-
ing income distributions.

Housing characteristics also show mixed results. The total cir-
cuit hosting capacity for generation and load tends to increase 
with single-unit and owner-occupied percentages in PG&E’s terri-
tory, although plateauing earlier than for existing generation, while 
assuming the inverse trends in SCE’s territory (Fig. 5e). For both 
utilities, the total circuit hosting capacity for generation tends to 
increase with year of construction (Fig. 5f); median housing age 
may correlate with the age of local grid infrastructure. In PG&E’s 
territory, areas with the newest buildings have less hosting capacity 
than slightly older buildings.

Our key results are broadly consistent across both utility terri-
tories. The most notable differences between customers served by 
the two utilities pertain to the relative proportions of non-Latinx 
white- and Latinx-identifying populations, and residents’ pollution 
exposure (Supplementary Fig. 6 and Supplementary Note 7). These 
demographic indicators do not show strong trends in our results.

This work enables us to consider where inequities may be exacer-
bated in the future. As net-metered solar frequently carries tangible 
benefits for its adopters, including an attractive economic proposi-
tion42 and more stable electricity bills, these inequities run the risk 
of limiting its benefits along demographic lines.

Conclusions
Taken together, our results indicate that grid limits pose constraints 
for future DER deployment across utility territories and may exacer-
bate existing inequities related to DER adoption. With all grid con-
straints enforced, over half of households served by PG&E and SCE 
(57 and 59%, respectively) lack grid access to adopt sufficient PV to 
offset their annual electricity consumption, on average. If we con-
sider only remaining circuit hosting capacity, up to three-quarters 
of households served by PG&E and SCE (77 and 70%, respectively) 

Table 1 | Independent variable groups for random forest 
regression and classification runs

Variable group Description Examples

(1) All All variables included in 
any of the other three 
groups

–

(2) Infrastructure Variables that describe 
characteristics of 
electricity infrastructure, 
sourced from PG&E and 
SCE directly

Nominal circuit voltage, 
circuit line lengths

(3) Service and 
geography

Variables that pertain to 
how electric infrastructure 
serves customers and the 
environmental conditions 
it is exposed to

Households per circuit 
polygon and kilometre of 
circuit length, number and 
percentage of residential 
customers served by each 
circuit, solar irradiance and 
heat metrics

(4) Demographic Variables obtained 
from the American 
Community Survey62 and 
CalEnviroScreen28

Percentage of population 
identifying as specific 
racial and ethnic groups 
and within specific income 
tiers, median household 
income, residential structure 
characteristics

A full list of variables in each category can be found in Supplementary Tables 6–8.
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lack access. As existing PV adoption has tended to skew towards 
wealthier, whiter and less-disadvantaged households, these results 
raise concerns that the grid may hinder efforts to increase equity in 
DER adoption.

Grid capacity may also limit the amount of new load that can 
be added to residential distribution circuits through electrification 
programmes, EV adoption or increased air-conditioning demands. 
In PG&E’s territory, 39% of households lack access to even the least 
power-intensive new loads (space and water heating or level 1 EV 
charging), while 64% lack access to level 2 EV charging. Household 
access results are sensitive to the size capacity of the DERs deployed 
per household and, for generation, to whether OpFlex constraints 
are enforced.

Furthermore, we have found important disparities in house-
hold access by demographic characteristics that are consistent with 
disparities in existing PV capacity. Median per-household circuit 
capacity for DERs is lower for CBGs with higher Black-identifying 
populations than other racial and ethnic groups, and decreases with 
rising proportions of Black-identifying residents. Grid capacity for 
DERs also decreases for more disadvantaged communities, as mea-
sured by the CalEnviroScreen sensitive and linguistically-isolated 
population indicators.

In this work we sought to document existing patterns in circuit 
hosting capacity and their potential impacts on access to DERs. Our 
primary aim was to illuminate these patterns for consideration in 
future grid planning and policy. However, we do offer two hypoth-
eses about how the disparities we report could have come to pass. 
First, we know that circuit upgrades to accommodate DERs have 
already occurred, and are continuing to occur, on some circuits43. 
It is possible that those upgrades may have enabled excess host-
ing capacity beyond what was needed for the DERs that prompted 
them. If those upgrades have occurred in neighbourhoods that tend 
to be early adopters of DERs, that could have inadvertently led to 
more hosting capacity in areas populated by early adopters. Second, 
circuits designed for areas where additional housing development 
was expected to occur may have been built with excess capacity that 
could translate to more hosting capacity for DERs today. It is pos-
sible that these areas of projected housing expansion could corre-
late to certain demographic characteristics. Testing either of these 
hypotheses would require data that we do not have and that may 
not exist. Therefore, we offer these to share possible explanations 
for how social disparities in these engineered systems could have 
arisen, not to indicate how they did.

Notably, we have assessed the grid limits for generation and 
load DERs in isolation. If their operation is synchronized in time 
and space, these technologies could complement each other and 
reduce their impact on the grid. To accomplish this, policy requir-
ing co-located storage or demand response would be required, and 
evaluating the potential impacts of this is a potential direction for 
future work.

To meet its decarbonization goals, the State of California will 
need to make tremendous investments in grid capacity, which 
will require both time and money to implement. Our results illu-
minate that current policy promoting site-specific distributed 
generation may face obstacles to equity from physical systems,  
including those that fall along racial lines. Enabling all distribu-
tion circuits in the state to host adequate DER capacity for desired 
generation and electrification needs will not happen simul-
taneously without massive investment in staff and resources. 
Currently, SCE prioritizes distribution circuits for upgrades that 
are intended to boost hosting capacity on the basis of projected 
DER deployment. Yet targeting grid investments could reduce 
existing inequities. For example, there is an opportunity to put 
at the front of the queue communities with historically low DER 
adoption rates who are served by distribution circuits with low 
available hosting capacity.

Remaining hosting capacity will decrease as more households 
adopt PV and EVs, electrify heating loads and opt to acquire or 
operate air conditioners, and electric distribution systems will 
draw closer to their limits, potentially creating obstacles to timely 
and equitable DER access. Nationwide and elsewhere, policymak-
ers and regulators will increasingly confront grid limits as a barrier 
to renewable energy adoption. Evaluating the implications of these 
limits will be critical to reaching equity goals for the deployment of 
distributed energy resources.

Methods
Residential households are matched to distribution circuits. In this study we 
used recent advances in electric distribution grid data availability in the State 
of California. To begin, we matched residential customers to PG&E and SCE 
distribution circuits. Our goal was to estimate where residential utility customers 
live and which circuit lines provide them with electric service. Our analysis relied 
on two key assumptions. First, we assumed that residential customers are evenly 
distributed within the potentially inhabited areas of each CBG, which we estimated 
here to be those areas that are not protected open space (for example, parks or 
wilderness areas) or military bases. We also assumed, similar to a study included in 
California’s Fourth Climate Change Assessment (CCCA4) report49, that electricity 
customers are served by their nearest electric system equipment. Here, this means 
residential customers are grid-connected to the nearest distribution  
circuit segment.

All spatial processing was conducted in ArcGIS 10.650 in coordinate system 
NAD 1983 California Teale-Albers51. Starting with the CBGs52, we erased areas 
that comprise protected open space53,54 and military bases55 to exclude them from 
consideration, leaving us with potentially inhabited land area. For each CBG, we 
calculated:

InhArea_Wti =
InhAreai
OrigAreai

(1)

where OrigAreai is the original area of block group i and InhAreai is its potentially 
inhabited area (both in m2), and InhArea_Wti is the proportion of the original area 
that is potentially inhabited. Then, we clipped the potentially inhabited areas of the 
CBGs by the PG&E and SCE utility territory boundaries56. For each block group 
located fully or partially within each utility’s territory, we calculated:

IOUarea_Wti =
IOUareai
InhAreai

(2)

where IOUarea is the portion of block group i’s potentially inhabited area located 
within the IOU’s territory (m2; for example, Supplementary Fig. 4a), and IOUarea_
Wti is the portion of the potentially inhabited area that falls within the IOU’s 
territory.

We then used the Euclidean Allocation tool of ArcGIS to assign 10 m2 grid cells 
to their nearest one-, two- or three-phase circuit segment. (Using PG&E’s feeder 
data57 and SCE’s customer type data58, we excluded circuits that serve fewer than 
1% residential customers.) We converted the raster output to simplified polygons 
to produce smooth boundaries. We obtained polygons that mimic a Voronoi 
tessellation, but are formed around line segments rather than point locations (for 
example, of substations, as in the CCCA4 study49).

Next, we performed a union of these circuit-segment polygons with the CBGs. 
We combined the resulting features by circuit name to create circuit polygons that 
describe spatial areas that are unique combinations of (1) the service area for a 
given circuit j and (2) a given CBG i. For each circuit polygon we calculated:

CpolyA_Wtij =
CpolyAij

IOUareai
(3)

where CpolyAij is the area (m2) served by circuit j within block group i and 
CpolyA_Wtij is the portion of the block group’s potentially inhabited area that 
circuit serves within the IOU’s territory (Supplementary Fig. 4b).

This approach allowed us to calculate the estimated number of customers 
served by electric distribution lines within each circuit polygon:

tothh_Cpolyij = tothh_bgi × IOUarea_Wti × CpolyA_Wtij (4)

totpop_Cpolyij = totpop_bgi × IOUarea_Wti × CpolyA_Wtij (5)

totstr_Cpolyij = totstr_bgi × IOUarea_Wti × CpolyA_Wtij (6)

where tothh, totpop and totstr pertain to the total number of households, people 
and residential structures, respectively, within a circuit polygon (_Cpolyij, 
calculated) or CBG i (_bgi, from the 5-year estimates from the 2015 American 
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Community Survey59), IOUarea_Wti is the portion of each block group’s potentially 
inhabited area served by the IOU and CpolyA_Wtij is the portion of area served 
by circuit j. We did not multiply by the proportion of area that is potentially 
inhabited, thereby effectively reallocating the full reported block group population 
to potentially inhabited areas.

To check our approach, we compared our estimated number of households 
per circuit to the total residential customer base reported by each utility for each 
circuit. A perfect matching would give us a slope and R2 of 1. Our slopes are 
1 and 0.82, with R2 values of 0.867 and 0.721 for PG&E and SCE, respectively 
(Supplementary Fig. 5). While we avoid drawing conclusions about specific 
circuits, we will discuss overall trends in grid limits for DER access aggregated 
across CBGs and each utility territory.

Hosting capacity is spatially allocated to households. After matching residential 
households to distribution circuits, we allocated hosting capacity available  
on those circuits to the households. The circuit polygons described in the  
previous section formed our units of analysis. Further allocation and data 
processing was performed in R (version 3.6.1)60. Within each circuit polygon,  
the number of households, residential structures and people estimated by 
Equations (4)–(6) were assigned (1) the demographic characteristics of the 
associated block group i and (2) the characteristics of the electric infrastructure j 
serving them and its existing distributed generation and estimated DER hosting 
capacity. We used electric infrastructure data from the final PG&E and SCE ICA 
map updates in 201957,61.

PG&E and SCE report the existing, queued and total distributed generation  
on each circuit. The utilities’ hosting capacity calculations consider the current 
state of the feeder and therefore factor in the existing distributed generation 
already interconnected to circuit lines57. In estimating the number of households 
with access, we wanted to consider existing capacity alongside remaining  
hosting capacity. These values are provided at the full circuit level, and we  
allocated them to circuit polygons by the proportion of households we estimated  
to receive service there:

DER_existij (kW per household) = ExistDGj (kW) ×

tothh_Cpolyij
tothh_ctotj

×
1

tothh_Cpolyij

(7)

where ExistDGj is the existing distributed generation located on circuit j, tothh_
ctotj is the number of households served by circuit j, tothh_Cpolyij is the number 
of households located within the circuit polygon formed by CBG i and circuit j 
(from Eq. (4)), and DER_existij is the existing distributed generation we estimate 
to be located in circuit polygon ij. For PG&E, we also scaled by the percentage of 
households served by portions of the circuit with ICA data, given that existing 
capacity can be located anywhere along the circuit, not just where ICA information 
exists. This method effectively estimates that each household located anywhere 
on a given circuit has access to the same amount of existing generation. (Other 
researchers have reported the locations of existing distributed generation (PV) 
by zip code and census tract5,62. However, we found that scaling our allocations of 
existing generation within a circuit by these values does not substantially impact 
our results.) The type of DER is not specified for existing generation. To remain 
conservative with respect to grid limits, we added the per-household value to 
each type of generation DER: PV, uniform generation, and their variants with 
operational flexibility limits.

In addition to existing distributed generation capacity connected to a 
particular circuit, ICA maps also report the remaining hosting capacity of load 
DERs and PV and uniform generation DERs (with and without operational 
flexibility constraints) that individual three-phase circuit segments can still 
accommodate. SCE provides ICA values for all of its three-phase circuit segments. 
As of December 2019, PG&E has reported ICA values for approximately 55% 
of all circuit segments (distributed throughout its territory); our results and 
discussion apply only to the segments with available data. (See Supplementary 
Note 6 for additional discussion of available ICA data and how they are used.) 
We compared service areas by demographic indicators to assess whether the 
portions of PG&E’s territory with data are representative of the whole territory 
(Supplementary Fig. 6). We found no major differences (see the full discussion in 
Supplementary Note 7).

These hosting capacity values indicate how much additional DER capacity can 
be connected to that portion of the circuit without issue. However, adding DER 
capacity in one location may affect remaining hosting capacity elsewhere on the 
circuit; that is, the reported capacity allowances cannot be satisfied simultaneously. 
Moreover, hosting capacity values can vary widely within a given circuit due to 
constraints along different lines. According to SCE, ‘the minimum values of all 
the feeders [represent] the value which can be connected anywhere [...] without 
exceeding the category limit’. In contrast, the maximum values can be accepted by 
some feeders ‘based on location of interconnection’63.

We allocated hosting capacity to circuit polygons using an approach designed 
to err towards less restrictive per-household grid limits while minimizing 
duplication. First, we selected the maximum values for each DER type reported for 
any circuit segment within a particular circuit polygon. We weighted these values 

by the proportion of households served by that portion of the circuit (Eq. (8)) and 
normalized to preserve each circuit’s total maximum hosting capacity (Eq. (9)):

DER _max _ hhWtij (MW) = DER _max _ Cpolyij (MW)

×

tothh_Cpolyij
tothh_ctotj

(8)

DER _max _ hhWt_nij (MW) = DER _max _ hhWtij

×
DER _ max _ ctotj∑

j(DER _ max _ hhWtij)
(9)

where DER_max_Cpolyij is the maximum hosting capacity (MW) reported within 
circuit polygon ij, which corresponds to the overlap between block group i and the 
estimated service area of circuit j, tothh_Cpolyij is the number of households within 
circuit polygon ij (from Eq. (4)), tothh_ctotj is the total number of households 
estimated to be served by circuit j, DER_max_hhWtij is the household-weighted 
maximum hosting capacity (MW) for circuit polygon ij, DER_max_ctotj is the 
maximum hosting capacity anywhere on circuit j and DER_max_hhWt_nij is the 
normalized household-weighted maximum hosting capacity for circuit polygon ij.

For a small minority of circuit polygons (0.05–1.60%, depending on DER type), 
the normalized hosting capacity value exceeds the maximum allowed hosting 
capacity in that circuit polygon. In these cases, we adjusted the value back to its 
allowed maximum:

DER _max _ hhWt_nadjij (MW)

= If DER _max _ hhWt_nij > DER _max _ Cpolyij ,

thenDER _max _ Cpolyij , else DER _max _ hhWt_nij

(10)

where DER_max_hhWt_nadjij is the adjusted normalized hosting capacity value. 
Finally, we calculated the remaining per-household hosting capacity (DER_
remainij) in kilowatts for each circuit polygon:

DER_remainij (kW per household) =

DER _ max _ hhWt_nadjij (MW)

tothh_Cpolyij

×1, 000
(11)

Supplementary Table 4 contains these calculations for an example SCE circuit that 
spans eight CBGs and therefore creates eight circuit polygons. Supplementary  
Fig. 7 summarizes the resulting per-circuit hosting capacities for each utility.

Our final per-household hosting capacity (DERij) can then be estimated to be

DERij (kW per household) = DER_existij + DER_remainij (12)

for each of the four generation DERs (where DER_existij comes from Eq. (7)), and 
DER_remainij for the load DER. As there are some considerable outliers in the data, 
we capped all hosting capacity values to a maximum of 50 kW per household and a 
minimum of –10 kW per household for further analysis (negative values exist only 
for the load DER in SCE’s territory).

Households need kilowatts of circuit capacity for DER access. We estimated the 
amount of circuit capacity needed to accommodate generation and load DERs, 
and, using the per-household hosting capacity values (Eq. (12)), assessed the 
ability of households to adopt these technologies given their local circuit limits. We 
focused our analysis on behind-the-meter PV deployment and potential new load 
due to EV charging, electrification and air-conditioning adoption.

In California, on average, a household consumes approximately 6.7 MWh 
of electricity annually64, while a small building rooftop PV array produces 
approximately 1.48 MWh of electricity annually per killowatt of installed capacity65. 
A 4.5 kW PV system is therefore required, on average, to balance 100% of a 
household’s annual electricity demand.

Researchers have previously defined access to behind-the-meter solar PV as 
the ability to install a 1.5 kW system. This threshold was chosen to be inclusive 
of existing adoption patterns: of the small (≤10 kW) PV systems installed 
prior to 2014, 96% were greater than 1.5 kW, and raising the threshold to 3 kW 
would exclude 19% of them8,65. However, residential PV arrays have grown over 
time: the median system increased from 2.4 to 6.3 kW between 2000 and 2017 
(Supplementary Fig. 8). Of the systems installed in 2017, 99% were over 3 kW and 
94% were over 4 kW. The changing sizes of residential PV suggest that 1.5 kW may 
no longer be a reasonable threshold for future access, that is, if the economics show 
sufficient benefit at larger scales62, the ability to install only a small amount of solar 
may prevent someone from installing it at all.

We evaluated ‘access’ at 4.5 kW to estimate the ability of California households 
to offset their electricity consumption with onsite PV generation, and additionally 
for a range of thresholds (1.5 kW, for consistency with prior work, and then 
2–10 kW by 1 kW increments) to track how this variable may influence limits to 
deployment. We assumed that every household would functionally have access to 
behind-the-meter PV if they had the ability to host 10 kW.

Nature Energy | www.nature.com/natureenergy

http://www.nature.com/natureenergy


Articles NaTuRE EnERgy

Yet access to behind-the-meter PV is not only limited by grid constraints. 
Other factors may also restrict the ability to adopt, including lack of suitable 
rooftop space, access to financing and home ownership. We considered economic 
and housing factors as demographic features, but combined building suitability 
limits with our estimates of grid constraints to calculate access to behind-the-meter 
PV based on technical limits. Researchers have estimated the percentage of small 
buildings (92.9–464.5 m2) within specific metropolitan areas and nationwide 
that are suitable to host 1.5 kW of PV on the basis of tilt, azimuth, shading and 
contiguous rooftop area9,10. Small-building suitability percentages are available by 
zip code; we used census zip-code tabulation areas (ZCTAs)66 to assign zip-code 
level values to block groups. (Some circuit polygons cross more than one ZCTA; 
for these, we averaged the values corresponding to all intersecting zip codes.)

We compared the restrictiveness of building characteristics to grid limits. 
We also proposed two approaches for combining building suitability and grid 
constraints to estimate the percentage of households unable to host solar due to 
either restriction. In the best case, we maximized double-counting of buildings 
deemed unsuitable due to either rooftop or grid limits by choosing the lower of the 
two percentages for a given circuit polygon. In the worst case, we maximized the 
number of households excluded by either criterion by adding the proportions of 
households without access.

Beyond solar PV, other DERs also require access to electric distribution 
circuits. For example, residential households with EVs typically rely on the ability 
to charge at home. EVs may use level 1 chargers, which require only a typical 
household outlet, or level 2 chargers, which enable much faster power delivery. 
While the power drawn by either type depends on the vehicle model, level 1 
charging typically requires 1.4–1.9 kW. Level 2 charging can draw between 3.3 
and 19.2 kW, with most vehicles requiring around 7 kW67,68. Faster charging 
technologies can draw substantially more power, but they are less common at the 
household level, and we omitted them from consideration here.

Load electrification and air conditioning will also impact distribution circuits. 
California state policy has set targets for switching residential fossil fuel uses 
to electricity through the adoption of electric heat pumps for water and space 
heating. These technologies will create additional demand for electricity as these 
appliances become more widespread to support state policy to advance climate 
change mitigation and adaptation in California. Air conditioning, although already 
an electric appliance, will also increase load on the grid as additional households 
deploy new units to cope with increasing temperatures. In particular, low-income 
households are currently less likely to have air conditioning than high-income 
households69.

We estimated the peak per-household electricity demand from electric water 
heating, space heating and air conditioning to be 0.6, 1.0 and 2.0 kW, respectively, 
using household energy consumption data from the 2009 California Residential 
Appliance Saturation Study69 and hourly electricity consumption profiles from 
Energy and Environmental Economics70. Details of the calculations are provided in 
Supplementary Note 8 and Supplementary Table 5.

For each DER type reported in the ICA data, we next calculated the percentage 
of households with access (hhwacc) within each circuit polygon for access 
thresholds of 1.5–10.0 kW per household:

If DERij(kW per household) > threshold then hhwacc_Cpolyij ← 100%

else

hhwacc_Cpolyij ← DERij (kW per household)/threshold (kW per household)

end
(13)

where hhwacc_Cpolyij is the proportion of households located within circuit 
polygon ij that have access to the given DER type. Separately, we also calculated the 
proportion of households with greater than zero hosting capacity for each DER. We 
then aggregated our results up to the CBG and full utility territory levels by first 
summing over all circuit polygons ij within CBG i, then over all block groups:

hhwacc_bgi (%) =

∑
jhhwacc_Cpolyij (%) × tothh_Cpolyij

∑
jtothh_Cpolyij

(14)

hhwacc_IOU (%) =

∑
ihhwacc_bgi (%) × tothh_bgi∑

itothh_bgi
(15)

where hhwacc_bgi is the proportion of households located within CBG i that have 
access to the given DER type, and hhwacc_IOU is the proportion of households 
located within that IOU’s territory that have access to the given DER type. The 
block group-level results provide context for the distribution of access within a 
utility territory through meaningful units of contiguous geographic data within 
counties and census tracts. We relied heavily on boxplots to visualize the access 
results by block group. All boxplots in this work show the 25th, 50th and 75th 
percentiles of results, with whiskers extending to the furthest point within 1.5 times 
the interquartile range. Further points are shown as outliers.

Connecting household access results to demographic features. Hosting capacity 
values vary across IOU service territories, as do customer demographics and  
other indicators relevant to electric infrastructure and the customers it serves. 
We wanted to understand the relationship between these differences and hosting 
capacity (and, potentially, customers’ ability to adopt DERs) among households for 
each DER type.

We constructed machine learning models to understand which features, if any, 
correlate most to per-household hosting capacity, and which are most important 
in building the models. We weighted our samples by tothh_Cpolyij to ensure the 
models appropriately emphasize circuit polygons that contain more households.

Linear and logistic regression models were used to determine whether linear 
relationships exist between our independent and dependent variables. When 
fitting, we normalized our independent variables to have a mean of zero and 
standard deviation of one. We used the regression coefficient and corresponding 
standard error of each feature to rank features in order of importance. We also 
calculated weighted root mean square errors (RMSEs) and R2 values for the  
linear regression runs, and weighted score, precision and recall values for  
logistic regression.

Random forest regression and classification models were used to determine 
whether non-linear relationships exist in the data. We applied regression  
models to (1) all values of per-household hosting capacity and (2) the subset of 
hosting capacity values less than or equal to 10 kW per household (to specifically 
focus on the range where access may be limited). For each model, we used  
the lowest RMSE, as identified by tenfold cross-validation, to select the proportion 
of features considered at each split (all features, one-third of all features or the 
square root of all features), and used those results to calculate model outcomes 
and feature importances. We used the weighted RMSE (for regression) and the 
weighted score, precision and recall statistics (for classification) to evaluate  
model performance.

For each model, we used four combinations of infrastructure and demographic 
indicators as the independent variables: (1) all variables, (2) infrastructure variables 
only, (3) service and geographic variables, and (4) demographic variables. More 
information about each variable group is provided in Table 1, and a full list of 
variables is presented in Supplementary Tables 6–8.

Linear regression and random forest regression models used the per-household 
hosting capacity for each DER type as the dependent variable, while logistic 
regression and random forest classification models used a boolean value indicating 
whether the per-household hosting capacity surpasses a set threshold. We tested 
two thresholds: 1.5 and 10.0 kW per household.

We fitted and evaluated all models using the entire dataset rather than 
performing a train-test split. Our data correspond to the entire population in 
SCE’s and PG&E’s service territories (given available data); therefore, we were 
more interested in building models that represent the entire population than in 
predicting hosting capacity for unseen data.

Moving beyond machine learning models, we also evaluated the distribution 
of median hosting capacity across features. We focused in on the demographic 
features to evaluate how hosting capacity changes across feature values. We created 
bins for the available values of each demographic feature, then calculated the 
median per-household hosting capacity for each bin. LOESS curves were drawn on 
the plotted median values. These were weighted by the total number of households 
represented by each bin value and used span (smoothing) values calculated by 
generalized cross-validation. Confidence intervals were constructed using a 
bootstrap method with 1,000 replications, as described previously6, and we show 
the 50 and 90% confidence intervals for each LOESS curve.

Data availability
The definitions of features used in the demographic analyses are available in 
Supplementary Information Note 9 for convenience. Utility circuit data are 
available publicly from repositories that update approximately monthly and 
currently lack archive capability. The specific circuit data used in this study 
(from the last circuit map updates in 2019) are available at https://github.com/
Energy-MAC/GridLimitsforDERs. Source data are provided with this paper.

Code availability
The code is available at https://github.com/Energy-MAC/GridLimitsforDERs.
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Extended Data Fig. 1 | Grid limits for distributed energy resources: PV. High-resolution version of Fig. 1a, showing hosting capacity limits for PV per  
household across PG&E and SCE service territories.
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Extended Data Fig. 2 | Grid limits for distributed energy resources: PV, with OpFlex limits. High-resolution version of Fig. 1b, showing hosting capacity  
limits for PV with Operational Flexibility limits enforced per household across PG&E and SCE service territories.
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Extended Data Fig. 3 | Grid limits for distributed energy resources: Load. High-resolution version of Fig. 1c, showing hosting capacity limits for Load per 
household across PG&E and SCE service territories.
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