| DOCKETED         |                                                                                                                                                                         |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Docket Number:   | 20-MISC-01                                                                                                                                                              |  |
| Project Title:   | 2020 Miscellaneous Proceedings.                                                                                                                                         |  |
| TN #:            | 250157                                                                                                                                                                  |  |
| Document Title:  | Presentation - Assessing the Value of Long Duration Energy<br>Storage - E3                                                                                              |  |
| Description:     | Final workshop presentation materials for EPIC grant<br>"Assessing Long-duration Energy Storage Deployment<br>Scenarios to Meet California's Energy Goals" (EPC-19-056) |  |
| Filer:           | Jeffrey Sunquist                                                                                                                                                        |  |
| Organization:    | California Energy Commission                                                                                                                                            |  |
| Submitter Role:  | Commission Staff                                                                                                                                                        |  |
| Submission Date: | 5/15/2023 1:54:19 PM                                                                                                                                                    |  |
| Docketed Date:   | 5/15/2023                                                                                                                                                               |  |

# **CEC EPC-19-056 Assessing the Value of Long Duration Energy Storage**

**Final Public Workshop** 

May 9, 2023





Energy+Environmental Economics

Roderick Go, Associate Director, E3 Rachel Wilson, Manager, Form Energy Kailash Raman, Senior Analyst, Form Energy Dr. Ryan Hanna, Research Scientist, UCSD

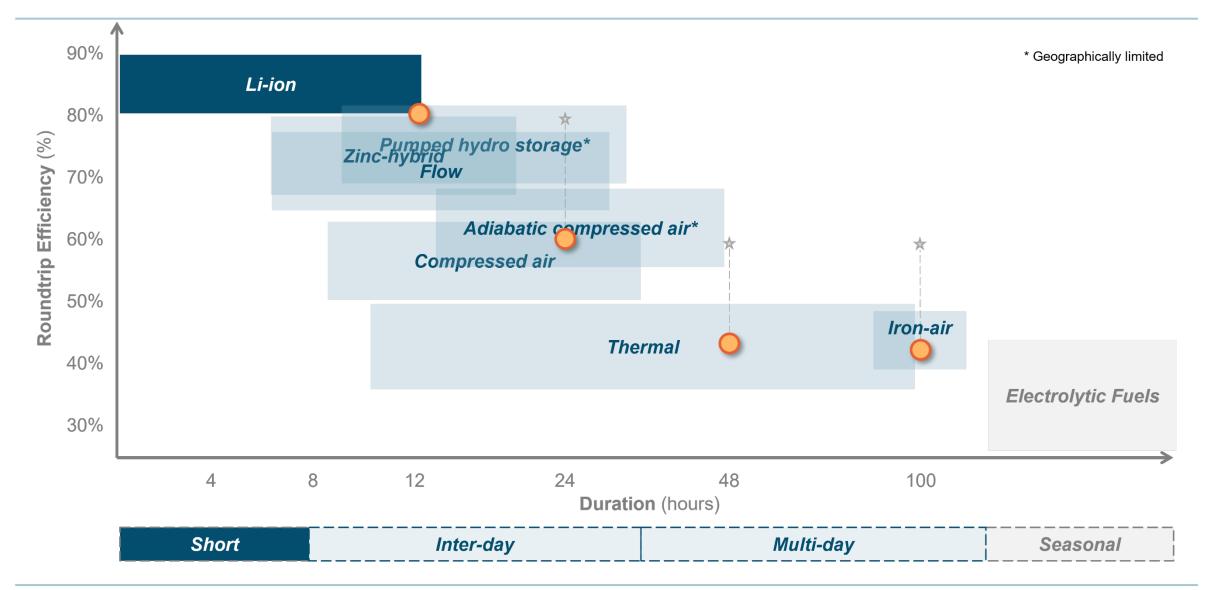
# Agenda

| Time          | Section                            |  |
|---------------|------------------------------------|--|
| 10:00 - 10:20 | Project Overview & Key Takeaways   |  |
| 10:20 – 10:50 | CAISO System Modeling              |  |
| 10:50 – 11:10 | LA Basin Local Capacity Case Study |  |
| 11:10 - 11:40 | UCSD Microgrid Case Study          |  |
| 11:40 - 12:00 | Discussion                         |  |



# Why LDES?

 Historically, fuel storage (e.g., natural gas) has been a cost-effective way of storing energy to maintain system reliability across a range of system conditions

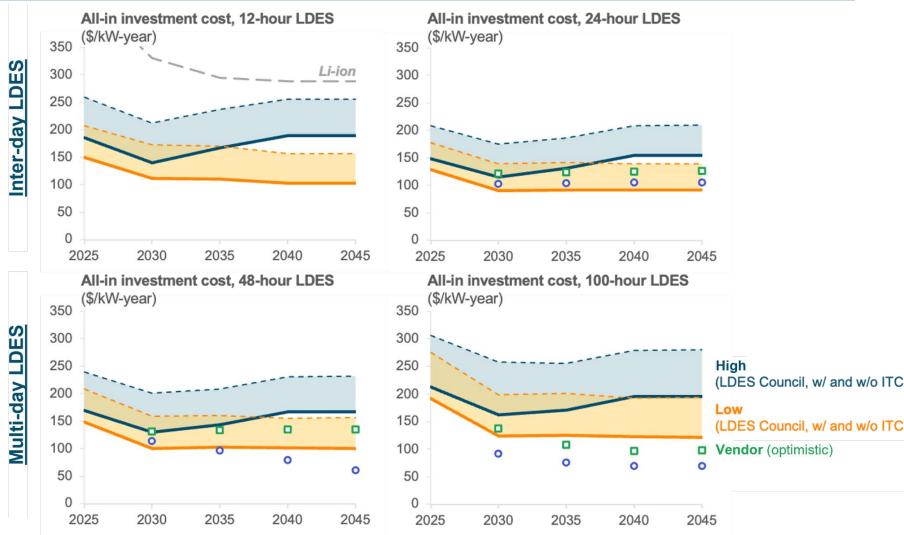

- Studies have demonstrated that we could cost-effectively achieve 80%+ decarbonization with existing technologies
- However, as California moves toward a more decarbonized grid, there is a need to find new technologies to facilitate energy storage to enable cost-effective & reliable decarbonization

## + Recent industry trends:

- Recent California LSE procurements have signed contracts for 8-hour Li-ion and some emerging LDES demonstrations
- Outside of California, utilities have announced LDES plans (e.g., Xcel Energy, Georgia Power, etc.)
- Other states (New York, Massachusetts) have opened proceedings to study the value of LDES
- DOE "Liftoff" report concluded that 225-460 GW of LDES could be deployed US-wide to achieve a net-zero economy by 2060

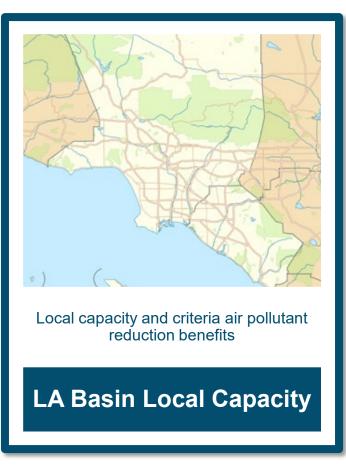


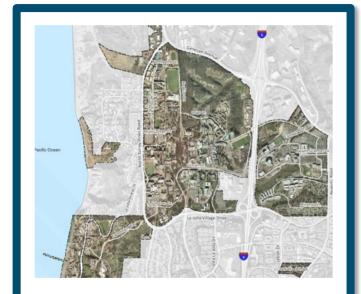
## **LDES Archetypes Studied**






# **LDES Cost Projections**


#### + Team leveraged survey data from LDES Council


- For inter-day storage techs, median energy storage cost\* projected to be \$54-67/kWh
- For multi-day storage techs, median energy storage cost\* projected to be \$8-10/kWh
- Team used standard financing assumptions to convert overnight into \$/kW-year at archetypal durations shown to right











LDES microgrids for institutional settings

# **Key Analytical Questions**

#### **CAISO System**

- 1. What is the role for LDES under different scenarios of grid decarbonization in California?
- 2. What is the bulk system value of LDES technologies on the California grid?
- 3. What cost targets could LDES need to achieve for large-scale deployment?
- 4. Do different modeling choices result in LDES technologies being selected?

#### LA Basin Local Capacity

- 5. Can LDES be used to support local capacity needs, which have not been incorporated into previous CPUC IRP studies?
- 6. What are the potential criteria pollutant impacts benefits of LDES?

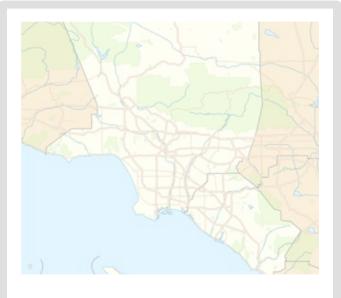
- Does LDES help to enable zerocarbon microgrids? When used in microgrids, what roles does LDES play?
- 8. How do building characteristics and net-zero microgrid policies that prohibit CO<sub>2</sub> and criteria pollutant emissions from microgrids affect the role for LDES?



# **Key Takeaways**

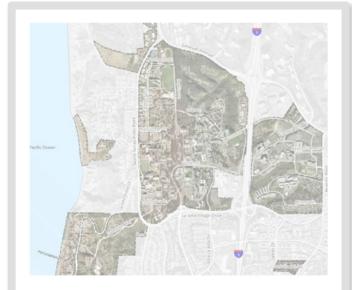
#### **CAISO System**

- Limited role for emerging tech under SB 100 at system level
- 2. Significant role for LDES under deeper decarbonization scenarios
- 3. LDES operates throughout the year, providing intra-day through seasonal energy arbitrage
- LDES can serve much the same role as gas, enabling additional in-state gas retirement
- 5. LDES supports operations during energy-constrained conditions
- 6. LDES significantly reduces renewable curtailment in highly renewable grids
- 7. LDES makes portfolios more robust to inter-annual renewable variability


#### LA Basin Local Capacity

- 8. LDES can be operated to meet CAISO local capacity requirements
- 9. LDES can displace in-basin fossil gas generation and capacity, reducing local air pollution in disadvantaged communities

- 10. LDES can support high-reliability microgrid configurations
- 11. LDES has operational value through peak demand shaving
- In most cases, LDES is not economic, due to cheap natural gas; the UCSD campus microgrid is already highly optimized, limiting the value of LDES
- 13. Falling DER costs help LDES but don't eclipse the case for gas
- 14. Policies that restrict emissions have a big effect, increasing costs of using gas generation and improving the *relative* economics of LDES








ocal capacity and criteria air pollutant. reduction benefits

LA Basin Local Capacity



LDES microgrids for institutional settings

# **CAISO System Modeling Framework & Scenarios Studied**

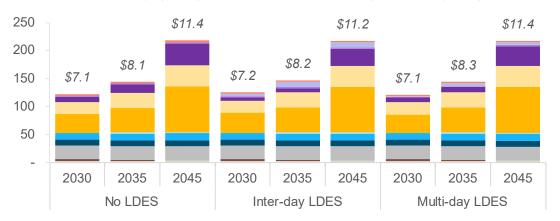
- + Team used Resolve, Recap, and Formware models to study CAISO portfolio value
- + Using Resolve, we developed 2030-2045 LDES cost targets
  - Cost targets represent bulk system value of LDES additions (which displace other CAISO resources, such as gas, Li-ion)
- Using Formware, we studied additional least-cost portfolios in 2045 under wider range of weather years & grid stress events

|                                                                                                                                     | SB 100 Policy                                                                                  | 0 MMT Policy                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Base Policy                                                                                                                         | SB 100<br>31 MMT by 2030<br>12 MMT by 2045<br>Existing gas &<br>unspecified imports<br>allowed | SB 100<br>24 MMT by 2030<br>0 MMT by 2045<br>No in-state gas or<br>unspecified imports<br>in 2045 |
| AB 525<br>Require 20 GW of offshore wind<br>(OSW) by 2045.                                                                          | ~                                                                                              |                                                                                                   |
| High electrification & load<br>flexibility<br>Enable load flexibility as a<br>candidate resources                                   | ~                                                                                              |                                                                                                   |
| <b>Gas retirement</b><br>Retire existing CA gas<br>generation fleet in 2045                                                         | ~                                                                                              | ~                                                                                                 |
| Emerging clean firm<br>generation alternatives<br>Enable adv. geothermal, CCS,<br>and adv. nuclear as candidate<br>resource options |                                                                                                |                                                                                                   |

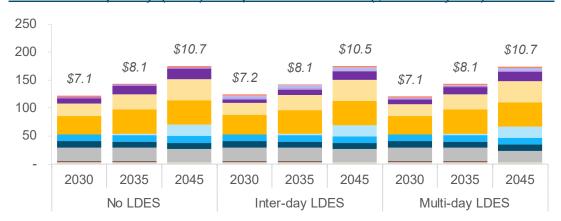


#### CAISO System

## 1. Under SB 100, California could see 5 GW LDES market by 2045


### Limited value differentiation between interday and multi-day LDES under SB 100

- Inter-day LDES archetypes tend to be slightly more cost-effective due to higher energy arbitrage value
- Higher reliability contribution of multi-day LDES not as valuable if in-state gas capacity is retained

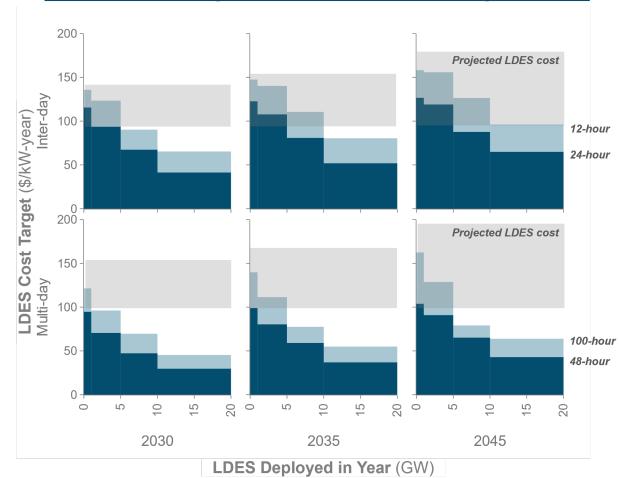

## + Sensitivities:

- **AB 525:** Inter-day LDES value suppressed due to significant offshore wind deployment
- **Flexible loads** (not shown): Flexible residential & commercial loads have no significant impact on LDES due to limited flexibility, up to 6 hours

SB 100 Policy Portfolio Capacity (GW) & Optimized Costs (\$ billion/year)



#### **SB 100, AB 525 Sensitivity** Portfolio Capacity (GW) & Optimized Costs (\$ billion/year)






## CAISO System **1. Under SB 100, California could see 5 GW LDES market by 2045**

- Inter-day LDES needs to target costs of \$120-150/kW-year by 2045 to achieve 5 GW deployment
- Multi-day LDES needs to target costs of \$90-125/kW-year by 2045 to achieve 5 GW deployment
- + Greater LDES adoption could require cost reductions
  - Further cost reductions of 23-37% by 2045 needed to double LDES market size (to 10 GW)

#### LDES Cost Targets under SB 100 Policy





#### CAISO System

## 2. Larger role for LDES & emerging tech to achieve a 0 MMT grid

- + Achieving 0 MMT without emerging technologies is extremely expensive & would require solar PV land-use
  - Existing in-state gas must be replaced with clean resources while maintaining reliability
- Nearly 40 GW of multi-day LDES could be + deployed to make 0 MMT more achievable
  - Reduces the need for solar + storage investment by over 150 GW

#### Sensitivities: +

**CCS & advanced nuclear:** Role for LDES is smaller but still significant if CCS & advanced nuclear can achieve substantial cost declines



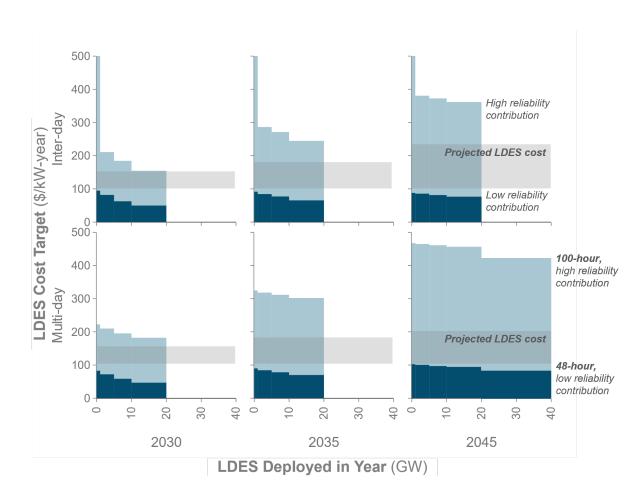
#### **0 MMT Policy**

Portfolio Capacity (GW) & Optimized Costs (\$ billion/year)

0 MMT Policy, CCS & Advanced Nuclear Sensitivity\*\* Portfolio Capacity (GW) & Optimized Costs (\$ billion/year)






Shed DR LDES Pumped Storage Battery Storage Customer PV Offshore Wind Wind Solar Hvdro Fossil Gas 13 CHP Coal Clean Firm

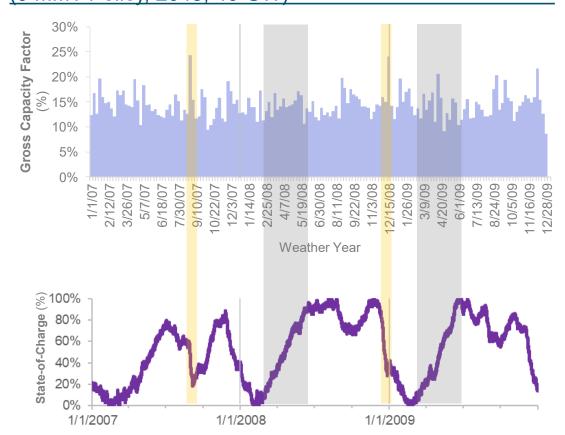
#### **CAISO System**

## 2. Larger role for LDES & emerging tech to achieve a 0 MMT grid

- Cost targets are much higher in 0 MMT due to need for in-state clean firm resources, with greater uncertainty on portfolio reliability interactions
- Inter-day LDES targeting below \$380/kWyear could see 5 GW of deployment by 2045
  - Further cost reductions of 5% could increase deployment to 20 GW
- + Multi-day LDES targeting below \$450/kWyear could see 5 GW of deployment by 2045
  - Further cost reductions of 2% could increase deployment to 20 GW
  - 100-hour LDES archetype provides significant reliability value and is cost-effective through 40 GW of deployment

#### LDES Cost Targets under 0 MMT Policy



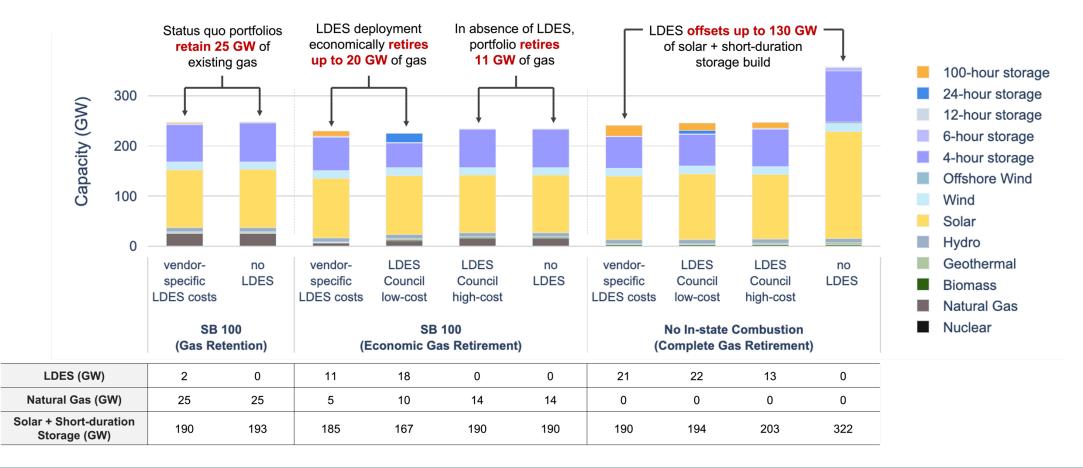



## **CAISO System 3. LDES operates throughout the year**

## + Both inter-day & multi-day LDES operate throughout the year

- On "typical" weeks, LDES cycles largely diurnally
- Ahead of energy-constrained conditions (e.g., summer, winter), LDES *charges over longer periods* with excess renewables
- During energy-constrained conditions, LDES discharges across multiple days
- In the 0 MMT policy scenario, LDES operates at 8-24% discharge capacity factor (equivalent to 7 – 21 cycles per year)

#### Example Multi-day LDES Operations (0 MMT Policy, 2045, 40 GW)



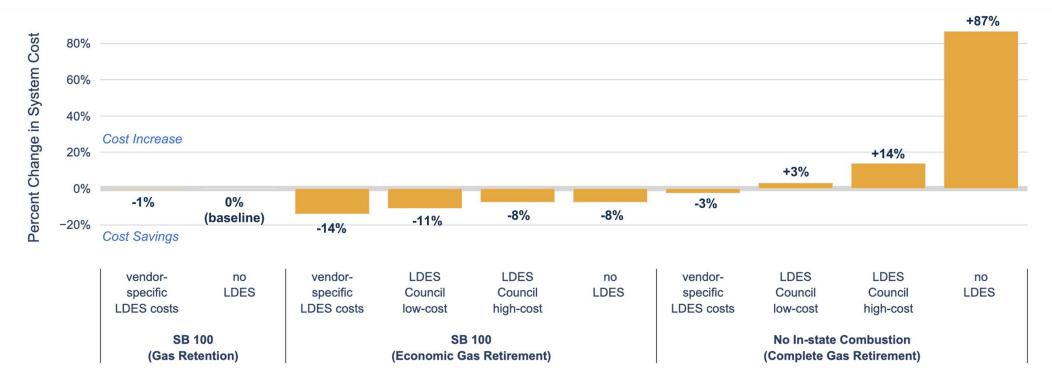



## **CAISO System 4. LDES can enable cost effective in-state gas retirement**

#### + LDES can support retirement of existing CAISO gas generation capacity

- Least-cost portfolios optimized to meet CAISO demand in all 8760 hours across 8 weather years (using weather-correlated load and renewable data)
- Modeled scenarios include retention, economic retirement, and complete retirement of existing in-state gas generation capacity



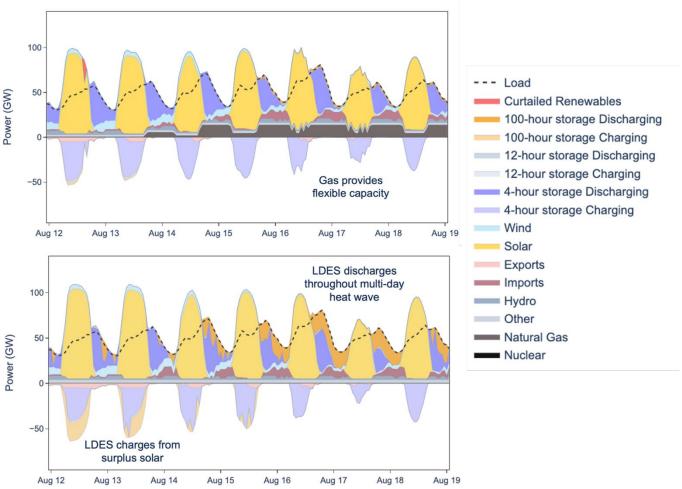

#### Form energy

## <u>CAISO System</u> **4. LDES can enable cost effective in-state gas retirement**

#### + LDES portfolios that retire gas capacity can potentially achieve cost savings relative to portfolios that retain all existing gas capacity

- Gas retirement with LDES avoids operational costs required to keep gas generation online
- In the complete gas retirement scenario, portfolio costs increase significantly without LDES due to overbuild of solar and short-duration storage

# Percent change in system cost relative to status quo portfolio (SB 100, no LDES, no gas retirement)

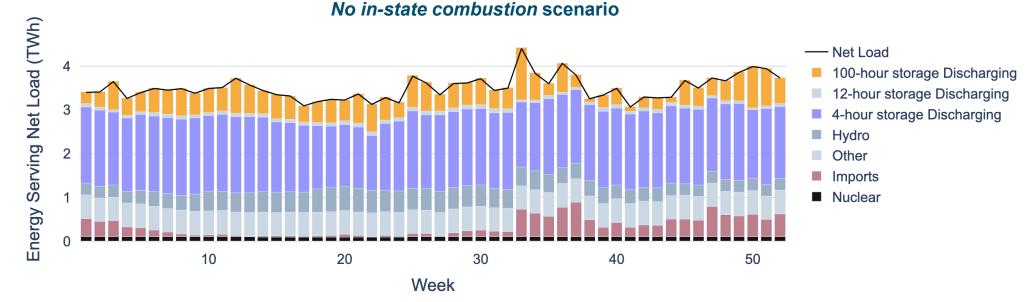





## **CAISO System 4. LDES can enable cost effective in-state gas retirement**

## + LDES maintains reliability during extreme weather conditions in absence of in-state gas generation

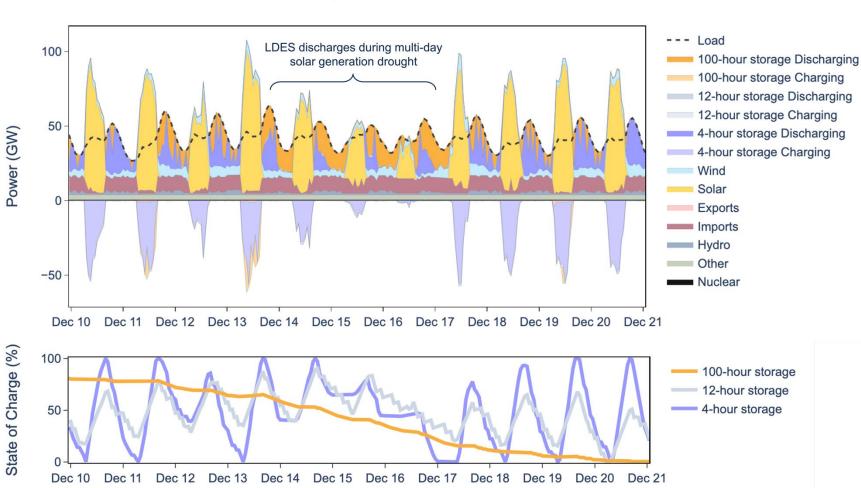
- Optimal least-cost portfolios with and without in-state gas generation were dispatched under 2020 heat wave conditions
- Simulation illustrates that LDES can hold a high state of charge prior to a grid stress event, and discharge continuously over a multi-day period to maintain reliability
- Similar behavior observed during renewable lull periods
- + LDES provides flexible capacity, like existing thermal resources, during extreme grid stress events




# Dispatch of 2045 portfolios with gas (top) and without gas (bottom) during 2020 CAISO heat wave conditions

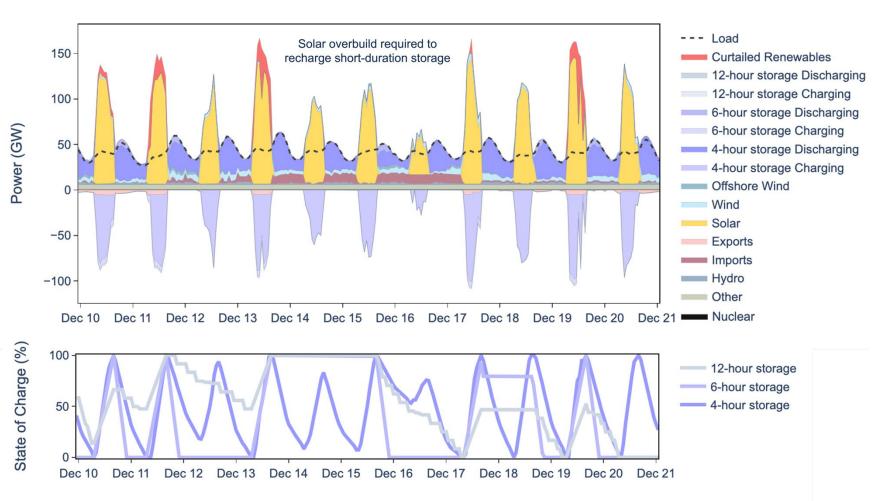


#### + LDES maintains year-round reliability in the absence of in-state gas generation


- Periods of grid stress can occur year-round when renewable generation is insufficient to meet demand
  - In a no-combustion case, net load (demand that is unmet by solar and wind) is served by storage, hydro, imports, and other resources
- 62 GW of 4-hour storage serve 47% of annual net load, primarily through diurnal energy shifting of solar
- 21 GW of LDES serve 15% of annual net load, delivering energy to balance load during multi-day shortfalls in renewable generation

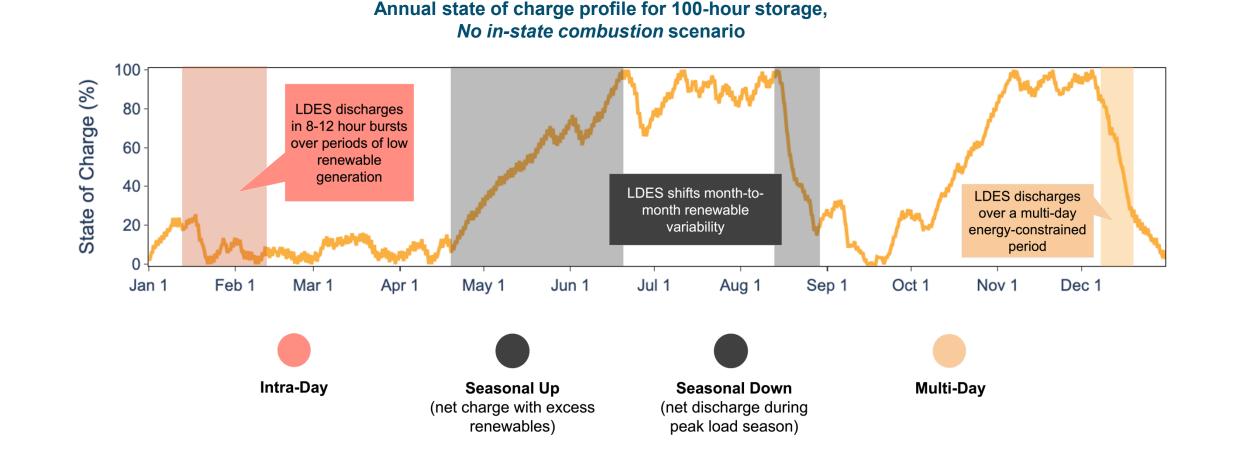


#### Weekly energy dispatched to serve net load, No in-state combustion scenario




- LDES holds stored energy prior to solar lull event (~80% state of charge)
  - Stored energy provides a hedge against imperfect foresight risk
- Continuous discharge of energy from LDES maintains reliability throughout late afternoon and nighttime hours
- LDES does not recharge during solar-limited week, saving energy for 4-hour storage to recharge and provide peaking capacity




#### Winter Renewable Lull, No in-state combustion scenario with LDES

- In absence of LDES, the no in-state combustion portfolio includes additional 90 GW of solar overbuild to meet demand during energy-constrained periods such as lulls
- At end of each day, 4-hour and 6-hour storage is completely depleted
  - Without LDES or gas capacity, system has less backup energy that can be delivered during an unforeseen grid stress event



#### Winter Renewable Lull, No in-state combustion scenario without LDES





## <u>CAISO System</u> 6. LDES reduces renewable curtailment

- In portfolios which retire in-state combustion resources, LDES reduces total annual curtailed energy by 94%
- Reduction of curtailment in LDES portfolios is driven by reduced renewable build and greater energy capacity
  - LDES reduces solar overbuild by 90 GW in no-combustion portfolios, resulting in less overgeneration
  - LDES can charge continuously over consecutive days to fully absorb surplus generation during high renewable weeks

Renewable curtailment by week, No in-state combustion scenario





#### **CAISO System**

## 7. LDES makes portfolios more robust to weather uncertainty

### + LDES maintains system reliability and reduces resource overbuild in the face of inter-year weather variability

- Least-cost portfolio optimization was performed on eight individual weather years, and co-optimized across all eight years
- LDES deployment improves reliability in the face of varying weather patterns, allowing resource requirements to remain nearly constant across many weather years
- Co-optimized portfolio with LDES avoids more than 100 GW of resources (29% of installed capacity) relative to portfolio without LDES
- In the absence of LDES, resource portfolios are highly sensitive to weatherdriven variation in load and renewables

#### Least-cost 2045 portfolios across weather years, No in-state combustion scenario





## <u>CAISO System</u> **Key Takeaways**

+ The type of LDES deployed depends largely on which technologies achieve commercialization & projected cost declines

- Without considering locational value, this study shows varying bulk system need for emerging techs like LDES under SB 100 (0 GW under high costs, 18 GW under low costs)
- LDES could make gas retirement economic and reliable under SB 100 policy
- LDES could make more aggressive policy scenarios (e.g., 0 MMT, in-state gas retirement) significantly more cost-effective
- Additionally, this study estimates cost targets for inter-day & multi-day LDES that would achieve greater deployment levels
- LDES supports reliable operations across a variety of system conditions, including adverse weather and other energy-constrained periods, enabling more cost-effective retirement of in-state gas capacity
- + LDES makes the system more robust to a variety of weather conditions, including interannual renewable variability



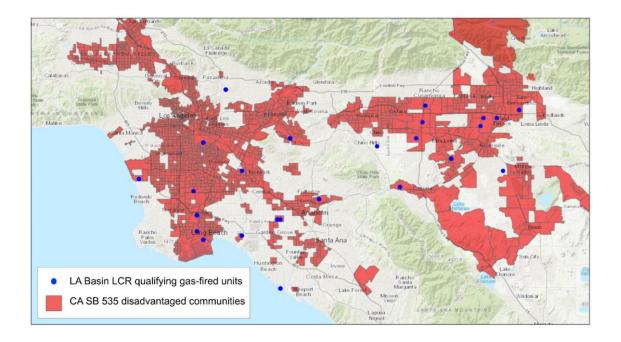






LDES microgrids for institutional settings

## LA Basin Local Capacity Case Study Modeling Framework & Scenarios Studied


# + Evaluated the role of LDES in meeting 2030 local reliability needs within the LA Basin

- Modeled transmission-constrained operations within LA Basin across 8760 hours, while enforcing local capacity requirement
- Data inputs and assumptions consistent with the 2027 CAISO LCR Technical Study

## Modeled retirement of gas plants in disadvantaged communities

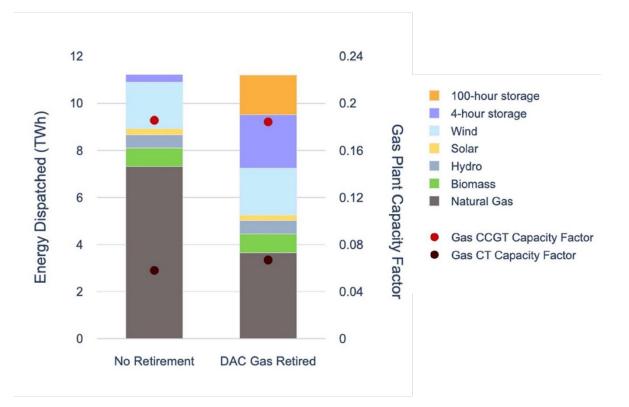
- LA Basin LCR area contains 6.4 GW of local gas capacity, of which 3.4 GW are sited in disadvantaged communities (DAC)
- Determined least-cost mix of storage resources required to maintain local reliability in absence of DAC gas units

# Siting of gas-fired generators in LA Basin LCR area, overlaid with SB 535-defined Disadvantaged Communities





## 8. LDES can help meet CAISO local capacity requirements


## LDES maintains reliability in LA Basin in absence of DAC gas

- Without retirement of DAC gas, LA Basin's planned resources are sufficient to meet LCR
- When DAC gas units are retired, least-cost portfolio optimization builds 2,000 MW of LDES and 1,340 MW of 4-hour storage
- LDES and 4-hour storage deliver energy to LA Basin that otherwise would have been generated by DAC gas units

# + LDES satisfies LCR requirements at cost parity to the status quo

 Replacement of DAC gas-fired units with LDES and lithium-ion technologies results in annual system cost savings of 3% relative to retaining existing gas

#### LA Basin 2030 local reliability portfolio dispatch, with and without retirement of gas capacity in DAC areas





## 8. LDES can help meet CAISO local capacity requirements

Sep 5

Sep 6

Sep 7

Sep 8

Sep 9

Sep 10

## LDES provides flexible capacity to LA Basin during transmissionconstrained periods

- Local flexible capacity maintains reliability when LA Basin load exceeds load serving capacity of transmission connections to the CAISO bulk system
- LDES continuously discharges stored energy reserves for 7-14 hours on peak demand days, while short-duration storage delivers peaking capacity for 4-6 hours

#### with DAC gas (top) and without DAC gas (bottom) 20 15 Power (GW) Load Serving Capacity of LA Basin Transmission --- Demand 5 100-hour storage Discharging 100-hour storage Charging 4-hour storage Discharging 4-hour storage Charging Sep 5 Sep 6 Sep 7 Sep 8 Sep 9 Sep 10 Wind Solar Hvdro 20 Biomass Natural Gas 15 CAISO Imports Power (GW)

LA Basin 2030 resource dispatch during peak demand week,

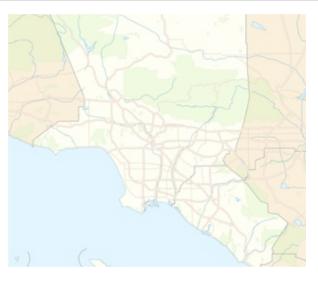



#### LA Basin Local Capacity Case Study

## 9. LDES can reduce local air pollution

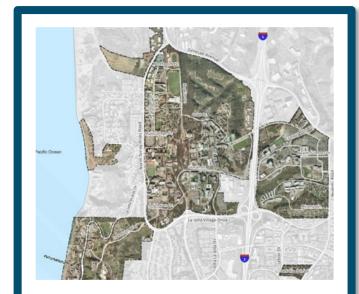
- Criteria pollutant emissions from LA Basin's gas generation occur disproportionately in disadvantaged communities
  - These pollutants are linked to chronic respiratory illness in local communities
  - Emissions estimates based on simulated dispatch and historical plant-level emissions data from EPA
- Replacement of DAC gas with LDES and short-duration storage reduces pollution burden in the LA Basin
  - LA Basin's power sector NOx emissions reduced by 88% and sulfur dioxide emissions reduced by 65%

#### Local air pollution reductions






- + Bulk system analysis does not include transmission constraints; inclusion of those constraints demonstrates that there are pockets within CAISO in which LDES has increased value
- + LDES and short-duration storage can economically support the retirement of DAC gas units, while meeting local reliability requirements
  - Portfolios which replace DAC gas with storage resources can potentially achieve cost parity with existing portfolios which retain gas
  - Storage deployment can eliminate criteria pollutant emissions from the power sector in disadvantaged communities
- + Future studies should further investigate the reliability implications of LDES deployment and gas retirement within LCR areas

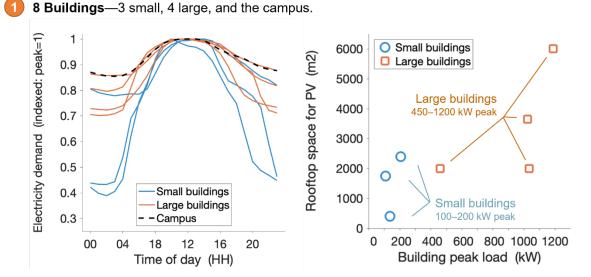




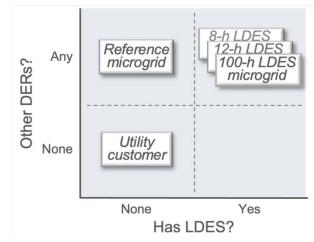



ocal capacity and criteria air pollutant\_ reduction benefits

LA Basin Local Capacity




LDES microgrids for institutional settings

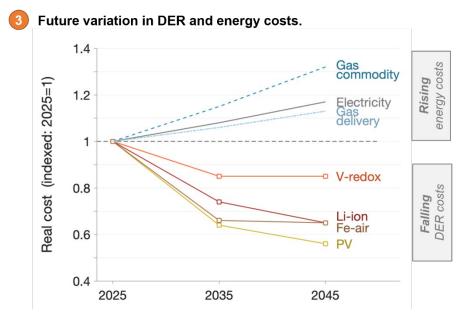

# UCSD Microgrid Case Study Scenarios Analyzed

#### + We design a case study to analyze variation in

- 1. Building type
- 2. DER portfolios (with and without LDES)
- 3. DER and energy costs that change over time
- 4. Microgrid emissions policy
- + All of these affect the environment for LDES
- + 8 buildings x 5 DER portfolios x 3 build years x 3 policies = 360 total scenarios



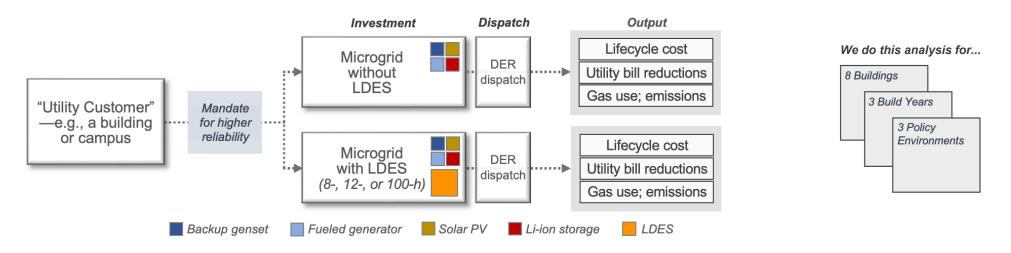
**5 DER Portfolios**—utility customer, reference (non-LDES) microgrid, 3 LDES microgrids






# UCSD Microgrid Case Study Scenarios Analyzed

#### + We design a case study to analyze variation in


- 1. Building type
- 2. DER portfolios (with and without LDES)
- 3. DER and energy costs that change over time
- 4. Microgrid emissions policy
- + All of these affect the environment for LDES
- 8 buildings x 5 DER portfolios x 3 build years x 3 policies = 360 total scenarios



| Policy Scenario                          | Restrictions on Emissions from Onsite Generation            | Description                                                         | Practical Effect on Designing Microgrids                                                                                                                                   |
|------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference (Ref)                          | None                                                        | Policy today for small decentralized generation sources             | _                                                                                                                                                                          |
| Zero-Carbon (Zc)                         | No CO <sub>2</sub> emissions                                | Aligned with California's goal of 100% clean electricity            | Requires substitution of fossil gas (\$5.50/MMBtu) for zero-carbon<br>RNG (\$17–25/MMBtu) options<br>(3–4.5x increase in fuel price)                                       |
| Zero-Carbon + zero-<br>pollution (Zc+Zp) | No CO <sub>2</sub> emissions, no criteria<br>air pollutants | Aligned with 100% clean electricity and environmental justice goals | Requires further substitution of combustion generators (e.g., gas turbines) for non-combustion alternatives (e.g., fuel cells) (2–2.6x increase in fueled generator capex) |

## UCSD Microgrid Case Study Modeling Framework

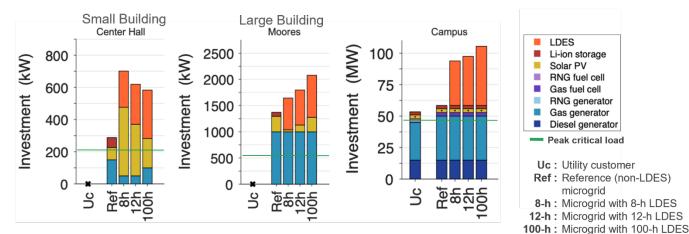
- + All microgrids deliver a minimum level of reliability (by requirement), powering a building's critical load during grid outages for ≥48 consecutive hours
- + During "blue sky" days, microgrids operate to reduce customer energy bills (e.g., through demand charge clipping and time-of-use energy arbitrage)
- + CO<sub>2</sub> emissions are a byproduct of cost-minimizing investment and dispatch decisions



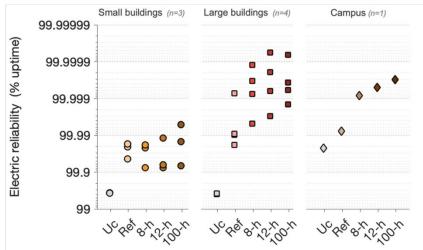
For LDES, the key question is then: What does LDES do—to a microgrid's economics, DER portfolio, use of fossil fuels, and  $CO_2$  emissions—when added to the microgrid?



## UCSD Microgrid Case Study 10. LDES can support high-reliability microgrid configurations


## + Reliability during "gray-sky" days

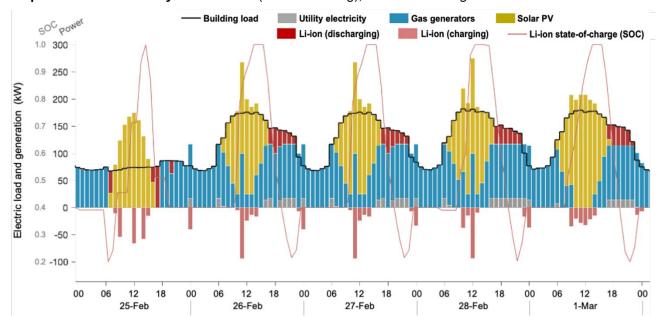
 When added to microgrids, LDES typically combines with many other DERs—fueled generators, solar PV, Li-ion storage—to meet the 48-h reliability requirement


## + Overall electric reliability

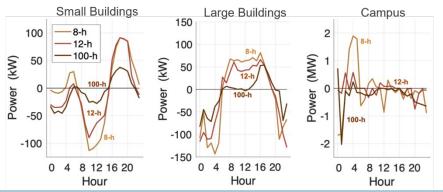
- Service uptimes across microgrids are 99.9% to 99.9999%
- Utility service has 99.6% uptime

**DER Portfolios for the 4 microgrid configurations**—Reference (no LDES) and 3 LDES microgrids with *8-h*, *12-h*, & *100-h* LDES.




#### Electric service reliability. By building type and microgrid type.




# 11. LDES has operational ("blue-sky") value—through peak shaving and energy load-shifting

### During "blue-sky" days when the grid is up, LDES peak-shaves and loadshifts to reduce utility bills

- Peak shaving: 35–85% of <u>residual</u> peak load for small buildings and 1–25% for large buildings; (residual: after considering power output from other DERs)
- Cycles: 2–105 cycles/yr for small buildings; 1–150 cycles/yr for large buildings
- LDES's share of electricity supply: 8–15% for small buildings; 1–4% for large buildings
- + Operational role depends on type of LDES
  - Higher-RTE LDES (8-h) is cycled more
  - Lower-RTE LDES (100-h) is cycled less

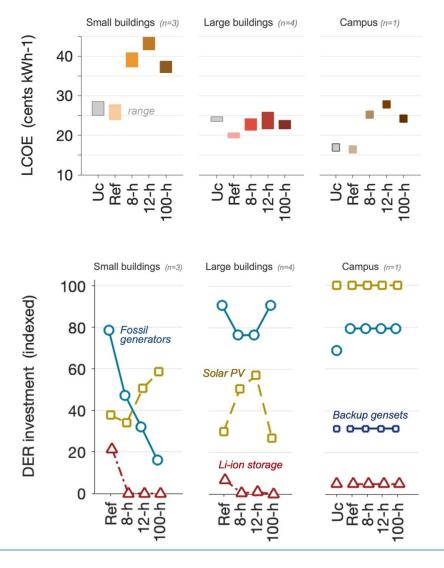


Daily dispatch, averaged over all days. By LDES type.





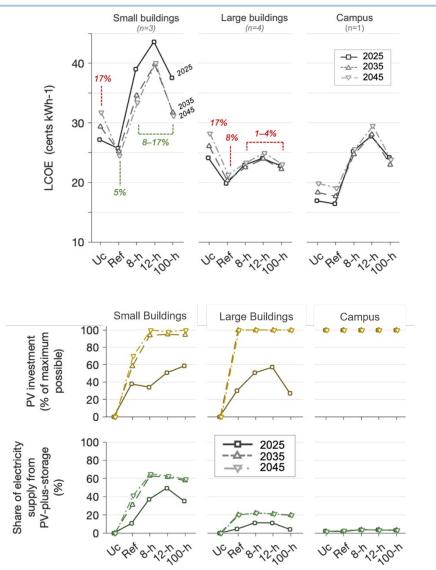
#### Form energy


## **12. In most cases, LDES is not economic; building type matters**

- LDES economics are limited by cheap gas, finite rooftop space
- Building type determines PV+storage potentials—hence, whether/how LDES interacts with gas generation
  - Lack of load "peakiness" (large buildings in our analysis) tends to favor baseload gas generation
  - Peaky load aligned with peak solar output (small buildings in our analysis) is more auspicious for PV+storage
    - Hence, for small buildings, LDES added in increasing duration generally displaces more gas generation

## + Existing DER portfolios can affect LDES's role

- Extant microgrids are (typically) already optimized for high reliability and low energy costs (as with the UCSD campus microgrid)
  - In these cases, there is little room for LDES to generate <u>additional</u> cost reductions and reliability gains

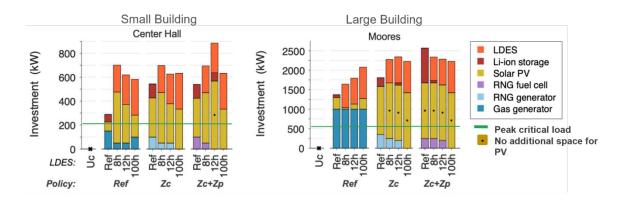

### + Need wider analysis of the California building stock

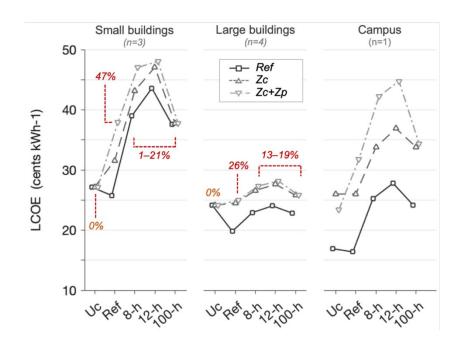


## **13. Over time, DER costs fall, utility costs rise, and the case for PV-plusstorage improves**

- + Lifecycle LCOE depends on when the microgrid is constructed and begins operation
- + Over time, LCOE...
  - Increases for utility customers
  - Increases for gas-dominant microgrids
  - Decreases for PV-plus-storage–centric microgrids
- + However, even as PV-plus-storage costs fall, LDES is still not economic
  - Rooftop space limits deployment potentials
  - The case for gas in microgrids remains strong

Technology and markets do not, of themselves, lead to zero-carbon outcomes for microgrids




# 14. Policies that restrict emissions improve the *relative* economics of LDES microgrids—by driving up gas generation costs

- Such emissions policies radically change the outlook for microgrid DER portfolios and economics
  - With policy: less investment in gas capacity, more PV-plus-storage, more utility electricity imports, higher costs
- + Policies impose costs on all microgrids that use fossil gas
- + Even with higher gas generation costs, LDES is generally still not economic

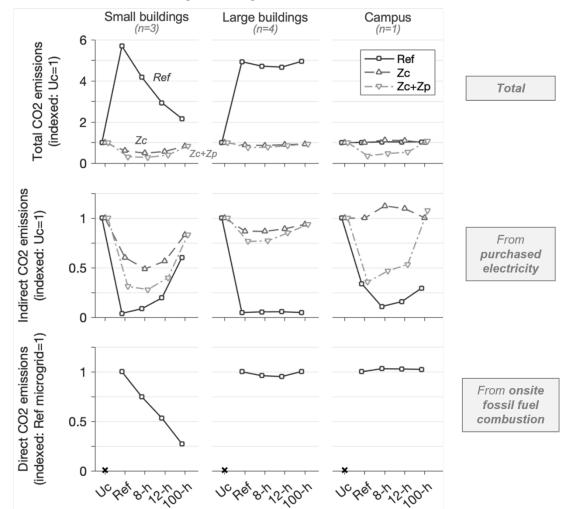
Gaseous fuels have very high value for <u>cost-effectively</u> improving customer reliability.







# 15. $CO_2$ emissions: Low-carbon microgrids still rely on grid electricity—and hence decarbonize only as quickly as the grid

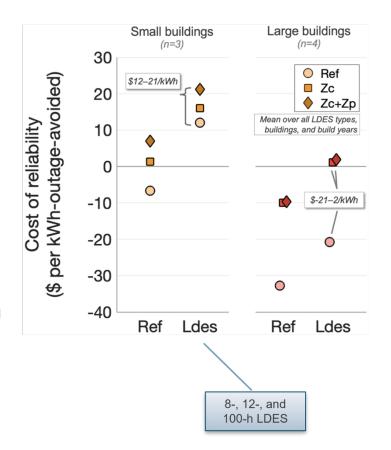

- In our analysis, microgrids don't operate to minimize emissions; rather, emissions are a byproduct of *cost-minimizing* operation
- + Policy is the dominant driver of CO<sub>2</sub> emissions
  - Under *Ref* policy, all microgrids <u>increase</u> system-wide emissions—due to substantial use of gas
  - Under Zc and Zc+Zp policy, all microgrid reduce emissions—by zero-carbon mandate

## Within policy environments, LDES can be a driver of CO<sub>2</sub> emissions

• Particularly for small buildings in our analysis

In many cases, microgrids are zero-carbon by DER portfolio, <u>but not by delivered energy</u>

**Total, indirect, and direct CO<sub>2</sub> emissions**. For the utility customer and all microgrid configurations.






# UCSD Microgrid Case Study Key Takeaways

- + In most cases in our analysis, LDES is not economic
- + LDES fairs *relatively* better in policy environments that price emissions; such policies raise costs on all microgrids
- Under such policies, gaseous fuels and fueled generators are still valuable for improving reliable (even as fuel prices reach \$17–25/mmbtu)
- Although costly, microgrids improve customer reliability at relatively low cost of reliability (e.g., lower than many reported VOLLs)
  - LDES microgrids deliver higher reliability at \$-32-8/kWh
  - Non-LDES microgrids deliver reliability at \$-20-22/kWh
- + Limitations of our analysis and need for additional investigation
  - Additional revenue streams:
    - utility resilience payment: 
       for longer duration
    - emergency load reduction program: 
       for longer duration
    - ancillary services: 
       for shorter duration

**Cost paid for improved reliability**. For non-LDES and LDES microgrids.





# **Areas for Future Research**

## **Areas for Future Research**

#### **1.** Continued research to track progress of emerging technologies

• Seasonal storage & siting of hydrogen infrastructure (particularly with IRA tax credits)

#### 2. Resource adequacy & resilience will be a major component of long-term portfolio planning

- Better datasets to characterize loads & renewable generation for more weather years may reveal additional value for multi-day or seasonal LDES
- Climate impacts will change the nature of resource availability & reliability events in the future
- Continued innovations in modeling methods for resource adequacy under deep decarbonization are needed
- 3. More information on locational value, local capacity needs & local air pollution may reveal additional use-cases for LDES
- 4. New revenue streams & tariff structures that might improve the economics (and realize the full value) of customer-sited LDES



# **Knowledge Transfer**

- + Updated Resolve model will be released on GitHub later in the spring
- + Weather-correlated renewable and load data from Form Energy will be released on Zenodo
- + Updated Resolve model is being used in multiple ongoing & upcoming California studies:
  - **1. CEC EPC-19-060** *Modeling of LDES for Decarbonization of California Energy System*

## 2. 2023 CPUC IRP Preferred System Plan and 2024-25 Transmission Planning Process

- Proposed scenarios will include emerging technologies (e.g., offshore wind, electrolytic fuels), long lead-time procurements, and updated electrification & load flexibility assumptions from LBNL Phase 4 DR study

#### 3. CEC EPC-21-041

Climate-Informed Load Forecasting & Electric Grid Modeling to Support a Climate Resilient Transition to Zero-Carbon

#### 4. CEC GFO-22-304 (proposed award)

Assessing the Role of Hydrogen in California's Decarbonizing Electric System



# **Discussion**



