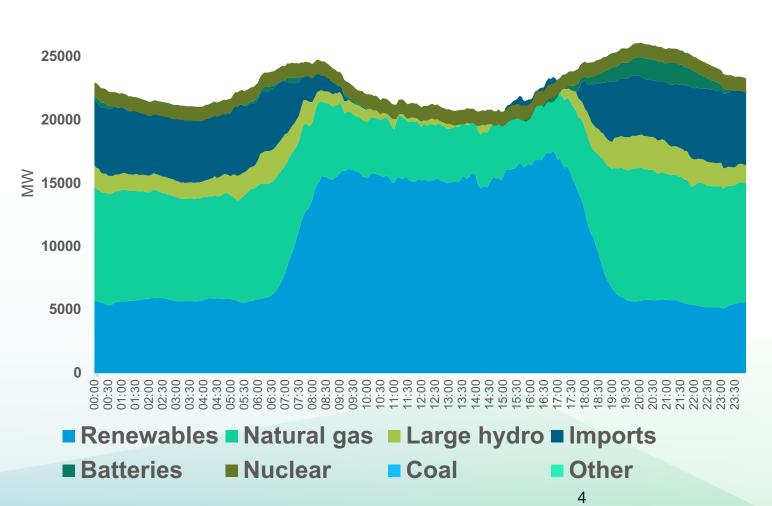
DOCKETED					
Docket Number:	21-OIR-03				
Project Title:	2022 Load Management Rulemaking				
TN #:	245990				
Document Title: Sending the Duck Back to the Wild with Demand Response					
Description:	California Energy Commission Energy Academy presentation from July 28, 2022.				
Filer:	r: Stefanie Wayland				
Organization:	California Energy Commission				
Submitter Role:	Commission Staff				
Submission Date:	9/12/2022 11:49:19 AM				
Docketed Date:	9/12/2022				

Sending the Duck Back to the Wild with Demand Response and Load Management

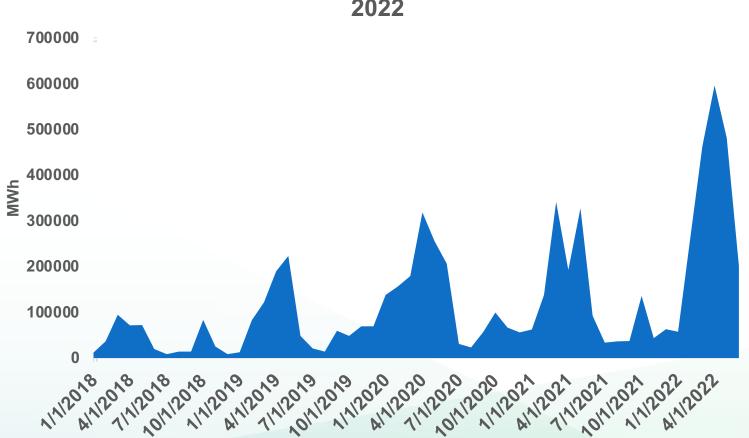
Presenters: Michael Kenney, EAD, Demand Response Project Manager Stefanie Wayland, Efficiency Division, Load Management Standards Lead Date: July 28, 2022

- Electricity system challenges
- What are demand response and load management?
- Demand response: implementation, design, and impacts
- Load management: implementation, design, and impacts
- Societal benefits

- Supply of clean renewable energy not well-matched with customer demand
- When sun sets, massive ramp of largely fossil-fuel resources to meet demand
- In the middle of the day, renewable generation may be curtailed if it will cause congestion and cannot be exported or consumed.



30000


- Supply of clean renewable energy not well-matched with customer demand
- When sun sets, massive ramp of largely fossil-fuel resources to meet demand
- In the middle of the day, renewable generation may be curtailed if it will cause congestion and cannot be exported or consumed.

CAISO Supply April 15, 2022

- Supply of clean renewable energy not well-matched with customer demand
- When sun sets, massive ramp of largely fossil-fuel resources to meet demand
- In the middle of the day, renewable generation may be curtailed if it will cause congestion and cannot be exported or consumed.

CAISO Monthly Renewable Energy Curtailment 2018-2022

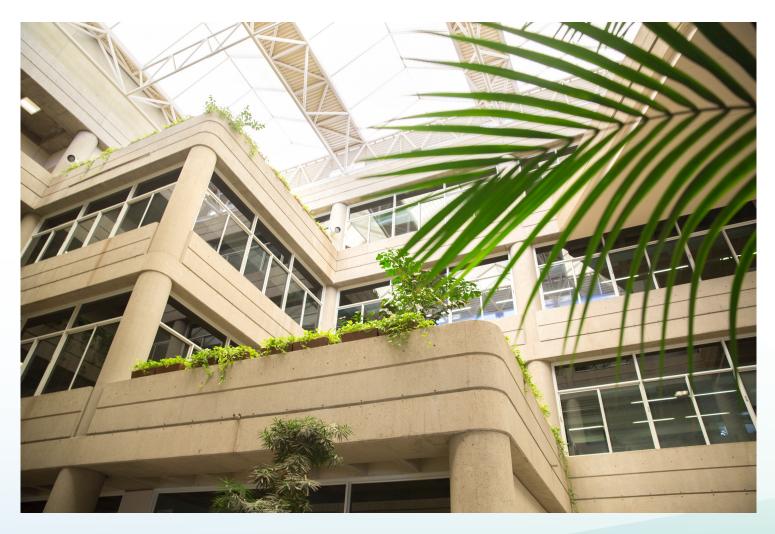
Role of Demand Response and Load Management Programs

- Direct customers to **shed and shift** demand
- Avoid excess strain on the electricity system
- Lower costs to utilities and customers
- Match renewable generation to customer demand

Per CPUC D.17-12-003 "... reductions, increases, or shifts in electricity consumption by customers in response to their economic signals or reliability signals."

How does Demand Response operate?

- Demand response is initiated by emergency or economic triggers.
- Trigger is communicated by a utility or third party to a customer or technology
- The customer or technology then limits or stops consuming energy for a specified amount of time.



Examples of residential DR technologies:

- Air conditioning
- Smart thermostats
- Heat pumps
- Pool pumps

Examples of Nonresidential DR technologies:

- HVAC
- Pumps
- Process loads
- Refrigeration

Emerging DR Technology

Electric Vehicles

- Vehicle to grid integration
- Smart charging

Behind the Meter Battery

- Smart controls
- Pair with PV system

Demand Response Programs

How are DR programs categorized?

- Market-integrated or not
- Dispatchable or not

- DR = procurable resource by utilities to meet electricity demand.
- Load serving entities and third parties bid DR into the CAISO markets.
- Utilities, CCAs, and third parties design programs that react to certain triggers.
- Payments made based on the capacity and energy provided.

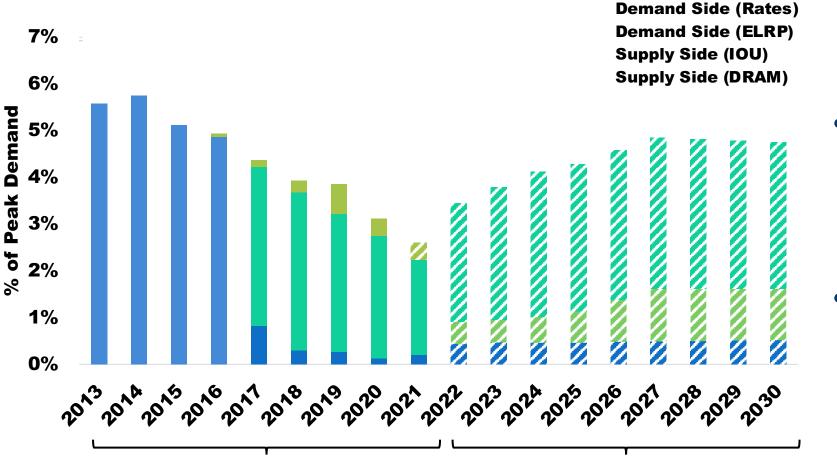
- IOUs offer several market integrated DR programs
- Emergency (804 MW)
 - Base Interruptible Program
 - Agricultural Pumping Interruptible
- Economic (393 MW)
 - Capacity Bidding Program
 - AC Cycling
 - Smart Thermostat Program

Third-Party DR Programs

- Third-party companies aggregate customers
- Contract capacity and energy to utilities, CCAs, or offer through Demand Response Auction Mechanism (DRAM)
- DRAM is a pilot for third-party demand response provider (DRP) participation in the CAISO market
- DRAM is technology-agnostic

Load-Modifying DR Programs

- Mostly focus on timevarying rates
- Offered by utilities directly to customers
- Shed and shift load away from peak hours


- Electricity price changes during a triggered event. Example, during times of grid stress.
- Programs include:
- Critical Peak Pricing
- Peak Time Rebate

Non-Dispatchable Programs

- Includes tiered and time of use rates
- Customer generally knows when and by how much the cost of electricity will change
- Real time pricing is not widely available
 - CEC and CPUC working on regulation to provide access to RTP

Demand Response Status

• 2021: DR resource ates) about 3% of peak J) AM) demand

> Major changes to programs and qualifying resources in last decade

 New growth from ELRP

Actuals from IOU DR Monthly Reports for August

<u>**Projections**</u> from 2022-2027 IOU DR Applications where available; gaps filled with 2021 load impact evaluation ex ante projections)

Prebifurcation

Improvements to drive DR growth

- Reviewing possible changes to methodology for qualifying capacity¹
- New efforts: Demand Side Grid Support² and Emergency Load Reduction Programs³
- CPUC Demand Flexibility Rulemaking⁴

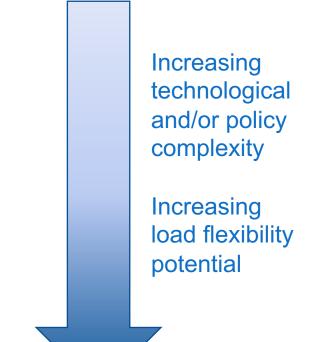
- 1. Flynn, Tom and Lyon, Erik. 2022. Qualifying Capacity of Supply-Side Demand Response Working Group Report. California Energy Commission. Publication Number: CEC-200-2022-001-CMD2
- 2. Demand side grid support program: <u>https://www.energy.ca.gov/programs-and-topics/programs/demand-side-grid-support-program</u>
- 3. Emergency load reduction program: <u>https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-costs/demand-response-dr/emergency-load-reduction-program</u>
- 4. CPUC Demand Flexibility Rulemaking: https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M492/K688/492688471.PDF

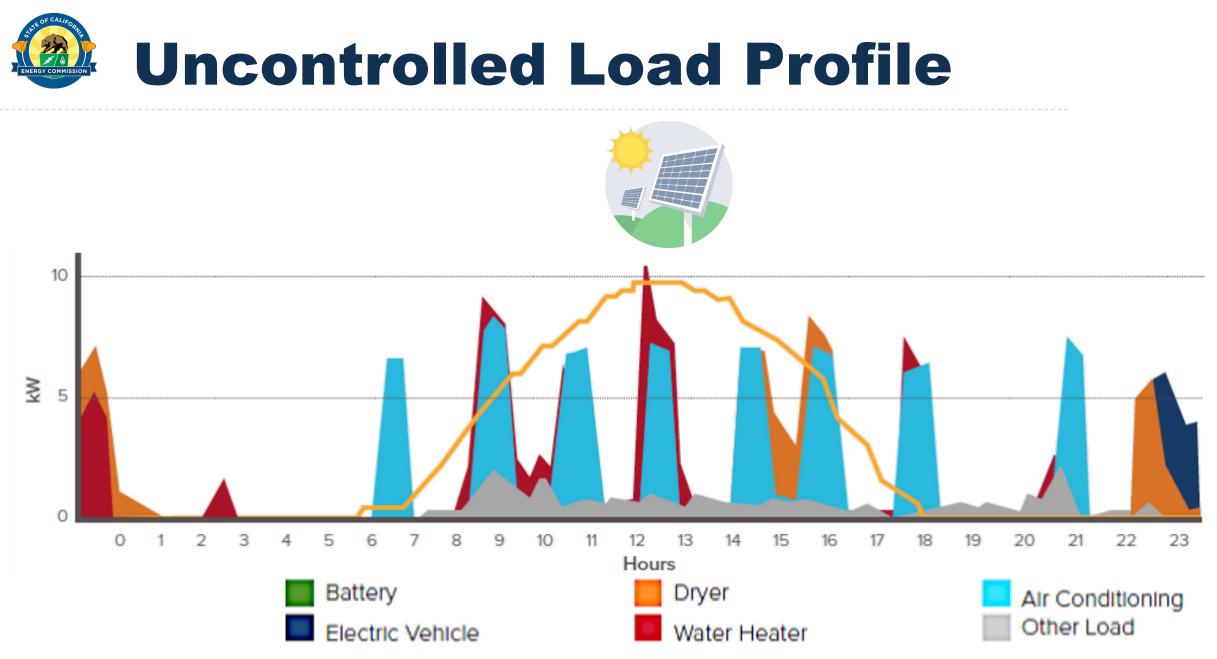
- Also called Demand Flexibility or Load Flexibility
- Adjust electrical usage rather than spending much more on generation and T&D infrastructure
- "Prices to devices"
 - Optimize electricity use to the available supply
 - Save on bills
- Enables widespread electrification without overwhelming the grid
 - HVAC
 - Water heating
 - Transportation

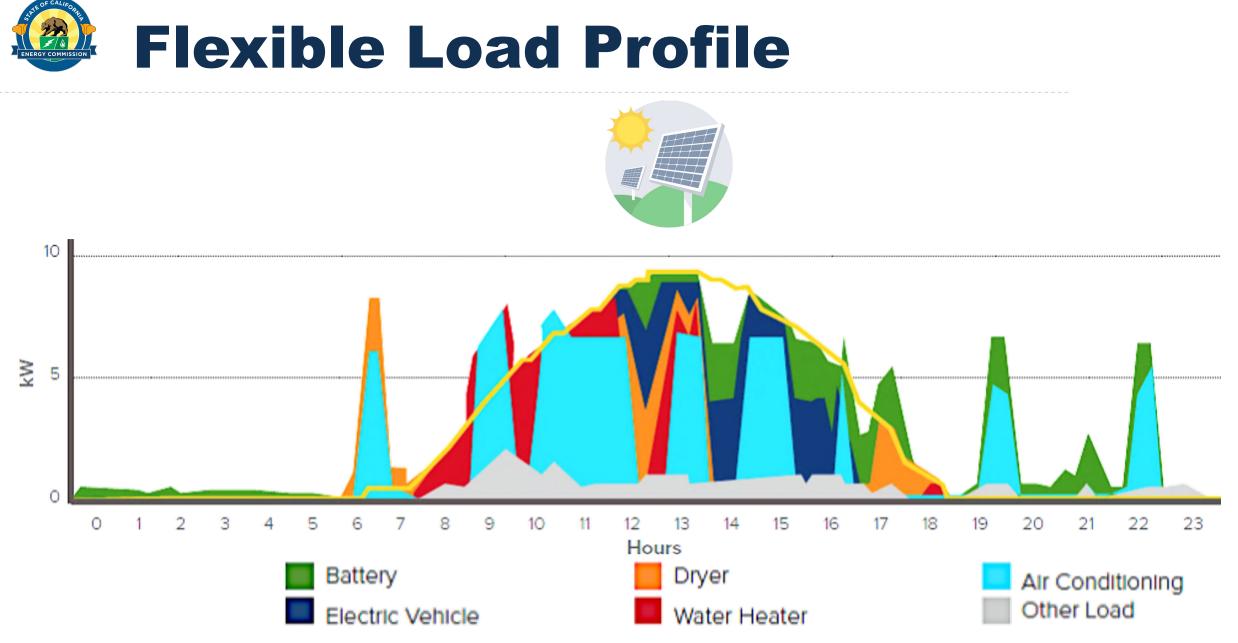
Load Management Definition

The process of maintaining the electric supply-demand balance by adjusting the load rather than the power station output.

CA Legal definition: Any utility program or activity that is intended to reshape deliberately a utility's load duration curve – PRC § 25132




- Reduce greenhouse gas emissions while maintaining services
 - Avoid use of high-polluting peaking plants
 - Shift loads towards times of carbon-free energy production
- Improve grid reliability
 - Prevent transmission & distribution congestion
- Reduce system costs
 - Minimize electricity use when generation costs are high
 - Avoid construction of battery and power capacity
 - Reduce renewable curtailments
- Increase customer choice
 - Reduce customer bills by shifting load out of high-cost hours
 - Customers can contribute to GHG reductions


Timer required

- Schedule load using timers
- Respond to existing TOU rates
- Automation and one-way communication required (Prices to devices)
 - Use existing grid and marginal GHG emissions signals (SGIP)
 - Use dynamic marginal cost-based rates (RTP)
 - Automation and two-way communication required
 - Transactive rates

Source: RMI 2018

Source: RMI 2018

- The commission shall... adopt standards by regulation for a program of electrical load management for each utility service area.
- In adopting the standards, the commission shall consider, but need not be limited to, the following load management techniques:
 - 1. Adjustments in rate structure to encourage use of electrical energy at off-peak hours or to encourage control of daily electrical load.
 - 2. ...
 - 3. Mechanical and automatic devices and systems for the control of daily and seasonal peak loads.
 - Warren Alquist Act, 1974

Public Resources Code § 25403.5

- Goals
 - 60% renewable generation by 2030
 - 100% of new vehicles emissions free by 2035
 - 100% carbon-free grid by 2045
- Opportunities
 - TOU default for all customer classes at 4 of 5 top electric utilities in CA
 - 5-minute GHG signal from CPUC's Self Gen Incentive Program (SGIP)
 - Connected devices increasingly available and affordable
- Challenges
 - No statewide access to machine-readable rates (addressing with MIDAS)
 - Lack of responsive automation (because of above)
 - Broadband Internet access in ~75% of CA homes¹

¹ Source: broadbandnow.com

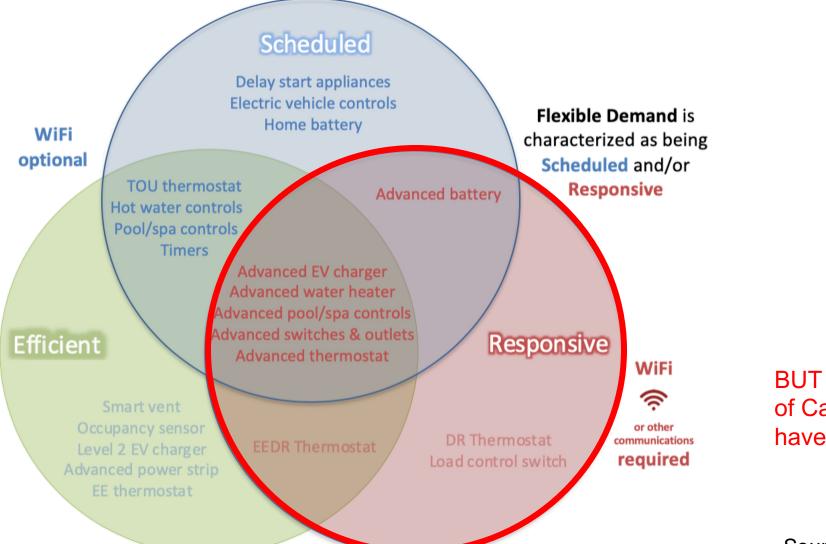
Renewables alone aren't enough Load management helps decarbonize the grid

2021 Hourly Marginal Emissions Intensity (MT CO₂/MWh)

Month													
Hour	1	2	3	4	5	6	_ 7	8	9	10	11	12	
0	0.41	0.39	0.32	0.17	0.17	0.21	0.40	0.42	0.43	0.42	0.41	0.42	
1	0.41	0.40	0.33	0.18	0.18	0.23	0.41	0.43	0.43	0.42	0.42	0.41	
2	0.41	0.39	0.33	0.18	0.19	0.23	0.41	0.43	0.43	0.42	0.42	0.42	S
3	0.40	0.39	0.33	0.17	0.18	0.23	0.41	0.43	0.43	0.42	0.42	0.42	U
4	0.40	0.37	0.31	0.14	0.16	0.22	0.40	0.43	0.43	0.42	0.41	0.41	•
5	0.38	0.36	0.27	0.12	0.14	0.19	0.40	0.41	0.42	0.40	0.40	0.41	tr
6	0.35	0.31	0.25	0.12	0.13	0.15	0.39	0.41	0.41	0.39	0.37	0.38	
7	0.35	0	רא <mark>ב</mark>	0.13	0.14	0.15	C C	10	0.41	0.40	0.37	0.38	
8	0.21			0.11	0.11	0.12		35	0.35	0.33	0.28	0.33	
9	0.23	0	2	0.09		0.11			0.30	0.23	0.17	0.22	
10	0.20		+	2		7,10		4	0.24	0.18	0.16	0.20	
11	0.16	0.11	.10			- 79	0.1	0.22	0.22	0.16	0.15	0.19	- A.
12	0.16	0.11	0.10		HH	9	0.14	0.20	0.22	0.17	0.15	0.19	
13		0.12	0.10			90	0.14	0.18	0.20	0.17	0.17	0.21	(0
14	hift	13	0.10	L		09.ر	0.14	0.16	0.24	0.18	<u> </u>	0.25	
15		0 <u>1</u> 9	0.12	0.05		0.09	0.14	0.16	0.26	0.2	ift		
16	S	0.31	0.17	0.10	0.09	0.09			0.27	0.29		1_35	
17	0.32	0.26	0.21	0.11	0.10	0.10	0.14	0.17	0.31	0.28	S).32	H
18	0.31	0.24	0.16	0.10	0.10	0.1	0.15	0.22	0.32	0.29	0.28	0.32	р.
19	0.32	0.24	0.17	0.11	0.11	0.12	0.21	0.31	0.35	0.33	0.30	0.32	Ρι
20	0.34	0.21	0.19	0.11	0.11	0.18	0.30	0.36	0.37	0.35	0.35	0.34	~
21	0.35	0.31	0.25	0.12	0.12	0.13	0.36	0.38	0.39	0.39	0.37	0.36	au
22	0.38	0.35	0.29	0.13	0.12	0.14	0.38	0.40	0.41	0.41	0.39	0.39	F 111
23	0.40	0.38	0.32	0.14	0.15	0.16	0.39	0.41	0.42	0.42	0.41	0.40	rur
	Winter			prin	g	S	umn	ner		Aut	umr	า	

Shift electricity use from dirty hours...

...to clean hours (charge, heat, cool, pump: 9am to 3pm)


HOW?

Publish price & emissions signals for automation devices to reschedule default run-times

9/12/22

BUT – only about 75% of California homes have Internet

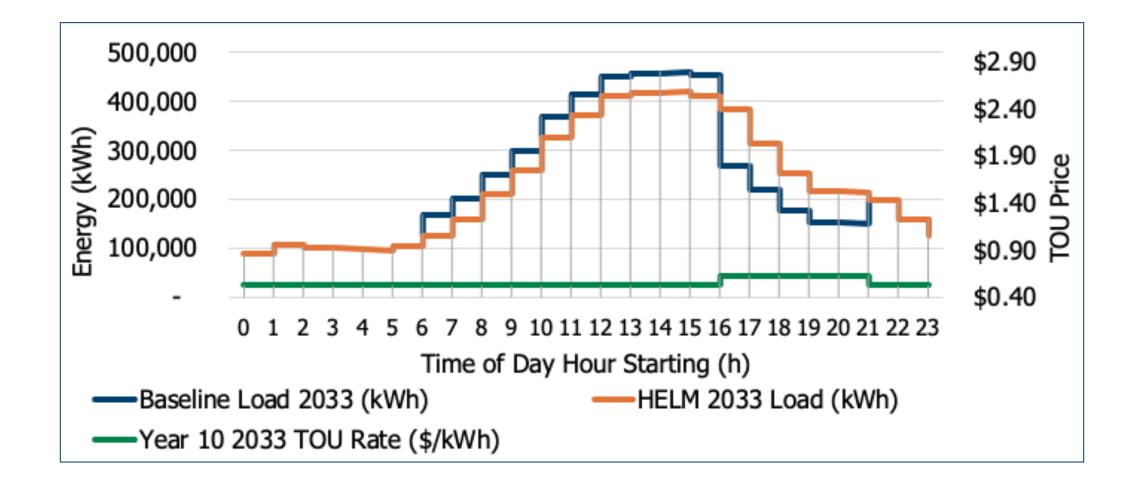
Source: Karen Herter

- Water pumps State Water Project, Municipal, and Ag pump controls
- Refrigerated Warehouses delay loading and unloading, precooling
- Industrial Processes schedule for off-peak or run at lower rates
- Heating and Air conditioning precool or preheat, reduce runtime
- Data centers HVAC controls, non-urgent compute tasks
- Electric vehicles Fleet EV supply equipment
- Water heating heating controls
- Pools and hot tubs pump and heating controls (e.g. hotel chains)
- Battery storage charging controls
- Refrigerators & freezers compressors and anti-sweat heaters

- 1. <u>CEC</u> publishes a central statewide **Rate Database: MIDAS**
- 2. <u>Utilities</u> establish a system to enable third-party automation services
- 3. <u>CEC</u> creates Flexible Demand Appliance Standards
- 4. <u>Utilities</u> establish **programs** to help customers respond to prices and GHG emissions
- 5. <u>EPIC Load Flexibility Research Hub</u> provides research and on load flexibility and tests communication pathways and flexible devices
- <u>Utilities</u> offer optional locational marginal hourly and sub-hourly rates to all customers (Load Management Standard and CPUC Rulemaking 22-07-005)

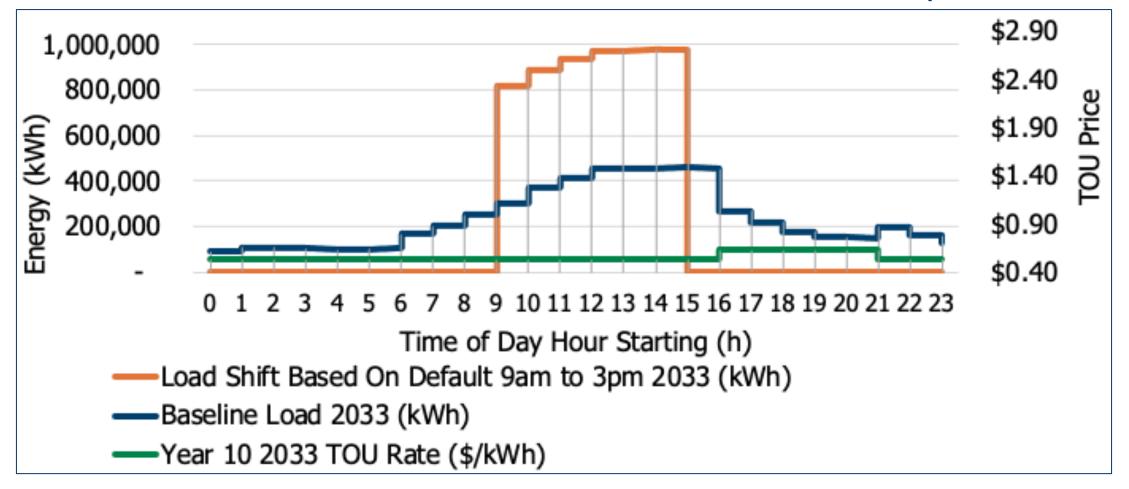
Load Management Standards

1	Rate Database	 Maintain existing and future time-varying rates in the publicly available and machine-readable MIDAS rate database
2	Automation Services	 Develop a standard rate information access tool to support automation services
3	Hourly Rates	 Develop and submit locational rates that change at least hourly to reflect marginal wholesale costs
4	Customer Education	 Integrate information about new time-varying rates and automation technologies into existing customer education and outreach programs



Flexible Demand Appliance Standards

Flexible demand standards for pool controls are feasible and cost-effective


Phase 1	Phase 2	Phase 3
Pool Controls	Electric Storage Water Heaters	Electric Vehicle Supply Equipment
Dishwashers*	Behind the Meter Batteries	
Electric Clothes Dryers*		
Thermostats*		

Load shift based on default schedule 9 a.m. to 3 p.m.

- UNIDE staff workshop (May 2021)
- CalFUSE staff paper (July 2022)
- DER Action Plan 2.0 (June 2022)
- Dynamic rates for demand flexibility R.22-07-005 (July 2022)
- Pilots
 - VCE/PG&E agricultural pumping dynamic rate (2022)
 - SCE "RATES" phase 2 pilot open to all residential and C&I customers (2022)
 - PG&E Commercial Day-ahead RTP (late 2023)
 - PG&E RTP rate for multiple customer classes (late 2023)
 - SDG&E RTP and EV RTP rates

Societal Benefits from DR and LM

- Environmental Benefits:
 - Avoided air pollutants
 - Avoided GHG emissions
- System Reliability
- Customer Bill Savings
- Avoided Costs
 - T&D
 - Ancillary services
 - Generation
 - Curtailment

Thank You!

CEC Staff Contacts

- Technical analysis: Stefanie Wayland
- Economic analysis: Gavin Situ
- MIDAS: Morgan Shepherd
- Relevant Documents and Websites
 - <u>CEC Staff Analysis of Proposed Amendments</u>
 - 2021 Load Management Rulemaking website
 - Load Management Standards: CCR Title 20 §1621-1625
 - Flexible Demand Appliance Standards: PRC 25402
 - Warren-Alquist Act: PRC 25403.5