DOCKETED				
Docket Number:	22-BUSMTG-01			
Project Title:	Business Meeting Agendas, Transcripts, Minutes, and Public Comments			
TN #:	243236			
Document Title:	ITEM 2-Information Item on California Air Resources Board (CARB) Draft 2022 Climate Change Scoping Plan			
Description:	N/A			
Filer:	Dorothy Murimi			
Organization:	California Energy Commission			
Submitter Role:	Commission Staff			
Submission Date:	5/23/2022 5:24:48 PM			
Docketed Date:	5/23/2022			

Draft 2022 Scoping Plan

MAY 2022

CALIFORNIA AIR RESOURCES BOARD

AB 32 Climate Change Scoping Plan Statutory Requirements

- Scoping Plan(s) are action plans for CA to meet statewide GHG reduction targets
 - Scoping Plan(s) outline a suite of climate policies to address emissions across all sectors
 - Required to be updated at least every 5 years
 - 2017 SP (most recent) cost-effective and technologically feasible path to achieve the 2030 target
- Provide direct GHG emissions reductions and air quality benefits
- Minimize emissions "leakage" increase to non-CA GHG emissions
 - Ensure high-road jobs remain
- Facilitate sub-national and national collaboration
 - Develop exportable programs for partners to adopt
- Support cost-effective and flexible compliance

California's Climate Policy Framework

Incorporation of EJ Advisory Committee Recommendations

- The EJAC met over dozen times since early last summer to help inform this Draft 2022 Scoping Plan
- Developed over 200 recommendations
- Incorporation of feedback into the Draft 2022 Scoping Plan Document
 - Modeling input incorporated into the design of the scenarios
 - Additional evaluation of phasing out refinery operations by 2045
 - 5 dozen references to EJAC Draft Recommendations in the Draft Scoping Plan
 - Categorizes recommendations that could not be incorporated into the Draft Scoping Plan as well as a process for following up

AB 32 Sources Scenarios Overview

What Carbon Neutrality Means

Key Metrics

	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Annual Build Rates Historic Max Builds: Solar: 2.7GW Battery: 0.3GW	Solar: 10GW Battery: 5GW	Solar: 5GW Battery: 3GW	Solar: 7GW Battery: 2GW	Solar: 6GW Battery: 2GW
Vehicle Early Retirements US-wide Cash for Clunkers \$3B and 690k vehicles	LDV: 16M 5-16 yr. old MHDV: 1.4M 5-16 yr. old	LDV: 0 MHDV: 0.6M 10-20 yr. old		
Residential Early Retirements	7M electric homes. Appliances 5-16 yr old			
Hydrogen Demand & Electrolysis Need Total CA Capacity: 83GW	Percent 2020 US: 19% Solar: 47GW	Percent 2020 US: 18% Solar: 44GW	Percent 2020 US: 17% Solar: 41GW	Percent 2020 US: 13% Solar: 31GW
Petroleum Refining Remaining	2035: 0% 2045: 0%	2035: 25% 2045: 8%	2035: 33% 2045: 13%	2035: 39% 2045: 18%
Total CCS Needs Industrial & Refining	2035: <1MMT 2045: <1MMT	2035: 8MMT 2045: 2.4MMT	2035: 10MMT 2045: 4MMT	2035: 11MMT 2045: 5MMT
Residual Emissions Current global DAC 0.01 MT/year	2035: 30MMT 2045: 22MMT	2035: 123MMT 2045: 60MMT	2035: 0MMT 2045: 80MMT	2035: 0MMT 2045: 99MMT

Scenario Emissions

Modeling

Emissions shown after CCS, before CDR

Combustion Fuels Transition

Loads by Scenario

- + Electric loads increase by 30-80% relative to today by 2035 and 60-90% by 2045
- Loads for direct air capture and hydrogen production are assumed to be provided by off-grid renewables, and are not included in this graphic
- Other transportation includes all non-LDVs and reflects electrification of things like passenger and freight rail, aviation, and ocean-going vessels (OGVs)

Cumulative New Resource Capacity Build in 2045

In Alt 1, builds ~62 GW of battery storage and ~30 GW of hydrogen fuel cells as clean firm capacity

Alt 1 builds ~124 GW of solar, compared to ~26 GW in the BAU

Alts 2 through 4 are similar in 2045 due to SB100 goal, while in Alt 1 the model builds significantly more clean energy resources to meet the 0 MMT, no combustion target

In Alt 3 scenario, model builds ~90 GW of solar and ~40 GW of batteries to meet SB100 retail sales target. All gas remains online and ~10 GW of new gas is built

Direct Cost by Scenario, 2035 and 2045

Costs from PATHWAYS in a single year relative to the growing California

Employment by Scenario Including CDR, 2035 and 2045

Impact from IMPLAN in a single year relative to California employment that grows from 23.5 million in 2021 to 27.7 million in 2045

Initial results from PATHWAYS costs assuming CDR is liquid solvent DAC technology powered by off-grid solar relative to BAU. Jobs are defined in IMPLAN as an annual average that accounts for seasonality and follows the same definition used by the BLS and BEA. Percentage change is relative to CARB 2035 and 2045 employment forecasts.

Gross State Product by Scenario Including CDR, 2035 and 2045 Impact from IMPLAN in a single year relative to the California economy that grows from \$3.2 trillion in 2021 to \$5.1 trillion in 2045

Initial results from PATHWAYS costs assuming CDR is liquid solvent DAC technology powered by off-grid solar relative to BAU. IMPLAN reports value added which is equivalent to an industry's contribution to Gross State Product or GSP. Percentage change is relative to CARB 2035 and 2045 Gross State Product forecasts.

Emissions Modeling

Scenarios achieve large reductions in emissions due to shifts to zero pollutant emission fuels and reductions in energy consumption

• Reductions in total NO_x from the Reference scenario range from 89% in Alt 1 to 58% in Alt 4

Health Impact Results

The implementation of the Scoping Plan scenarios achieves notable public health benefits relative to the Reference Scenario

 Total combined benefits range from \$8.3 billion in Alt 4 to \$15.9 billion in Alt 1 in Improvements in winter PM_{2.5} provide significant benefits

Total Health Benefits in July and January 2045*

2022 Scoping Plan Update Schedule

