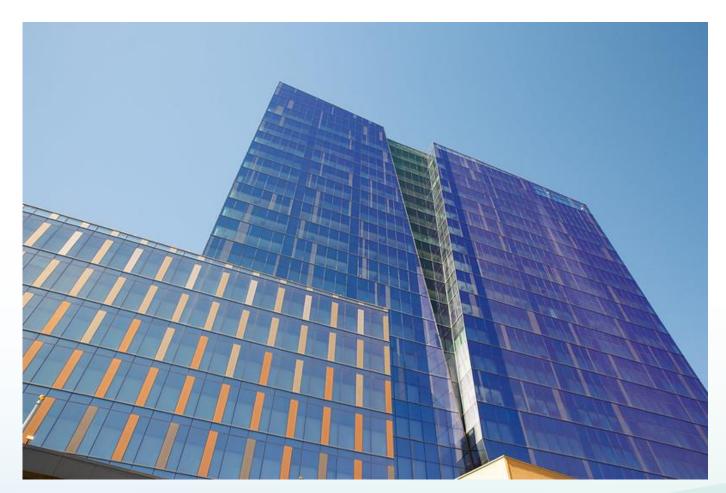
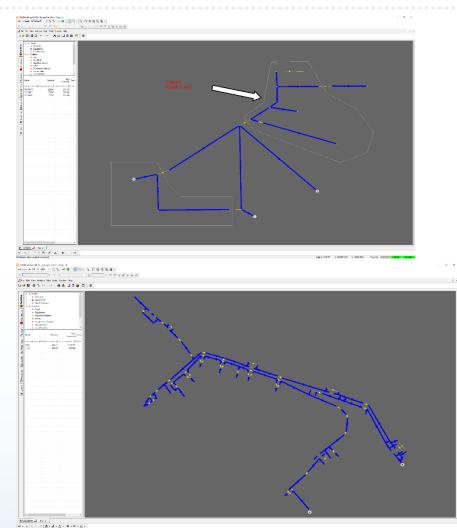
DOCKETED	
Docket Number:	22-OII-02
Project Title:	Gas Decarbonization
TN #:	247778
Document Title:	Presentation - Winter 2022-2023 Southern California Gas Company Reliability Assessment - Hydraulic Modeling
Description:	Presentation 03 - Jason Orta - Winter 2022-2023 Southern California Gas Company Reliability Assessment - Hydraulic Modeling
Filer:	Jann Mitchell
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	11/29/2022 2:00:51 PM
Docketed Date:	11/29/2022



Winter 2022-2023 Southern California Gas Company Reliability Assessment: Hydraulic Modeling

November 30, 2022

Jason Orta, Lead Natural Gas System Modeler Energy Assessments Division, Supply Analysis Branch



- Required under Title 20, Division 2, Chapter 3, Article 1 Section 1314 of the California Code of Regulations
- Submittals include the following:
 - System minimum and maximum allowable pressures
 - Demand scenarios
 - Load profiles
- Regulations allow for automatic confidential designation

Picture downloaded from CEC website

- Gas equivalent of a "power flow model"
- Simulate system operations
- Evaluate ability to serve load under conditions
- Utilities use this to evaluate needs for new capacity.
- Explores a moment in time (steady state) or over a period of time (transient state)
- Uses engineering pressure flow equations

Images courtesy of DNV.

What's In Hydraulic Modeling Files?

- System specifications
 - Pipeline lengths and diameters
- Maximum and minimum operating
 pressures
- System components
 - Valves, compressors, and regulators, etc.
- System supply and demand

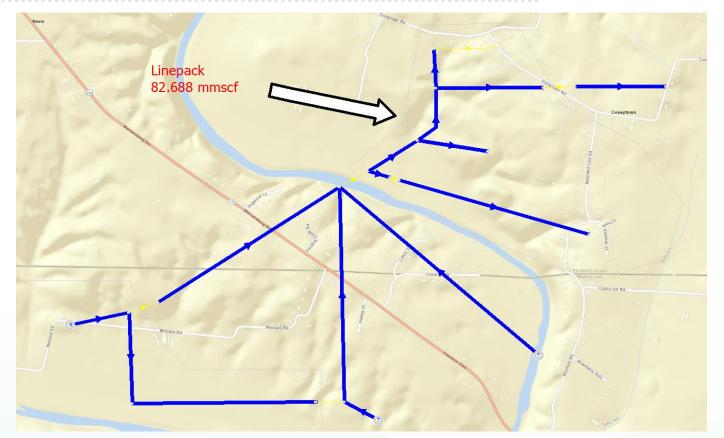


Image courtesy of DNV.

Hydraulic Modeling Software Platform - Synergi Gas

SYNERGITM GAS

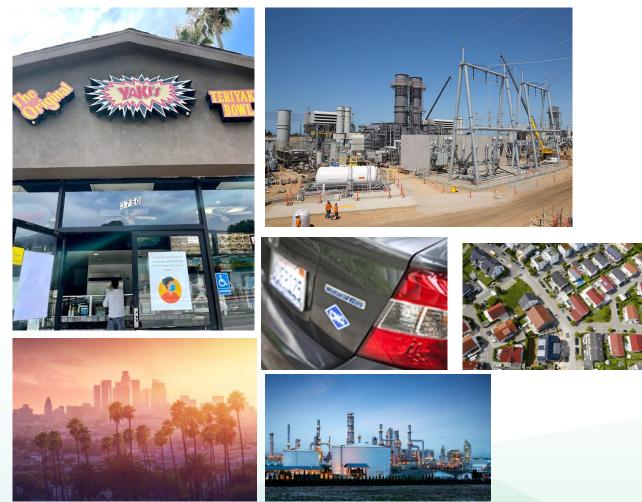
Advanced hydraulic modelling solutions for network assets

Reads Microsoft Access files

- Used by most large natural gas utilities in the United States
- Developed in the 1970s by Stoner and Associates of Mechanicsburg, PA
- Now owned by Oslo, Norway based DNV

Image courtesy of DNV.

SoCalGas Transmission System (Modified With CEC Staff Assumptions)



Graphic downloaded from SoCalGas website at: <u>https://www.socalgas.com/stay-safe/pipeline-and-storage-safety/natural-gas-transmission</u>

Simulating Winter 2022-23 On The SoCalGas System

- Ran simulations several times until solving without violations
- Constant, rateable deliveries of 2,815
 MMcfd
- Incorporated Cold Day and Extreme Peak Day Demands
 - Case 1-~4.7 Bcfd
 - Case 2- Just under 5 Bcfd
- Demand includes:
 - Power plants
 - Other large customers
 - Points at which gas is delivered to lower pressure systems
- Modeled in both steady and transient states

Photos courtesy of Google Images, the CEC, Prexels, and Microsoft PowerPoint.

- SoCalGas system is linepack poor per April 2016 Joint Agency Technical Report.
 - Transient modeling can monitor intraday linepack changes.
 - Must restore system linepack to the levels seen at the beginning of the gas day
- Simulating packing and drafting
 - Packing- Supply greater than demand
 - Drafting- Demand greater than supply
 - Watching pressures
- Intraday adjustments:
 - Storage withdrawals
 - Regulator settings

Photo courtesy of the City of Santa Clarita.

Transient Simulation of the SoCalGas System

- SoCalGas system is linepack poor per April 2016 Joint Agency Technical Report.
 - Transient modeling can monitor intraday linepack changes.
 - Must restore system linepack to the levels seen at the beginning of the gas day
 - Curtailments may be needed if linepack can't be restored
- Simulating packing and drafting
 - Packing- Supply greater than demand
 - Drafting- Demand greater than supply
 - Watching pressures
- Intraday adjustments:
 - Storage withdrawals
 - Regulator settings
- Curtailments needed if system cannot run within constraints

Photo courtesy of Microsoft PowerPoint.

- Case 1 and Case 2 simulations used storage withdrawals of approximately 1,850 MMcfd
- Case 1
 - SoCalGas system can meet all of the demand for that scenario without curtailment
- Case 2
 - Staff curtailed 277 MMcf/d to preserve acceptable operating pressures while enabling linepack restoration
 - Pressures drop below MinOp without curtailment on the Southern System
- Results match both the deterministic and stochastic hourly gas balance results
- Multi-day cold weather events with additional infrastructure outages can increase risk of curtailment

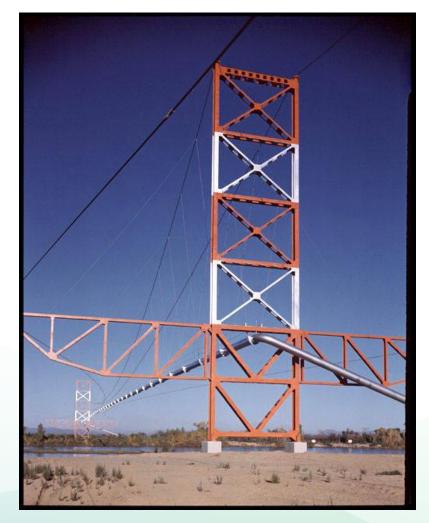


Photo courtesy of Northern Arizona University.