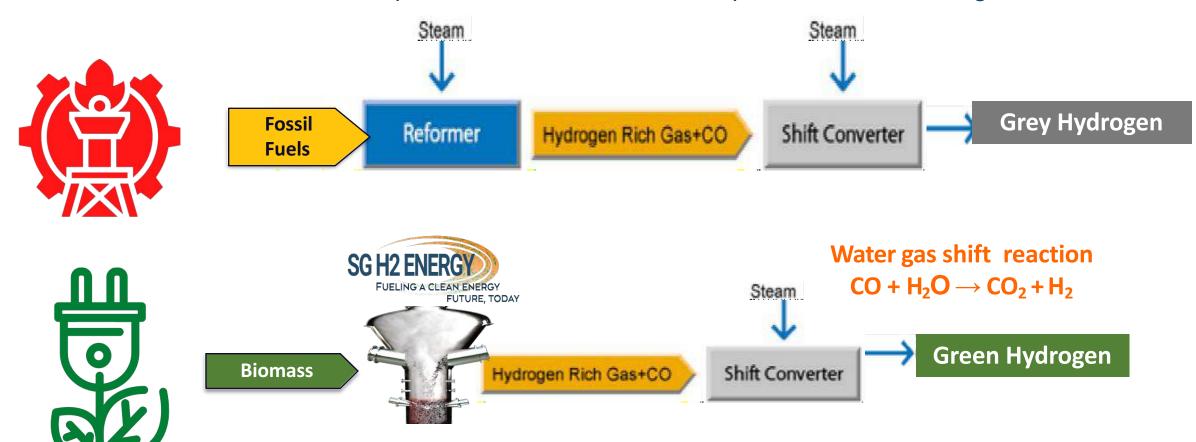
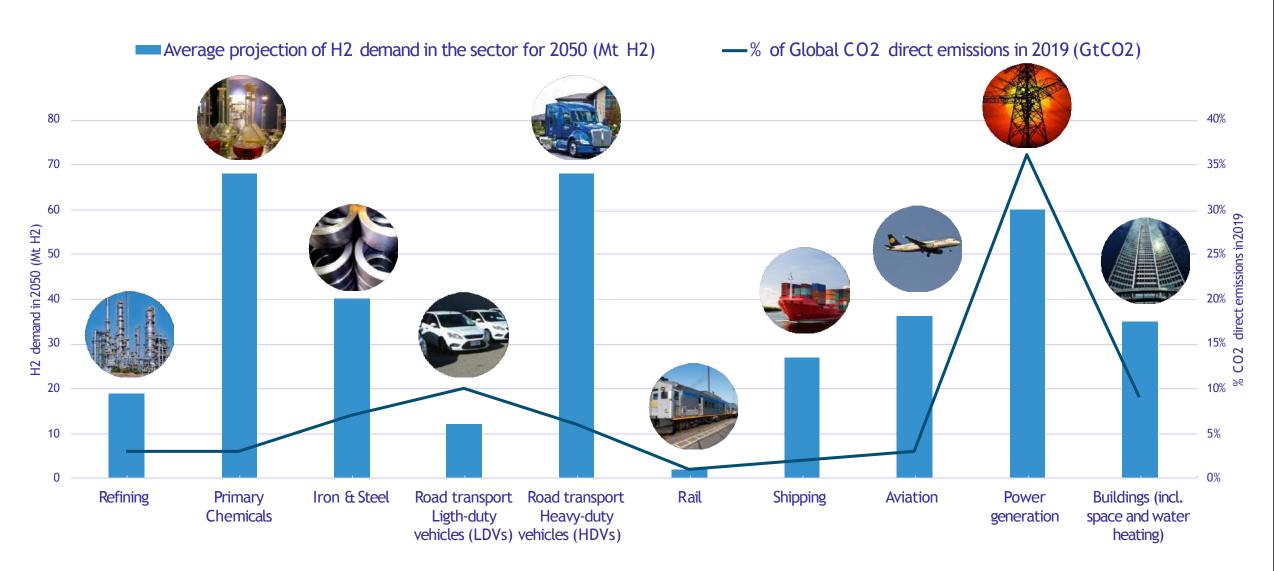
DOCKETED			
Docket Number:	22-IEPR-05		
Project Title:	Emerging Topics		
TN #:	243622		
Document Title:	Presentation - CLEANER THAN GREEN SGH2 CARBON NEGATIVE HYDROGEN		
Description:	4D. Robert T. Do, SGH2 Energy		
Filer:	Raquel Kravitz		
Organization:	SGH2 Energy		
Submitter Role:	Public		
Submission Date:	6/20/2022 3:14:31 PM		
Docketed Date:	6/20/2022		




GREEN HYDROGEN FROM BIOMASS IS A RENEWABLE ALTERNATIVE TO HYDROGEN PRODUCED FROM FOSSIL FUELS

Today, gray and brown H2 dominate the world hydrogen market, together producing more GHG than India and Britain combined. At present, 95% of America's H2 is produced from natural gas.

Thermo-conversion of Biomass

GLOBAL HYDROGEN DEMAND IS GROWING, CREATING URGENT NEED FOR CLEANER GREENER HYDROGEN

URGENCY, GRAVITY, OPPORTUNITY

Waterborne transport and ports account for 90% of global trade and 15% of global GHG emissions. Global municipal waste accounts for 5% of global GHG emissions. **SGH2 technology** offers a critical opportunity to meet urgent and growing climate and energy security needs.

Waterborne transport and Ports

- 90% global trade
- 1 Gt GHG
- 15% global GHG emissions
- Over 4% of Europe & US GHG total

Global Municipal Waste

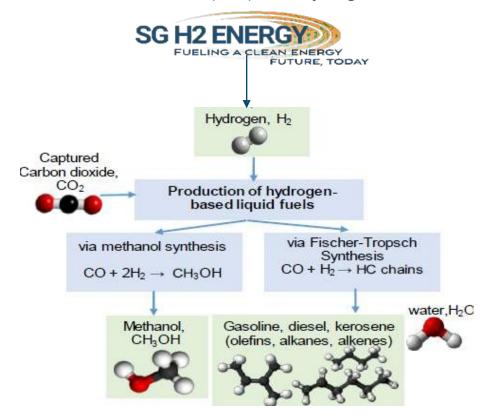
- Over 2 billion tons annually
- By 2050, 3.4 billion tons GHG annually
- 5% of global GHG emissions

Aviation

- 1 GT GHG
- 18% global GHG emission
- T GHG
- 18% global GHG emission

CLEANER THAN GREEN HYDROGEN TO X

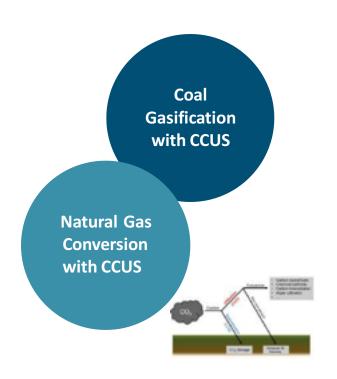
Promising Maritime Fuels Free of Sulfur & Carbon

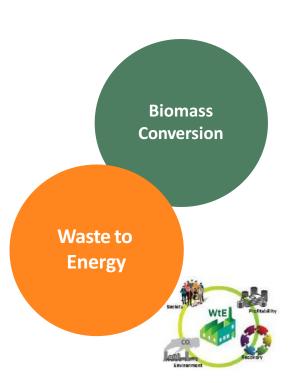

Green Ammonia

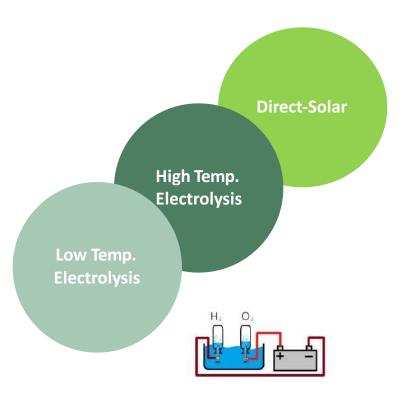
- Needed in huge quantities to produce fertilizers and chemicals.
- Easily storable and transportable enabling export options from areas where regenerative energy is abundantly available.
- Can be used either as is or thermally decomposed to generate hydrogen.

Synthetic Methanol

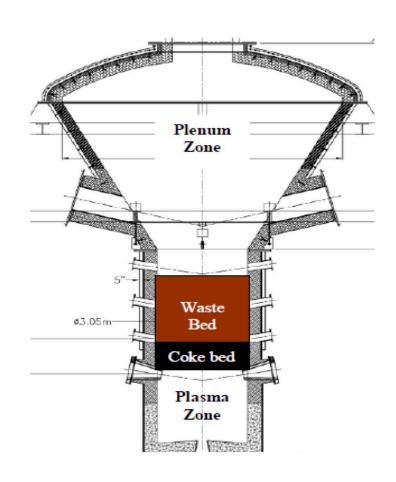
- 80% higher energy density than hydrogen
- Production route from syngas (through hydrogen) is well developed commercially.
- Synthetic diesel or kerosene is the result of a reaction occurring between carbon monoxide (CO) and hydrogen.


HOW WILL CLEAN/GREEN H2 DEMAND BE MET?


FOSSIL W/ CCUS


BIOMASS/WASTE

WATER SPLITTING


- Low-cost large-scale with CCUS
- Byproducts such as solid carbon
- Includes biogas reforming & fermentation of wastestreams
- Benefits: clean water, electricity and chemicals
- Electrolysers can be grid tied, or directly coupled with renewables
- New direct water splitting options offer long-term sustainable hydrogen

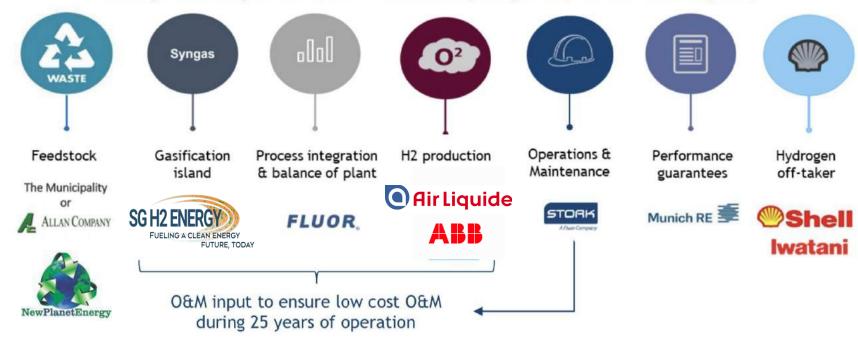
SGH2 CLEANER THAN GREEN HYDROGEN: HOW IT WORKS SPEG Technology

SGH2 CLEANER THAN GREEN HYDROGEN VS. GREEN HYDROGEN BY ELECTROLYSIS

Per 3,850 tons Clean Hydrogen Per Year

	SGH2 CLEANERTHAN GREEN HYDROGEN	ELECTROLYSIS	
Water	20,000 m ³ /year	57,000 m ³ /year	2.8x Less
Electricity 4	25,000 MWh /year	205,000 MWh /year	8x less
Cost	\$2 - 3 /Kg H2	\$8 / Kg H2	3-4x less
Waste Avoided 📋	- 42,000 ton /year		
Plot Space 🛑	5 acres	1,500 acres	200x less
Carbon Intensity CI	- 188 gCO ₂ e/ MJ	0 gCO ₂ e /MJ	

	HYDROGEN TYPES	CARBON INTENSITY (gCO2 eq/MJ)	PRODUCTION \$/KgH2
GREEN HYDROGEN	SGH2 Cleaner than Green Hydrogen	-188 gCO2eq/MJ (avoiding 29 Kg of CO2 per Kg of H2)	\$2-\$3
	Green Hydrogen (Electrolysis)	0 gCO2eq/MJ	\$10- \$13
HYDROGEN FROM FOSSIL FUELS	Grey Hydrogen from NatGas	+12 KgCO2/KgH2	\$2 -\$6 (cost of natural gas)
	Brown Hydrogen from Gasification of Coal	+20 KgCO2/KgH2	\$2 -\$3
BLUE HYDROGEN WITH CARBON CAPTURE & SEQUESTRATION	Grey Hydrogen	+12 KgCO2/ KgH2 with CCS	\$5 -\$9
	Brown Hydrogen	+20 KgCO2/KgH2 with CCS	\$5 -\$6


Exclusive rights to state-of-the-art Solena Plasma Enhanced Gasifier (SPEG) technology

- Successfully demonstrated at a full-size project in US and torch facility in Czech Republic
- Cost competitive with the cheapest most carbon-intensive hydrogen made from fossil fuels.
- Projected to be US\$2- \$3 per Kg of clean green hydrogen
- Displaces 23-31 tons of carbon per Kg, according to Lawrence Berkeley National Lab
- 13 to 19 tons more carbon dioxide per Kg avoided than other green hydrogen processes

WORLD'S LARGEST CLEAN/GREEN HYDROGEN FACILITY: SGH2 LANCASTER CALIFORNIA

- Take 120 tons/day of unrecyclable waste paper as feedstock
 - Converts it into 11 tons of 99.9999% pure green H₂/day
- Designed to operate 24/7 for 335 days a year (~8.000 hours/year)

WORLD'S LARGEST CLEAN/GREEN HYDROGEN FACILITY: SGH2 LANCASTER CALIFORNIA



- Lancaster City
- US Senate & Congress (CA)
- SG H2 Energy
- Iwatani
- Fluor
- Stork
- ABB
- Marubeni
- Chart Industries
- Sempra Infrastructure
- Mitsubishi
- Toyota North
 America
- Sojitz

SGH2 LANCASTER

- 10 year off-take contracts with the leading hydrogen fueling station operators to supply 90 of the 120 new HRS by 2025
- Public Private Partnership with the City of Lancaster using 42000 T of unrecyclable mixed paper waste
- Awarded \$3 Million CEC grant
- Permitting and CEQA by Q2/2022
- EPC 16 -18 months
- Operational Q4 2023

