DOCKETED				
Docket Number:	17-MISC-01			
Project Title:	California Offshore Renewable Energy			
TN #:	250399			
Document Title:	May 23, 2023 Offshore Wind Ports and Workforce Workshop			
Description:	ption: Full Slide Deck of Presentations for the May 23, 2023 Offshore Wind Ports and Workforce Workshop			
Filer:	susan fleming			
Organization:	California Energy Commission			
Submitter Role:	Commission Staff			
Submission Date:	5/30/2023 4:06:06 PM			
Docketed Date:	5/30/2023			

AB 525 Workshop Ports and Workforce Development for Offshore Wind: Support Floating Offshore Wind Development

May 23, 2023

AM Workshop Schedule

- 1. Welcome
- 2. Opening Remarks
- 3. Purpose of Workshop
- 4. Moffat and Nichol: AB 525 Seaport Readiness Plan
- 5. Break
- 6. Port of Humboldt: Port Upgrades and Planning
- 7. Port of Long Beach: Pier Wind Project and Planning Activities
- 8. Questions and answers
- 9. Public Comment
- 10. Lunch Break

PM Workshop Schedule

- 1. Welcome Back
- 2. Commissioner Remarks
- 3. Catalyst: AB 525 Workforce Development and Economic Benefits Analysis
- 4. Xodus & BW: AB 525 Workforce Readiness Plan
- 5. Questions and Answers
- 6. Break
- 7. Stakeholder Panel: Workforce Development Needs
- 8. Public Comment
- 9. Closing Remarks

Opening Remarks Commissioners

Overview of AB525 Rachel MacDonald

AB 525 Legislative Findings

If developed at scale, offshore wind can:

- ✓ Provide economic and environmental benefits.
- ✓ Advance progress toward California's renewable and climate goals.
- ✓ Diversify the state's energy portfolio.
- ✓ Realize economic and workforce development benefits.
- Contribute to renewable resource portfolio that can serve electricity needs and improve air quality in disadvantaged communities.
- ✓ Offer career pathways and workforce training opportunities.

Offshore wind should be developed in a manner that protects coastal and marine ecosystems.

AB 525 Interim Work Products

 August 10, 2022
 February 28, 2023
 May 10, 2023

 Evaluate and quantify maximum feasible capacity of offshore wind
 Complete a preliminary assessment of economic benefits related to seaports and workforce development needs and standards
 Develop a permitting roadmap

Establish megawatt planning goals for 2030 and 2045

Purpose of Workshop Paul Deaver

Ports and Workforce Requirements

AB 525, Section 25991.3 requirements:

- CEC and other agencies develop a plan to improve waterfront facilities to support offshore wind activities
- An assessment of the needed port investments to support offshore wind
- An analysis of the workforce development needs of the CA OSW industry
- Recommendations for workforce standards

Workshop Activities

Port investments and upgrades and workforce development to support offshore wind:

- Present studies and ongoing work around ports and workforce development.
- Discuss opportunities, challenges, and near-term actions or strategies for port upgrades and investments and workforce development.
- Receive input/feedback from the panel discussion, and the public, to help inform the OSW strategic plan.

Matt Trowbridge Moffat and Nichol

CEC Workshop Offshore Wind Ports & Workforce

AB 525 Port Readiness Plan

May 23, 2023

Presentation Agenda

- 1. Introductions
- 2. Background & Purpose
- 3. AB 525 Port Readiness Plan
- 4. Question and Answer

> Ground Rules:

- Mute lines to keep audio clear
- Please save questions for the end
- Presentation ~35 mins
- Question & Answer ~15 mins

Who We Are

moffatt & nichol

Creative People, Practical Solutions.®

- > Port Infrastructure Consultant
- > Since 1945, Naval Shipyards in Long Beach
- > Experts where land meets water
- > California coastline
- > California Ports & Harbors
- > All Maritime Business Lines
 - > Offshore wind, containers, bulk cargo, marinas, etc.

Matt Trowbridge, PE, SE, PEng

- > Marine Structural Engineer
- > Port Infrastructure Expert
- > Offshore Wind Ports

AB 525 Strategic Plan for CA Offshore Wind

The strategic plan shall include, at a minimum, the following five chapters:

1. Identification of Sea Space

2. Port Infrastructure and Workforce Development

- 3. Transmission Planning
- 4. Permitting
- 5. Potential Impacts on Coastal Resources, Fisheries, Native American & Indigenous Peoples, and National Defense

Strategic Plan due on or before June 30, 2023

Definitions

 Port: a maritime facility comprising of one or more terminal sites. Some ports have many terminals (e.g., Los Angeles, Long Beach, Oakland, San Francisco).

Example of a Port, Map Courtesy of Port of Los Angeles

Definitions

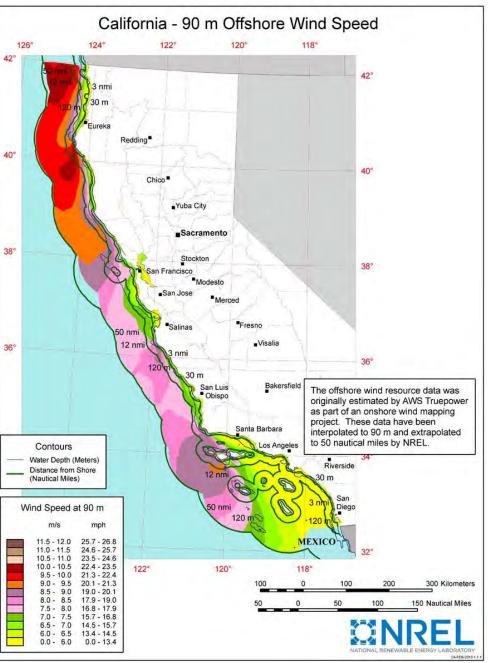
- Port: a maritime facility comprising of one or more terminal sites. Some ports have many terminals (e.g., Los Angeles, — Long Beach, Oakland, San Francisco).
- Port Terminal or Port Site: a single location within a Port to transfer cargo to and from a vessel.

Example of a Port Terminal Site, Rendering Courtesy State of Connecticut | Press Office

Example of a Port, Map Courtesy of Port of Los Angeles

California OSW Deployment Targets

> Governor Newsom's Letter to CARB (July 2022):


 $_{\circ}$ $\,$ 20 GW by 2045 $\,$

> CEC Updated AB 525 Report (August 2022):

- 。 2–5 GW by 2030
- $_{\circ}~$ 25 GW by 2045

25 GW = ~1,250 x 20 MW WTGs

Principle Power

NKEL

Floating OSW Wharf-side Assembly & Loadout

1) Fabrication

2) Loadout onto semi sub

4) WTG Integration

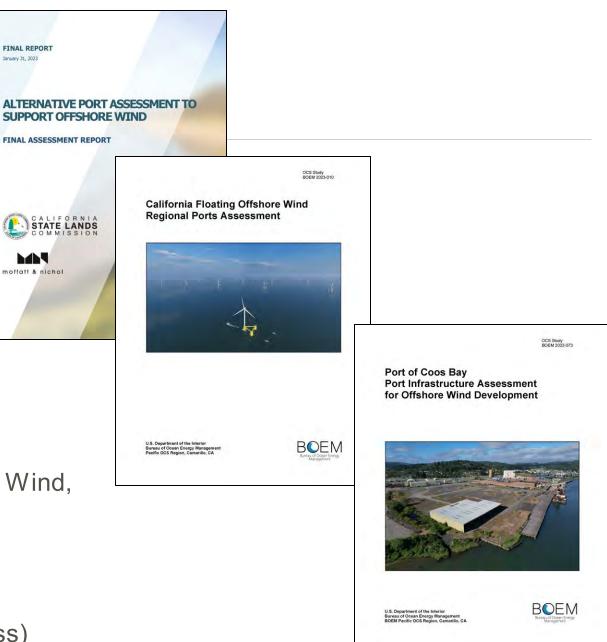
5) Tow to Installation Site

3) Float off

Offshore Wind Requires Ports

> What is needed for Offshore Wind?

- Wind Resource
- Electrical Grid
- Ports and Port Terminals
- > Construction, Operations, and Maintenance of OSW farms requires Ports:
 - Sheltered harbor areas
 - Large laydown areas
 - Deep, navigable water
 - Heavy load capacity
- > There are no existing port terminals on the US West Coast that can currently support OSW
 - Requires significant investment and development
 - Requires a multi-port strategy
 - Adding a new maritime industry without displacing or replacing existing maritime uses

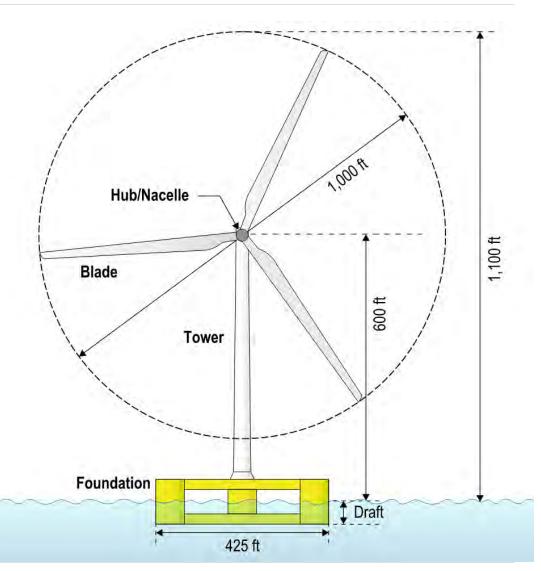

Roadmap for the AB 525 Port Readiness Plan

- 1. Determine Port Needs for OSW Use
- 2. Determine How Many Port Sites are Required
- 3. Identify Potential Port Sites
- 4. Determine Port Improvements Required
- 5. Evaluate and Compare Port Sites
- 6. Publish AB 525 Seaport Strategy Report

OSW Port Studies US West Coast

> Bureau of Ocean Energy Management

- Port of Coos Bay, Port Infrastructure Assessment for OSW Development, BOEM 2022-073
- California Floating OSW Regional Ports Assessment, BOEM 2023-010
- California Floating OSW Regional Ports Feasibility Analysis, 2023 (in progress)
- California State Lands Commission
 - Alternative Port Assessment to Support Offshore Wind, January 2023
 - AB 525 Port Readiness Plan, 2023 (in progress)
- > National Renewable Energy Laboratory
 - West Coast Port Strategy Study, 2023 (in progress)


Roadmap for the AB 525 Port Readiness Plan

1. Determine Port Needs for OSW Use

- 2. Determine How Many Port Sites are Required
- 3. Identify Potential Port Sites
- 4. Determine Port Improvements Required
- 5. Evaluate and Compare Port Sites
- 6. Publish AB 525 Seaport Strategy Report

Floating OSW Turbine Dimensions

Floating Offshore Wind Turbine	Approximate Dimension [ft]	Approximate Dimension [m]	
Foundation Beam / Width	Up to 425 ft x 425 ft	Up to 130 m x 130	
Draft (Before integration)	15 to 25 ft	4.5 to 7.5 m	
Draft (After integration)	20 to 50 ft	6 to 15 m	
Hub/Nacelle Height (from Water Level)	Up to 600 ft	Up to 183 m	
Tip Height (from Water Level)	Up to 1,100 ft	Up to 335 m	
Rotor Diameter	Up to 1,000 ft	Up to 305 m	

Types of OSW Port Terminals

- **Staging and Integration (S&I) Site:** a port site to receive, stage, and store offshore wind components and to assemble the floating turbine system for towing to the offshore wind area.
 - **Turbine Maintenance Site:** a facility to perform major maintenance on a fully assembled turbine.
 - > End of Life Decommissioning Site: a site to decommission, disassemble, recycle, and dispose of turbine systems that are at end of life.
- Manufacturing/Fabrication (MF) Site: a port site that receives raw materials via road, rail, or waterborne transport and creates larger components in the offshore wind supply chain.
- **Operation and Maintenance (O&M) Site:** a base of wind farm operations with warehouses/offices, spare part storage, and a marine facility to support O&M vessels for crew transfer
- Construction Support Facilities:
 - Installation Support Site: a base of construction operations for the fleet of construction vessels necessary for construction and commissioning of the offshore wind farm.
 - Mooring Line, Anchor, and Electrical Cable Laydown Site: a site to receive and stage mooring lines, anchors, and electrical cables

Staging and Integration

Manufacturing Port (Foundations Shown)

Operations & Maintenance

Floating OSW Port Requirements

Design Requirement	Staging and Integration (S&I)	Manufacturing (MF)	Operations & Maintenance (O&M)	Anchor & Mooring Line Storage, Construction Support	Electrical Cable Laydown
Acreage, minimum	30 – 100 acres	30 – 100 acres	2 – 10 acres	10 – 30 acres	20 – 30 acres
Wharf Length	1,500 ft	800 ft	300 ft	300 ft	500 ft
Minimum Draft at Berth	38 ft	38 ft	20 – 30 ft	20 – 30 ft	30 – 35 ft
Draft at Sinking Basin	40 – 100 ft	40 – 100 ft	Not Required	Not Required	Not Required
Wharf Loading	> 6,000 psf	> 6,000 psf	100 – 500 psf	500 psf	1,000 psf
Uplands / Yard Loading (for WTG components)	2,000 – 3,000 psf	2,000 – 3,000 psf	100 – 500 psf	500 psf	1,000 – 2,000 psf

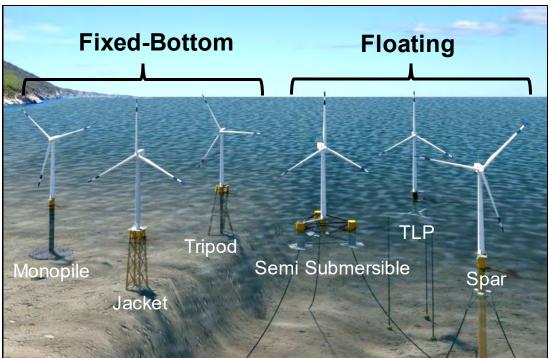
Anchor Storage

Cable Laydown

Photo reference (left to right): Humboldt Harbor District; Port of Long Beach, REACH & Mott MacDonald; MAERSK Service Supply, Global Marine Group

Summary of OSW Industry Port Needs

> General


- Port sites need to be close to Lease Areas to reduce transportation risk and cost
- Co-locate as many supply chain items in the same location as possible
- US West Coast ports must plan for >15 MW turbines (up to 25 MW turbines)

> Floating Foundations

- Likely to be semi-submersible floating foundation (concrete, steel, or hybrid) or tension leg platform (TLP)
- Semi-sub barge with sinking basin, ramp, or direct transfer methods required to move floating foundation from land to water

> Wet Storage

 Required to safely moor floating foundations or integrated turbines to mitigate risk of weather downtime, vessel traffic, entrance channel downtime, etc.

Roadmap for the AB 525 Port Readiness Plan

1. Determine Port Needs for OSW Use

2. Determine How Many Port Sites are Required

- 3. Identify Potential Port Sites
- 4. Determine Port Improvements Required
- 5. Evaluate and Compare Port Sites
- 6. Publish AB 525 Seaport Strategy Report

Determining Required Number of Ports

> Governor Newsom's Letter to CARB (July 2022):

。 20 GW by 2045

> CEC Updated AB 525 Report (August 2022):

- 。 2–5 GW by 2030
- 。 25 GW by 2045

BOEM California Study (2023-010):

Year	Target Deployment					
	Low		Medium	High		
Rate	0.5 GW/yr	1 GW/yr	1.5 GW/yr	2 GW/yr	2.5 GW/yr	
2030	1 GW	2 GW	3 GW	4 GW	5 GW	
2035	3.5 GW	7 GW	10.5 GW	14 GW	17.5 GW	
2038	5 GW	10 GW	15 GW	20 GW	25 GW	
2045	8.5 GW	17 GW	25 GW	34 GW	42.5 GW	
2048	10 GW	20 GW	30 GW	40 GW	50 GW	
2050	11 GW	23 GW	33 GW	44 GW	55 GW	

Required Number of Port Sites in California 25 GW of OSW by 2045

Type of Site	Low (8 GW)	Low-Med (17 GW)	Medium (25 GW)	Med-High (34 GW)	High (42 GW)
S&I Sites	1	2	3	4	5
MF Site (Blade)	1	2	2	3	3
MF Site (Tower)	1	1	1	1	2
MF Site (Nacelle Assembly)	1	1	1	1	1
MF Site (Foundation Assembly)	1	2	2	3	4
SOV berths for O&M Activities	3 to 7	6 to 12	9 to 16	12 to 20	15 to 23
Mooring Line & Anchor Storage Sites	5 to 15 ac	10 to 25 ac	20 to 40 ac	25 to 50 ac	30 to 65 ac
Electrical Cable Laydown Sites	4 to 8 ac	8 to 14 ac	12 to 22 ac	16 to 28 ac	21 to 36 ac

Need approximately 10 large port sites and 10 small port or harbor sites to meet CA targets by 2045

S&I Site = ~80 acres, Blade & Tower MF Site = ~100 acres, Foundation MF Site = ~80 acres, Nacelle MF = 25-100 acres

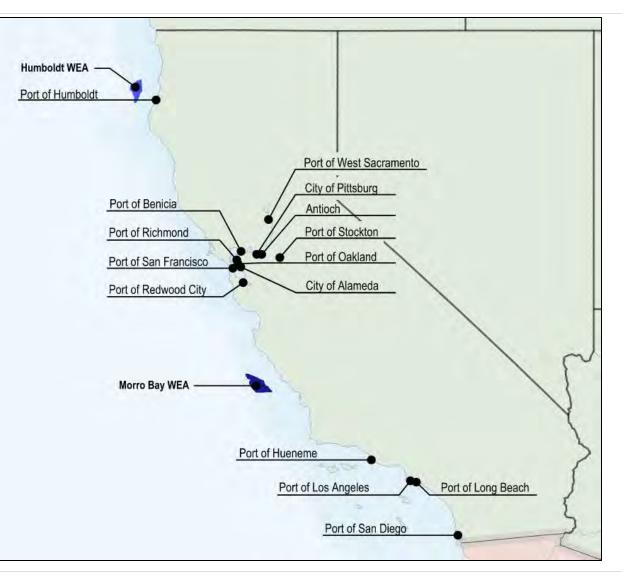
Strategizing the development of manufacturing port sites in California will maximize job creation and economic impact to the State

Roadmap for the AB 525 Port Readiness Plan

- 1. Determine Port Needs for OSW Use
- 2. Determine How Many Port Sites are Required
- **3. Identify Potential Port Sites**
- 4. Determine Port Improvements Required
- 5. Evaluate and Compare Port Sites
- 6. Publish AB 525 Seaport Strategy Report

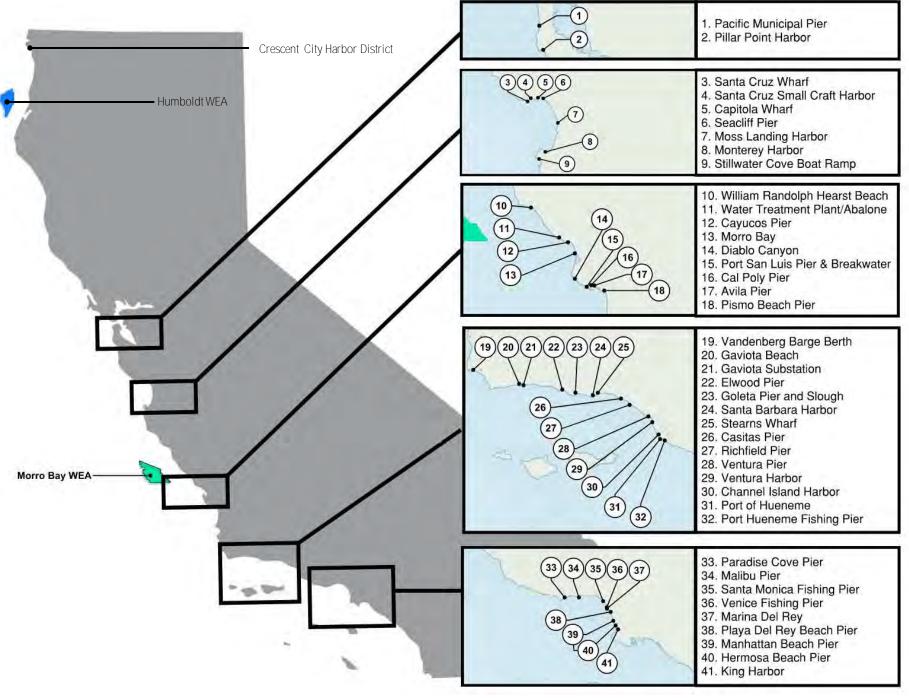
Identify Potential Port Sites

> Options for OSW Port Sites in California


- <u>Use Existing Ports & Harbors</u> Upgrade port infrastructure within an existing port or harbor
- 2. <u>Create a New Port or Harbor</u> Construct a new port at undeveloped site or at a former industrial site outside of existing ports (alternative option)

It is important to study both to ensure the best locations are identified

Existing Ports


> Existing Ports

- 11 deep water ports
- 4 industrial port areas

Existing Harbors

 Existing harbors along the North and Central Coast

Study on Option to Develop New Port Site

> Identify Alternative Port Sites

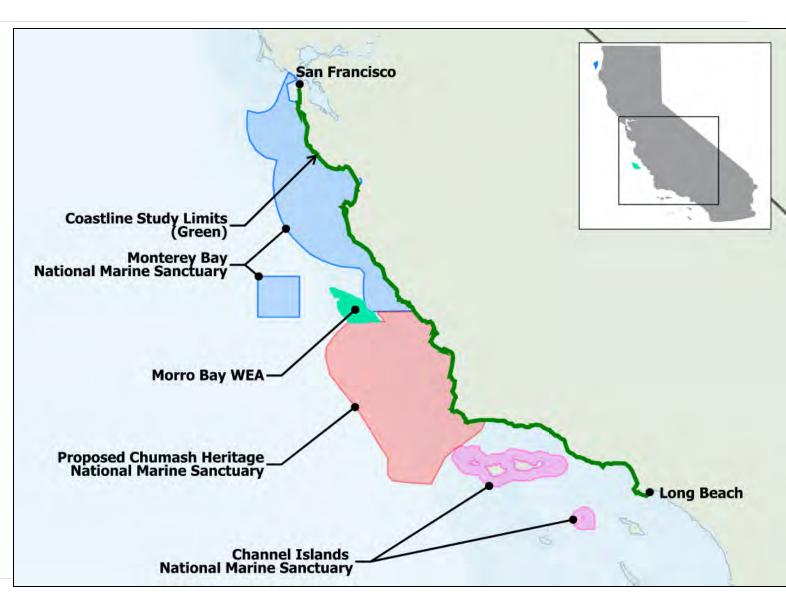
- Outside existing Ports
- Proximity to Morro Bay Lease Area
- Staging and Integration Sites

Alternative Port Site Screening Criteria

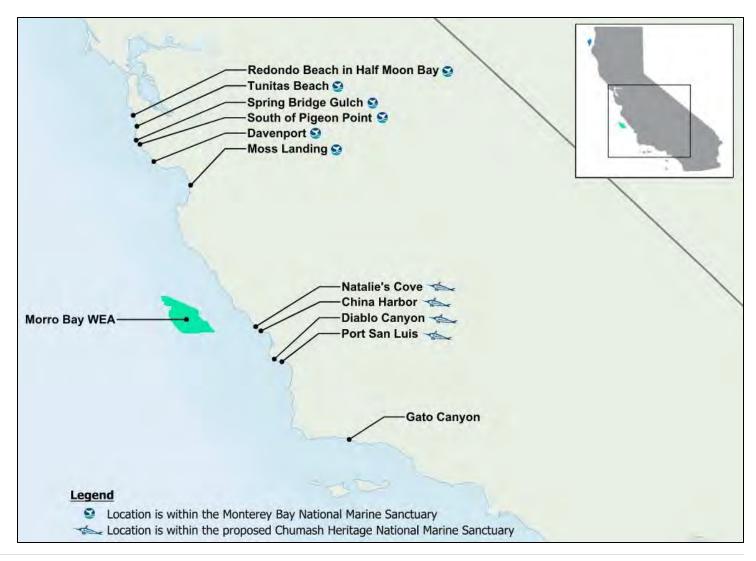
> Site Screening Criteria

- Exclude the following sites:
 - Residential / Urban Areas
 - California Marine Protected Areas
 - State Parks
 - National Forest
 - Military Base
 - Vandenberg Danger Zone
 - Airspace Restrictions
 - Islands (e.g. Catalina, San Nicolas, San Clemente)
 - Existing offshore oil & gas platforms
- Consider Existing and Proposed National Marine Sanctuaries
- Consider Engineering Feasibility
- Consider Permitting and Environmental Impacts

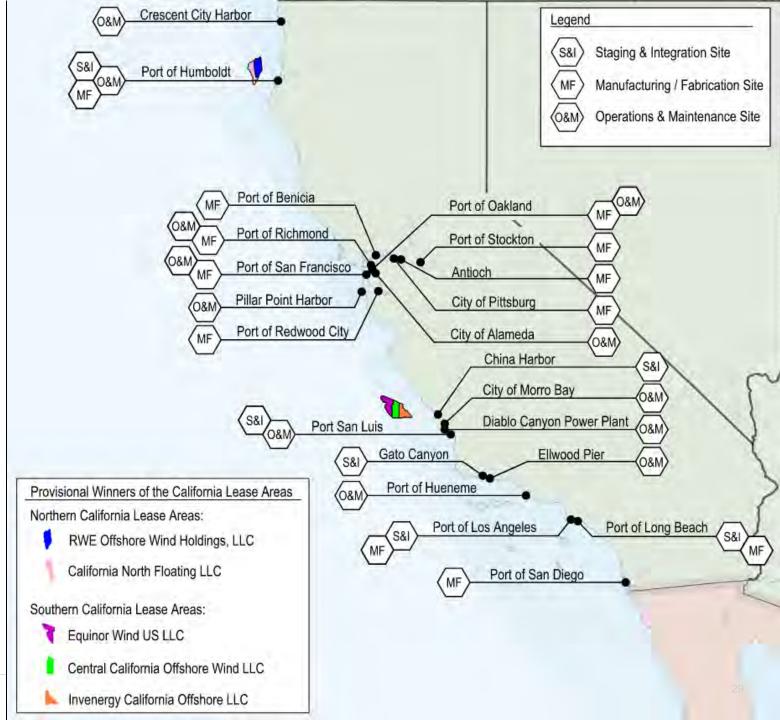
Screening Results


Red = portion of coastline eliminated from consideration = ~77%

Primary Screening Criteria	Approx. % Shoreline*
Residential Zones	26%
State Marine Protected Areas	24%
Military Base	8%
Vandenberg Evacuation Area	9%
State Parks	34%
National Forests	5%
Airspace Restrictions	13%
Total	~77%


National Marine Sanctuaries (NMS)

- > ~ 49% Existing NMS
- > ~ 75% Existing & Proposed NMS
 - Existing NMS
 - Monterey Bay NMS
 - Channel Islands NMS
 - Proposed NMS
 - Proposed Chumash Heritage NMS


Create a New Port Site for S&I

- > Short List of 11 Sites for S&I
- 3 sites move forward to be further assessed with existing port sites:
 - Port San Luis
 - China Harbor
 - Gato Canyon

Identified Sites to be Further Evaluated

 These are the sites that move forward with more detailed evaluation

Roadmap for the AB 525 Port Readiness Plan

- 1. Determine Port Needs for OSW Use
- 2. Determine How Many Port Sites are Required
- 3. Identify Potential Port Sites

4. Determine Port Improvements Required

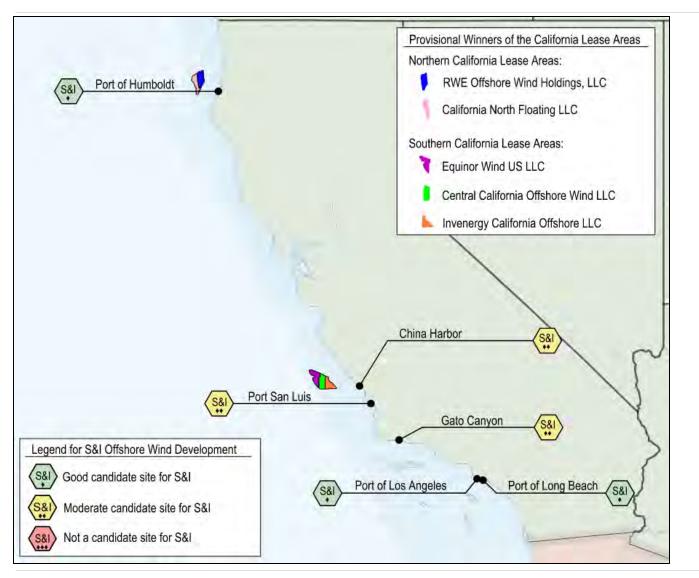
- 5. Evaluate and Compare Port Sites
- 6. Publish AB 525 Seaport Strategy Report

Port Improvements Required

> Determine the cost and schedule for infrastructure improvements such as:

- > Demolition of existing facilities (buildings, marine structures, etc)
- > Remediation of existing site contaminants
- > Construction of new wharves or berths
- > Completion of geotechnical ground improvements
- > Dredging / deepening of berth pocket
- > Deepening / widening of federal navigation channels and entrance channels
- > Install fill to raise site for sea level rise (SLR) and to provide required working surface
- > Miscellaneous civil site improvements (utilities, drainage, etc.)
- > Significant electrical improvements (electrified terminals, no emissions)
- > Construct buildings, warehouses, factories, security features, training facilities, etc.
- > Projects to mitigate environmental impacts

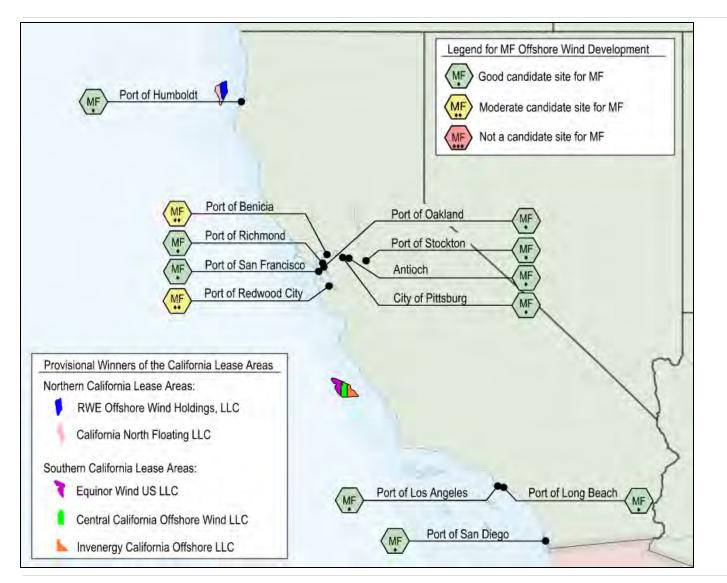
Roadmap for the AB 525 Port Readiness Plan


- 1. Determine Port Needs
- 2. Determine How Many Port Sites are Required
- 3. Identify Potential Port Sites
- 4. Determine Port Improvements Required
- **5. Evaluate and Compare Port Sites**
- 6. Publish AB 525 Seaport Strategy Report

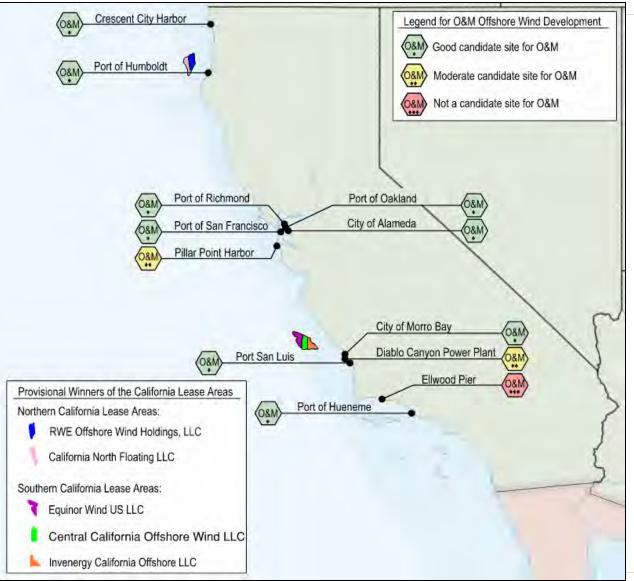
Compare and Evaluate Port Sites

> Report provides detailed assessment on:

- Towing and navigation study
- Environmental considerations
- Cost and schedule


Best CA Port Sites – Staging & Integration

Without these type of sites, OSW
 development is not possible


Port of Humboldt and Port of Long
 Beach have announced projects

Best CA Port Sites – Manufacturing

These type of sites provide significantjob creation and economic impact

Best CA Port Sites – Operations & Maintenance

Multi-Port Strategy to Achieve State Offshore Wind Planning Goals

Type of Site	Medium (25 GW)
S&I Sites	3
MF Site (Blade)	2
MF Site (Tower)	1
MF Site (Nacelle Assembly)	1
MF Site (Foundation Assembly)	2
SOV berths for O&M Activities	9 to 16
Mooring Line & Anchor Storage Sites	20 to 40 ac
Electrical Cable Laydown Sites	12 to 22 ac

- Need approximately 10 large port sites (>80 acres) and 10 small port or harbor sites (2-10 acres) to meet CA targets by 2045
- Strategizing the development of manufacturing port sites in California will maximize job creation and economic impact to the State
- California ports and harbors can be ready to support the OSW industry with adequate and timely investments

Roadmap for the AB 525 Port Readiness Plan

- 1. Determine Port Needs for OSW Use
- 2. Determine How Many Port Sites are Required
- 3. Identify Potential Port Sites
- 4. Determine Port Improvements Required
- 5. Evaluate and Compare Port Sites

6. Publish AB 525 Port Readiness Plan

Thank you

Questions and Answers

10 Minute Break

Larry Oetker Port of Humboldt

Humboldt Bay California's Offshore Wind Port

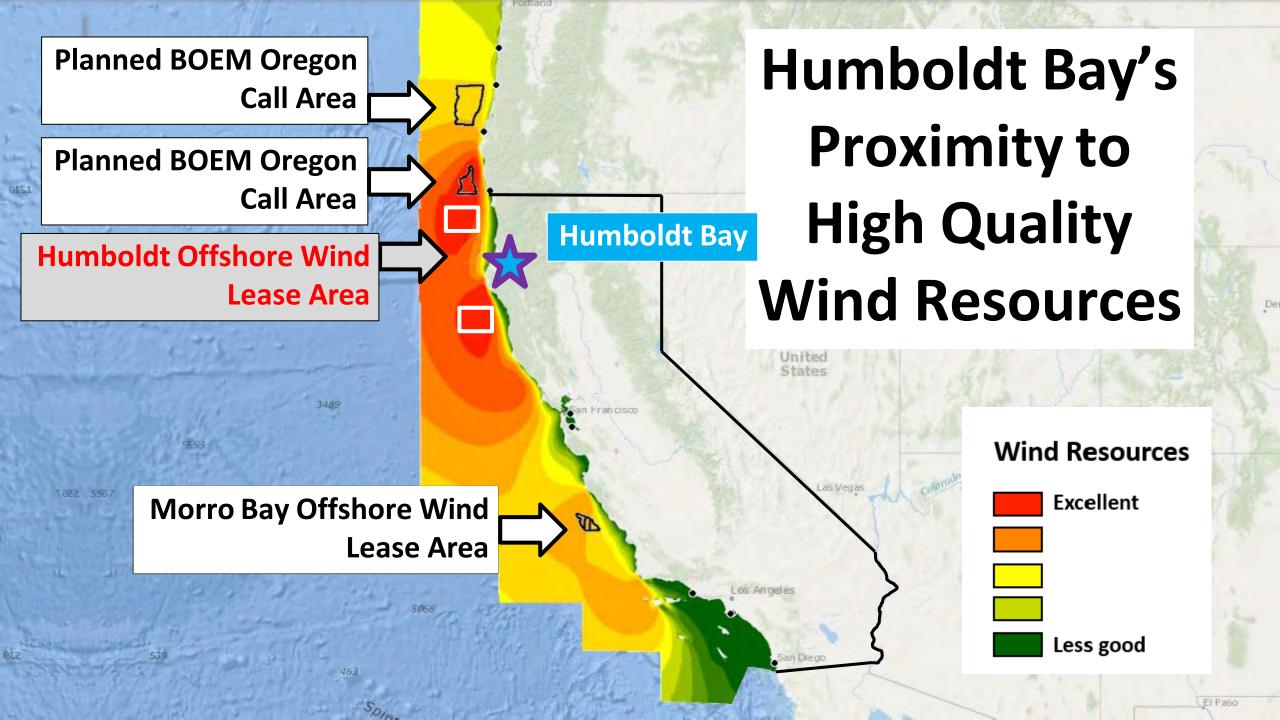
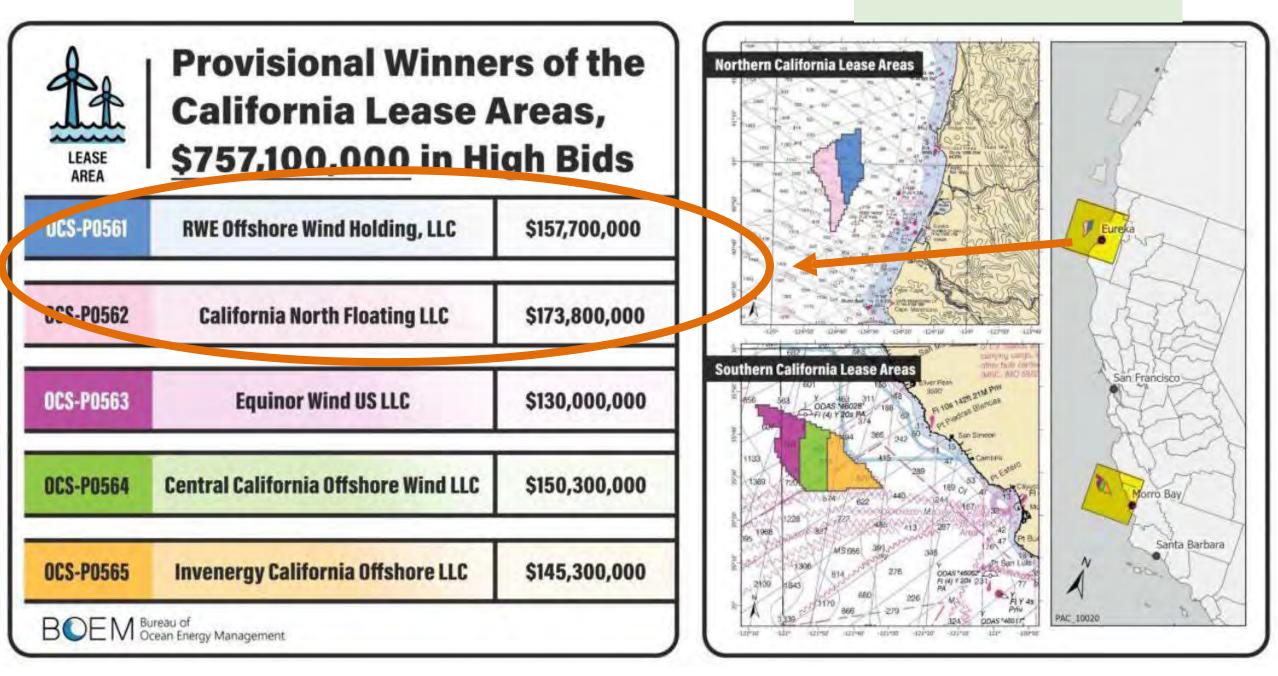
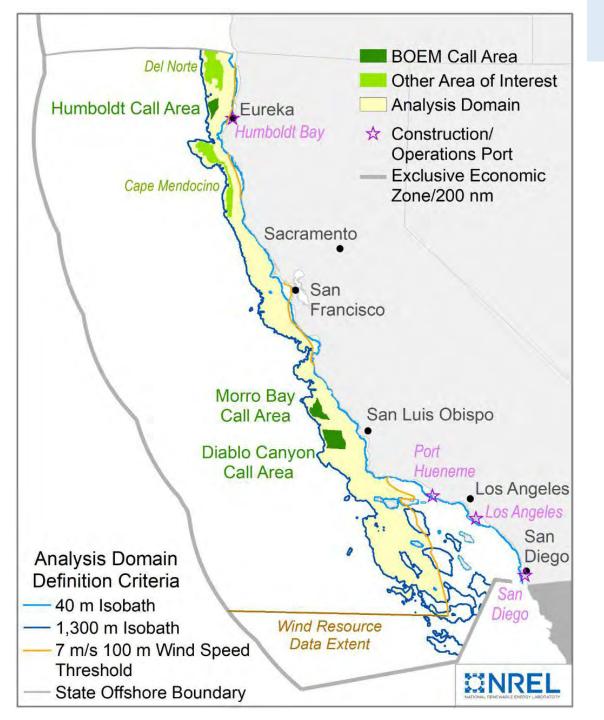

Larry Oetker, Executive Director Humboldt Bay Harbor, Recreation, & Conservation District Email: <u>loetker@humboldtbay.org</u> Phone (707) 443-0801 South Jetty Humboldt Bay California

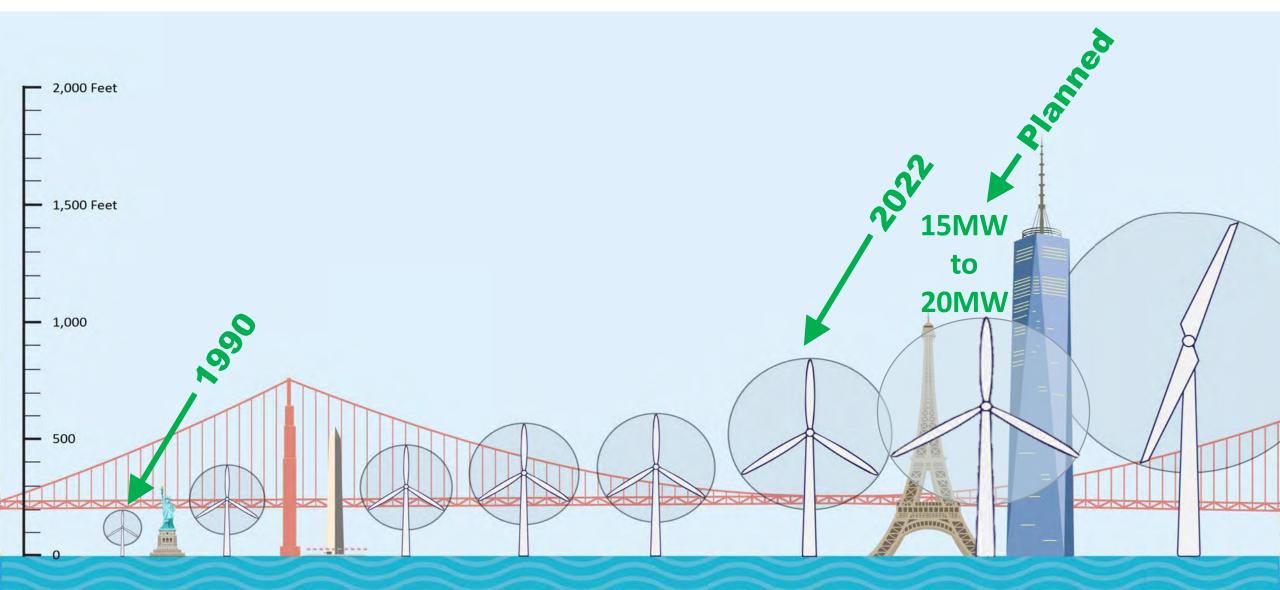
Image By: Chad Johnson

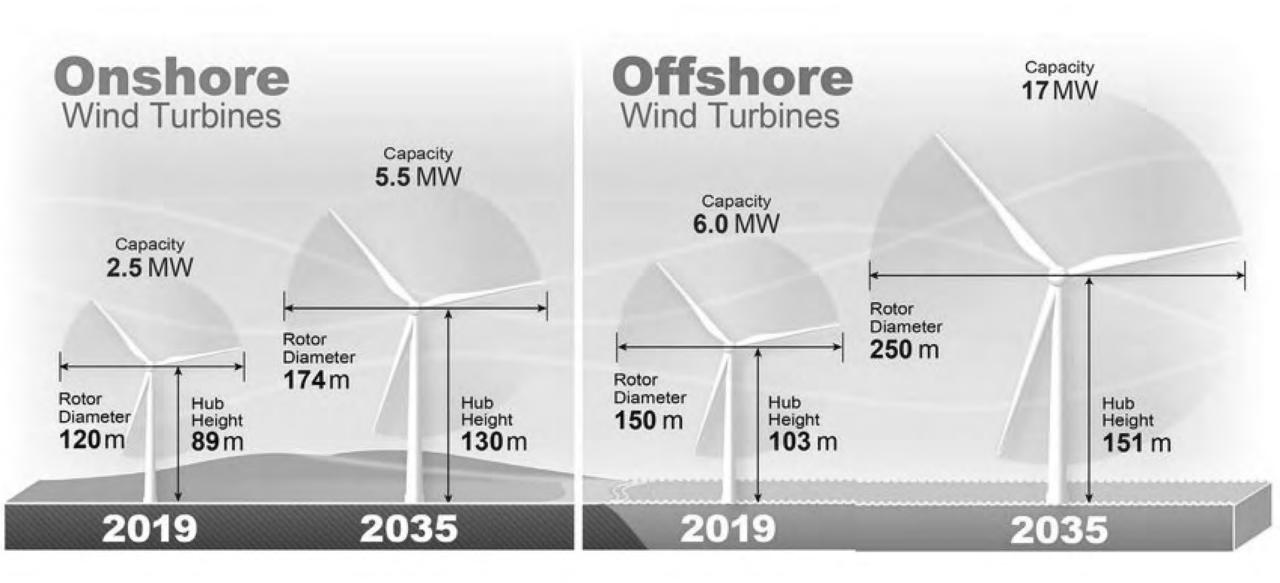

ES-1: Illustrative Diagram of Transmission Development



December 2022

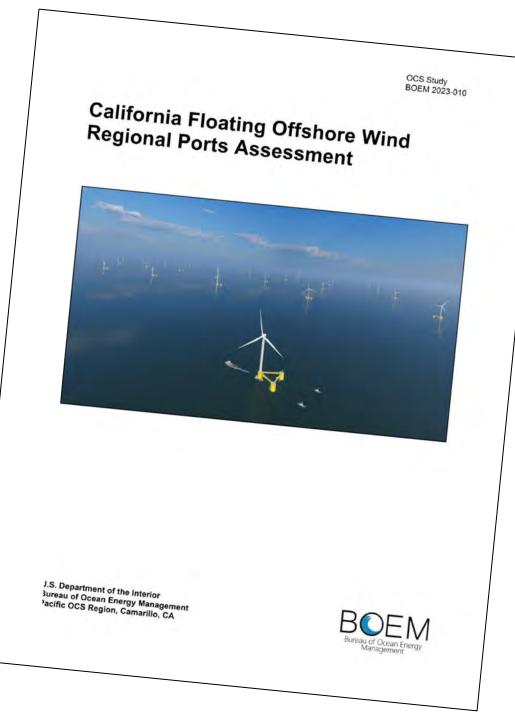
CA Carbon Neutral Energy by 2040


Ca. Offshore Wind Areas


- Phase I
 - Humboldt 1.6 GW
 - Morro Bay 3.0 GW

• Future Phases

- Cape Mendocino 6.2 GW
- Del Norte 6.6 GW
- Diablo Canyon 4.3 GW
- Brookings, Oregon
- Coos Bay Oregon 3.0 GW


Evolution of Offshore Wind Turbine Sizes

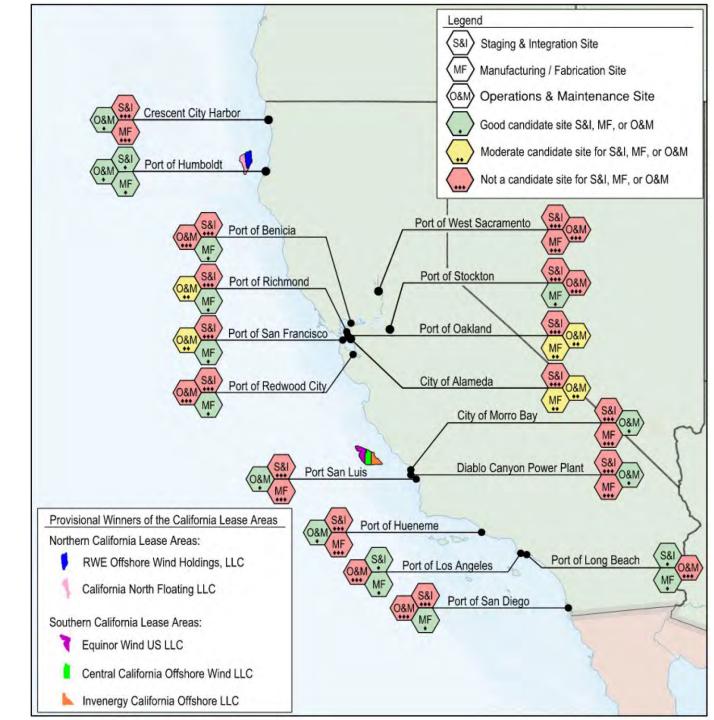
The Deepwater Port Authorities of CAPA

	Port of Humboldt	ET.		
	ETA (1)			
	Oakland	Inland Ports		
	Richmond	West	1.61 2 2	- all the way and a
	San Francisco	Sacramento	all an	Contraction of the
and the second second second second	Redwood City	Stockton		
The first and the second of the second of the	Port of	of Hueneme 🞆	No Verseund	
		A & Long Bead	ch 🔣	
		San Diego		

BOEM Regional Ports Assessment

- Published in January of 2023
- Identifies three types of ports needed to support floating offshore wind:
 - Staging and Integration (S&I)
 - Component Manufacturing (CM)
 - Operations and Maintenance (O&M)
- Classifies all the ports/harbors in California by their ability to service the three needed types of ports

Port Type 1: Component Manufacturing (CM)


Port Type 2: Staging and Integration (S&I)

Port Type 3: Operations and Maintenance (O&M)

BOEM's Evaluation of Port's Ability to Service OSW by Type

Growing a Wind Energy Supply Chain

Supply Chain Activities

- Project development and management
- Manufacturing
 - Nacelle, hub, and assembly
 - Blades
 - Tower
 - Foundation supply
 - Array cable supply
 - Export cable supply
 - Onshore and offshore substation supply
 - Operational infrastructure
- Installation
- Turbine installation
- Foundation installation
- Array cable installation
- Export cable installation
- -Other installation
- Operation, maintenance, and service
 - -Wind farm operation
 - Turbine maintenance and service
 - Foundation maintenance and service
 - Subsea cable maintenance and service
 - Substation maintenance and service
- Decommissioning

Offshore Wind Blade

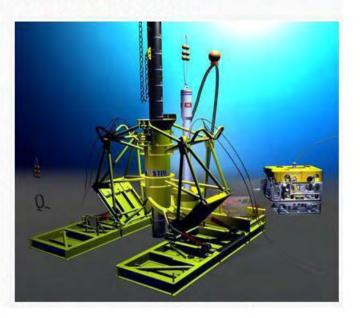
The V236-15.0 MW[™] prototype nacelle has been completed at our factory in Lindø and is ready for testing. Ø VSTU 221002 8 4506

00

UU WLL 620T

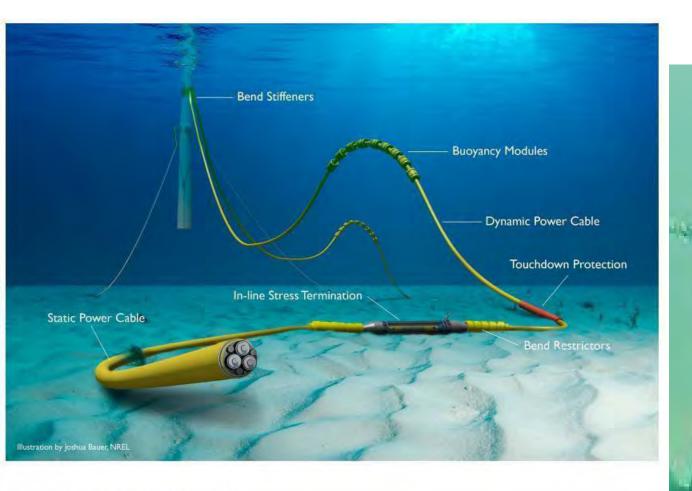
Vestas.

DRAG-EMBEDDED ANCHOR



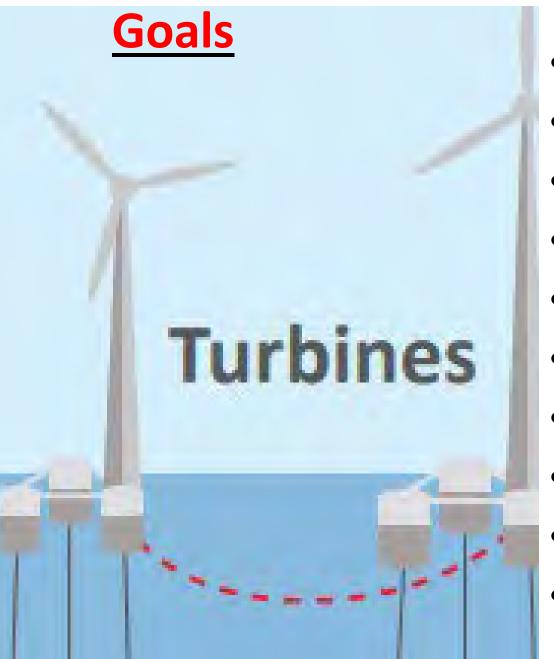
GRAVITY-BASEANCHOR

SUCTION ANCHOR


DRIVENPILE ANCHOR

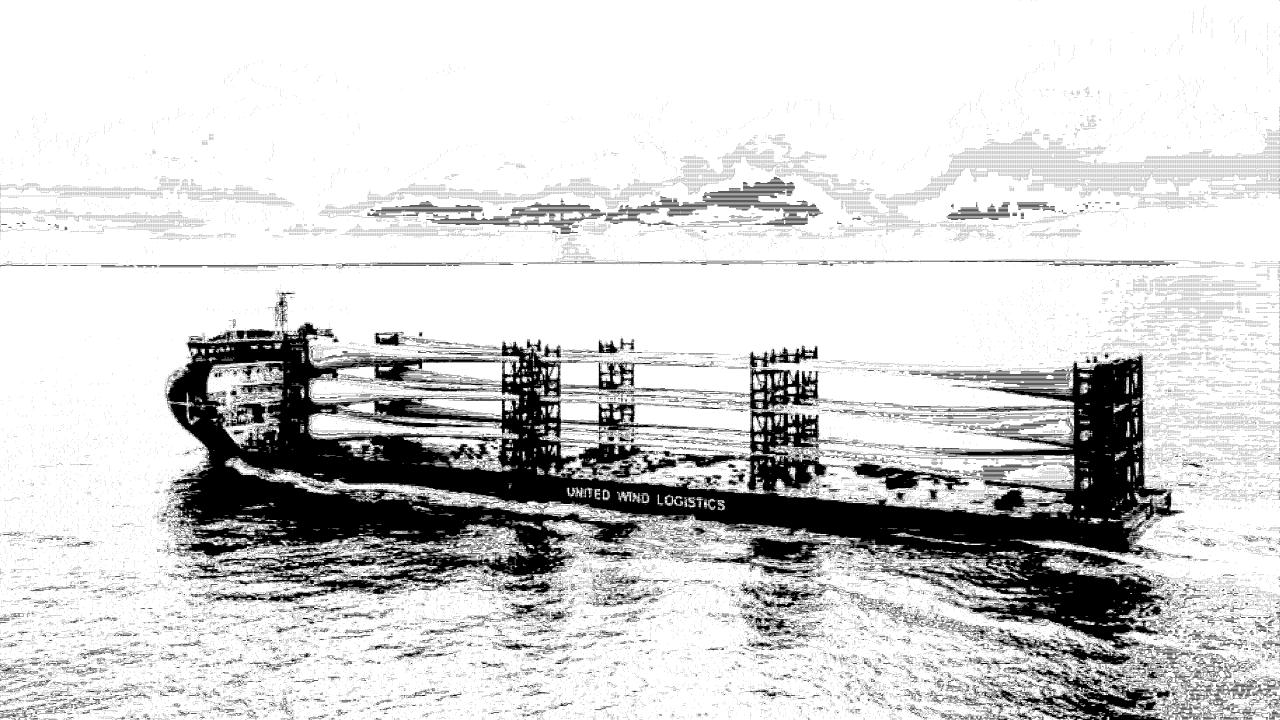
DRIVEN ANCHOR PLATE

Undersea Electrical Power Cables

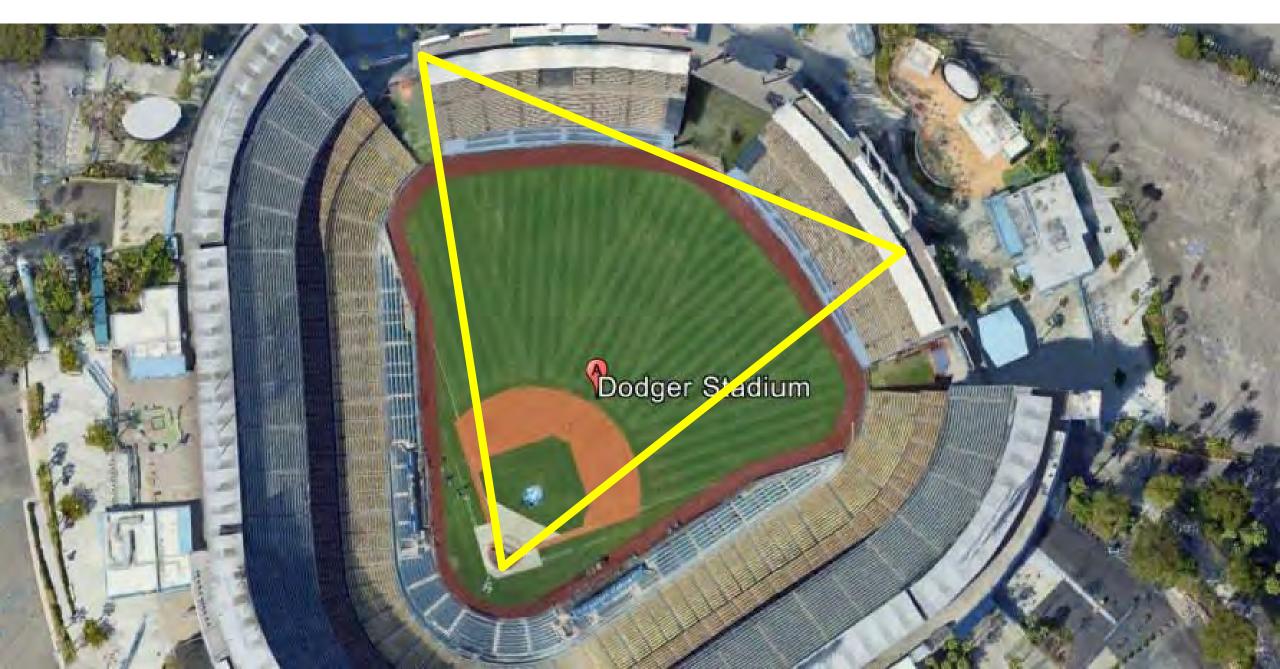


int.

NATIONAL RENEWABLE ENERGY LABORATORY


Number of Turbines Needed to meet State

- CA Goal = 25 GW
- Each turbine = ~15 MW
- Requires > ~1,667 turbines
- 1,667 floaters
- 1,667 turbine/nacelles
- 5,000 blades
 - 1,000,000 feet of towers
- 15 million feet of mooring lines
 - 6,000+ anchors
 - ??? miles of transmission cables



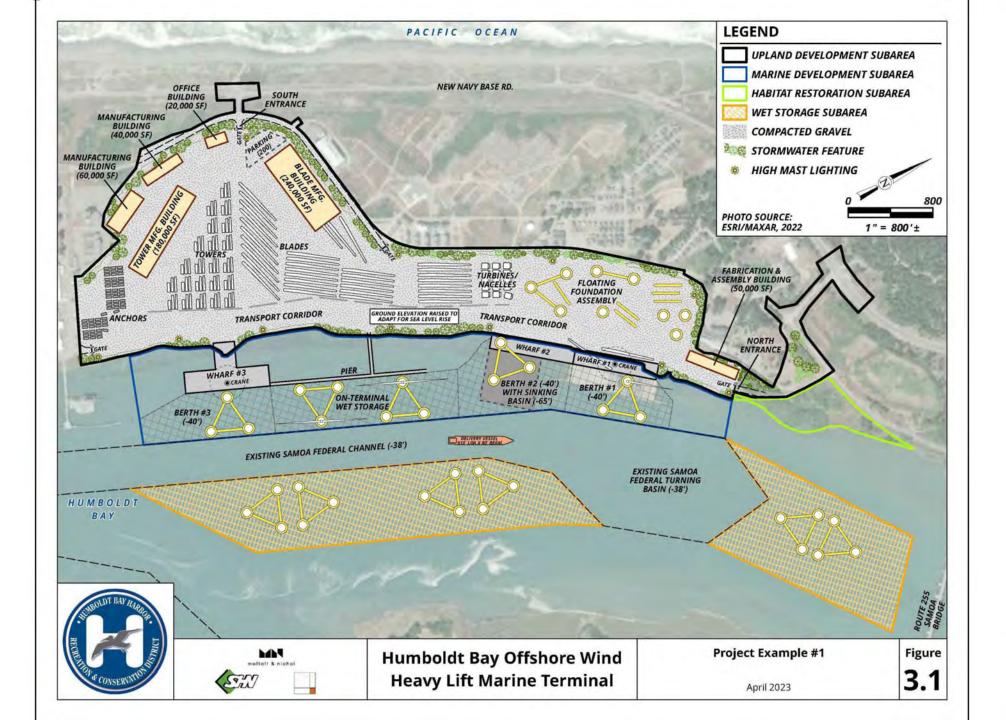
Manufactured on-site or shipped.

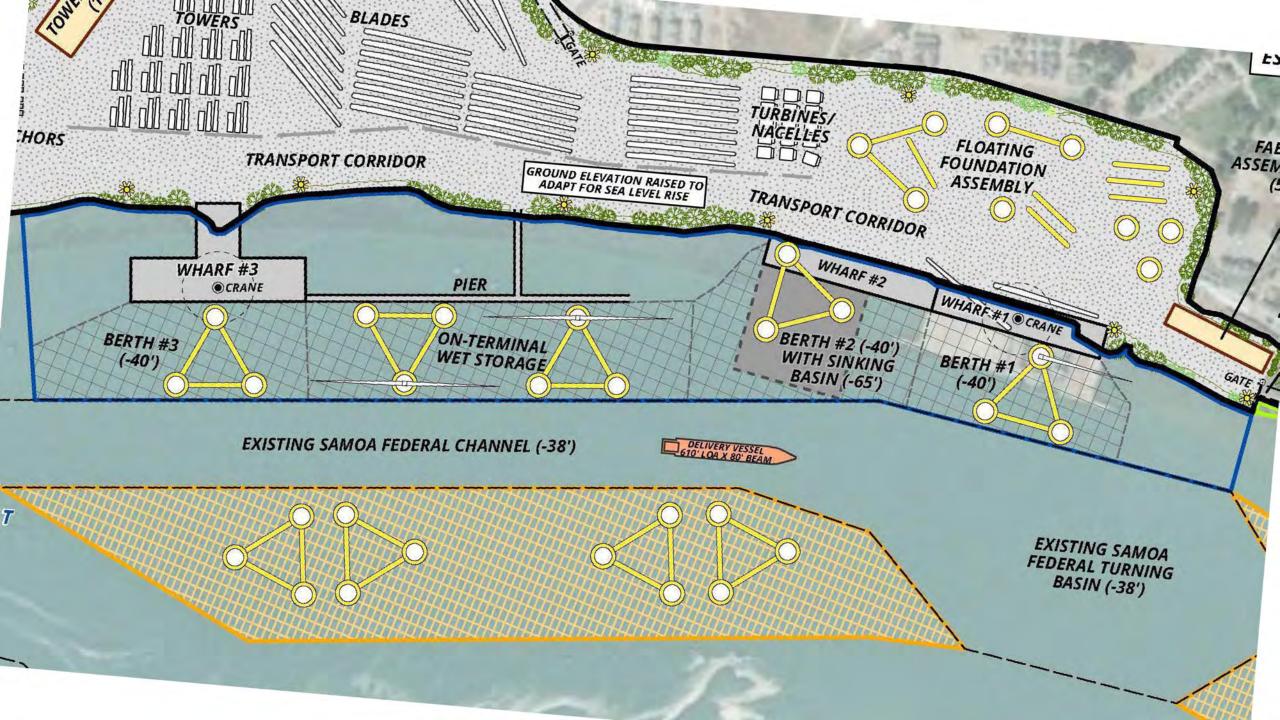
Floater Footprint & Dodger Stadium

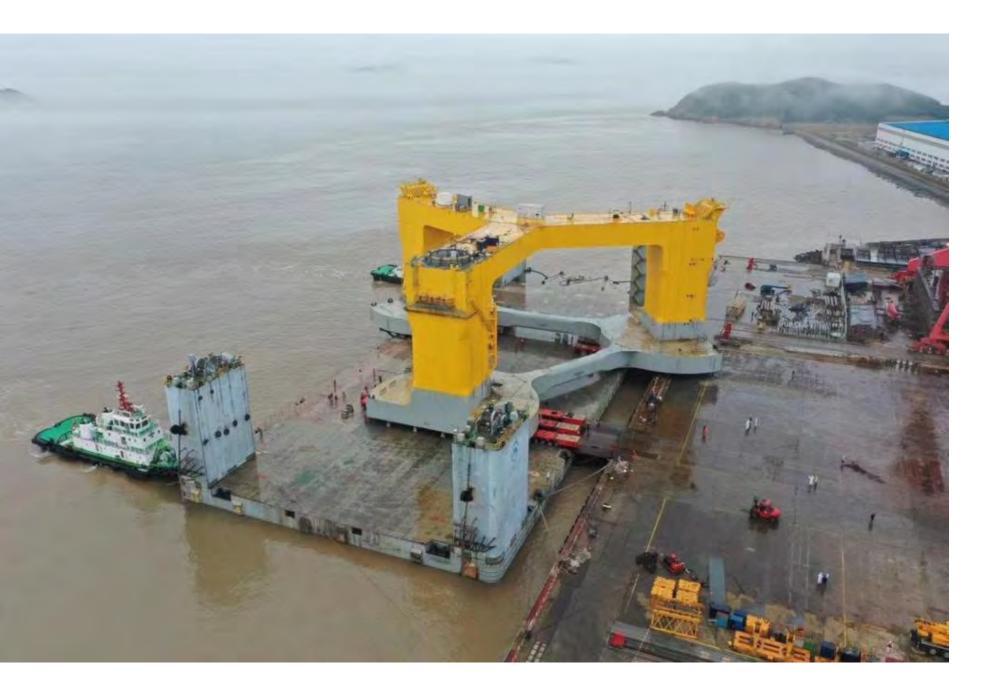
Humboldt Lease BOEM Area Humboldt Approved Broadband Subsea Cables

Humboldt PG & E Power Plant-

HUMBOLDT BAY'S ASSETS FOR OSW


- Channel width
- Channel depth
- No vertical draft restrictions
- Immediately-available industrial sites w/ direct access to federal navigation channel
- Geographically-central to short and long- term wind areas





Shanghai-headquartered Wison Offshore & Marine has shipped out China's first floating wind foundation platform from its yard in Zhoushan. June 9, 2021 Source: Wison Offshore & Marine

The semisubmersible platform will support MingYang **Smart Energy's** MySE5.5MW typhoon-resistant wind turbine which recently rolled off the production line.

Source: Wison Offshore & Marine

Summary of Progress to Date

- CEQA / Engineering Technical Reports
 - Topographic and Hydrographic Surveys
 - Geotechnical Investigation
 - Cultural Surveys
 - Wetland Delineations and Biological Surveys
 - Phase I Environmental Site Assessment (hazardous materials)
 - Dredge Sediment Characterization
 - Traffic Analyses
 - Power/electrical/stormwater/utility options evaluations
 - Shoreline Planning and Sea Level Rise Analyses

Plans for 2023

- Stakeholder and public engagement
- PIDP Grant Submittal [Engineering Design Phase] (May 2023)
- CEQA/NEPA (June 2023) (USACOE Requested Lead Agency)
- Permits submittal (August 2023)
- >30% design
- Channel tow-out modeling
- Project Financing

CONCLUSION

- 1. Per State and Federal published studies, there will need to be 3 port types (S&I, CM, and O&M) and there will need to be 10 port terminals in California.
- 2. Not all 10 terminals need to come on-line at the same time. Development will be phased between now and 2035 in order to meet State goals.
- 3. Staging & Integration (S&I) is the most critical and most difficult to construct. The other port functions (CM and O&M) will come after S&I is operational.
- 4. Port development is an essential early component in the overall development pipeline. The State will need to fund planning, permitting, design, and construction phases of port/terminal development.
- 5. Significant State investments will be needed to develop needed port infrastructure.
- 6. California needs to invest in the existing 11 deep water CAPA ports.

Suzanne Plezia Port of Long Beach

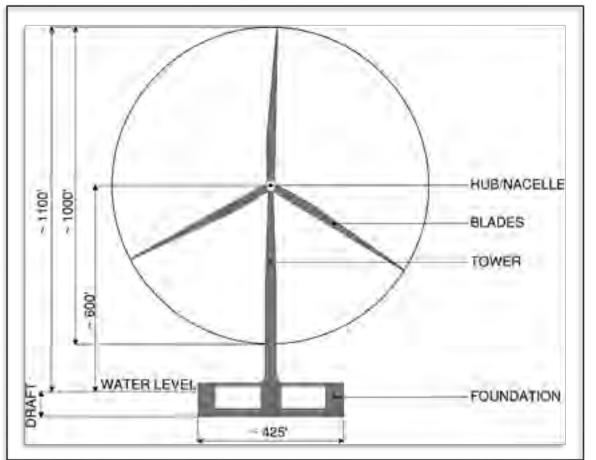
PIER WIND CONCEPT

SUZANNE PLEZIA, P.E.

SENIOR DIRECTOR, CHIEF HARBOR ENGINEER

CALIFORNIA ENERGY COMMISSION WORKSHOP ON ASSEMBLY BILL 525: PORTS AND WORKFORCE DEVELOPMENT MAY 23, 2023

Zero Emissions, Energy Resilient Operations


WHOLE OF GOVERNMENT APPROACH

PLANNING FOR FUTURE INNOVATION

20-25 MW FLOATING OFFSHORE WIND TURBINE SYSTEM DIMENSIONS

APPROXIMATE DIMENSION
Up to 425 ft x 425 ft
15 – 25 ft
20 – 50 ft
Up to 600 ft
Up to 1,100 ft
Up to 1,000 ft

Source: Pier Wind Conceptual Report April 2023

NACELLES

S. 19-17

1710 225001 2 4500

1107

Vestas

0

STORE T

h

0

62

1 Dent

E

E

620T

25

Source: Vestas

112

TOWER

IIIII-IIIIIA-IIII

Sob e

000000000

Source: Steelwind Nordenham

BLADE

Source: LM Wind Power

TOL COMP.

Source: Pier Wind Vision

HOW CAN THE PORT OF LONG BEACH HELP SUPPORT?

DEEP

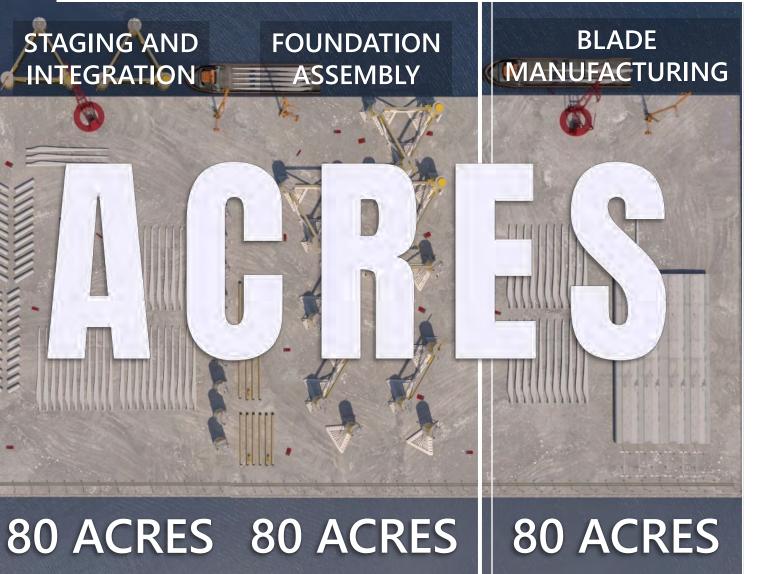
COMPLETED CONCEPT REPORT IN 5. MONTHS

WET STORAGE

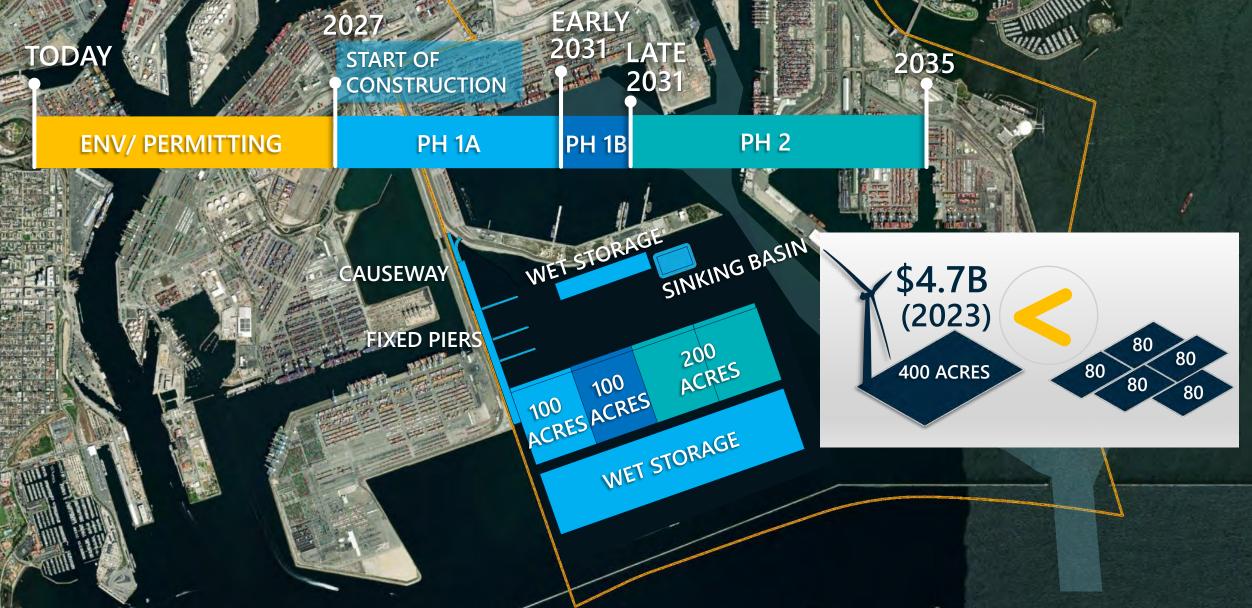
SINKING BASIN

7,700 FT HEAVY LIFT CAPACITY WHARF

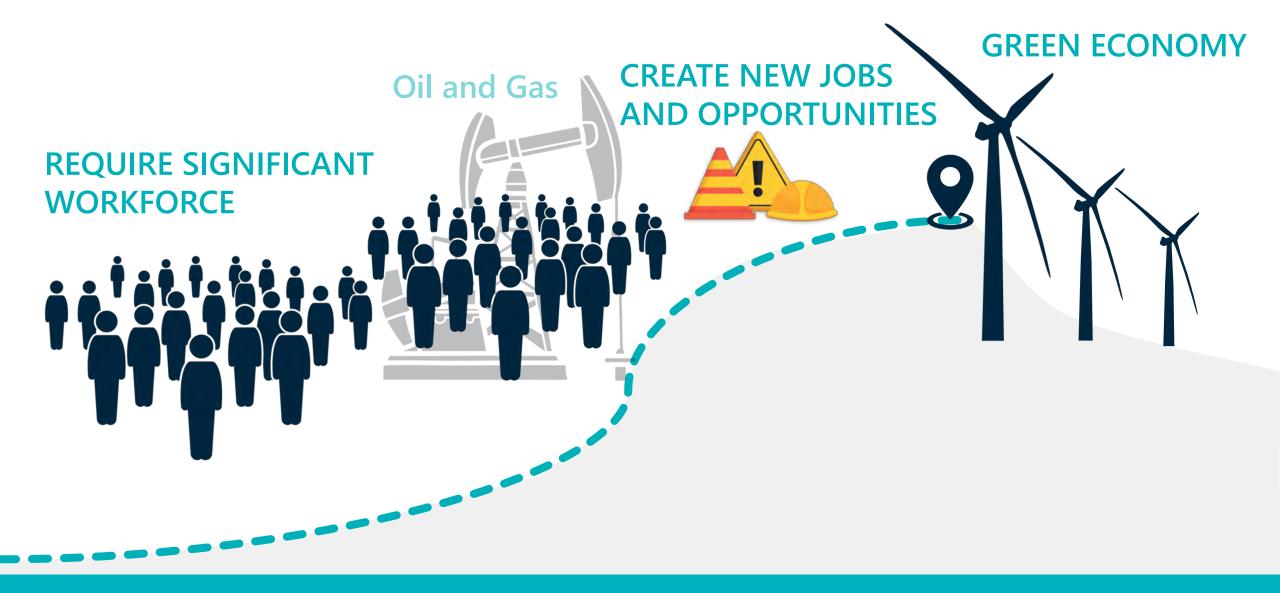
CONCEPT DESIGN

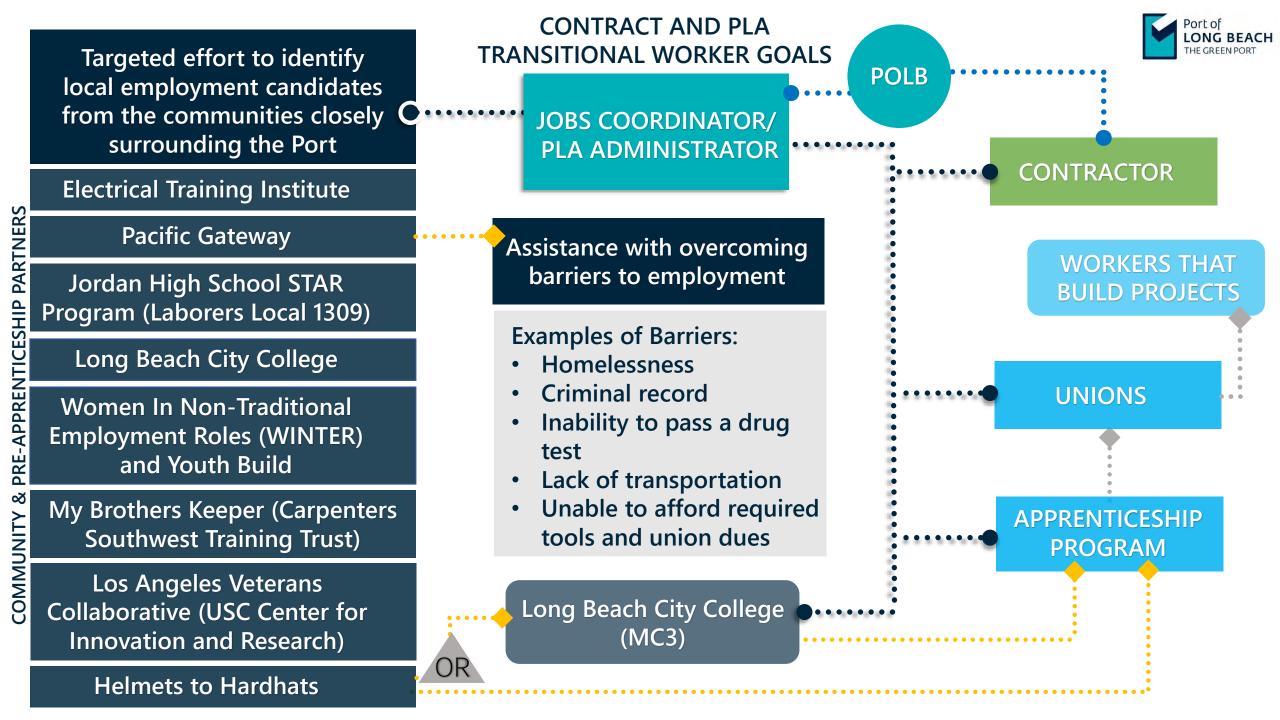

WET STORAGE

MAIN CHANN


FLEXIBLE, ADAPTABLE

SCHEDULE AND COST


Port LON THE G



Port of POLB WORKFORCE DEVELOPMENT SUPPORT ONG BEACH THE GREEN PORT **Universities** Academy of **Global Logistics Community College** Maritime Center Grade School of Excellence m •High School • Careers **Goods Movement Training Campus**

- Advanced Manufacturing, **Construction**, and **Engineering Academy**
- **Project Labor** Agreement

ECONOMIC BENEFIT

AB525: Preliminary Assessment of Economic **\$39.7** billion total state GDP Benefits of Offshore Wind construction + \$7.9 billion O&M (NREL/BOEM 16 GW scenario) 0 0 17,500 full-time CA jobs in 2045 using cluster-based strategies (The American Jobs Project, 18 GW scenario)

BENEFITS SUMMARY

Positions California and the United States to be at the forefront of floating offshore wind innovation and development US Goal of 15 GW BY 2035 CA Goal of 25 GW BY 2045

Greenhouse Gases Cost of Energy

 \bigcirc

 00°

LARGEST PURPOSE-BUILT OFFSHORE WIND FACILITY

<u>CONCEPT REPORT</u>

5 MAIN WORK STREAMS

CEQA/ NEPA

PRELIMINARY DESIGN

BUSINESS/ FINANCE / DELIVERY

ENGAGEMENT / COMMUNITY OUTREACH

WORKFORCE DEVELOPMENT

Port of LONG BEACH THE GREEN PORT

Public Comment Instructions

Rules

• 3 minutes per person

Zoom

• Click "raise hand"

Telephone

- Press *9 to raise hand
- Press *6 to (un)mute

When called upon

Unmute, spell name, state affiliation, if any

Written Comments:

- Due: June 9th, 2023 by 5:00 p.m.
- Docket: 17-MISC-01
- Submit at: https://efiling.energy.ca.gov/Ecomment/Ecomment.aspx?docketnumber=17-MISC-01

3-MINUTE TIMER

Closing Remarks

Lunch Break Return at 1:30 pm

Welcome Back

PM Workshop Schedule

- 1. Welcome Back
- 2. Commissioner Remarks
- 3. Catalyst: AB 525 Workforce Development and Economic Benefits Analysis
- 4. Xodus & BW: AB 525 Workforce Readiness Plan
- 5. Questions and Answers
- 6. Break
- 7. Stakeholder Panel: Workforce Development Needs
- 8. Public Comment
- 9. Closing Remarks

Workforce Requirements

AB 525, Section 25991.3 requirements:

- An analysis of the workforce development for offshore wind
- Consult with representatives of key labor organizations
- Recommend workforce standards for equitable economic benefits
 - Prevailing wage
 - Local and targeted hiring
 - Workforce skills and training needs

Ben Pogue Catalyst

Analytical Guidance and Benefits Assessment for AB 525 Strategic Plan

> Seaport and Workforce Development for Floating Offshore Wind in California

Presented by: Ben Pogue Director of Natural Resource Management Catalyst Environmental Solutions

Analytical Framework

Section 25991.3 of AB 525 – The Framework for Assessment

a. Based on the sea spaces identified pursuant to Section 25991.2, the commission, in coordination with relevant state and local agencies, shall **develop a plan** to improve waterfront facilities that could support a range of floating offshore wind energy development activities, including construction and staging of foundations, manufacturing of components, final assembly, and long-term operations and maintenance facilities.

b. The plan developed pursuant to subdivision (a) shall include all of the following:

(1) A detailed assessment of the necessary investments in California seaports to support offshore wind energy activities, including construction, assembly, and operations and maintenance. The assessment shall consider the potential availability of land and water acreage at each seaport, including competing and current uses, infrastructure feasibility, access to deep water, bridge height restrictions, and potentially impacted natural and cultural resources, including coastal resources, fisheries, and Native American and Indigenous peoples.

(2) <u>An analysis of the workforce development needs</u> of the California offshore wind energy industry, including <u>occupational safety requirements</u>, <u>the need to</u> <u>require the use of a skilled and trained workforce to perform all work</u>, and <u>the need for the Division of Apprenticeship Standards to develop curriculum</u> <u>for in-person classroom and laboratory advanced safety training for workers</u>.

(3) **Recommendations for workforce standards Example to a standards** for a standards for a standard standards for a standard st

c. In developing the plan pursuant to subdivision (a), the commission shall <u>consult with</u> <u>representatives of key labor organizations and apprenticeship programs</u> that would be involved in dispatching and training the construction workforce.

d. On or before December 31, 2022, the commission shall complete and submit to the Natural Resources Agency and the relevant fiscal and policy committees of the Legislature a **preliminary assessment of the economic benefits of offshore wind as they relate to seaport investments and workforce development needs and standards**.

e. The plan developed pursuant to this section shall be included in the chapter of the strategic plan relating to economic and workforce development and identification of port space and infrastructure as specified in paragraph (2) of subdivision (c) of Section 25991.

Principal Mandate: CEC is charged with preparing a chapter of the overall Strategic Plan that considers seaport and workforce development.

Seaport Assessment: Siting/screening analysis (SLC-M&N Team). Assess level of investment – serves as input value for economic benefits assessment (below).

Workforce Development Needs: what type and how many workers will be needed for the OSW workforce. How ready is California to meet this demand?

Workforce Occupational Safety Requirements: Empirical review of OSRs in other industries/states.

Training Needs Assessment: Existing training assets versus what is needed (gaps analysis). Need for unified training curriculum, in-person training/facilities.

Workforce Standards: Prevailing wage analysis. Empirical review (East Coast). Hiring/training standards and equitable hiring practices and recommendations.

Stakeholder Engagement: Interviews with unions, labor organizations, training experts, NREL, industry, and academics.

Economic Benefits Analysis & Supply Chain

Opportunities: IMPLAN model of economic benefits (jobs, income, fiscal revenues, etc.) and policy options for capturing supply chain benefits.

OSW Area of Analysis	AB 525 Issue	Key Issue/Question	Section of Assessment	Summary of Finding
		How many workers/jobs will be required to develop the workforce that can meet the demands of the 2030 (2-5 GW) and 2045 (25 GW) goals?	Section 3.3 Number of Jobs Needed for Floating OSW Workforce	 Approximately 2,375-8,280 jobs are expected to be required for California's floating offshore workforce by 2030, and 5,063-17,950 jobs by 2045. These estimates/ranges were derived from three keynote studies on forecasting California's workforce needs: NREL/BOEM. April 2016. "Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios." American Jobs Project. February 2019. "The California Offshore Wind Project: A Vision for Industry Growth"; BVG/American Jobs Project. January 2019. "CA Jobs Modeling Methodology." Guidehouse. May 2022. "California Supply Chain Needs Summary." California Energy Commission.
		What is the proportion of jobs for the supply chain, construction, and operations/maintenance phases?	Section 3.4 Distribution of Workforce Occupations Per Phase	Approximately 2/3rds of the OSW workforce will be in the supply chain and manufacturing sectors. This is a key finding of this Assessment and also represents California's primary opportunity to capture the economic benefits of developing an ambitious offshore wind industry. As observed in the infographic below, the construction and operations/maintenance phases offer similar levels of jobs, around 700-800 jobs, whereas the supply chain is expected to generate 4,020 jobs.
Workforce	An analysis of the workforce development needs of the California offshore wind energy industry, including	What types of skills and occupations are needed for the OSW workforce?	Section 3.5 Occupational Skills Mapping	As provided in the radar/skills graphics in Figure 3-4, Technicians and Trades dominate the needed skills for supply chain, representing over 50% of the skill set needed for those occupations. Construction veered towards Construction and Assembly skills, but also had a significant need in the Technicians and Trades as well. The majority of skills for the Operations/Maintenance phase are in the Technicians and Trades skills, however Administrative and Clerical skills are also required. As observed in Figure 3-5, when compiling all three phases, the Technicians and Trades represent the primary skills area of need, followed by Construction/Assembly, and Administrative/Clerical.
Development Needs	occupational safety requirements, the need to require the use of a skilled and trained workforce to perform all work.	What is the existing occupational workforce supply?	Section 3.6.1 Existing Workforce	California maintains a large and diverse workforce, with approximately 16.5 million workers (2021). While the new offshore wind workforce will represent a cross-section of occupational types, requiring a wide variety of jobs to operate the industry, some of the key sectors that will be impacted by the offshore wind industry are Installation, Maintenance, and Repair (approximately 500,000 current workers); Construction and Extraction (approximately 650,000 current workers); and Production (approximately 750,000 current workers).
		What are the potential skills and occupational gaps for the California OSW workforce?	Section 3.6.2 Gaps Analysis	 As observed in Figure 3-6, the majority of California's occupational types/sectors are in a position to internalize the new demand created by the offshore wind industry; however, a few occupational types are currently unprepared to meet the demand of the new industry. Those occupational types that are forecasted to experience an increase of more than 20% by 2030 and more than 60% by 2045 are: Miscellaneous Plant and System Operators Tank Care, Truck, and Ship Loaders Forging Machine Setters, Operators, and Tenders (Metal and Plastic) Wind Turbine Service Technicians Engine and Other Machine Assemblers These findings track with the conclusion that nearly two-thirds of the new jobs created by California's offshore wind industry will be located in the supply chain (i.e., manufacturing, assembly, extraction, production, fabrication, etc.). While some speciality occupations, such as wind turbine technician, will essentially be wholly new job types in California, it is the State's supply chain sectors that will experience significant new demand for trained workers.

Engagement with Training, Industry, Labor, and Apprenticeship Organizations

Interviewees

- International Brotherhood of Electrical Workers (Labor/Union)
- CA State Building & Construction Trades (Labor/Union)
- SW Regional Council of Carpenters (Labor/Union)
- International Longshore and Warehouse Union (Labor/Union)
- Kiewit (EPCI)
- Orsted (Developer) ٠
- Siemens Gamesa (Manufacturer)
- Maersk Training (Training)
- Center for International Trade and Transportation (CSU Long Beach) (Academia; Apprenticeship Program)
- Bristol Community College (Academia; NREL Advisory Group)
- NREL (Federal Government)
- Global Wind Organization (Trade Group; NREL Advisory Group)
- Cape and Islands Self Reliance (Training; NREL Advisory Group)
- Business Network on Offshore Wind (Academia; **NREL Advisory Group**)

California Floating Offshore Wind Energy Questionnaire

Catalyst

Workforce Development

Name: Josh Raper Title: Regional Manager

Organization: SW Regional Council of Carpenters

Date: 10/14/2022

Introduction

Q1. What part of the Offshore Wind Industry do you identify with?

a.	Industry
b.	Labor Organization/Union
¢.,	Training/Apprenticeship Prog
d.	Public Entity
e.	Other

Building and Construction, Labor, Training, he's on the board of the apprenticeship trust

Workforce Development

Q2. What are the skills that the workforce for this new industry will need to have?

There are common denominators with this industry and construction: safety, communication, team oriented, productive, punctuality, plan reading, precision, ability to follow specs, carpentry (plumb/level/square) etc.

Then there will be scope specific skills related to OSW - those will need to be trained -but there is cross applicability - e.g. carpenter/form setters- same skills, already work at height; dive welders work in water at depth, tunnel system workers familiar with uncommon workspaces etc.

Q3. Do you think that workers in California have these skills already?

For the common denominator skills- yes and for the specialty skills there is enough correlation between things like carpentry/form setting at height; tunnel systems work- ability to navigate new environments, that the transition should be do-able. They are already building large structures, oil and gas, bridges, onshore wind projects, etc.

Q4. If not, do you think that skilled workers from other regions could be recruited to this industry?

People with the skillsets will travel to the big projects. They will already come no matter what. Workers from oil and gas (Ventura and Kern County) who might soon be be out of work will likely move into this sector.

Q5. How long do you think it would take for the workforce to develop the necessary skills?

It is going to take an initiative and standardization to occur. He's never seen a fence go up and project kick off and there not be workers- if there are living wage jobs people will come.

In the context of the conversation about training, he indicated that it could take up to a year (if everyone is working together) to be "go ready" with the design and launch a state/industry approved certified training program and then usually apprenticeships are up to 4 years. But again- there are lots of folks with "adjacent" skillsets from other industries who could transition more quickly or be upskilled with offshore wind modules.

 \cap

What are the critical skills that this new workforce will need?

02

What are some of the obstacles and limitations to fielding an offshore wind construction workforce?

What could expedite workforce training and development? What can 03 CA do to facilitate workforce training and development?

04

What types of incentives would help recruit new workers to build a workforce pipeline?

How much of the future OSW workforce will be coming from existing sectors/industries?

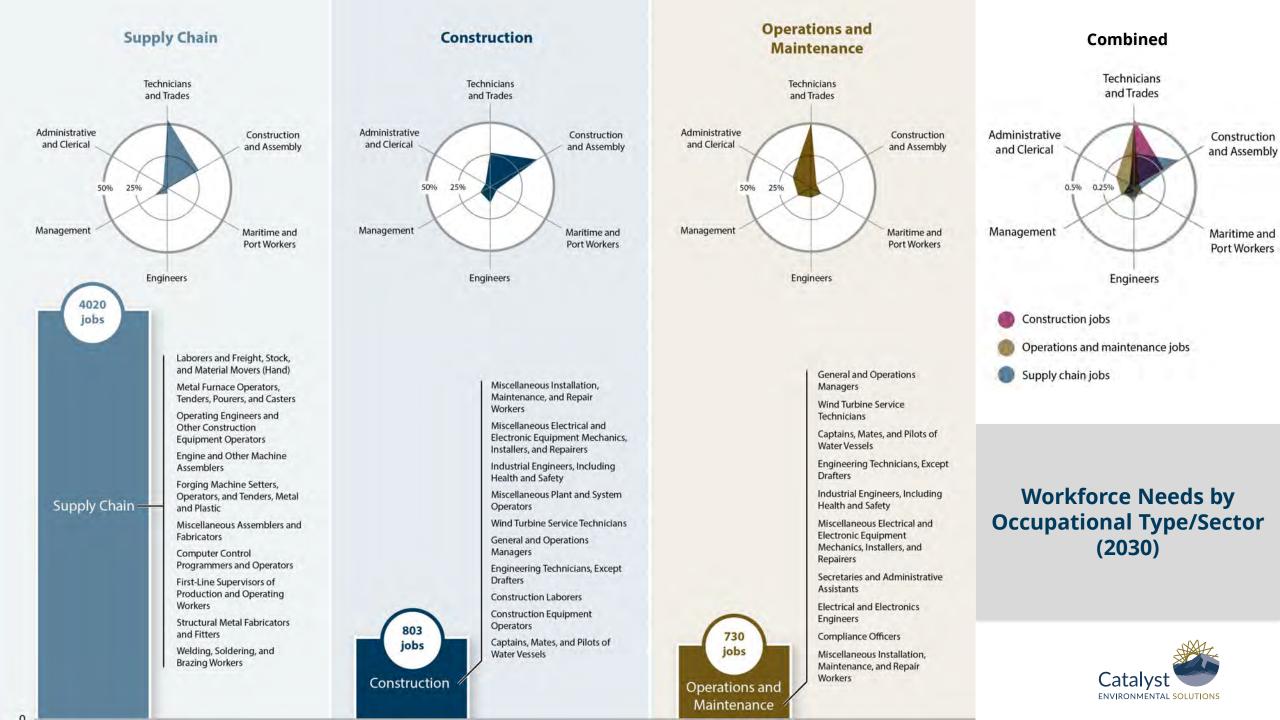
06

05

What existing training and apprenticeship programs could be repurposes or expanded to train CA's OSW workforce?

Benchmarking Installed Capacity to Forecast Workforce Development Needs

- NREL/BOEM. April 2016. "Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios."
- American Jobs Project. February 2019. "The California Offshore Wind Project: A Vision for Industry Growth"; BVG/American Jobs Project. January 2019. "CA Jobs Modeling Methodology."
- Guidehouse. May 2022. "California Supply Chain Needs Summary." California Energy Commission.



Bounding Ranges/Estimates for Jobs Needed for OSW Workforce (2030 and 2045)

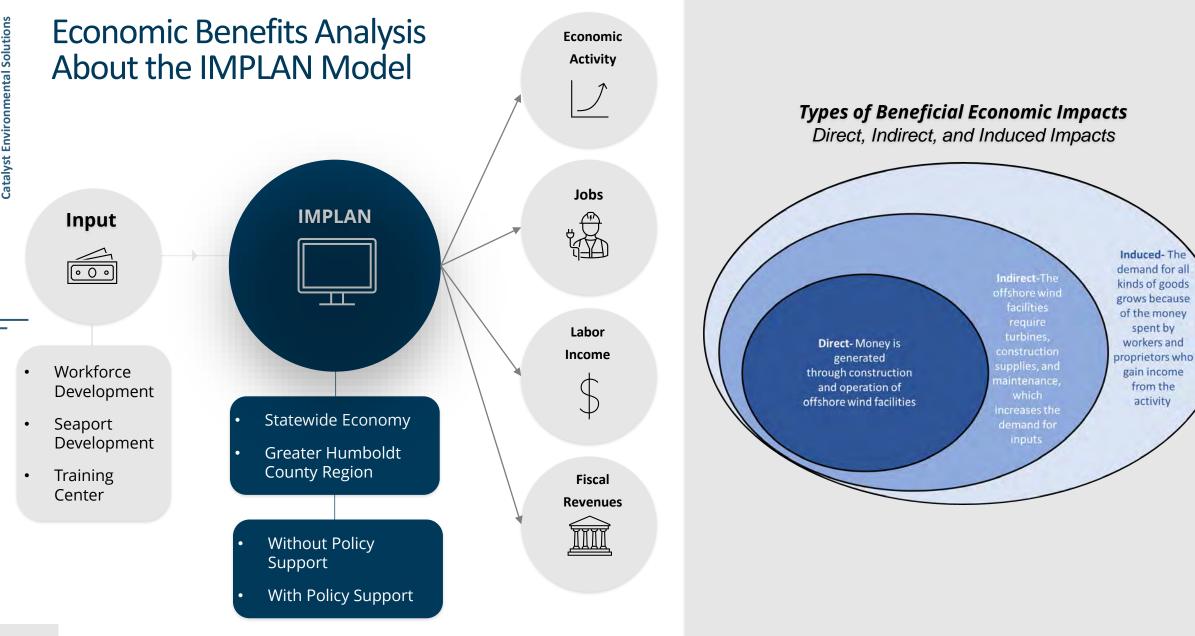
		20	30		2045							
Source/Model	Supply Chain	Const.	O&M	Total Jobs	Supply Chain	Const.	O&M	Total Jobs				
American Jobs Project	2,100	350	1,200	3,650	9,000	1,400	2,600	13,000				
NREL/BOEM	5,490	1,130	1,660	8,280	11,280	2,340	4,330	17,950				
Guidehouse	1,936	125	314	2,375	3,382	173	1,508	5,063				
TOTAL RANGE	1,936 – 5,490	125 – 1,130	314 – 1,660	2,375 – 8,280	3,382 – 11,280	173 – 2,340	1,508 – 4,330	5,063 – 17,950				

Conceptual Growth Patterns for Installed Capacity CEC Goals and Forecasting Models

Supply Chain Assessment – Policy Options

Policy, Incentive, Tax Break	Geography (who instituted the policy)	Component Supported	Input Supported	How California Could Adopt/Adapt Policy?
Feed in Tariffs and Other Subsidies	The Netherlands, Denmark, Germany	All		Develop a feed-in tariff and/or subsidy scheme to make floating OSW energy competitive and encourage the development of a local supply chain
				Adapt California's initiative for a
Industry based Training Programs				High-Road Training Partnership Program for floating OSW, Expand Employment Training Panel funding
			Steel Fabrication Laborers & Manufacturers	to support floating OSW industry
Competitive Grant Funding	New Jersey, Maryland, US federal government	All	All	
Local Source Requirements		All	All	Community workforce agreements or community benefits agreements
Direct Investment in Training Programs	Maryland, New Jersey, New York, Rhode Island, Massachusetts	All	All Component Part Production Labor Forces	Create partnership with academia (Cal Poly Humboldt and other local JCs) and fund floating OSW training opportunities through these facilities
Tax Credits	US federal government, New Jersey, Rhode Island			Adapt Capital Investment Incentive Program, promote CAEATFA sales and use tax credit
Public Private Partnerships				
Hive Hub evelopment	Virginia, Maryland, North Carolina, Maine, Denmark, UK	All	All	Could create an floating OSW hub or center (near Humboldt Bay or San Francisco)

Materials (Steel) Production and Fabrication


Policies Successfully Used Elsewhere	Opportunity for California
Direct Public and Private Sector Investment (Maryland)	Create partnerships with floating OSW developers and combine funds to invest in a new steel manufacturing/fabrication facility or provide the needed upgrades to current steel fabrication facilities to support floating OSW manufacturing
Subsidies (Europe)	Offer tax breaks for steel manufacturing/fabrication facilities that support floating OSW production – this incentive could encourage facilities to invest in the equipment and training needed to support floating OSW component production
Local Source Requirements (East Coast & Europe)	Requiring local sources to support floating OSW production will guarantee local work and a consistent pipeline of projects that include steel manufacturing and fabrication

Component Manufacturing

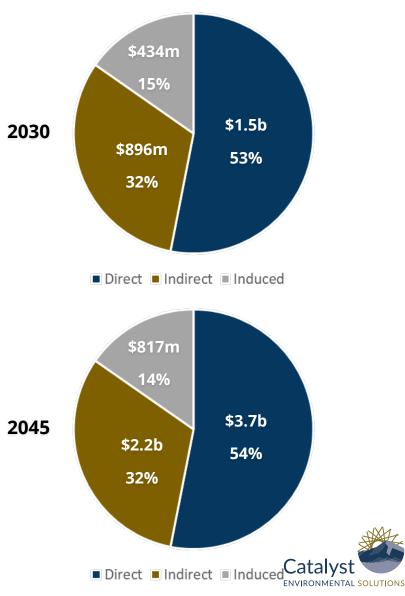
Policies Successfully Used Elsewhere	Opportunity for California
Direct Public and Private Sector Development (New Jersey, New York)	Create partnerships with floating OSW developers and combine funds to invest in component part manufacturing facilities
Grants and Cooperative Agreements (New Jersey, Maryland, Federal Govt.)	Institute a grant program that covers necessary upgrades for Tier 2 facilities that support component manufacturing facilities. Design Cooperative Agreements that supply a percentage of the initial investment needed to build a floating OSW component manufacturing facility to lessen the risk for potential investors
Tax Credits and Rebates & Tax Deductions and Exemptions (East Coast & Europe)	Adapt the Capital Investment Incentive Program, increase sales use and tax exclusion program for all facilities that support floating OSW development

Supply Chain Workforce Development

Policies Successfully Used Elsewhere	Opportunity for California					
Project Labor Agreements	Institute workforce agreements that require local supply chain and labor force.					
(East Coast)						
Instituting New or Adapting Current Labor Training	Adapt High-Road Training Partnership program to support floating OSW labor training and expand Employee Training Panel so it can support floating OSW labor employers by providing funds for proper training.					
Programs (East Coast & Europe)	Invest in a new training facility or program dedicated to floating OSW development.					
	ENVIRONMENTAL SOLUTIONS					

										Economic	Economic	\$1.1b
Scenario	Investment Input	Outp	ut GDP	Number	of Jobs	Labor	ncome	Fiscal II	mpacts	Activity	Activity	۶۱.۲۵ 19%
	Year	2025	2045	2025	2045	2025	2045	2025	2045	\$5.8b	\$6.9b	1990
	Workforce Development		\$5,803		14,137		\$1,266		\$386.8			
Without	Seaport Development	\$85.2		406		\$33.5		\$2.9		Jobs	Jobs	2,473
Policy	Training Center Construction	\$18.7		98		\$8.1		\$0.66		14,137	16,610	18%
	Total	\$103.9	\$5,803	504	14,137	\$41.6	\$1,266	\$3.6	\$386.8	Labor	Labor	
	Workforce Development		\$6,883		16,610		\$1,562		\$432.8	Income \$1.3b	Income \$1.6b	\$296m 23%
	Seaport Development	\$96.6		444		\$36.8		\$3.3				
With Policy	Training Center Construction	\$18.7		98		\$8.1		\$0.66		Fiscal Revenues	Fiscal Revenues	\$46m
		\$115.3	\$6,883	542	16,610	\$44.9	\$1,562	\$4.0	\$432.8	\$387m	\$433m	12%

Catalyst


Catalyst Environmental Solutions

								Economic	Economic	\$1.7b		
Scenario	Investment Output GDP Number of Jobs Labor Income Fiscal Impacts		Activity	Activity	33%							
	Year	2025	2045	2025	2045	2025	2045	2025	2045	\$5.1b	\$6.8b	
	Workforce Development		\$5,126		13,642		\$1,028		\$431.4			
	Seaport Development	\$62.0		362		\$23.4		\$2.2		sdoL	s sto	4,971
/ithout Policy	Training Center Construction	\$14.4		93		\$6.4		\$0.5		13,642	18,613	33%
	Total	\$76.4	\$5,126 -	455	13,642	\$29.8	\$1,028	\$2.7	\$431.4	Labor	Labor	
	Workforce Development		\$6,820		18,613		\$1,382		\$543.3	Income \$1.0b	Income \$1.4b	\$354n 34%
	Seaport Development	\$83.2		448		\$28.6		\$3.0				
With Policy	Training Center Construction	\$14.4		93		\$6.4		\$0.5		Fiscal Revenues	Fiscal Revenues	\$112n
	Total	\$97.6	\$6,820	541	18,613	\$35.0	\$1,382	\$3.5	\$543.3	\$431m	\$543m	26%

10

Economic Benefits Assessment Direct, Indirect, and Induced Impacts – Economic Activity (GDP)

	20)23 2024/2025 annual			20	20	2045			
Investment	20	023			20	30	20	45		
Workforce			DIREC	CT IMPACT						
Development					\$1,504	\$1,504	\$3,694	\$3,694		
Seaport Development	\$41.8	\$41.8	\$41.8	\$41.8						
Training Center Construction			\$10.0	\$10.0						
Total	\$41.8	\$41.8	\$51.8	\$51.8	\$1,504	\$1,504	\$3,694	\$3,694		
			INDIRE	CT IMPACT						
Workforce Development					\$535.2	\$895.5	\$1,292	\$2,180		
Seaport Development	\$21.8	\$30.9	\$21.8	\$30.9						
Training Center Construction			\$3.4	\$3.4						
Total	\$21.8	\$30.9	\$25.2	\$34.3	\$535.2	\$895.5	\$1,292	\$2,180		
Workforce			INDUC	ED IMPACT						
Development					\$355.5	\$433.6	\$817.3	\$1,009		
Seaport Development	\$21.6	\$23.8	\$21.6	\$23.8						
Training Center Construction			\$5.3	\$5.3						
Total	\$21.6	\$23.8	\$26.9	\$29.1	\$355.5	\$433.6	\$817.3	\$1,009		
			ΤΟΤΑ	L IMPACT						
Workforce Development					\$2,395	\$2,833	\$5,803	\$6,883		
Seaport Development	\$85.2	\$96.6	\$85.2	\$96.6						
Training Center Construction			\$18.7	\$18.7						
Total	\$85.2	\$96.6	\$103.9	\$115.3	\$2,395	\$2,833	\$5,803	\$6,883		

SECTION 8

References

American Jobs Project (AJP). February 2019. The California Offshore Wind Project: A Vision for Industry Growth. Available online at: <u>http://americaniobsproject.us/wp/wp-content/uploads/2019/02/The-California-Offshore-</u> Wind-Project-Cited-.pdf

Arcon Training Center. Courses. Available online at: <u>https://www.arcontraining.com/gwo-offs</u> training

Bureau of Ocean Energy Management. November 2021, Area ID Memorandum: Morro Bay W Available online at: <u>https://www.boern.gov/sites/default/files/documents/renewable-energy</u> activities/Area-ID-CA-Morro-Bay.pdf.

BOEM. July 2021. Area ID Memorandum: Humboldt Wind Energy Area. Available online at: https://www.boem.gov/sites/default/files/documents//App.%20A%20Area%20ID%20Humbo Final.pdf.

Buljan, A. August 16, 2022. USD 223 Million-Worth Construction Works Start at Portsmouth Marine Terminal. Available online at: https://www.offshorewind.biz/2022/08/16/usd-223-million-worth-construction-worksstart-at-portsmouth-marine-terminal/

BVG Associates. October 2017. U.S. Job Creation in Offshore Wind – A Report for the Roadmap Project for Multi-State Cooperation on Offshore Wind (Report 17-22). Available online at: <u>https://www.cesa.org/wpcontent/uploads/US-iob-creation-in-offshore-wind.pdf</u>

BW Research Partnership. September 2021. Offshore Wind Workforce Training and Development in Massachusetts. Available online at: <u>https://files-</u>

cdn.masscec.com/reports/MassCEC%200SW%20Workforce%20Final%20Report_Sept%202021.pdf

California Department of Industrial Relations. December 14, 2022. California's Minimum Wage to Increase to \$15.50 per Hour (Release No. 2022-102). Available online at: https://www.dir.ca.gov/DIRNews/2022/2022-102.html4 https://www.dir.ca.gov/DIRNews/2022/2022-102 https://www.dir.ca.gov/DIRNews/2022/2022 https://www.dir.ca.gov/DIRNews/2022 https://www.dir.ca.gov/DIRNews/2022 https://www.dir.ca.gov/DIRNews/2022 https://www.dir.ca.gov/DIRNews/2022 https://www.dir.ca.gov/DIR

California Energy Commission (CEC). August 10, 2022. CEC Adopts Historic California Offshore Wind Goals, Enough to Power Upwards of 25 Millions Homes. Available online at: <u>https://www.energy.ca.gov/news/2022-</u>08/cec-adopts-historic-california-offshore-wind-goals-enough-power-upwards-25

California Energy Commission (CEC). August 2022. Offshore Wind Energy Development Off the California Coast – Maximum Feasible Capacity and Megawatt Planning Goals for 2030 and 2045. Available online at: https://www.energy.ca.gov/filebrowser/download/4361

California Energy Commission (CEC). March 9, 2022. State Approves \$10.5 Million to Prepare the Port of Humboldt Bay for Offshore Wind. Available online at: <u>https://www.energv.ca.gov/news/2022-03/state-approves-105-million-prepare-port-humboldt-bay-offshore-wind</u>

California Senate Bill 54. 2012. Hazardous Materials Management. Available online at: http://www.leginfo.ca.gov/pub/13-14/bill/sen/sb_0051-0100/sb_54_bill_20131013_chaptered.htm

California Workforce Development Board. October 2018. High Road Training Partnerships. Available online at: https://cwdb.ca.gov/initiatives/high-road-training-partnerships/.

Literature Review & Living Library

Comprehensive Review of OSW Workforce

and Seaport Development

A researcher's best friend. An exhaustive list of key sources and references for California's offshore wind workforce and seaport development. Live links to most key OSW sources, all in one place.

Thank you!

Catalyst ENVIRONMENTAL SOLUTIONS

Brooklyn Fox (Xodus) Josh Williams (BW)

CEC Workshop on Assembly Bill 525

AB 525 Workforce Readiness Plan

WWW.XODUSGROUP.COM www.bwresearch.com

Agenda

1) Methodology

2) Phase 1: Workforce Needs Assessment

3) Phase 2: Workforce Capability Assessment

4) Phase 3: Gap Analysis

5) Recommendations for Workforce Development Strategy

Methodology

Phase 1: Workforce Needs Assessment (Port upgrades)

- The analysis was done using the IMPLAN Input-Output modeling tool for activities related to construction and upgrading of port infrastructure.
- Port upgrade activities were linked to ports grouped into four regions:
 - North Coast, Bay Area, Central Coast, Southern California
- Inputs came from AB 525 Port Readiness Study, and included:
 - Port locations
 - Value of anticipated investment
 - Timing and duration of construction
 - Port use in offshore wind industry:
 - North Coast ports used for hosting component manufacturing, staging and integration (S+I), and operations and maintenance (O&M)
 - Bay Area ports used for hosting component manufacturing
 - Central Coast ports used for O&M
 - Southern California ports hosting component manufacturing, and S+I

Phase 1: Workforce Needs Assessment (Port upgrades)

Table 1. Port Upgrades: Timeline, Regions, Investments (from AB 525 Port Readiness Plan)

Port Use	Port	Region	Construction Years	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
S&I and Manufacturing	Port of Humboldt	North Coast	5	Х	х	х	х	х								
S&I and Manufacturing	Port of Los Angeles	Southern California	8		х	х	х	х	х	х	х	х				
S&I and Manufacturing	Port of Long Beach	Southern California	9		х	х	х	х	х	х	х	х	х			
Manufacturing	Port of San Francisco	Bay Area	5	х	х	х	х	х								
Manufacturing	Port of Stockton	Bay Area	5	х	х	х	х	х								
Manufacturing	Bay Area Private Terminal - Amports Antioch	Bay Area	5	х	х	х	х	х								
Manufacturing	Bay Area Private Terminal - Pittsburg	Bay Area	5	Х	х	х	х	х								
O&M	Crescent City	North Coast	5		х	х	х	х	х							
O&M	Port of Humboldt	North Coast	4		х	х	х	х								
O&M	Morro Bay Harbor	Central Coast	4		х	х	х	х								
O&M	Port San Luis	Central Coast	4		х	х	Х	х								
O&M	Heuneme	Central Coast	4		Х	Х	Х	Х								

Phase 1: Workforce Needs Assessment (Offshore Wind)

- Offshore wind workforce needs assessment approach is a "bottom-up" model that considered the workforce directly required in the development, manufacturing, installation, and operations & maintenance of commercialscale floating offshore wind projects.
- Workforce in each supply element considers those required at the endpoint in the supply chain i.e. at the point of delivery of products and services up to and including the project developer.
- The total California offshore wind project capacity considered as 17 individual commercial-scale projects installed to meet state level offshore wind generation capacity goals.
- 3 scenarios were modelled to reflect varying levels of local content- a baseline, medium, and high scenario.
- Model considered multiple characteristics of the required workforce, including: Number of workers, location of employment, educational attainment requirement, necessary qualifications and certifications, and opportunity for apprenticeship training.

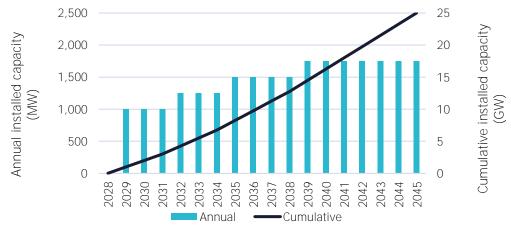


Figure 1. Modeled annual installed offshore wind capacity

Supply Chain Area	Year of workforce requirement relative to commercial operations date (COD)							
Project development	Workforce formed long before COD, services procured around 5 years prior.							
Wind turbine supply	Up to two years prior to COD.							
Balance of plant supply (BoP)	Up to two years prior to COD.							
Installation and commissioning	Services begin up to one year before COD, followed by turbine integration and tow to site the year of COD.							
Operations and Maintenance	Services needed from the point of COD through lifetime of the project (25+ yrs).							

Table 2. Description of supply area relative to operational date of windfarm

Phase 1: Workforce Needs Assessment (Offshore Wind)

- Workforce location mapped regionally based on capabilities of the ports deemed "good" in AB 525 Port Readiness Plan.
- Some workforce considered at state-level but not mapped to any specific regional port capability:
 - Project development phase
 - Manufacturing of mooring lines, anchors, array and export cables
 - Onshore construction workforce

Table 3. Regiona	capabilities:	Regions,	supply	area,	and	number	of ports
------------------	---------------	----------	--------	-------	-----	--------	----------

Supply Area	North Coast	Bay Area	Central Coast	Southern California
Foundation manufacturing	1			1
Tower manufacturing		1		1
Blade manufacturing	1	1		1
Nacelle assembly		1		
Staging and integration	1			2
Operations & maintenance	7	1	3	

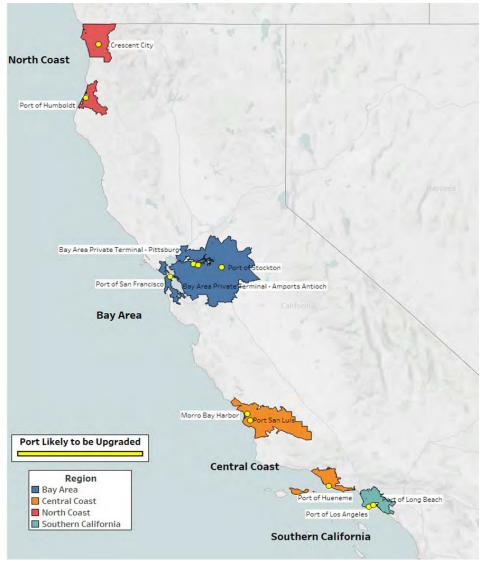


Figure 2. Map of regional ports in CA

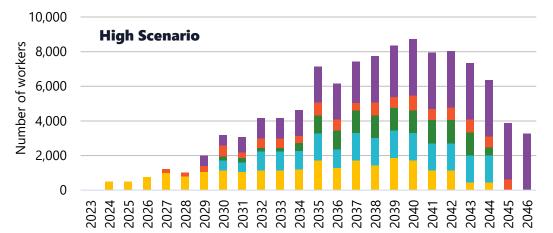
Phase 2: Workforce Capability Assessment

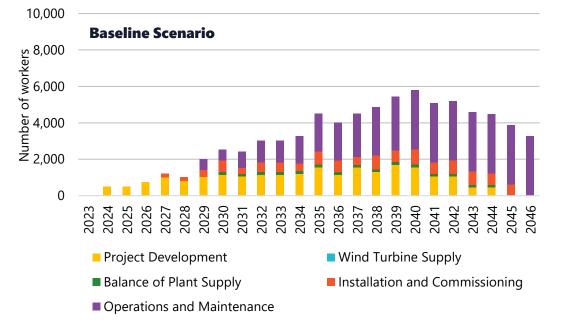
Occupational supply analysis providing current snapshot of quantity and distribution of types of workers needed for port infrastructure and offshore wind development.

- 1. Identify all relevant industry (NAICS) & occupations (SOC codes) for ports + offshore wind work
- 2. Quantify average commute distance by sub-region.
- 3. Quantify current total employment in each of the four regions (2022)
- 4. Identify baseline economic demand for these occupations assuming no offshore wind growth (to be used in gap analysis)
- 5. Identify current training programs and apprenticeships by region, provider type, and occupational focus
- 6. Conducted executive interviews with relevant stakeholders, including:
 - Offshore wind project developers
 - Training centers
 - Unions
 - Community colleges
 - Maritime academies

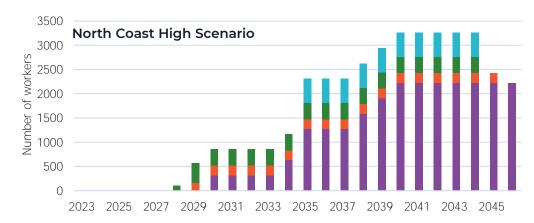
Phase 3: Gap Analysis and Recommendations

- 1. Port jobs were mapped against baseline economic demand for year 2030 by region and SOC codes
- 2. Offshore wind jobs for year 2030 and 2040 in the "high" scenario were mapped against baseline economic demand for year 2030 by region and SOC codes
- 3. Recommendations formulated through executive interviews with developers, labor unions and existing training programs, combined with results from the regional gap analysis




Phase 1: Workforce Needs Assessment

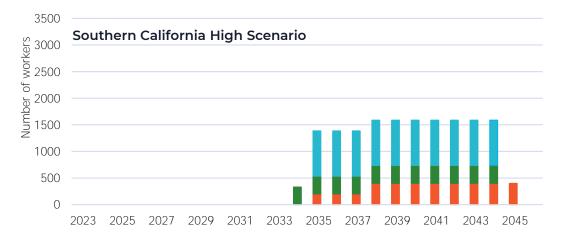
Workforce Demand – Offshore wind


Key points:

- Most robust opportunity for CA workforce in O&M phase
- Need for significant CA manufacturing workforce driven by presence of manufacturing facilities
- Approx. 1700 jobs annually from demand for project development services
- CA workforce requirement in installation phase limited predominantly to onshore work- staging and integration.
- Top jobs among all scenario include engineers, laborers, welders, production operatives, heavy equipment operators, protective coating technicians

Figure 3. California offshore wind workforce demand for High and Baseline Scenarios


Workforce Demand – Offshore Wind (regional analysis)



Non-manufacturing	Manufacturing
Installation and Commissioning	Wind Turbine Supply
Operations and Maintenance	Balance of Plant Supply

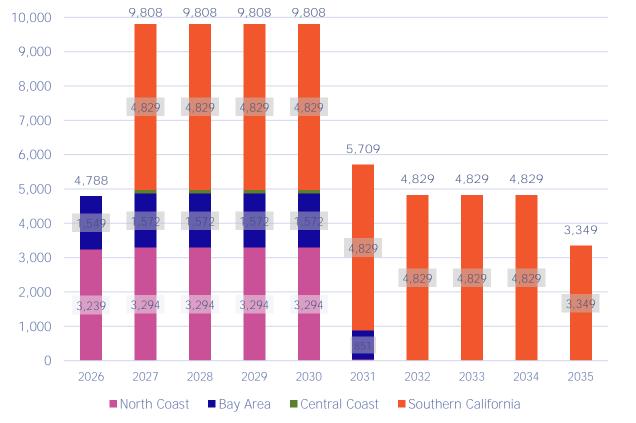
Key points:

- Long term O&M workforce opportunity in North and Central Coast
- Bay Area and SoCal workforce sensitive to attraction of manufacturing facilities

Workforce Demand – Port upgrades, state-wide

Figure 5. Total annual port workforce demand all regions

Total Port SOC Occupation Infrastructure Jobs, 2030 47-2061 **Construction Laborers** 1,142 47-2111 Electricians 1,136 First-Line Supervisors of Construction Trades and 47-1011 730 **Extraction Workers** 47-2031 Carpenters 619 Plumbers, Pipefitters, and Steamfitters 47-2152 510 11-9021 **Construction Managers** 452 13-1082 **Project Management Specialists** 391 Heating, Air Conditioning, and Refrigeration Mechanics 49-9021 385 and Installers 53-3032 Heavy and Tractor-Trailer Truck Drivers 362 43-9061 Office Clerks, General 351


Table 4. Workforce demand by occupation for top in-demand jobs required for port upgrades

- Peak of ~9,900 total jobs annually if all ports are realized.
- Almost three-quarters (72%) are in construction industries.
- Top 5 occupations include: construction laborers, electricians, supervisors, carpenters, & plumbers.

Workforce Demand – Port Upgrades, regional analysis

- Highest job growth will be in Southern California: ~4,800 jobs each year between 2027 and 2035.
- North Coast expected to support ~3,000 3,300 jobs each year between 2026 through 2030.
- Bay Area supports ~1,500 workers each year from 2026 to 2031.
- Lowest projected job growth in Central Coast: ~130 jobs annually from 2027-2030.

Phase 2: Workforce Capability Assessment

Current Occupational Supply Overview I

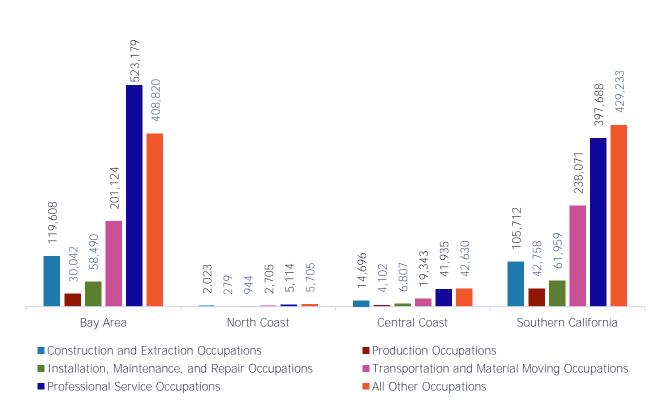


Figure 7. Total jobs in major occupational groups by region, 2022 Q3

• In 2022, 94.8 percent of the 2.3 million offshore wind adjacent jobs are in the Bay Area and Southern California. Significant contrast between these two regions with the North and Central Coast.

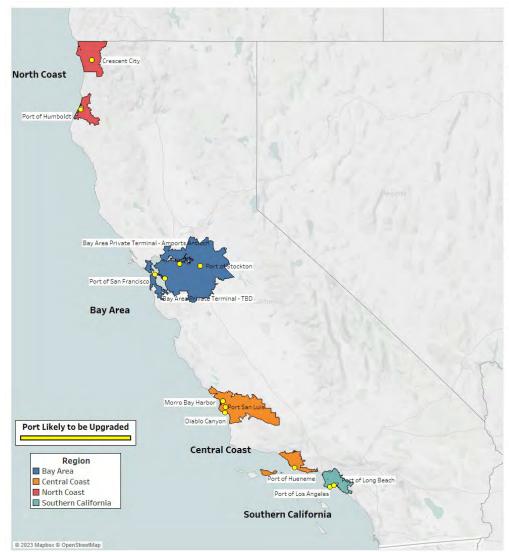
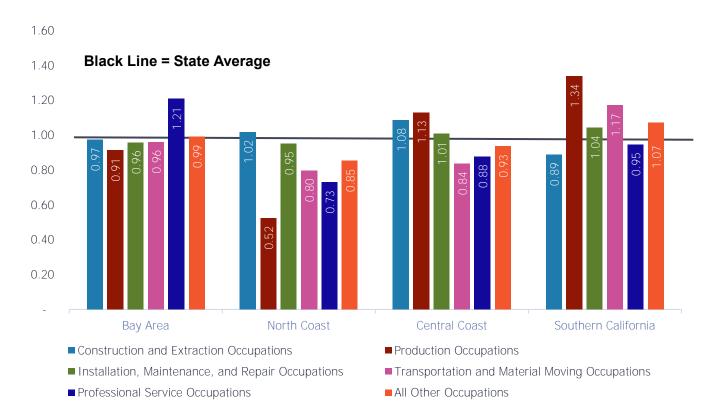



Figure 8. Map of regional ports in California

Current Occupational Supply Overview II

Bay Area leads the state in share of professional service jobs.

٠

- Southern California & Central Coast are statewide leaders in production occupations.
- North Coast & Central Coast have below average concentration of most occupations required for offshore wind + port site development.

Figure 9. Location quotients for major occupational groups by region, 2022 Q3

Phase 3: Gap Analysis

Regional Gap Analysis

North Coast

- The North Coast will require both an upskilling of the current workforce AND a sizeable increase in the total size of the working age population that are willing to work in infrastructure upgrades and the OSW industry.
- Represents the region with the largest demand of construction laborers among all regions.
- Significant gaps in all occupations for offshore wind and port upgrades.

Bay Area

- The Bay Area has a sizeable working population to draw from but will need to communicate and prepare those in the trades the employment opportunities in and around OSW.
- Workforce demand in the Bay Area for offshore wind are all related to manufacturing jobs.

Table 5. Gap analysis for occupations with the greatest demand required for port activity in the North Coast

Occupation	Potential Workforce Demand (no. of workers)	% Growth Above 2030 Projections
Construction Laborers	345	>100%
Electricians	345	>100%
First-Line Supervisors of Construction Trades and Extraction Workers	220	>100%
Carpenters	188	>100%
Plumbers, Pipefitters, and Steamfitters	155	>100%
Construction Managers	135	>100%
Heating, Air Conditioning, and Refrigeration Mechanics and Installers	116	>100%
Project Management Specialists	101	>100%
Office Clerks, General	95	>100%
Cement Masons and Concrete Finishers	89	>100%

Regional Gap Analysis

Central Coast

- Growth from offshore wind demand exceeds expected baseline growth overall, where workforce gaps in this region are related to quayside, maritime roles, and wind turbine technicians.
- The Central Coast represents a relatively tight labor market, the high cost of housing, and the low concentration of a skilled workforce near the Central Coast ports will make recruiting O&M workers more challenging.

Southern California

- · Highest demand of welders needed in any region
- Similar to the Bay Area, this sub-region has a sizeable working population to draw from but there will be a need to communicate and prepare those in related occupations and with relevant skills to the employment opportunities in and around OSW.

Table 6. Gap analysis for occupations with the greatest demand required for offshore wind activity in the Central Coast

Occupation	Potential Workforce Demand (no. of workers)	% Growth Above 2030 Projections
Construction Laborers	60	19%
Coating, Painting, and Spraying Machine Setters, Operators, and Tenders	45	>100%
Hoist and winch operator	40	>100%
Rigger	40	>100%
Welders, Cutters, Solderers, and Brazers	40	42%
Heating, Air Conditioning, and Refrigeration Mechanics and Installers	35	47%
Electro-Mechanical and Mechatronics Technologists and Technicians	30	>100%
Sailors and Marine Oilers	30	>100%
Captains, Mates, and Pilots of Water Vessels	30	>100%
Engineering Technologists and Technicians, Except Drafters, All Other	30	>100%

19

Regional Summary

Key themes

- Workforce development seen in 3 stages:
 - Prepare workforce to design and build the required infrastructure constructing of transmission upgrades and ports.
 - Attract local manufacturing and *then* develop a manufacturing workforce
 - Build up long-term O&M capabilities specifically in North and Central, while also building project development capabilities
- Workforce development needed most severely in the North Coast- it will pose a significant challenge combined with larger challenges the are faces in terms of infrastructure and resilience in the existing energy supply.
- Upskilling and recruitment for electricians and construction managers

Recommendations developed around five themes:

- 1. Identify a primary state agency for California's offshore wind industry
- 2. Align workforce investments with regional needs & port strategies
- 3. Develop shared training programs & curriculum, according to workforce demands & project timelines
- 4. Early engagement and coordination with unions, education and workforce institutions, and planning entities
- 5. Invest in research and innovation for offshore wind industry technology, manufacturing, S+I

Identify a primary state agency for California's offshore wind industry

- A centralized state-level quasi-public agency dedicated to renewable energy with developer participation - initialized through state-mandates to accelerate net-zero goals.
- State-led supply chain and workforce development programs
 – conducted on a regional level. Leverage to fund DEI offshore wind workforce programs.
- Primary agency used to commission offshore wind planning, and agency used to reduce unpredictability of permitting structure

Align workforce investments with regional needs & port strategies

- Invest in programs and resources that expand current and potential offshore wind workforce in/around the North Coast i.e. workforce housing projects.
- Develop shared programs and resources that expand the pipeline for carpenters, plumbers, pipefitters, and HVAC installers for port upgrades.
- Prioritize and coordinate with transmission upgrades projects to ensure alignment of readily available workers and job opportunities for port upgrades and offshore wind.

Develop shared training programs & curriculum, according to workforce demands & project timelines

- Develop and provide training programs and/or seminars that prepare current electricians for port upgrades.
- Develop training programs and/or resources so current construction and project managers and supervisors can transition into the offshore wind industry.
- Build capacity at educational institutions nearterm, focusing on STEM-related curriculum.
 Engage with stakeholders to create career pathways beginning in early education.

Early engagement and coordination with unions, education and workforce institutions, and planning entities

- Coordinate with unions on anticipated workforce mobilization efforts from the Bay and Southern California to the North and Central Coast.
- Coordinate early with labor unions to develop apprenticeship training programs, which target skills needed based on anticipated activities in each region.
- Coordinate workforce development efforts to align with net-zero goal of California, building workforce in renewable energy space.

Invest in research and innovation for offshore wind industry – technology, manufacturing, S+I

- Provide funding avenues for continued R&D, developing and supporting innovation hubs/incubators to become world leaders in floating offshore wind.
- Encourage public-private partnerships between developers, manufacturers, universities, research institutions, and government agencies for R&D.
- Collaborate with economic development agencies to understand current supply chain and best ways to commercialize innovation.

Thank you.

Brooklyn Fox Renewables Consultant T +1 (617) 699-2973 E Brooklyn.fox@xodusgroup.com

- 👗 Josh Williams, Principal
- jwilliams@bwresearch.com
- Sarah Lehmann, Project Manager slehmann@bwresearch.com

Questions and Answers

10 Minute Break

Panel Discussion

Moderator: Ben Pogue

Jeffrey Andreini, Vice President, Crowley

Scott Lewis, Executive Director, NorCal Carpenters Training

Jeremy Stefek, Workforce and Economic Development Researcher, NREL

Robert Collier, External relations director for Cierco, CADEMO project

Scott Adair, Economic Development Director, Humboldt County

Date	Upcoming Workshops
June 9 th , 2023	Public Comments due from today's workshop.
May 25 th , 2023	Assessing Transmission Upgrades and Investments for Offshore Wind Development off the Coast of California
June 1 st , 2023	Identifying Additional Suitable Sea Space and Assessing Impacts and Mitigations for Offshore Wind Energy Development
June 2 nd , 2023	Permitting Roadmap

Public Comments

Public Comment Instructions

Rules

• 3 minutes per person

Zoom

• Click "raise hand"

Telephone

- Press *9 to raise hand
- Press *6 to (un)mute

When called upon

Unmute, spell name, state affiliation, if any

Written Comments:

- Due: June 9th, 2023 by 5:00 p.m.
- Docket: 17-MISC-01
- Submit at: https://efiling.energy.ca.gov/Ecomment/Ecomment.aspx?docketnumber=17-MISC-01

3-MINUTE TIMER

Closing Remarks

Paul Deaver: Paul.Deaver@energy.ca.gov

CEC offshore wind docket:

https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber =17-MISC-01

CEC offshore wind page:

https://www.energy.ca.gov/programs-andtopics/topics/renewable-energy/offshore-renewable-energy

Public comments June 9th, 2023