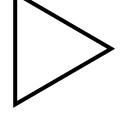
DOCKETED	
Docket Number:	22-OII-02
Project Title:	Gas Decarbonization
TN #:	247779
Document Title:	Presentation - Gas Demand Forecasting Methodology
Description:	Presentation 02 - Miguel Cerrutti - Gas Demand Forecasting Methodology
Filer:	Jann Mitchell
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	11/29/2022 2:00:51 PM
Docketed Date:	11/29/2022

Gas Demand Forecasting Methodology

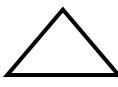
Miguel Cerrutti Energy Assessments Division / Demand Analysis Branch November 30, 2022

- factors affecting demand space heating & cooling / electricity generation
 multi seasonality / trend / calendar
- types of demand forecast 1-in-2 peak-day gas demand
 1-in-10 and 1-in-35 peak-day gas demands
- historical weather & demand data monthly & daily demand profiles categorized by sectors & by core, noncore, & EG
- degree of uncertainty data / factors / modeling / estimates
 probabilistic inference quantify uncertainties by Bayesian

Methodology


- probabilistic programming Python Facebook Prophet / PyMc domain knowledge
- 631 weighted moving average trend direction generate forecast

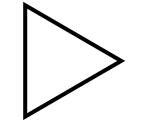
- NOAA 30-year daily temperature 631 weighted average temp sustain effects
- logarithm historic gas demand 631 weighted average temp calendar dummies
- CEDF


CA Energy Demand Forecast Quarterly Fuel Energy Report (QFER) SoCalGas – Southern CA Edison

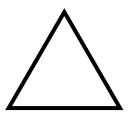
Deriving Monthly Demand Profiles

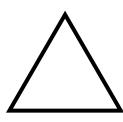
scaled to annual CEDF gas forecast of 2008-2025 to calibrate sectors' monthly demand

scaled to CEDF's sectors monthly demands to create the core, noncore, & EG monthly demands


monthly profiles of QFER's sectors for 2008-2020 scaled to the monthly demand

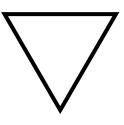
monthly profiles of QFER's core, noncore, & EG for 2008-2020 scaled to the monthly demand





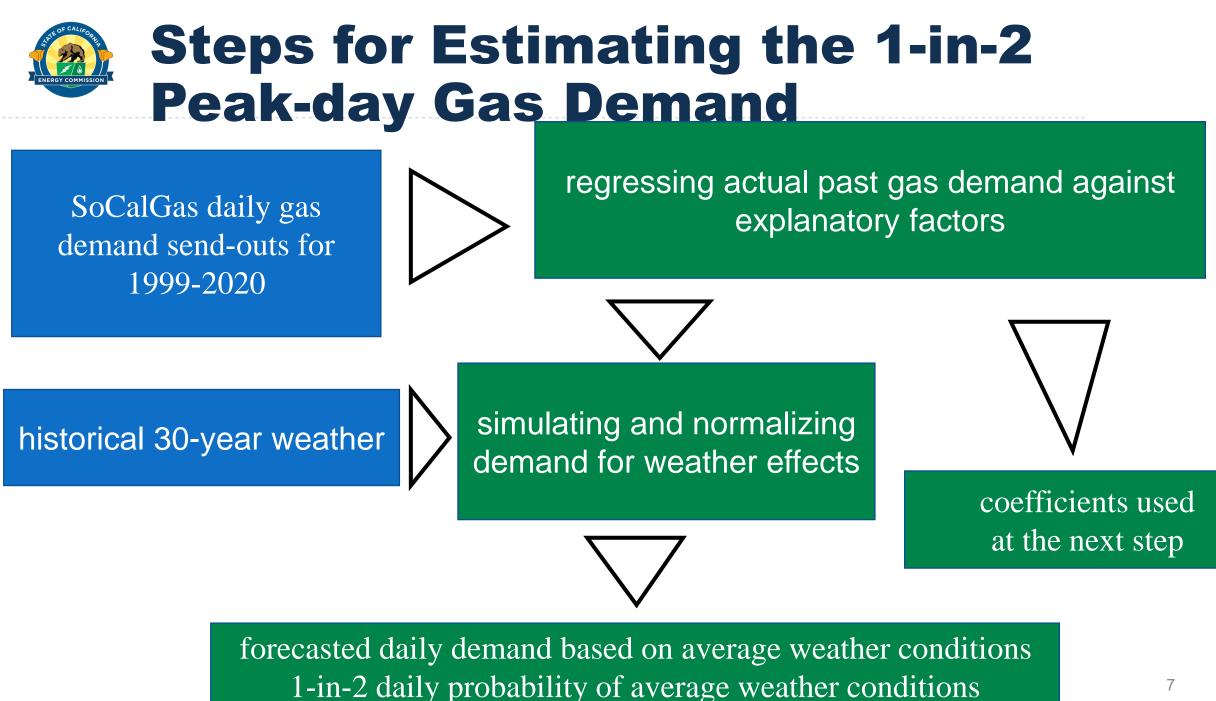
monthly gas demand forecasts from electricity generation

growth rate weighted moving average to obtain 2022-2023



SoCalGas monthly EG gas demand for 2017-2021

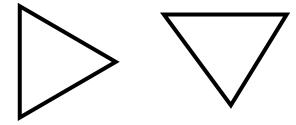
QFER monthly electricity demand for 2008-2021, provided by SCE, as a proxy for SoCalGas


Deriving Daily Demand Profiles

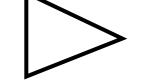
historical daily gas demand profiles over time by core, noncore, and EG

daily profiles scaled to the daily demand and to the daily core demand

SoCalGas daily gas demand categorized by core, noncore, and EG for 2017-2021


Steps for Estimating the 1-in-10 and 1-in-35 Peak-day Gas Demands

estimation of a 10-year and 35-year weather



calibration to a 1-in-10 and 1-in-35 daily peaks

simulating and selecting daily peak demand by applying the coefficients calculated at the step before

daily demand profiles

calculates abnormal peak-day demand for core, noncore, and EG

applying 1-in-10 temperature values to all categorized demands, but 1-in-35 values only to core

- probabilistic programming
 - accounting for uncertainty
 - data, factors, modeling, & estimates
 - fine-tuning cross-validation
- 631 average temperature simplifies modeling & reduces volatility
- gas demand profiles matching datasets
- accurate forecast gas demand for winter reliability under extreme weather