DOCKETED	
Docket Number:	17-MISC-01
Project Title:	California Offshore Renewable Energy
TN #:	250471
Document Title:	AB 525 Workshop June 1, 2023 Presentations
Description:	Workshop Presentations: Identifying Additional Suitable Sea Space and Assessing Impacts and Mitigations for Offshore Wind Energy Development
Filer:	susan fleming
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	6/2/2023 8:37:05 AM
Docketed Date:	6/2/2023

AB 525 Workshop Identifying Additional Suitable Sea Space and Assessing Impacts and Mitigations for Offshore Wind Energy Development June 1, 2023

AM Workshop Schedule

- 1. Welcome
- 2. Overview of AB 525
- 3. Purpose of Workshop
- 4. BOEM Leasing Process
- 5. Department of Defense Review Process
- 6. Sea Space Identification
- 7. Break
- 8. Panel Discussion
- 9. Lunch Break

PM Workshop Schedule

- 1. Welcome Back
- 2. Impacts and Mitigations: Overview
- 3. Impacts and Mitigations: Coastal Resources
- 4. Impacts and Mitigations: Fisheries
- 5. Break
- 6. Panel Discussion
- 7. Public Comment

Overview of AB525 Rachel MacDonald

AB 525 Legislative Findings

If developed at scale, offshore wind can:

- ✓ Provide economic and environmental benefits.
- ✓ Advance progress toward California's renewable and climate goals.
- ✓ Diversify the state's energy portfolio.
- ✓ Realize economic and workforce development benefits.
- Contribute to renewable resource portfolio that can serve electricity needs and improve air quality in disadvantaged communities.
- ✓ Offer career pathways and workforce training opportunities.

Offshore wind should be developed in a manner that protects coastal and marine ecosystems.

AB 525 Strategic Plan Requirements

- Identify suitable Sea Space for wind areas in federal waters sufficient to accommodate the planning goals.
- Develop a plan to improve ports and waterfront facilities and workforce development.
- Assess the transmission investments and upgrades necessary, including subsea transmission options, to support the offshore wind planning goals.
- Address permitting and develop a Permitting Roadmap for offshore wind deployment
- Potential impacts on coastal resources, fisheries, Native
 American and Indigenous peoples, and national defense, and
 strategies for addressing those potential impacts.

AB 525 Required Interim Work Products

August 10, 2022

February 28, 2023

Evaluate and quantify maximum feasible capacity of offshore wind

Establish megawatt planning goals for 2030 and 2045 Complete a preliminary assessment of economic benefits related to seaports and workforce development needs and standards May 10, 2023

Develop a permitting roadmap

Purpose of Workshop Danielle Mullany

Sea Space Requirements Corresponding to Planning Goals

AB 525 directs the CEC to work with state, local, and federal agencies, stakeholders, and the offshore wind industry to identify sea space in two primary steps:

- Identify the sea space established by BOEM in its 2018 call for nominations to achieve the offshore wind planning goal of 2-5 GW by 2030
- Identify suitable sea space for a future phase of offshore wind leasing to accommodate the offshore wind planning goal of 25 GW by 2045

Idrissa Boube Bureau of Ocean Energy Management

BOEM Bureau of Ocean Energy Management

Federal Offshore Wind Energy Leasing Process Federal Process and Timelines June 1, 2023

Idrissa Boube | CEC AB 525 Workshop on Suitable Sea Space and Impacts

Bureau of Ocean Energy Management (BOEM)

Mission: Manage the development of U.S. Outer Continental Shelf (OCS) energy and mineral resources in an environmentally and economically responsible way

Jurisdiction on the U.S. West Coast

- OCS extends from 3 to 200 nautical miles off the coast of California, Oregon, and Washington
- Excludes National Marine Sanctuaries

BOEM's Regulatory Authority

Energy Policy Act of 2005

 Amends Outer Continental Shelf Lands Act (OCSLA) to authorize DOI to act as "lead" agency for certain alternative energy and marine-related uses on the OCS
 DOI delegated OCSLA authority to then Minerals Management Service (now BOEM)

Requires development of regulatory regime that:

- Ensures consultation with Tribes, states, local government, and other stakeholders
- Grants leases, easements, and rights-of-way
- Enforces regulatory compliance
- Requires financial security
- Provides fair return to the Nation

BOEM's Staged Offshore Wind Energy Authorization Process

BOEM coordinates and consults with affected Tribal, State, and local governments and other Federal agencies Multiple opportunities for public input

Renewable Energy Process: Call, Wind Energy Areas, and Lease Areas

- Call for Information and Nominations (Call)
 - Calls for formal public comment about the area, uses, and concerns
 - Requests nominations of interest for development
- Wind Energy Area (WEA)
 - An area within a Call Area identified by BOEM for environmental review
 - Basis for a lease area(s)
- Lease Area
 - Areas BOEM would offer for lease during a Lease Sale

Aguçadoura WindFloat Prototype October 2011 - 4KM Offshore of Aguçadoura, Portugal

Approach for Initial Offshore Wind Energy Planning in California

- BOEM California Intergovernmental Renewable Energy Task Force
- Offshore Wind Energy Gateway for data collection in publicly accessible website
- Conduct extensive outreach and engagement with ocean users
- Coordinate with Tribal Governments, State of California, Federal agencies, and state agencies
- Employ scientific studies and analyses to support informed decision-making
- Publish Call for Information and Nominations in the Federal Register

Tribal and Stakeholder Engagement – 2018 and 2021 CA Call Example

- Established BOEM California Intergovernmental Renewable Energy Task Force (2016)
- Coordination between BOEM and State of California (2016 to date)
- State-wide coordination, outreach, and engagement guided by Data Gathering and Stakeholder Engagement Plan with Tribal Governments, State of California, and public stakeholders
- Created Offshore Wind Energy Gateway for data collection in publicly accessible website: <u>https://caoffshorewind.databasin.org/</u>
- The outreach effort and input received are documented in Outreach summary reports:
 - September 2018 California Offshore Wind Energy Planning Outreach Summary Report
 - June 2021 Outreach Summary Report Addendum

Engagement Meetings – CA Call Example

Beginning in 2017, BOEM and the State of California conducted outreach and held meetings with the following groups to inform offshore winds energy Call Areas off California:

- Fishing community
- Elected officials
- Academics
- o Tribes
- Environmental groups
- Maritime community

Public meetings, webinars, and Task Force meetings were also held to inform identification of Call Areas.

On September 16, 2022, BOEM announced that it was enhancing its process to identify future Wind Energy Areas (WEAs):

- Incorporate best available science and modeling, including application of NOAA NCCOS spatial modeling
- Leverage existing data
- Provide draft WEAs for public comment prior to completion of Area Identification

BOEM California Planning Process – Draft Wind Energy Areas

Spatial Suitability Model

- A suitability model is a model that weighs locations relative to each other based on given criteria
- A common scale allows for meaningful values to be produced when the criteria are combined
- Data must be transformed into a common scale so the criteria can be compared
- Suitability modeling allows us to analyze the "whole ecosystem" and identify hotspots of conflict and opportunity
- Provides defensible and transparent methods
- Allows for scenario planning
- Available tool to inform identification of Wind Energy Areas

COASTAL O

Offshore Wind Energy Planning Post Call

- Review Call comments, finalize qualification reviews
- Publish draft Wind Energy Areas
- Review comments and identify final Wind Energy Areas
- Conduct Environmental Analysis
- Publish Proposed Sale Notice
- Publish Final Sale Notice
- Lease Auction

Idrissa Boube | idrissa.boube@boem.gov | (504) 731-1531

Steve Sample U.S. Department of Defense

Scott Flint California Energy Commission

CEC AB 525 Objectives for Identification of Suitable Sea Space

- Identify new areas of sea space with potential for offshore wind development
- Describe how the existing lease areas and potential new areas will contribute to California's energy goals
- Determine how potential conflicts may affect the energy generation potential of the sea space areas
- Identify data gaps and research needed to further assess the identified sea space

Identification of Suitable Sea Space: Process

Identify Wind Potential

Identify Wind and Technical Characteristics and Assumptions Screen with Available Data

Analyze and Assess FOSW Potential with Best Available Data and Information

Summarize Results

Describe, Characterize and Summarize Results

Geospatial Data- Identify Wind and Technical Characteristics

Offshore Wind Characteristics

- Wind Speed
- Peak Wind Time of Day
- Wind Consistency
- Wind Capacity Factor

Ocean Characteristics that Can Affect Offshore Wind Technology

- Ocean Bottom Depth
- Ocean Bottom Slope
- Area Distance to Transmission
- Area Distance to Port Facilities

Protected Areas- exclusions for development

- National Marine Sanctuaries
- CA Marine Protected Areas
- Essential Fish Habitat

Example of a Floating Offshore Wind Energy Development

Offshore Wind Resource – North Coast

- Wind Speed 10m/s or better
- Wind Speed Consistency
- Wind Speed 5-9 PM

AB 525 Sea Space – North Coast

- Wind Speed 10m/s or better
- Wind Speed Consistency
- Wind Speed 5-9 PM

AB 525 Sea Space – North Coast

Near-Shore

- Wind Speed 10m/s or better
- Water Depth approximately 800m to 2600m
- Distance from Shore approximately 20-70 miles

AB 525 Sea Space – North Coast

Near-Shore

- Wind Speed 10m/s or better
- Water Depth approximately 800m to 2600m
- Distance from Shore approximately 20-70 miles

Geophysical Characteristics

Geospatial Data - Screen for Conflicts

Ocean Uses

- Commercial Fishing Activity
- Shipping Lanes
- Shipping Traffic
- Military Operations
- Cultural and Historical Resources

Existing Infrastructure

- Cables
- Pipelines
- Platforms
- Existing Leases and rights-of-way

Benthic (Ocean Bottom) Habitats

- Hard bottom areas
- Corals and sponges
- Seamounts

Marine Mammals

- Species Density
- Migratory Routes
- Important Biological Areas

Marine Birds

- Species Density
- Occurrence of Sensitive Species Groups

Marine Turtles

- Species Distribution
- Critical Habitat

Benthic Habitat and Protected Areas

Commercial Fisheries

Marine Mammals

AB 525 Sea Space – South Central Coast

Geophysical Characteristics

Commercial Fisheries

Marine Mammals

South Central Coast - Sea Space

53

South Central Coast - Sea Space

54

Identified Conflicts and Issues

Cultural and Biological Resources

- Ancestral Landscapes
- Culturally Sensitive Areas
- Fishing

Existing Ocean Uses

- Commercial Fisheries
- Commercial Shipping Traffic
- Department of Defense

- Benthic Habitats and Habitat Areas of Particular Concern
- Marine Birds
- Marine Mammals
- Marine Turtles

LOCATION	SEA SPACE AREA	INSTALLATION CAPACITY		AREA SIZE		OCEAN DEPTH		DISTANCE TO SHORE
		LOW ESTIMATE	HIGH ESTIMATE	Square	Square			
		(GW)	(GW)	Kilometers	Miles	Meters	Miles	Miles
North Coast								
	Humboldt Leases	1.6	3.0	536	207	500-1,100	0.31-0.68	21-35
	AB 525 Sea Space	27.0	45.0	8,950	3,456	980-2,350	0.61-1.46	33-43
Total		28.6	48.0	9,486.0	3,663			
South Coast								
	Morro Bay Leases	3.0	6.0	975	376	900-1,300	0.56-0.81	26-45
	AB 525 Sea Space	3.5	6.0	1,150	444	900-2,900	0.56-1.74	11-55
Total		6.5	12.0	2,125	820			
Area Totals		35.1	60.0	11,611	4,483			

5 Minute Break

Panel Discussion

Hayes Framme, Head of New Markets & Supply Chain, Orsted

Jacqueline Moore, Vice President, Pacific Merchant Shipping Association

Ken Bates, Executive Director, California Fishermen Resiliency Association and

career commercial fishermen

Rikki Eriksen, Ph.D., Director of Marine Programs, California Marine Sanctuary

Foundation

Developer Perspective

California Energy Commission Workshop on Seaspace Planning

Hayes Framme Head of New Markets, Americas Thursday June 1, 2023

Orsted at a Glance

Orsted

Ørsted's global business areas

Offshore

- · Global leader in offshore wind
- Develop, construct, own and operate offshore wind farms

Onshore, solar PV & storage

- Building a leadership position in onshore renewables
- Energy storage solutions and solar

Bioenergy & other

• Presence in Europe, including bioenergy plants, legacy gas activities and patented waste-to-energy technology

Renewable hydrogen and green fuels

- Emerging platform with 10+ pipeline projects (+3 GW)
- Ambition to become a global leader in renewable hydrogen and green fuels by 2030

Leasing in the US

Orsted

Balance of Conditions and Factors

Site Conditions to Consider:

- High winds
- Water depth
- Proximity to shore
- Grid access
- Proximity to ports
- Gigawatt scale potential

Siting Factors to Balance:

- Contiguous/adjacent space
- "Deconflicting"
- Coexistence with existing ocean users
- Marine species activities
- Mitigation
- Avoidance

Perspective on Floating **Offshore Wind**

Cumulative global installations of floating offshore wind

Floating offshore wind

Projected Levelised Cost of Energy Floating offshore wind

Floating Offshore Wind Cost Drivers

Wind Resource	 Wind speed Wind direction Lease location and orientation
Technology innovation	 Materials quantity Standardization of design – turbines, foundations, moorings, O&M, vessels Location of assembly, maintenance
Scale	 Market volume and volume sequence – industrialization of manufacturing Size of individual wind farms Size of potential contract awards for projects
Distance from shore	 Travel time to site; water depth Materials quantity – cables, anchors Installation complexity, safety
Risk	 Permitting clarity/certainty Landfall and interconnection Availability of feasible seaspace – uncertainty of constructability
Pipeline of opportunity	 State level procurement/award clarity and certainty in timing and process Amount of available/auctioned seaspace Revenue contract/offtake agreement certainty – contractual risk

Floating designs and their advantages

Tension leg platform Highly stable with small seabed footprint

Semi submersible

Most common type, adapted to a wide range of conditions

Barge

Similar to semi submersible but with a larger surface area in contact with the water **Spar buoy** Stable with little movement

Floating offshore wind – operation

PACIFIC MERCHANT SHIPPING ASSOCIATION

Sea Space Identification & Vessel Navigation

Jacqueline M. Moore

Vice President

Pacific Merchant Shipping Association

jmmoore@pmsaship.com

Morro Bay WEA & Vessel Traffic

Vessel traffic for cargo, tug/tow and tanker vessels for Morro Bay Wind Energy Area, in black, and the proposed Diablo Canyon Call Area, in white.

Source: PMSA. Maps created utilizing 2017 AIS Shipping Vessel Traffic data at databasin.org. Diablo Canyon Call Area is for illustrative purposes only.

Humboldt WEA & Vessel Traffic

Vessel traffic for tug/tow, cargo and tanker vessels near Humboldt Wind Energy Area, in black.

US Coast Guard

Pacific Coast Port Access Route Study (PAC-PARS)

Port Access Route Studies are undertaken by the US Coast Guard to ensure safety of navigation due to coastal waters development:

- Development of aquaculture farms
 - Offshore renewable energy
 - Increased commercial traffic
 - Expansion of marine sanctuaries

Concludes with routing <u>recommendations</u>. These fairways would be voluntary.

Source: USCG. Draft map, not to be cited. Will be superseded by impending Final USCG PAC-PARS

Other Areas of Interest

Draft map and drawing for illustrative purposes only. Not to scale. Not to be cited

/attenfall Shows Damage Caused by Cargo hip Adrift at Hollandse Kust Zuid Offshore

a D, the bulk carrier that had drifted in the Hollandse Kust Zuid w ffshore the Netherlands for several hours on Monday, 31 January d with one of the wind turbine monopile foundations at the 1.5 G

Offshore Sea Space Siting Impacts to the Shipping industry

Fifteen hurt as offshore wind support vessel hits cargo ship

Several are seriously injured as crew transfer vessel bound for Wikinger collides in German Baltic

18 February 2018 13:58 GMT LIPOATED 18 February 2018 15:1 By Andrew Lee 🛕

Fifteen people were injured, several seriously after an offshore wind crew transfer vessel hit a cargo ship in the German Baltic Sea, according to German authorities. Lifebot crew helped take those hurt off the *World Bore* following the collision at 0740 or paradra morning, and ship <u>German Altramic Natrigeness</u> each and Rescue Association. • Risk of allisions and collisions between

- vessels and turbines
- Safety of personnel
- Interference with radar
- Possible increased emissions
- Potential impacts to marine life

ermany's water police are investigating what they believe may be the first case in whi erchant ship underway struck a North Sea wind turbine. The capitain of the vessel ac dice has so far not explained how his vessel received a hole the "size of a barn door" i arboard side of the ship.

- Strategies
- Coordination with *all* stakeholders and state-feds
 - Communication plans
- Creation of a maritime working group (industry, USCG, agencies)
 - Methodologies for identification and analyzation of impacts

Lists are not inclusive.

Panel Discussion

Hayes Framme, Head of New Markets & Supply Chain, Orsted

Jacqueline Moore, Vice President, Pacific Merchant Shipping Association

Ken Bates, Executive Director, California Fishermen Resiliency Association

and career commercial fishermen

Rikki Eriksen, Ph.D., MPAs Director, California Marine Sanctuary Foundation

Lunch Break Return at 1:30 pm

Welcome Back Danielle Mullany

PM Workshop Schedule

- 1. Welcome Back
- 2. Impacts and Mitigations: Overview
- 3. Impacts and Mitigations: Coastal Resources
- 4. Impacts and Mitigations: Fisheries
- 5. Break
- 6. Panel Discussion
- 7. Public Comment

Susan Lee Aspen Environmental Group

AB 525 Impacts and Mitigation Strategies

CEC WORKSHOP JUNE 1, 2023

Prepared by: Susan Lee

SLee@aspeneg.com

Date: June 1, 2023

Overview

- Requirements of AB 525
- Approach to identifying impacts
- Approach to defining mitigation strategies
- Environmental resources and disciplines considered
- Key issues:
 - Concerns of Native American and Indigenous peoples
 - Coastal and marine resources (separate presentation)
 - Fisheries (separate presentation)
 - National defense

AB 525 Requirements

• Section 1 requires that:

 (m) Offshore wind should be developed in a manner that protects coastal and marine ecosystems. The State of California should use its authority under state programs and policies to ensure (1) avoidance, minimization, and mitigation of significant adverse impacts, and (2) monitoring and adaptive management for offshore wind projects and their associated infrastructure.

• Strategic Plan contents:

- Section 25991(c)(5) requires that the Strategic Plan address potential impacts on coastal resources, fisheries, Native American and Indigenous peoples, and national defense, and strategies for addressing those potential impacts.
- Section 25991.2 (e) requires that the Strategic Plan ... "make recommendations regarding potential significant adverse environmental impacts and use conflicts, such as avoidance, minimization, monitoring, mitigation, and adaptive management, consistent with California's long-term renewable energy, greenhouse gas emission reduction, and biodiversity goals.

Approach to Identifying Impacts & Mitigation

- Challenges
 - No commercial floating OSW turbines in the U.S.
 - No west coast seaport facilities dedicated to the industry
 - Potentially affected resources will be defined in surveys and research not yet completed
- Resources and Examples
 - BOEM Environmental Assessments for Morro Bay and Humboldt Wind Energy Areas (WEAs)
 - CA State Lands Commission Preliminary Environmental Assessment for Vandenberg Wind Energy Projects
 - BOEM EISs for east coast wind projects
 - Team experience

Resources and Disciplines Considered

KEY RESOURCES	Marine Biological ResourceFisheries	
Other	Aesthetics	
Resources and	 Air Quality and Greenhouse Gas 	

- nd Greenhouse Gas Emissions
- Agriculture and Forestry Resources
- **Biological Resources Terrestrial**
- Department of Defense Operations
- **Economic and Environmental Justice**
- Geology, Soils, and Paleontological Resources
- Hazards, Safety, and Hazardous Materials
- Hydrology and Water Quality

- Cultural and Tribal Resources
- National Defense
- Land Use and Planning
- Mineral Resources
- Noise and Vibration
- **Population and Housing**
- **Public Services**
- **Recreation and Tourism**
- Transportation, Shipping Lanes ٠
- Utilities and Service Systems
- Wildfire

Disciplines

Ongoing Consultation with Native American Tribes

- Engagement and consultation with California Native American Tribes ongoing with CEC, CSLC, CCC, BOEM
- CCC Consistency Determination Condition 6 defines:
 - Lessee engagement with California Native American Tribes
 - Lessee development of an engagement framework that addresses compensation for member participation in engagement and events
 - Lessee retention a qualified tribal liaison
 - Lessee coordination regarding survey protocols and actions to be taken if potential tribal resources are discovered
 - Lessee coordination with Tribes on infrastructure needs and economic development

Native American and Indigenous Peoples

- Concerns and Potential Impacts
 - Retaining reasonable use of lease areas for subsistence and commercial food gathering activities
 - Preserving traditional species that use or pass through the lease areas
 - Degradation of viewshed during construction and operation
 - Direct effects on physical resources such as prehistoric habitation sites and the presence of burial areas, tools, pottery, or other artifacts
 - Potential disproportionate impact to North Coast tribes
 - Proposed Chumash Heritage National Marine Sanctuary; coastal and offshore sacred places

Cultural and Tribal Resources

- Typical programmatic or project-specific mitigation includes:
 - Government-to-Government consultation to hear project-specific concerns and tribal recommendations for mitigation and monitoring strategies
 - Community benefits agreements to provide energy to tribal lands, employment and job training opportunities
 - Completion of pedestrian and geophysical surveys to identify resources that could be disturbed or destroyed by construction activities
 - Tribal participation in survey efforts
 - Development of a plan for discovery of human remains or unanticipated resources

National Defense – Impacts to DOD Activities

- Marine vessels using marine transit lanes create increased potential for vessel collision, conflict with DOD vessels, and conflict with DOD training areas.
- The increase in marine vessel traffic may increase the number of events requiring search and rescue actions by the Coast Guard.
- Turbines can alter radar signals and preclude large areas of the sea for use in DOD training exercises.
- Risk of collision with the turbines and DOD marine vessels or aircraft; risk of snagging mooring cables, inter-array cables, and turbine anchor systems.
- In ports and harbors, construction and O&M would compete with DOD uses of port facilities and traffic lanes.
- Onshore transmission lines can present hazards to low-altitude training flights.

National Defense – Mitigation Strategies

- Coordination among DOD, BOEM, and OSW project proponents will be required to avoid conflict with DOD coastal, marine, and air operations during leasing, siting, and construction activities.
- Facility and component design should focus on avoidance of conflicts, considering potential interference with navigational radar, risk of collisions with infrastructure (including anchoring systems and floating turbine structures), risk of electromagnetic emissions conflict, and risk of snagging or being entangled with underwater cables.
- Coordination in advance of offshore facility construction and operation should also include the development of communications plans and vessel transit routes to facilitate vessel lane management, law enforcement, and search and rescue activities by the USCG.

Introduction of Experts

- Marine resources: Sharon Kramer of H. T. Harvey & Associates
- Fisheries: Steven Hackett of Cal Poly Humboldt/Aspen

Sharon Kramer, Ph.D. H. T. Harvey & Associates

H. T. HARVEY & ASSOCIATES

Ecological Consultants

CEC Workshop: AB 525 Impacts and Mitigation Strategies

Prepared by: Sharon Kramer, PhD Senior Marine Ecologist, Principal skramer@harveyecology.com June 1, 2023

Impacts and Mitigation Strategies for Coastal Resources

Potential impacts of offshore wind energy development on coastal resources

- seabirds
- marine mammals

- sea turtles
 food chains
 coastal habitats

Types of **mitigation**

- avoidance
- minimization
- compensatory

The role of **monitoring and adaptive** management

Our Setting: California Current Ecosystem

Stressor Interaction Receptor

In-Water Project Phases

Phase 1	Phase 2	Phase 3	Phase 4
Site Assessment and characterization	Construction	Operations and maintenance (O&M)	Decommissioning
Collecting information needed to design and permit a project	Cable laying, anchoring, mooring, and device deployment	Monitoring and maintenance activities	Project removal
[weeks]	[months-years]	[years]	[months-years]

Potential Interactions: Site Characterization and Construction

- Site characterization surveys and construction disturbance
- Underwater acoustics

- Vessel collisions
- Artificial lighting

Fig. 1. Wheel cutter (left); Plough (centre) and Towed Jetting Vehicle (right) (courtesy: www.ldtravocean.com).

Example: Cable Lay Vessel https://www.vanoord.com/activities/cable-laying-vessel

Image Credit: Mainstream Renewable Power CEC EPC-19-008

Changes in wind, currents, waves, and sediment transport due to presence of wind turbines

- Potential effects to ocean upwelling, nutrient availability, and larval transport
- High uncertainty about effects to food chains

FIGURE 8 | Average spring season differences (baseline minus turbine simulations) in wind speeds 10 m above the sea surface, around the call areas.

Raghukumar et al. 2022. Effect of Floating Offshore Wind Turbines on Atmospheric Circulation in California. Front. Energy Res. 10:863995

Marine mammal and sea turtle interactions Entanglement

 Lost fishing gear on interarray cables and mooring lines

Collision

Underwater structures
 and large cetaceans

Seabird and bat interactions

- Collision with rotor swept areas
- Avoidance or Displacement

Potential Interactions: Ports and Harbors

- Shoreline and terrestrial reconfiguration
- Deepening/dredging
- Acoustic impacts: Pile driving, vessel operations
- Biofouling
- Vessel wakes

Mitigation Objectives

Mitigation is dependent on level of impact and the type of permit/authorization

Avoidance

Siting to avoid or minimize impacts to sensitive coastal resources

Seasonal restrictions for construction

Minimization

Stressors

- Rotor collision
- Acoustic
- Electric and magnetic fields (EMF)
- Seabed disturbance

Birds and Bats

Detection Rate (Wmin)

H.T. Hankey& Associates

Acoustics and Marine Mammals

Van Parijs et al. 2021. NOAA and BOEM Minimum Recommendations for Use of Passive Acoustic Listening Systems in Offshore Wind Energy Development Monitoring and Mitigation Programs. Front. Mar. Sci. 8:760840.

NMFS. 2018. 2018 Revisions to: Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0): Underwater Thresholds for Onset of Permanent and Temporary Threshold Shifts. U.S. Dept. of Commer., NOAA. NOAA Technical Memorandum NMFS-OPR-59, 167 p.

EMF

- Models
- Shielding
- Burial
- Placement

SEER. 2022. Electromagnetic Field Effects on Marine Life. Report by National Renewable Energy Laboratory and Pacific Northwest National Laboratory for the U.S. Department of Energy, Wind Energy Technologies Office. Available at https://tethys.pnnl.gov/seer.

Seabed Disturbance

- Models of sediment transport
- Minimize anchor/mooring footprint
- Limit the number of anchors
- Placement in less sensitive habitats

SEER. 2022. Benthic Disturbance from Offshore Wind Foundations, Anchors, and Cables. Report by National Renewable Energy Laboratory and Pacific Northwest National Laboratory for the U.S. Department of Energy, Wind Energy Technologies Office. Available at https://tethys.pnnl.gov/seer.

Ma et al. 2019. Mooring system engineering for offshore structures. Published by Elsevier

Minimization: Best Management Practices

Stressors

- Entanglement
- Lighting
- Water quality
- Marine vessels

Minimization Continued: Examples

Monitoring and Management Entanglement Marine vessels

Best Management Practices Lighting Water quality

Compensatory Mitigation

Example: Seabirds

- Protect, restore and create nesting habitat
- Remove predators from
 nesting habitat
- Minimize other impacts: Fishing incidental bycatch

Many species migrate to the California Current

- Seabird collision
- Solution: sitting away from important bird habitat; install monitoring devices on turbines to track collisions, such as accelerometers/thermal imaging/cameras (such devices are largely still in development.

- Considerations for structures such as shorebird nesting sites
- Solution: sitting away from sensitive habitats.
- Benthic disturbance
- Solution: avoid important benthic habitat (e.g. corals, sponges), use less impactful anchor type (e.g. suction anchor, gravity anchor).

- Vessel collision for marine mammals and sea turtles
- Solution: reduce # vessels/transits; reduce speed speed to 10 kts or fewer. Train vessel crew as lookouts.
- Entanglement of species in gear caught on mooring/inter-array cables (secondary entanglement)
- Solution: bury inter-array cables; regularly monitor and clean cables.
 - Electro-magnetic fields from cables
 - Solution: monitor suspended cables for wear and tear, monitor/study impacts of suspended cables on pelagic species and bury cables.

Souther Walder Walder

- Habitat displacement of marine mammals and seabirds
- Solution: avoid important habitat, reduce mooring line and cable footprint (taut/semi-taut mooring, bury inter-array cables). Monitor to assess whether there is avoidance.

Maxwell et al. 2022. Potential impacts of floating wind turbine technology for marine species and habitats. J. Env. Mgmt. 307 (2022) 114577

Monitoring and Adaptive Management

Approach to address uncertainties of stressor: receptor interactions

- Characterize existing conditions
- Studies to identify and quantify stressor: receptor interactions
- Adaptive management
- Monitoring technology development

Credit: HT Harvey & Associates

Adaptive Management Framework

Develop and implement an Adaptive Management Framework to make decisions on coastal resource mitigation

- Anticipate likely interaction outcomes
- Develop objectivedriven, rigorous study designs
- Develop approach to identify and address unanticipated adverse effects
- Work collaboratively with the coastal resource agencies

Credit: HT Harvey & Associates

Key Takeaways

Construction impacts on- and off-shore

• Shorter-term, localized

Operations and maintenance impacts

- Long-term
- Uncertainty for seabirds and marine
 mammals
- Monitoring challenges

Key Next Steps

- Invest in developing monitoring technology
- Integrate OSW systems integrity monitoring with environmental monitoring
- Work collaboratively with coastal communities

Steven C. Hackett, Ph.D. Cal Poly Humboldt/Aspen

AB 525 Impacts & Mitigation Strategies for Fisheries

CEC WORKSHOP JUNE 1, 2023

Prepared by: Steven C. Hackett, PhD

Professor Emeritus of Economics Cal Poly Humboldt / Aspen Environmental Group

Aspen environmental group

Date: June 1, 2023

Overview

- Potential Impacts of Offshore Wind Energy Development on Fisheries
- Some Key Source Materials Informing Strategy Development
- Defining Mitigation
- Mitigation Strategy Vision
- Mitigation Strategy Goals, and Individual Mitigation Strategies For Each Goal
- Areas of Integration

Offshore Impacts

- Loss of access to productive fishing grounds in and around OSW lease areas during construction and operations, due to presence of floating turbines or substations, undersea electric cables, anchors, and mooring cables.
- Hazards to navigation from increased vessel traffic, and transit corridors lost to OSW lease areas.
- Potential fishing gear entanglement on cables, anchors, and lost or abandoned OSW equipment.
- Interference with fishing success due to electro-magnetic cables and depressed fish catches in the vicinity of OSW operations.

Potential Impacts at Ports and Harbors

- Potential for loss of productive fishing grounds adversely affects fishery participants and the industry cluster supporting them (fish processors; ship chandlers; ice, bait, and fuel providers, etc.), with ripple effects on marina and other fishing infrastructure and the broader community.
- Increased hazards to navigation due to increased vessel traffic in dredged channels, the mooring of vessels, barges, and OSW components, and from competition for access to the harbor entrance during favorable tides, seas, and weather.
- Dredging and deepening of channels or shoreline reconfiguration could impact bedforms and currents resulting in increased hazardous conditions for fishing vessels entering and existing port facilities.

Potential Impacts at Ports and Harbors, Continued

- Development of seaport facilities to support OSW could displace fishing fleets due to competition for berths, vessel and gear storage, and marine services.
- Existing marina operations may be disrupted or displaced by construction.
- Displacement of or restrictions on in-harbor fisheries (e.g., live bait).

Potential Onshore Impacts

- Transmission line or industrial facility construction may interfere with the movement of resident or migratory fish species, or reduce the habitat for fish species, affecting fisheries.
- Construction and operation of onshore manufacturing, assembly, storage, and staging facilities for OSW could result in competition for working space and congestion of roadways.

Key Source Materials

- Summaries of agency outreach meetings with fishery participants prior to 2022 lease auctions (BOEM 2018, 2021; CDFW 2021)
- California Fishermen's Resiliency Association (CFRA) draft minimization and mitigation plan (2021), and draft proposed fishing Community Benefit Agreement (CBA, 2022)
- Humboldt Bay Harbor, Recreation, and Conservation District (HBHRCD) Humboldt Bay Offshore Wind and Heavy Lift Marine Terminal Master Plan (2021); HBHRCD-Crowley Port Wind Terminal press release (2021); interviews with HBHRCD Executive Director Larry Oetker and Commissioner/fishery participant Aaron Newman (April 2023)
- Regional Economic Action Coalition (REACH) Central Coast Emerging Industries: Waterfront Siting + Infrastructure Study (2022); Diablo Canyon Clean Tech Vision (2023)
- Pacific Fishery Management Council (PFMC) letters to BOEM concerning OSW energy development impacts (2023)
- Responsible Offshore Development Alliance (RODA) Impact Fees for Commercial Fishing from Offshore Wind Development: Considerations for a National Framework (2021)
- Public hearings (e.g., the California Senate Joint Committee on Fisheries and Aquaculture's The Future of Fisheries and Offshore Wind Energy in the Golden State, 17 May 2023)

Defining Mitigation

"Mitigation" in this context encompasses the full suite of activities to:

- Avoid impacts where possible.
- Minimize those impacts that cannot be avoided.
- Compensate for impacts that remain.

Mitigation Strategy Vision

- Successful coexistence of viable utility-scale offshore wind energy farms with sustainable commercial and recreational fisheries.
- Thriving communities in the Central and North Coast regions of California.

Mitigation Goals - Overview

- 1. **Coordination:** Effective and adaptive coordination, communication, and information flow among fishing industry participants, the offshore wind energy industry, relevant federal, state, and local government, coastal communities, and tribes.
- 2. Fishing Grounds Access or Compensation: Sustained and substantially unimpaired access to productive fishing grounds and aquaculture production areas, and compensatory mitigation provided for fishery participants when such access is impaired or reduced.
- 3. **Port and Harbor Use:** Coordinated and substantially unimpaired use of port facilities and associated infrastructure, wet storage and staging sites, turning basins, and navigable ship channels accommodating the industry complexes for offshore wind energy, commercial and recreational fishing, and aquaculture.
- 4. **Hazard Prevention:** Substantially unimpaired sea lanes and transit corridors providing safe offshore access to port facilities with minimal preventable hazards. Minimization of gear entanglement risk from electric transmission cables running from lease areas to landfall.

Mitigation Goal 1

Coordination

Effective and adaptive coordination, communication, and information flow among fishing industry participants, the offshore wind energy industry, relevant federal, state, and local government, coastal communities, and tribes.

Mitigation Strategies, Goal 1

- Mitigation strategy 1.1: Establish a California Offshore Wind Energy Fisheries Working Group with broad stakeholder representation to coordinate, communicate, identify research needs, address emerging problems, and provide input to adaptive port, wind farm, and fisheries management.
- Mitigation strategy 1.2: Facilitate negotiation of mutually beneficial fishing Community Benefit Agreements (CBAs) between affected fishery participant organizations and offshore wind energy developers/operators to fund and promote long term beneficial cooperation, minimize harmful interactions, and facilitate mitigation of impacts from planning through operations to decommissioning.

Mitigation Strategies, Goal 1, Continued

- Mitigation strategy 1.3: Develop memoranda of understanding and similar coordination agreements between relevant federal, state, and local agencies to prioritize and accelerate mitigation efforts.
- Mitigation strategy 1.4: With cooperation from the California Department of Fish and Wildlife, Ocean Protection Council, the Pacific States Marine Fisheries Commission, and the Pacific Fishery Management Council, utilize appropriate habitat modeling research as input to the configuration of offshore wind farms to avoid and minimize impacts, <u>and</u> implement effective ongoing monitoring and reporting on impacts to fisheries.

Mitigation Goal 2

Fishing Grounds Access or Compensation

Sustained and substantially unimpaired access to productive fishing grounds and aquaculture production areas, and compensatory mitigation provided for fishery participants when such access is impaired or reduced.

Mitigation Strategies, Goal 2

- Mitigation strategy 2.1: Partner with affected fishery participants and industry members to create inclusive and predictable plans for distributing compensatory mitigation payments associated with offshore wind energy development, including reduced catch, cost of transit to more distant grounds, and relevant transitional vessel and gear costs and permits.
- Mitigation strategy 2.2: Design floating-platform mooring systems, interarray cables, and associated aids to navigation that foster safety and minimize potential for gear entanglement on the periphery of wind farm areas.

Mitigation Strategies, Goal 2, continued

- Mitigation strategy 2.3: Establish and fund a gear loss/damage compensation plan for fishery participants, including standardized, neutrally arbitrated processes to address fishing gear interactions with offshore wind energy structures.
- Mitigation strategy 2.4: Fund decommissioning/equipment removal accounts early in a wind energy project's operational life to account for unanticipated events such as catastrophic equipment losses, changing economic conditions, and bankruptcy.

Mitigation Goal 3

Port and Harbor Use

Coordinated and substantially unimpaired use of port facilities and associated infrastructure, wet storage and staging sites, turning basins, and navigable ship channels accommodating the industry complexes for offshore wind energy, commercial and recreational fishing, and aquaculture.

Mitigation Strategies, Goal 3

- Mitigation strategy 3.1: Provide for adequate and spatially separate offshore wind energy industry and fishery participant port and shoreside facilities, as well as aquaculture production and processing sites.
- Mitigation strategy 3.2: Address potential future cumulative offshore wind energy impacts and the imperative to sustain fishery participants through preemptive investments and improvements to marina infrastructure, shore-side fishing gear and equipment storage sites, and anticipated direct adaptation costs borne by fishery and aquaculture participants.

Mitigation Strategies, Goal 3, continued

- Mitigation strategy 3.3: Assure that offshore wind site bidders receiving a bid credit for a Lease Area Use CBA expend a significant portion of the bid credit in funding those CBAs.
- Mitigation strategy 3.4: Create protocols for coordinated joint use of shared navigable channels, turning basins, and entrance channels as needed to foster safety and minimize congestion and delays.

Mitigation Strategies, Goal 3, continued

- Mitigation strategy 3.5: Where appropriate, designate and maintain "bypass channels" with navigational aids for shallowdraft fishing and other vessels potentially delayed by offshore wind equipment transport in port-area navigation channels.
- Mitigation strategy 3.6: Provide alternative sites and other mitigations for displaced port-area uses such as aquaculture production resulting from bay waters being converted to wind energy floating storage and staging areas.

Mitigation Goal 4

Hazard Prevention

Substantially unimpaired sea lanes and transit corridors providing safe offshore access to port facilities with minimal preventable hazards, <u>and</u> minimization of gear entanglement risk from electric transmission cables running from lease areas to landfall.

Mitigation Strategies, Goal 4

- Mitigation strategy 4.1: Foster coordination agreements for safe joint use of shared sea lanes and transit routes as needed to minimize congestion, conflicts, hazards, and delays.
- Mitigation strategy 4.2: Develop agreements between offshore wind energy developers and a broad representation of fishery participants, linked to permits to route shore-bound wind energy electric transmission cables, in order to avoid or minimize impacts and compensate participants for any remaining impacts.
- Mitigation strategy 4.3: In collaboration with fishery participants, develop and maintain effective navigational aids marking offshore wind farm areas and transit corridors, such as lighting, buoys, and horns, and also clearly visible on marine electronics and navigational devices.

Areas of Integration

- Integrate state fishery mitigation strategies with
 - Research funding priorities;
 - BOEM wind energy area lease auction practices;
 - Practices and policies of other federal agencies with relevant oversight;
 - New and proposed federal law;
 - Practices and policies of other state agencies;
 - New and proposed state law (e.g., SB 286);
 - Local practices, policies, agreements, and investments (Tribes, counties, harbor districts, municipalities, and fishing industry groups)
 - Emerging fishing Community Benefit Agreements

Coastal Commission Consistency Determination: Condition 7(c)

- BOEM must implement the following conditions to reduce impacts to Fishing and Fishing Communities
 - Lessees must establish an independent fishing liaison
 - Lessees must report on engagement with fishing communities
 - BOEM, the Coastal Commission, and other agencies will develop and facilitate a working group to develop a strategy for avoidance, minimization, and mitigation of impacts to fishing and fisheries
- The Working Group process is now being developed

5 Minute Break

Panel Discussion

Irene Gutierrez, Senior Attorney, Natural Resources Defense Council

Hayes Framme, Head of New Markets & Supply Chain, Orsted

Jacqueline Moore, Vice President, Pacific Merchant Shipping Association

Steve Scheiblauer, Consultant to California Commercial Fishing Industry

Mike Conroy, West Coast Director, Responsible Offshore Development Alliance

Next Steps

- Public comments due June 16, 2023
- Upcoming AB 525 Workshop:
 - June 2, 2023 Permitting Roadmap
- Recent Workshops and content on webpage:
 - May 23 Ports and Workforce
 - May 25 Transmission

Public Comment Instructions

Rules

• 3 minutes per person

Zoom

• Click "raise hand"

Telephone

- Press *9 to raise hand
- Press *6 to (un)mute

When called upon

Unmute, spell name, state affiliation, if any

Written Comments:

- Due: June 16, 2023, by 5:00 p.m.
- Docket: 17-MISC-01
- Submit at: https://efiling.energy.ca.gov/Ecomment/Ecom ment.aspx?docketnumber=17-MISC-01

3-MINUTE TIMER

- Danielle Mullany: <u>Danielle.Mullany@energy.ca.gov</u>
- Scott Flint: <u>Scott.Flint@energy.ca.gov</u>
- Rachel MacDonald: <u>Rachel.MacDonald@energy.ca.gov</u>

CEC offshore wind docket:

https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber =17-MISC-01

CEC offshore wind page:

https://www.energy.ca.gov/programs-andtopics/topics/renewable-energy/offshore-renewable-energy

Please submit comments by June 16th, 2023