DOCKETED			
Docket Number:	21-ESR-01		
Project Title:	Energy System Reliability		
TN #:	244613		
Document Title:	edgar ross III Comments - We need Diablo Canyon and othernukes		
Description:	N/A		
Filer:	System		
Organization:	edgar ross III		
Submitter Role:	Public		
Submission Date:	8/11/2022 5:57:58 PM		
Docketed Date:	8/12/2022		

Comment Received From: edgar ross III Submitted On: 8/11/2022 Docket Number: 21-ESR-01

We need Diablo Canyon and othernukes

Should it come to pass that we need additional nuclear power, and we had not acted when we could have had them in time, well, shame on us.

If we get to the point where all carbon-free energy (plus a surplus) that we will need is already on-line without nuclear, we can (a) shut down existing nukes or (b) leave new nukes unstarted. Since we don't know (and life is full of unpleasant surprises), and the possible future of our species could be adversely affected, it seems prudent to keep existing nukes going and ramp up planning and building new ones.

Attached: my 1 page derivation for the amount of electric energy needed to remove 120 ppm CO2 from the air using current technology

Additional submitted attachment is included below.

ENERGY TO CAPTURE 120 ppm CO2 from ATMOSPHERE over 100 Years

Radius of earth: Surface area of sphere: Weight of atmosphere: 1 mile: 1 foot: 1 metric tonne: CO2: Fraction of air	15 pounds 5,280 feet 12 inches 2,200 poun	per sq inch (psi)	
1 GWh 1 kWh Hours per year \$200 - \$600 0.8	\$0.30 cost 8,760 Cost-to-ca Electricit	<pre>kWh (= 1,000,000,000 Wh) c of 1 KWh electricity in 2022 epture 1 tonne of CO2 (using \$200/tonne, here) cy as fraction of cost-to-capture (guess)</pre>	
2.2 GW 444		output of both reactors at Diablo Canyon, CA nuclear plants, world-wide (2021) produce 400 GW	
4,000 mi <u>(5,280 ft)</u> <u>(12 inch)</u> = 253,440,000 Earth's radius in inches mile foot			
$4(3.14)(253,440,000)^2 =$	8.07x10 ¹⁷	Earth's surface area $4\pi r^2$, in sq inches	
8.067x10 ¹⁷ (15 psi) =	1.21x10 ¹⁹	Weight of the entire atmosphere (pounds)	
1.21x10 ¹⁹ (0.00012) =	1.45x10 ¹⁵	Pounds of 120 ppm CO2 added to atmosphere	
$\frac{1.45 \times 10^{15}}{2,200} =$	6.6x10 ¹¹	Tonnes of 120 ppm CO2 added to atmosphere	
\$200 (6.6x10 ¹¹) =	\$1.32x10 ¹	⁴ 120 ppm CO2 cost-to-capture @ \$200/tonne	
1.32×10^{14} (0.8) =	\$1.06x10 ¹	⁴ Cost of electricity (80% of capture cost)	
$\frac{\$1.06x10^{14}}{100} =$	\$1.06x10 ¹²	² Electric cost/year spread over 100 years	
$\frac{\$1.0610^{12}}{\$0.30} =$	3.5x10 ¹²	kWh per year required	
$\frac{3.5 \times 10^{12}}{1,000,000} =$	15,000,00	0 GWh per year	
$\frac{15,000,000}{8,760} =$	1,700	GW needed 24/7 for 100 years	
$\frac{1,700}{2.2}$ =	770	Number of Diablo Canyon sized reactors to produce 1,700 GW	
—	use wind 120,000	turbines instead of nuclear: Number of 14 MW wind turbines instead Assuming: wind blows and turbines last 100 yrs	
$\frac{120,000 \times 3}{0.80} =$	450,000	Windmills needed if wind blows 80% and turbines last 33 years.	
This <u>does not</u> include: E.Ross 2022-02-27 Energy to <u>sequester</u> 10 ¹¹ tonnes of CO2 Energy to <u>build</u> DAC plants and make their chemicals (DAC = Direct Air Capture) Energy to make liquid fuels without using fossil fuels Energy to refreeze the Arctic (to restore northern jet streams) Energy to Replace existing FF plants, Desalinize seawater; charge EVs; produce cement, fertilizer, primary metals; replacing worn renewables; new world-wide refrigeration And, assumes tipping points aren't exceeded in the meantime: thawing permafrost, AMOC,			

And, assumes tipping points aren't exceeded in the meantime: thawing permafrost, AMOC, \ldots